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Abstract— Quantifying the robustness of neural networks or
verifying their safety properties against input uncertainties
or adversarial attacks have become an important research
area in learning-enabled systems. Most results concentrate
around the worst-case scenario where the input of the neural
network is perturbed within a norm-bounded uncertainty set.
In this paper, we consider a probabilistic setting in which
the uncertainty is random with known first two moments. In
this context, we discuss two relevant problems: (i) probabilistic
safety verification, in which the goal is to find an upper bound
on the probability of violating a safety specification; and (ii)
confidence ellipsoid estimation, in which given a confidence
ellipsoid for the input of the neural network, our goal is to
compute a confidence ellipsoid for the output. Due to the
presence of nonlinear activation functions, these two problems
are very difficult to solve exactly. To simplify the analysis, our
main idea is to abstract the nonlinear activation functions by a
combination of affine and quadratic constraints they impose
on their input-output pairs. We then show that the safety
of the abstracted network, which is sufficient for the safety
of the original network, can be analyzed using semidefinite
programming. We illustrate the performance of our approach
with numerical experiments.

I. INTRODUCTION

Neural Networks (NN) have been very successful in vari-
ous applications such as end-to-end learning for self-driving
cars [1], learning-based controllers in robotics [2], speech
recognition, and image classifiers. Their vulnerability to in-
put uncertainties and adversarial attacks, however, refutes the
deployment of neural networks in safety critical applications.
In the context of image classification, for example, it has
been shown in several works [3]–[5] that even adding an
imperceptible noise to the input of neural network-based
classifiers can completely change their decision. In this con-
text, verification refers to the process of checking whether the
output of a trained NN satisfies certain desirable properties
when its input is perturbed within an uncertainty model.
More precisely, we would like to verify whether the neural
network’s prediction remains the same in a neighborhood of a
test point x?. This neighborhood can represent, for example,
the set of input examples that can be crafted by an adversary.

In worst-case safety verification, we assume that the input
uncertainty is bounded and we verify a safety property for
all possible perturbations within the uncertainty set. This
approach has been pursued extensively in several works using
various tools, such as mixed-integer linear programming
[6]–[8], robust optimization and duality theory [9], [10],
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Satisfiability Modulo Theory (SMT) [11], dynamical systems
[12], [13], Robust Control [14], Abstract Interpretation [15]
and many others [16], [17].

In probabilistic verification, on the other hand, we as-
sume that the input uncertainty is random but potentially
unbounded. Random uncertainties can emerge as a result of,
for example, data quantization, input preprocessing, and en-
vironmental background noises [18]. In contrast to the worst-
case approach, there are only few works that have studied
verification of neural networks in probabilistic settings [18]–
[20]. In situations where we have random uncertainty mod-
els, we ask a related question: “Can we provide statistical
guarantees on the output of neural networks when their input
is perturbed with a random noise?” In this paper, we provide
an affirmative answer by addressing two related problems:

• Probabilistic Verification: Given a safe region in the output
space of the neural network, our goal is estimate the
probability that the output of the neural network will be
in the safe region when its input is perturbed by a random
variable with a known mean and covariance.

• Confidence propagation: Given a confidence ellipsoid on
the input of the neural network, we want to estimate the
output confidence ellipsoid.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss safety verification of neural networks
in both deterministic and probabilistic settings. In Section
III, we provide an abstraction of neural networks using
the formalism of quadratic constraints. In Section IV we
develop a convex relaxation to the problem of confidence
ellipsoid estimation. In Section V, we present the numerical
experiments. Finally, we draw our conclusions in Section VI.

A. Notation and Preliminaries

We denote the set of real numbers by R, the set of real
n-dimensional vectors by Rn, the set of m× n-dimensional
matrices by Rm×n, and the n-dimensional identity matrix
by In. We denote by Sn, Sn+, and Sn++ the sets of n-
by-n symmetric, positive semidefinite, and positive definite
matrices, respectively. We denote ellipsoids in Rn by

E(xc, P ) = {x | (x− xc)>P−1(x− xc) ≤ 1},

where xc ∈ Rn is the center of the ellipsoid and P ∈ Sn++

determines its orientation and volume. We denote the mean
and covariance of a random variable X ∈ Rn by E[X] ∈ Rn

and Cov[X] ∈ Sn+, respectively.
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II. SAFETY VERIFICATION OF NEURAL NETWORKS

