
 1

Abstract—The dynamic dispatch (DD) of battery energy

storage systems (BESSs) in microgrids integrated with volatile

energy resources is essentially a multiperiod stochastic

optimization problem (MSOP). Because the life span of a BESS is

significantly affected by its charging and discharging behaviors,

its lifecycle degradation costs should be incorporated into the DD

model of BESSs, which makes it non-convex. In general, this

MSOP is intractable. To solve this problem, we propose a

reinforcement learning (RL) solution augmented with

Monte-Carlo tree search (MCTS) and domain knowledge

expressed as dispatching rules. In this solution, the Q-learning

with function approximation is employed as the basic learning

architecture that allows multistep bootstrapping and continuous

policy learning. To improve the computation efficiency of

randomized multistep simulations, we employed the MCTS to

estimate the expected maximum action values. Moreover, we

embedded a few dispatching rules in RL as probabilistic logics to

reduce infeasible action explorations, which can improve the

quality of the data-driven solution. Numerical test results show

the proposed algorithm outperforms other baseline RL

algorithms in all cases tested.

Index Terms—microgrid, energy storage, volatile energy

resource, dynamic dispatch, reinforcement learning.

NOMENCLATURE

For the management of battery energy storage systems:

SOC Battery state of charge

 battery self-discharge rate

B battery charging/discharging efficiency

PB charging/discharging power of the battery

Ca capacity of the battery

VB-nom rated voltage of the battery
 lifetime throughput of the battery

Nf number of cycles until failure of the battery
min max,B BP P minimum, maximum power of the battery

min max,SOC SOC minimum, maximum state of charge

c electricity tariff

Manuscript received XX, 2019. This work was supported in part by the

National Science Foundation of China under Grant 51725703.
Y. Shang, W. Wu are with Tsinghua University, 100084 Beijing, China

(Corresponding Author: Wenchuan Wu, email: wuwench@tsinghua.edu.cn).

J. Guo, Z. Ma, W. Sheng are with China Electric Power Research Institute,
100192 Beijing, China. Z. Lv, C. Fu are with North China Electric Power

University, 102206 Beijing, China.

min max,PCC PCCP P minimum, maximum power at PCC

DOD Depth of discharge

In the Markov decision process:

a, s, R action, state, immediate reward

, , set of all actions, states, rewards

Pr probability transition function

 policy (action selection rule)

Q(s,a) value function for taking action a in state s

 step-size parameter

 discount-rate parameter
t n

tG + cumulative rewards from t to t+n

|a s potential function for the domain knowledge

f set of feasible actions

I. INTRODUCTION

A. Background

olatile energy resources, such as loads from renewable

energy based distributed generators (DGs) and electric

vehicles (EVs), significantly affect the operation of power

systems. In microgrids, we can coordinate volatile energy

resources and energy storage to mitigate power fluctuations [1].

Hence, battery energy storage systems (BESSs) are widely used

to balance the power and shave peaks in microgrids [2].

Furthermore, BESSs can be scheduled to increase the

electricity revenue for microgrid entities by charging energy in

low-price periods and discharging energy in high-price periods

[3]. Therefore, how to dynamically dispatch the BESS such that

the operational costs of the microgrids are minimized while

satisfying the operational constraints of the distribution

network is a key challenge.

Many studies have focused on the dynamic dispatch of

BESSs. Some works employ deterministic optimization models.

However, due to the stochastic nature of DGs and EVs, the

dynamic dispatch of BESSs is essentially a multiperiod

stochastic optimization problem (MSOP). One way to solve

MSOPs is to apply scenario-based stochastic programming

(SP). In this approach, Monte Carlo simulations are employed

to repeatedly generate scenarios across a multistep process. The

computational burden increases exponentially with the number

of scenarios investigated. Additionally, the life span of a BESS

is significantly influenced by its charging and discharging

behavior. When incorporating the lifecycle degradation costs of

 Yuwei Shang, Wenchuan Wu, Senior Member, IEEE, Jianbo Guo, Zhao Ma, Wanxing Sheng, Zhe Lv,

Chenran Fu

Stochastic Dispatch of Energy Storage in

Microgrids: An Augmented Reinforcement

Learning Approach

V

mailto:wuwench@tsinghua.edu.cn(%20Corresponding

 2

BESSs into the microgrid optimization objectives, considerable

cost reduction may be achieved in different applications, e.g.,

the microgrid planning and operation [4], and the coordinated

operation of the BESS and renewable energy [5]. However,

most of the existing SP models either assume zero degradation

costs for the BESS, or simplify the battery cycle life to a linear

function of the Depth of Discharge (DOD), which may

introduce additional estimation error on the BESS degradation

cost [6]. When a more accurate degradation cost model is used

for BESSs, the MSOP generally becomes nonconvex and

computationally challenging [7].

Reinforcement learning (RL) may be a viable alternative for

tackling an MSOP with a non-convex objective function [8].

RL arose from dynamical systems theory, and is formalized by

the Bellman Equation and Markov decision process (MDP). A

fundamental issue in RL is the balance of exploration and

exploitation, which facilitates action-value estimation and

policy improvement. It is common for a RL agent to

occasionally explore some random actions and learn from

experience. In Q-learning, this trial-and-error learning process

is guaranteed with asymptotic convergence. As the

bootstrapping steps increase, the error of action value

estimation decreases (i.e., the error reduction property); yet the

conventional RL algorithm suffers from increased computation

complexity. To reduce the computation burden of the

multi-step RL for tackling MSOPs, the Monte-Carlo tree search

(MCTS) method may be a viable solution that shows

remarkable success recently [9]. Motivated by these

achievements, we study how to incorporate MCTS into

Q-learning to solve the stochastic dispatch of BESS in

microgrids.

B. Related work

The early related researchers mainly employ deterministic

models for scheduling BESSs. Reference [10] introduces linear

programing (LP) to mitigate fluctuations in photovoltaic (PV)

output and increase the electricity revenue in the microgrid. In

addition to increasing the electricity revenue, the efficiency of

the BESS is considered in [11], in which a non-linear

optimization model is formulated and solved by a

meta-heuristic algorithm. Reference [12] formulates a

quadratic programming (QP) to achieve economic microgrid

dispatch. A different objective is considered in [13], namely to

satisfy the constraints of the distribution network by tracking

the power profile established on a day-ahead basis. They

formulate a QP and employ model predictive control (MPC) to

schedule the BESS. These deterministic models neglect the

intermittency and variability of volatile energy resources.

Some other researchers formulate the BESS scheduling

problem as stochastic optimization models, which tackle the

uncertainties associated with volatile energy resources. In [14],

a two-stage stochastic mixed-integer programming (SMIP) is

formulated to optimize the dispatching policy for microgrids. In

[15], the problem of storage co-optimization is addressed by

formulating a two-stage SMIP using piecewise-linear

approximation of the value function. In [16], the day-ahead

scheduling of the BESS in the microgrid is studied. The

optimization model incorporates the battery degradation cost

using the rainflow algorithm. Yet this work assumes unlimited

energy exchange with the distribution network. In [17], a

two-stage stochastic mixed-integer nonlinear model is

formulated, and the battery degradation cost was considered by

simplifying its cycle life as a linear function of the DOD. A

similar battery cycle life model is considered in [18]. This work

formulates the BESS degradation cost model as an equivalent

fuel-run generator, which enables it to be incorporated into a

unit commitment problem. In addition to the two-stage SP

models, a multistage SP model is formulated in [19], and solved

by a customized stochastic dual dynamic programming

algorithm.

Besides the above methods, some works have explored RL

methods for scheduling BESSs. A deep reinforcement learning

method is used in [20] to provide the energy management

results for the microgrid. In [21], the Q-learning method is used

to optimize the energy management in the microgrid, which

considers the variability of stochastic entities. A cooperative

RL algorithm is proposed in [7], whose dispatch objectives

incorporate a non-convex BESS degradation cost model. In [8],

a dual Q-iterative learning algorithm is proposed to minimize

the microgrid operation cost. In addition to these studies, RL

based solutions are seen in other related problems or fields with

promising results. [22] studies a dynamic pricing problem in

the microgrid, where the basic Q-learning model is adopted and

improved by defining the energy consumption-based

approximate state and adopting the virtual experience updates.