A. Deterministic Safety Verification

Consider a multi-layer feed-forward fully-connected neu-
ral network described by the following equations,

x0 = x (1)

xk+1 = φ(W kxk + bk) k = 0, · · · , `− 1

f(x) = W `x` + b`,

where x0 = x is the input to the network, W k ∈
Rnk+1×nk , bk ∈ Rnk+1 are the weight matrix and bias
vector of the k-th layer. The nonlinear activation function
φ(·) (Rectified Linear Unit (ReLU), sigmoid, tanh, leaky
ReLU, etc.) is applied coordinate-wise to the pre-activation
vectors, i.e., it is of the form

φ(x) = [ϕ(x1) · · · ϕ(xd)]>, (2)

where ϕ is the activation function of each individual neuron.
Although our framework is applicable to all activation func-
tions, we focus our attention to ReLU activation functions,
ϕ(x) = max(x, 0).

In deterministic safety verification, we are given a bounded
set X ⊂ Rnx of possible inputs (the uncertainty set), which
is mapped by the neural network to the output reachable set
f(X ). The desirable properties that we would like to verify
can often be described by a set S ⊂ Rny in the output space
of the neural network, which we call the safe region. In this
context, the network is safe if f(X ) ⊆ S.

B. Probabilistic Safety Verification

In a deterministic setting, reachability analysis and safety
verification is a yes/no problem whose answer does not
quantify the proportion of inputs for which the safety is
violated. Furthermore, if the uncertainty is random and po-
tentially unbounded, the output f(x) would satisfy the safety
constraint only with a certain probability. More precisely,
given a safe region S in the output space of the neural
network, we are interested in finding the probability that the
neural network maps the random input X to the safe region,

Pr(f(X) ∈ S).

Since f(x) is a nonlinear function, computing the distribution
of f(X) given the distribution of X is prohibitive, except
for special cases. As a result, we settle for providing a lower
bound p ∈ (0, 1) on the desired probability,

Pr(f(X) ∈ S) ≥ p.

To compute the lower bound, we adopt a geometrical ap-
proach, in which we verify whether the reachable set of a
confidence region of the input lies entirely in the safe set S.
We first recall the definition of a confidence region.

Definition 1 (Confidence region) The p-level (p ∈ [0, 1])
confidence region of a vector random variable X ∈ Rn is
defined as any set Ep ⊆ Rn for which Pr(X ∈ Ep) ≥ p.

Although confidence regions can have different represen-
tations, our particular focus in this paper is on ellipsoidal
confidence regions. Due to their appealing geometric prop-
erties (e.g., invariance to affine subspace transformations),
ellipsoids are widely used in robust control to compute
reachable sets [21]–[23].

The next two lemmas characterize confidence ellipsoids
for Gaussian random variables and random variables with
known first two moments.

Lemma 1 Let X ∼ N (µ,Σ) be an n-dimensional Gaussian
random variable. Then the p-level confidence region of X is
given by the ellipsoid

Ep = {x | (x− µ)>Σ−1(x− µ) ≤ χ2
n(p)}, (3)

where χ2
n(p) is the quantile function of the chi-squared

distribution with n degrees of freedom.

For non-Gaussian random variables, we can use Cheby-
shev’s inequality to characterize the confidence ellipsoids, if
we know the first two moments.

Lemma 2 Let X be an n-dimensional random variable with
E[X] = µ and Cov[X] = Σ. Then the ellipsoid

Ep = {x | (x− µ)>Σ−1(x− µ) ≤ n

1− p}, (4)

is a p-level confidence region of X .

Lemma 3 Let Ep be a confidence region of a random vari-
able X . If f(Ep) ⊆ S, then S is a p-level confidence region
for the random variable f(X), i.e., Pr(f(X) ∈ S) ≥ p.

Proof: The inclusion f(Ep) ⊆ S implies Pr(f(X) ∈
S) ≥ Pr(f(X) ∈ f(Ep)). Since f is not necessarily a one-
to-one mapping, we have Pr(f(X) ∈ f(Ep)) ≥ Pr(X ∈
Ep) ≥ p. Combining the last two inequalities yields the
desired result.