[23] develops a RL method for the optimal management of the

operation and maintenance of power grids. In this solution the

tabular Q-learning is used to learn the optimal policy and the

neural network then replaces the tabular representation of the

state-action value function. However, the RL methods used in

these works ignore the uncertainties between state transitions

along the multistep bootstrapping trajectories [19].

In the field of machine learning, combining the MCTS

method and embedding domain knowledge into data-driven

solutions can enhance their performances, which inspire us on

tackling MSOPs. For the MCTS algorithms, [24] introduces its

basic idea, in which tree search policies are used to

asymptotically focus the Monte Carlo trials on multistep

bootstrapping trajectories that are promising to high-return

rewards. [25] presents a survey of different variants of MCTS.

[26] adopts the MCTS to achieve fast multistep simulations in

the computationally intensive game GO. In the studies of

incorporating domain knowledge, [27, 28] demonstrate the

performance enhancement of RL solutions by leveraging

different kinds of domain knowledge. To numerically express

the rule based domain knowledge, the probabilistic soft logic

(PSL) is formalized in [29]. In [30], the PSL is used to map

knowledge rules into neural networks. In [31], the PSL is

employed to supervise the learning process by knowledge rules.

Contributions

We formulate a multiperiod stochastic model for dispatching

the BESS in microgrids. The degradation cost model of BESSs

adopted in this work is a benchmark model employed in the

microgrid simulation tool HOMER [32] and other applications

[33, 34]. In our RL based solution, the key for identifying

statistically optimal dispatching policies is the estimation of

 3

expected maximum action values. This may be achieved by

naively computing the optimal value function in the scenario

based search trees containing bd possible sequences of actions,

where b is the number of discretized actions per state (tree’s

breadth) and d is the number of steps (tree’s depth). So, its

computation complexity increases rapidly as the number of

scenarios increases. To reduce the computation burden, we

employ the MCTS algorithm that has made prolific

achievements in playing Go. However, from the perspective of

game theory, the MCTS in Go tackles two-player zero-sum

deterministic game [25], yet in our case it tackles single-player

stochastic power dispatching. How to integrate the MCTS into

the Q-learning for solving the MSOP is a key challenge in this

work. Moreover, in order to incorporate the domain knowledge

for performance enhancement, a knowledge incorporation

scheme is needed to numerically express different knowledge

rules and combine them for reducing infeasible action

explorations. The novelty and contributions of our work are

two-fold:

1) We propose a RL solution incorporated with MCTS to

tackle the MSOP. In this solution, the Q-learning with function

approximation is employed as the basic learning architecture

that allows multistep bootstrapping and continuous policy

learning. To alleviate the computation burden of randomized

multistep simulations, a MCTS algorithm is developed to

efficiently estimate the expected maximum action values in the

iterative learning process.

2) We develop a knowledge incorporation scheme to embed

the rules into the learning process. In this scheme, the

probabilistic soft logic is adopted to map knowledge rules into

potential functions. The potential functions are then combined

by soft logic operations to confine the state-wise feasible action

space and enhance the performance of the learned policy.

As far as we know, this is the first work of incorporating

MCTS and domain knowledge into RL methods in power

system applications.

The remainder of the paper is organized as follows. The

problem is formulated in Section II. Its solution is given in

Section III. The results in case studies are reported in Section

IV and the paper concludes in Section V.

II. PROBLEM FORMULATION

Figure 1 presents a simplified configuration of the problem.

The microgrid is connected to the distribution network at the

point of common coupling (PCC). Components of the

microgrid include DG, EV, other loads, and the BESS. The

active power of these components is marked with a positive

power flow direction in the figure. For notational convenience,

we introduce PSUM to represent (PDG - PEV - POL).

Other
Load

PDG

PEV

POL

PB

PPCCPSUM

+ +

DG

Distribution

Network

Positive Power flow

Dispatchable resource

Non-dispatchable resource

EV BESS

Fig. 1. Simplified architecture of a grid-connected microgrid; dashed arrows
define the positive direction of power flow.

A. Constraints

Let t be the time index. The active power constraint imposed

by the distribution utility at the PCC is
min max

, , , , ,()PCC t PCC t SUM t B t PCC tP P P P P = − +  (1)

The branch power flow model developed in [35] is adopted

for the power flow calculation of the microgrid,
2 2

2
()

() ()

()

ij ijg d

ij j ij jj j

j ji

p q
p p r p p

v




+
+ − = + (2)

2 2

2
()

() ()

()

ij ijg d

ij j ij jj j

j ji

p q
q q x q q

v




+
+ − = + (3)

2 2

2 2 2 2

2

() ()
() () 2() [() ()]

()

ij ij

j i ij ij ij ij ij ij

i

p q
v v r p x q r x

v

+
= − + + + (4)

where i, j represent nodes of a line in the micrgorid.
ijp and

ijq

are active and reactive power delivered through the line.
iv and

jv are voltage magnitudes.
ijr and

ijx are resistance and

reactance of the line. g

ip and g

iq are active and reactive power

generation at node i. d

jp and d

jq are active and reactive power

demand at node j. ()j is the set of all child nodes of node j.

The operational constraints in microgrid are given by (5)-(8),
min max

iv v v  (5)
2 2 max 2() () ()ij ij ijp q AP+  (6)

min max

DG DG DGP P P  (7)
min max

B B BP P P  (8)

where the node voltage amplitude, power flow of lines, power

generation of DGs, and power charging/discharging of BESSs

are constrained by their thresholds. Variable max

ijAP denotes

the maximum apparent power of the line.

The SOC of the BESS is given by

 ,

1

,

(1)
B t

t t B

t B nom

P T
SOC SOC

CaV
 −= − − (9)

In the charging mode, B  1 and PB,t  0. In the discharging

mode, B  1 and PB,t  0. T is the time interval.

To prevent damages caused by overcharge/overdischarge,

the SOCt is restricted by

 min max

tSOC SOC SOC  (10)

The life-cycle throughput of a BESS is related to the number

of operation cycles, SOC in individual cycles, etc. [32],

,
() (1)

1000 /
t

nom B nomSOC

t f t

Ca V
N e SOC

W kW

 
=   −  (11)

where  is an empirical parameter. The level of BESS

degradation is measured by |PB,t|/2
t
 [33].

B. Objective function

Assume t is the decision time (which means all state

variables are known up to t). In order to maximize the

operational profits of the BESS, we can formulate the following

multiperiod stochastic optimization model,

1 2 1

1 2

Pr 1 1 Pr |Pr

2 2 Pr |Pr 1 1

max (,) [max (,)

[max (,) ... [max (,)]...]]

t t t

t n t n

t t t t
a a

t t t n t n
a a

z R s a R s a

R s a R s a

 



+ + +

+ − + −

+ +

+ + + − + −

= + +

+ +
 (12)

 4

where (,)t i t iR s a+ + is the immediate reward of taking action at+i

in state st+i. Pr is the probability measure of state transitions

and
1Pr |Prt i t i+ + −
 denotes the expectation taken corresponding to

the conditional probability measure (
1Pr | Prt i t i+ + −

).  is the

discount factor. The superscript  is used to distinguish

stochastic variables from deterministic variables. This notation

is also used hereinafter for vectors containing stochastic

variables.

In our case, at and st are given by

,

set

, ,(, , ,)

t B t

t t SUM t t PCC t

a P

s SOC P c P

=


=

 (13)

where
tc and set

,PCC tP are the time-of-use tariff (TOU) and the

active power at PCC expected by the distribution utility,

respectively. The BESS is considered as the only dispatchable

component. Because st+i is an unknown future state at decision

time t, ,SUM t iP + is modeled as a stochastic variable owing to the

volatile energy resources. Because our focus of uncertainty is

the power generation/consumption in volatile energy resources,

ct+i and set

,PCC t iP +
 are modelled as deterministic variables.

The immediate reward, R, contains three factors, defined as

1 1, 2 2, 3 3,+t t t tR R R R  = + (14)

where wi (i=1,2,3) are the weights of the different factors.

Individual factors are specified as

1, , ,

1,

2, , ,

, 0
=

, 0

t B t B t

t

t B t B t

c P T P
R

c P T P






 (15)

,

2,

,2

B t

t

life t

P T
R C

Q
= −


 (16)

set

3, , ,=t PCC t PCC tR P P− − (17)

where R1 is the electricity revenue generated by leveraging the

TOU tariff. R2 is minus the degradation cost of the BESS due to

lifecycle degradation. C is the investment cost of BESS [6, 33].