According to Lemma 3, if we can certify that the output
reachable set f(Ep) lies entirely in the safe set S for some
p ∈ (0, 1), then the network is safe with probability at least
p. In particular, finding the best lower bound corresponds to
the non-convex optimization problem,

maximize p subject to f(Ep) ⊆ S, (5)

with decision variable p ∈ [0, 1). By Lemma 3, the optimal
solution p? then satisfies

Pr(f(X) ∈ S) ≥ p?. (6)

C. Confidence Propagation

A closely related problem to probabilistic safety verifi-
cation is confidence propagation. Explicitly, given a p-level
confidence region Ep of the input of a neural network, our
goal is to find a p-level confidence region for the output. To
see the connection to the probabilistic verification problem,
let S be any outer approximation of the output reachable
set, i.e., f(Ep) ⊆ S . By lemma 3, S is a p-level confidence
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f
<latexit sha1_base64="r+xhBdATjNqTJpT+6+/dcYDxDh8=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstLAgsbHEKEgCF7K37MGGvb3L7pwJufATbCw0xtZfZOe/cYErFHzJJC/vzWRmXpBIYdB1v53C2vrG5lZxu7Szu7d/UD48aps41Yy3WCxj3Qmo4VIo3kKBkncSzWkUSP4YjG9m/uMT10bE6gEnCfcjOlQiFIyile6rYbVfrrg1dw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ipp12veRc27q1ca13kcRTiBUzgHDy6hAbfQhBYwGMIzvMKbI50X5935WLQWnHzmGP7A+fwBgSaNQQ==</latexit>

Fig. 1: p-level input confidence ellipsoid Ep, its image f(Ep), and
the estimated output confidence ellipsoid.

region for the output. Of course, there is an infinite number
of such possible confidence regions. Our goal is find the
“best” confidence region with respect to some metric. Using
the volume of the ellipsoid as an optimization criterion, the
best confidence region amounts to solving the problem

minimize Volume(S) subject to f(Ep) ⊆ S. (7)

The solution to the above problem provides the p-level confi-
dence region with the minimum volume. Figure 1 illustrates
the procedure of confidence estimation. In the next section,
we provide a convex relaxation of the optimization problem
(7). The other problem in (5) is a straightforward extension
of confidence estimation, and hence, we will not discuss the
details.

III. PROBLEM RELAXATION VIA QUADRATIC
CONSTRAINTS

Due to the presence of nonlinear activation functions,
checking the condition f(Ep) ⊆ S in (5) or (7) is a non-
convex feasibility problem and is NP-hard, in general. Our
main idea is to abstract the original network f by another
network f̃ in the sense that f̃ over-approximates the output
of the original network for any input ellipsoid, i.e., f(Ep) ⊆
f̃(Ep) for any p ∈ [0, 1). Then it will be sufficient to verify
the safety properties of the relaxed network, i.e., verify the
inclusion f̃(Ep) ⊆ S. In the following, we use the framework
of quadratic constraints to develop such an abstraction.

A. Relaxation of Nonlinearities by Quadratic Constraints

In this subsection, we show how we can abstract activa-
tion functions, and in particular the ReLU function, using
quadratic constraints. We first provide a formal definition,
introduced in [14].

Definition 2 Let φ : Rd → Rd be and suppose Q ⊂ S2d+1

is the set of all symmetric and indefinite matrices Q such
that the inequality x

φ(x)
1

>Q
 x
φ(x)

1

 ≥ 0, (8)

holds for all x ∈ Rd. Then we say φ satisfies the quadratic
constraint defined by Q.

Note that the matrix Q in Definition 2 is indefinite, or
otherwise, the constraint trivially holds. Before deriving QCs

for the ReLU function, we recall some definitions, which can
be found in many references; for example [24], [25].