R3 is minus the penalty cost for power tracking errors at the

PCC.

The optimal solution to the above MSOP is a dynamic

schedule of multistep charging/discharging actions of BESS.

This solution maximizes the microgrid operational benefits

indicated by (12)-(17). At the decision time t, although only at

is actually performed, the follow-up scheduled actions can

estimate the expected future rewards of at more accurately.

III. PROPOSED METHOD

The basic form of RL algorithm is modeled by a tuple

(, , ,) in the framework of MDP. is the state space

containing all state variables, is the action space involving

all decisions of BESS charging/discharging power,

:   is the reward function of the state-action pair,

: [0,1]  → is the transition probability from a

state-action pair to a successor state, which defines the

dynamics of the environment. In deterministic problems, = 1

and st+1 is a deterministic function of state-action pair (st, at).

However, in stochastic problems such as our case, there is some

Pr  that measures the transition probability. Because

predicting the precise transition probabilities of volatile energy

is challenging, we develop a RL based approximate solution.

A. Basic Q-learning architecture with function approximation

To balance the exploration and exploitation in Q-learning,

the ε-greedy action selection policy is commonly used,

arg max ((,)) with probability 1-

random action with probability

t t
a

Q s a









= 



(18)

where ε is a small positive value. ((,))t tQ s a is the expected

value of taking action at in state st.

Assume action at has been selected in state st, to estimate its

long-term reward we employ n-step bootstrapping to update the

action value estimates. The cumulative n-step future rewards in

a bootstrapping trajectory is given by
1

1 2(,)t n n

t t t t t t nG s a R R R + −

+ + += + + + (19)

where (,)t n

t t tG s a+ is the cumulative action values from st to st+n.

It is a function of sequential actions
1, 1(,...,)t t na a+ + −

 conditioned

on (st, at).

To further incorporate uncertainties for action value updating,

we calculate the expectation of t n

tG + , i.e. ()t n

tG + . The law for

updating the expected action value is

1 1,...,
((,)) ((,)) [max ((,)) ((,))]

t t n

t n

t t t t t t t t ta a
Q s a Q s a G s a Q s a

+ + −

+ + − (20)

where
1 1,...,
max ((,))

t t n

t n

t t ta a
G s a

+ + −

+ is the expected maximum action

value obtained by taking the best-performing actions

(at+1,…,at+n-1), following (st, at).

To allow continuous policy learning, the function

approximation is employed in the above tabular Q-learning

architecture that achieves a parametric approximation of the

action value function,

(, ;) ((,))Q s a Q s aθ (21)

where dθ is a finite-dimensional weight vector. In this

work, the basic neural network in [36] is adopted as the

function approximator, whose weights can be updated

following the gradient descent rule.

The formulation of (20) distinguishes our Q-learning model

from [7, 8] that do not incorporate the mechanism of multistep

bootstrapping under uncertainty. However, this formulation

makes the conventional Q-leaning suffer from increased

computation complexity, as more simulation steps and

scenarios need to be addressed for estimating the stochastically

optimal rewards. We tackle this issue by developing the MCTS

algorithm in subsection B.

B. MCTS algorithm

Different from the MCTS algorithms developed in

deterministic games, the MCTS employed in this work needs to

incorporate stochastic scenarios into the estimation procedure

of expected maximum action values. Here we outline the key

ideas of the developed algorithm. More details of this algorithm

is explained in the Appendix.

At decision time t, the MCTS is applied to estimate

1 1,...,
max ((,))

t t n

t n

t t ta a
G s a

+ + −

+
, where the sequential states are

represented as tree nodes, and the actions are tree edges

connecting different nodes. Let { }t n

t + be a stochastic vector

for the probability distribution of stochastic variables over a

 5

planning horizon n, we refer to a scenario

1

t n

t t t n +

+ +      as a realization (or sampling

trajectory) of the stochastic process { }t n

t + . We then use the

notion of SSPt as a scenario sampling pool for providing the

generative scenarios,
inf sup inf sup

, 1 , 1 , ,SSP {[,]...,[,]}t SUM t SUM t SUM t n SUM t nP P P P+ + + += (22)

where inf sup,SUM SUMP P are lower and upper bounds for the

confidence interval of
SUMP .

From SSPt, the generative scenarios containing n stochastic

variables
, 1 ,{ ,..., }SUM t SUM t nP P+ +

 are sequentially sampled that

forms different possible scenarios. Let

, 1 ,SSP { ,..., }m m m

t SUM t SUM t nP P+ += be the mth scenario, a search tree is

built incrementally that stems from the root node
1

m

ts +
 and

expands from a father nodes t is + to some child node 1t is + + (
1

m

ts +

is transitioned from st, at in the mth scenario). The tree

expansion follows the UCT (upper confidence bound for trees)

policy

1

1 1

childern of 1 1

() ln ()
argmax ()

() ()t i t i

t n

t i t i t i

s s t i t i

G s N s

N s N s


+ + +

+

+ + + + +

 + + + +

+  (23)

where ()t iN s + and 1()t iN s + + are the visit counts of the father

and child nodes, respectively.  is a constant variable

determining the level of exploration. Initially, (23) prefers

nodes with low visit counts. Asymptotically, the nodes that are

promising with high values are identified. This policy balances

the exploitation of learned value function and the exploration of

unvisited nodes.

When a child node is selected in the mth scenario, the Monte

Carlo rollout policy r begins at this node and ends at the

terminal node m

t ns +
. Each rollout performs a sequential

simulation and constitutes n state variables, we use { ,

1

m l

ts +
,…,

,m l

t ns +
} to denote the simulation trajectory in the lth rollout. Then

the rollout statistics of all traversed edges are backed up,

,

1

(,) (,)
L

m m l

t i t i t i t i

l

N s a s a+ + + +

=

=  (24)

,

1

1
(,) (,)

(,)

L
m m l t n

t i t i t i t im
lt i t i

t i
Q s a s a G

N s a

+

+ + + +

=+ +
+

=  (25)

where is the indicator function. If edge
,(,)m l

t i t is a+ + was

traversed, ,(,) 1m l

t i t is a+ + = ; Otherwise ,(,) 0m l

t i t is a+ + = . t n

t i
G +

+
 is the

accumulated reward from the node
t is +

 to the end node
t ns +

.

(24)-(25) updates the visit counts and mean action value

function in all simulations passing through that edge.

After L rollouts are executed in the mth scenario, we identify

the set of best-performing actions and obtain the n-step

maximum action value for (st, at),

1 1

1 1 1 1 1
,...,

(, | SSP) (, ,) max (, | SSP)
t t n

t n m m t n m m

t t t t t t t t t t t ta a
G s a R s a s G s a

+ + −

+ +

+ + + + += + (26)

By repeating the above process in different scenarios, the

expected maximum action values is approximated as

1 1,...,
1

1
max ((,)) max ((, | SSP))

t t n

M
t n t n m

t t t t t t t

m
a aM

G s a G s a
+ + −

+ +

=

  (27)

where M is the number of scenarios investigated.

There are two differences that distinguish the above MCTS

and the MCTS deployed in deterministic games such as Go [25].

The first difference is that in Go only a deterministic scenario is

investigated for estimating the value function. In our case, we

incorporate different possible scenarios for deriving the

expected value function. This is achieved by using the notion of

SSP in (22) to allow scenarios generation based on any explicit

or implicit probability function, and the expected optimal value

are accumulated from individual scenarios by (26)-(27). The

second difference is that in Go only the estimated value of the

last-stage state (i.e. the terminal node) in each rollout is backed

up for updating the value function, which is not an accurate

estimation in our case. Thereby, we temporally memorize and

accumulate the action values of each transition between father

and child nodes by (24)-(25) for updating the value function in

each rollout.

C. Scheme for incorporating knowledge rules

Two definitions are given below to leverage dispatching

rules for reducing infeasible explorations in the RL algorithm.

Definition 1. Let
1{ , (|)}Y

y y yk a s == be a set of weighted

rule sets, where (|)yk a s is the yth rule estimating the feasibility

of action a conditioned on state s, y is the weight of ky.