Definition 3 (Sector-bounded nonlinearity) A nonlinear
function ϕ : R → R is sector-bounded on the sector [α, β]
(0 ≤ α ≤ β) if the following condition holds for all x,

(ϕ(x)− αx)(ϕ(x)− βx) ≤ 0. (9)

Definition 4 (Slope-restricted nonlinearity) A nonlinear
function ϕ(x) : R → R is slope-restricted on [α, β]
(0 ≤ α ≤ β) if for any (x, ϕ(x)) and (x?, ϕ(x?)),

(ϕ(x)−ϕ(x?)− α(x−x?))(ϕ(x)−ϕ(x?)− β(x−x?)) ≤ 0.
(10)

Repeated nonlinearities. Assuming that the same activa-
tion function is used in all neurons, we can exploit this
structure to refine the QC abstraction of the nonlinearity.
Explicitly, suppose ϕ : R → R is slope-restricted on [α, β]
and let φ(x) = [ϕ(x1) · · ·ϕ(xd)]> be a vector-valued
function constructed by component-wise repetition of ϕ. It is
not hard to verify that φ is also slope-restricted in the same
sector. However, this representation simply ignores the fact
that all the nonlinearities that compose φ are the same. By
taking advantage of this structure, we can refine the quadratic
constraint that describes φ. To be specific, for an input-output
pair (x, φ(x)), x ∈ Rd, we can write the slope-restriction
condition

(ϕ(xi)−ϕ(xj)−α(xi−xj))(ϕ(xi)−ϕ(xj)−β(xi−xj))≤0,
(11)

for all distinct i, j. This particular QC can tighten the
relaxation incurred by the QC abstraction of the nonlinearity.

There are several results in the literature about repeated
nonlinearities. For instance, in [25], [26], the authors derive
QCs for repeated and odd nonlinearities (e.g. tanh function).

B. QC for ReLU function

In this subsection, we derive quadratic constraints for
the ReLU function, φ(x) = max(0, x), x ∈ Rd. Note
that this function lies on the boundary of the sector [0, 1].
More precisely, we can describe the ReLU function by three
quadratic and/or affine constraints:

yi = max(0, xi)⇔ yi ≥ xi, yi ≥ 0, y2i = xiyi. (12)

On the other hand, for any two distinct indices i 6= j, we
can write the constraint (11) with α = 0, and β = 1,

(yj − yi)2 ≤ (yj − yi)(xj − xi). (13)

By adding a weighted combination of all these constraints
(positive weights for inequalities), we find that the ReLU
function y = max(0, x) satisfies

d∑
i=1

λi(y
2
i − xiyi) + νi(yi − xi) + ηiyi− (14)∑
i 6=j

λij
(
(yj − yi)2 − (yj − yi)(xj − xi)

)
≥ 0,



for any multipliers (λi, νi, ηi, λij) ∈ R × R3
+ for i, j ∈

{1, · · · , d}. This inequality can be written in the compact
form (8), as stated in the following lemma.

Lemma 4 (QC for ReLU function) The ReLU function,
φ(x) = max(0, x) : Rd → Rd, satisfies the QC defined by Q
where

Q =

Q | Q =

 0 T −ν
T −2T ν+η
−ν> ν>+η> 0

 . (15)

Here η, ν ≥ 0 and T ∈ Sd+ is given by

T =

d∑
i=1

λieie
>
i +

d−1∑
i=1

d∑
j>i

λij(ei − ej)(ei − ej)>,

where ei is the i-th basis vector in Rd and λij ≥ 0.

Proof: See [14].

Lemma 4 characterizes a family of valid QCs for the ReLU
function. It is not hard to verify that the set Q of valid QCs is
a convex cone. As we will see in the next section, the matrix
Q in (15) appears as a decision variable in the optimization
problem.

C. Tightening the Relaxation

In the previous subsection, we derived QCs that are valid
for the whole space Rd. When restricted to a region R ⊆ Rd,
we can tighten the QC relaxation. Consider the relationship
φ(x) = max(0, x), x ∈ R ⊆ Rd and let I+, and I− be the
set of neurons that are always active or always inactive, i.e.,

I+ = {i | xi ≥ 0 for all x ∈ R} (16)

I− = {i | xi < 0 for all x ∈ R}.

The constraint yi ≥ xi holds with equality for active neurons.
Therefore, we can write

νi ∈ R if i ∈ I+, νi ≥ 0 otherwise.

Similarly, the constraint yi ≥ 0 holds with equality for
inactive neurons. Therefore, we can write

ηi ∈ R if i ∈ I−, ηi ≥ 0 otherwise.