In practice the knowledge rules can be classified as hard

rules and soft rules. Here we consider three rules in the rule set

(if desired additional rules can also be included),
inf sup

1 1 1

inf sup

2 1 , 1

3 1 , 1 , ,

(| ,) :

(| ,) :

(| ,) :

t t t t

t t t PCC PCC t PCC

t t t PCC t PCC t Threshold t

SOC SOC SOCk a s s

k a s s P P P

k a s s P P P

+ +

+ +

+ +

 


 


− 

 (28)

where k1 and k2 are hard rules that require SOC and PPCC to

remain within allowable ranges when taking action at in state st

and transitioned to a successor state st+1. The hard rules are

definitely not violated, otherwise the security of the power

distribution network or the BESS will be damaged. k3 is a soft

rule that expects the actual PPCC to have small fluctuations

between successive states when taking an action. How to use a

soft rule depends on actual needs. For example, when the BESS

is funded by an end user who focuses only on electricity

revenue, k3 can be relaxed because otherwise some candidate

actions with higher rewards will be excluded.

Definition 2. Let (|)
yk a s be an individual potential

function of action a conditioned on state s and examined by rule

ky. Let (|)a s be the total potential function of action a

conditioned on s and examined by the rule set . Also, let f

be the set of feasible action spaces evaluated by (|)a s .

(|)
yk a s can be seen as the numerical expression of rule ky.

However, when there exists multiple rules, the logic inferences

among them are needed for deriving a final result of the

feasibility of candidate actions, especially when these rules are

not consistent in evaluating the feasibility of an action.

Therefore, we introduce PSL to map knowledge rules into the

scalar values taken in the interval [0, 1]. The mapping of ky into

an individual potential function is typically of the form

(max{0, })
y yk kd = , where

ykd is a measure of the distance to

satisfiability of ky [29]-[30]. For hard rules ky (l=1, 2), 1
ykd =

 6

when the candidate action is evaluated as feasible according to

ky, otherwise 0
ykd = . For the soft rule k3, an exponential

operator is used to measure its distance to satisfiability, i.e.,

3

, 1 ,

,

exp()
PCC t PCC t

k

Threshold t

P P
d

P

+ −
= − .

We then derive the total potential function (|)a s from all

individual potential functions using certain logic operators.

Because we have soft rules that take truth values in [0, 1], the

classic Boolean logic is replaced by the Lukasiewicz logic that

allows continuous truth values taken from the interval [0, 1].

The logic operators such as AND (), OR (), NOT () are

redefined as [29]-[30]

max{ 1, 0}

max{ 1, 0}

1

y j y j

y j y j

y y

k k k k

k k k k

k k

   

   

 

  = + −


 = + −


 = −

 (29)

This redefinition allows a simple and flexible inference

among different rules. In this work, let  be the total potential

function of all hard rules, and  be the potential function of all

soft rules, we have
1 2k k  =  ,

3k = , and   =  . Hence

f
 is decided by

{ | (|) }f a a s =    (30)

where  is the threshold.

D. The developed RL algorithm

Fig. 2 displays the episodic learning implementations of our

RL algorithm.

1t t= +

Agent formulates state

Start

1t =

Environment

multistage Bootstrapping

(stochastic simulation)

for m = 1 : M do

1. Randomized scenario generation

3. Rewards estimated by MCTS

End for

Derive expected maximum value

Agent select actions

rand()<ε

Exploration

Random action in

Exploitation

Knowledge incorporation for

reducing infeasible exploration

2. Reduce gl oba l acti on space

1111into feasible action space

ts

ta

Observe new states

(,)t ts a
1 1(,)t ts a+ +

...

1. Map different knowledge rules

 into potential function

Obtain the current state vector and

forecasted future state variables

over a planning horizon of n

Stochastic learning environment

with explicit reward functions

arg max (,)
fa

Q s a


2. n-stage bootstrapping

1 1,...,
max ((, | SSP))

t t n

t n m

t t t ta a
G s a

+ + −

+

f

, 1 ,SSP (,...,)m m m

t SUM t SUM t nP P+ +=

f

1tR + 2tR + t nR +

t ns +

1 1,...,
max ((,))

t t n

t n

t t ta a
G s a

+ + −

+

Fig .2 Flow chart of the proposed RL algorithm; two gray boxes highlight the

novelty of this algorithm.