Finally, it can be verified that the cross-coupling constraint in
(13) holds with equality for pairs of always active or always
inactive neurons. Therefore, for any 1 ≤ i < j ≤ d, we can
write

λij ∈ R if (i, j) ∈ I+ × I+ or (i, j) ∈ I− × I−
λij ≥ 0 otherwise.

These additional degrees of freedom on the multipliers can
tighten the relaxation incurred in (14). Note that the set of
active or inactive neurons are not known a priori. However,
we can partially find them using, for example, interval
arithmetic.

IV. ANALYSIS OF THE RELAXED NETWORK VIA
SEMIDEFINITE PROGRAMMING

In this section, we use the QC abstraction developed in
the previous section to analyze the safety of the relaxed
network. In the next theorem, we state our main result for
one-layer neural networks and will discuss the multi-layer
case in Section IV-A.

Theorem 1 (Output covering ellipsoid) Consider a one-
layer neural network f : Rnx → Rny described by the
equation

y = W 1φ(W 0x+ b0) + b1, (17)

where φ : Rn1 → Rn1 satisfies the quadratic constraint
defined by Q, i.e., for any Q ∈ Q, z

φ(z)
1

>Q
 z
φ(z)

1

 ≥ 0 for all z. (18)

Suppose x ∈ E(µx,Σx). Consider the following matrix
inequality

M1 +M2 +M3 � 0, (19)

where

M1 =

Inx 0
0 0
0 1

P (τ)

Inx 0
0 0
0 1

>

M2 =

W 0> 0 0
0 In1

0

b0
>

0 1

Q
W 0 0 b0

0 In1
0

0 0 1



M3 =

 0 0

W 1> 0

b1
>

1

S(A, b)

[
0 W 1 b1

0 0 1

]

with

P (τ) = τ

[
−Σ−1x Σ−1x µx

µ>x Σ−1x −µ>x Σ−1x µx + 1

]
S(A, b) =

[
A2 Ab
b>A b>b− 1

]
.

If (19) is feasible for some (τ,A,Q, b) ∈ R+×Sny×Q×
Rny , then y ∈ E(µy,Σy) with µy = −A−1b and Σy = A−2.

Proof: We first introduce the auxiliary variable z, and
rewrite the equation of the neural network as

z = φ(W 0x+ b0) y = W 1z + b1.

Since φ satisfies the QC defined by Q, we can write the
following QC from the identity z = φ(W 0x+ b0):W 0x+ b0

z
1

>Q
W 0x+ b0

z
1

 ≥ 0, for all Q ∈ Q. (21)



By substituting the identityW 0x+ b0

z
1

 =

W 0 0 b0

0 In1 0
0 0 1

xz
1

 ,
back into (21) and denoting x = [x> z>]>, we can write
the inequality [

x
1

]>
M2

[
x
1

]
≥ 0, (22)

for any Q ∈ Q and all x. By definition, for all x ∈
E(µx,Σx), we have (x − µx)>Σ−1x (x − µx) ≤ 1, which
is equivalent to

τ

[
x
1

]> [ −Σ−1x Σ−1x µx

µ>x Σ−1x −µ>x Σ−1x µx + 1

] [
x
1

]
≥ 0.

By using the identity[
x
1

]
=

[
Inx

0 0
0 0 1

]xz
1

 ,
we conclude that for all x ∈ E(µx,Σx), z = φ(W 0x+ b),[

x
1

]>
M1

[
x
1

]
≥ 0. (23)

Suppose (19) holds for some (A,Q, b) ∈ Sny × Q × Rny .
By left- and right- multiplying both sides of (18) by [x> 1]
and [x> 1]>, respectively, we obtain[

x
1

]>
M1

[
x
1

]
+

[
x
1

]>
M2

[
x
1

]
+

[
x
1

]>
M3

[
x
1

]
≤ 0.

For any x ∈ E(µx,Σx) the first two quadratic terms are
nonnegative by (23) and (22), respectively. Therefore, the
last term on the left-hand side must be nonpositive for all
x ∈ E(µx,Σx), [

x
1

]>
M3

[
x
1

]
≤ 0.

But the preceding inequality, using the relation y = W 1z +
b1, is equivalent to[

y
1

]> [
A2 Ab
b>A b>b− 1

] [
y
1

]
≤ 0,

which is equivalent to (y+A−1b)>A2(y+A−1b) ≤ 1. Using
our notation for ellipsoids, this means for all x ∈ E(µx,Σx),
we must have y ∈ E(−A−1b, A−2).

In Theorem 1, we proposed a matrix inequality, in
variables (Q,A, b), as a sufficient condition for enclos-
ing the output of the neural network with the ellipsoid
E(−A−1b, A−2). We can now use this result to find the
minimum-volume ellipsoid with this property. Note that the
matrix inequality (19) is not linear in (A, b). Nevertheless,
we can convexify it by using Schur Complements.

Lemma 5 The matrix inequality in (19) is equivalent to the
linear matrix inequality (LMI)

M=

 M1+M2−ee>
0nx×ny

W 1>A

b1
>
A+b>

0ny×nx AW 1 Ab1+b −Iny

 � 0,

(24)

in (τ,A,Q, b), where e = (0, · · · , 0, 1) ∈ Rnx+n1+1.

Proof: It is not hard to verify that M3 can be written
as M3 = FF>− ee>, where F , affine in (A, b), is given by

F (A, b) =

 0nx×ny

W 1>A

b1
>
A+ b>

 .
Using this definition, the matrix inequality in (19) reads
(M1+M2−ee>)+FF> � 0, which implies that the term in
the parentheses must be non-negative, i.e., M1+M2−ee> �
0. Using Schur Complements, the last two inequalities are
equivalent to (24).

Having established Lemma 5, we can now find the
minimum-volume covering ellipsoid by solving the following
semidefinite program (SDP),

minimize − log det(A) subject to (24). (25)

where the decision variables are (τ,A,Q, b) ∈ R+ × Sny ×
Q×Rny . Since Q is a convex cone, (25) is a convex program
and can be solved via interior-point method solvers.

A. Multi-layer Case

For multi-layer neural networks, we can apply the result
of Theorem 1 in a layer-by-layer fashion provided that the
input confidence ellipsoid of each layer is non-degenerate.
This assumption holds when for all 0 ≤ k ≤ ` − 1 we
have nk+1 ≤ nk (reduction in the width of layers), and the
weight matrices W k ∈ Rnk+1×nk are full rank. To see this,
we note that ellipsoids are invariant under affine subspace
transformations such that

W kE(µk,Σk) + bk = E(W kµk + bk,W kΣkW k>).

This implies that Σk+1 := W kΣkW k> is positive definite
whenever Σk is positive definite, implying that the ellipsoid
E(µk+1,Σk+1) is non-degenerate. If the assumption nk+1 ≤
nk is violated, we can use the compact representation of
multi-layer neural networks elaborated in [14] to arrive at
the multi-layer couterpart of the matrix inequality in (19).

V. NUMERICAL EXPERIMENTS

In this section, we consider a numerical experiment, in
which we estimate the confidence ellipsoid of a one-layer
neural network with nx = 2 inputs, n1 ∈ {10, 30, 50}
hidden neurons and ny = 2 outputs. We assume the input
is Gaussian with µx = (1, 1) and Σx = diag(1, 2). The
weights and biases of the network are chosen randomly.
We use MATLAB, CVX [27], and Mosek [28] to solve the
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Fig. 2: Top: the estimated 95% confidence ellipsoid along with 104

samples of the output. Bottom: The image of the 95% input confi-
dence ellipsoid (f(Ep) with p = 0.95) and its outer approximation
(the output confidence ellipsoid).

corresponding SDP. In Figure 2, we plot the estimated 0.95-
level output confidence ellipsoid along with 104 sample out-
puts. We also plot the image of 0.95-level input confidence
ellipsoid under f along with the estimated 0.95-level output
confidence ellipsoid.

VI. CONCLUSIONS

We studied probabilistic safety verification of neural net-
works when their inputs are subject to random noise with
known first two moments. Instead of analyzing the network
directly, we proposed to study the safety of an abstracted
network instead, in which the nonlinear activation functions
are relaxed by the quadratic constraints their input-output
pairs satisfy. We then showed that we can analyze the safety
properties of the abstracted network using semidefinite pro-
gramming. It would be interesting to consider other related
problems such as closed-loop statistical safety verification
and reachability analysis.
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