At decision time t, the RL agent observes its state vector and

n stochastic variables
, 1 ,{ ,..., }SUM t SUM t nP P+ +

. Conditioned on these

variables, the incorporated knowledge rules are then mapped

into the potential function for confining the global action space

 into feasible action space f . Then, based on the basic

Q-learning framework, the agent selects either an exploitative

action at with probability 1-ε, or an exploratory action at with

probability ε from
,f t

. Next, the agent interacts with the

stochastic environment and estimates the expected rewards that

can be obtained over a n-step bootstrapping trajectories. Note

that this trajectory starts from the state-action pair (st,at), and

the MCTS is used to sequentially select the remaining n-1

actions from at+1 to at+n-1 and estimate the expected maximum

cumulative rewards. After simulations of a number of scenarios,

the estimated rewards and the parameters of the neural network

are updated. The RL agent then continues its learning from the

current decision time t towards the next decision time t+1, and

the above computation process are repeated.

IV. CASE STUDY

In this section, two microgrid systems are provided to

conduct case studies. In Subsection A, a microgrid in [33] is

used to verify in detail the performance of the proposed

algorithm. In Subsection B, a real microgrid system in China is

used to show the effectiveness of the method.

A. Test case 1

Figure 3 presents the modified microgrid system from [33],

which contains two PV systems, two EV charging stations, one

BESS, and other loads connected to each node. The rated

capacity of the two PV systems, i.e. PV1 and PV2, are 40kW

and 20kW, respectively. Two EV charging stations, i.e. EVCS1

and EVCS2, contain 5 AC charging posts and 10 AC charging

posts, respectively. The rated power of each charging post is 7

kW. Typical charging modes of EVs include constant current

charging, constant voltage charging, etc. The BESS is a 500

kWh lead-acid battery pack. Figure 4 depicts the hourly active

power of different components in the microgrid, which shows

the high volatility of DGs and EVs. In the stochastic scenarios,

the 95% confidence level of SUMP is assumed. For simplicity,
set

PCCP is set as 50 kW, and the TOU tariffs are referenced from

the actual tariffs in China. For the thresholds of the knowledge

rules, we restrict the SOC in rule k1 to be within [30%, 90%],

PPCC in rule k2 is set to [0, 100 kW], and the variation between

the PPCC of two consecutive states in rule k3 is maintained below

50 kW. The training and testing procedures of our algorithm

follow [7], [23]. The parameters ε in (18) and  in (22) are set

to 1% and 0.7, respectively. The bootstrapping stage is set to 4.

Circuit breaker
1

2

3

45

6

7

8

9

L2

L6

L7

L5 L4 L9

Distribution grid

PV1 PV2

Transformer

BESS
EVCS1 EVCS2

Fig. 3 Tested microgrid system; it contains two PV systems, two EV charging

stations, one BESS, and 6 residential load points.

 7

10

20

30

40

50

60

70

80

90

100

P
o

w
er

 (
k

W
)

PV1 PV2 EVCS1 EVCS2

Fig. 4 Hourly active power of the microgrid; different curves are shown in

different colors.

We first test the feasibility of the proposed algorithm in

realizing its objectives expressed in (12). Figure 5 shows the

power management results of BESS in nearly three consecutive

days. In sub-figure (a), PSUM fluctuats significantly because of

the volatile resources DGs and EVs. In contrast, the dispatching

of BESS regulates PPCC for a close tracking of set

PCCP . Sub-figure

(b) shows that the dispatching solution of BESS in general

procures energy during low-price low-load periods and sells

energy during high-price high-load periods, which increass the

electricity revenues. Moreover, a regular charging/discharging

behavior of BESS is showed by the SOC curve, thus preventing

the accelerated degradation rate caused by over-charging or

over-discharging.

0 10 20 30 40 50 60 70
-50

0

50

100

P
B

(k

W
)

70

80

90

100

S
O

C
 (

%
)

0 10 20 30 40 50 60 70
0

50

100

P
o
w

e
r

 (
k
W

)

PSUMPPCC

Time (hour)

(a)

Time (hour)

(b)

Discharging Charging SOC of Battery

set
PCCP

Fig. 5 Power management results of the proposed algorithm. (a) shows the

power regulation result at PCC; (b) shows the charging/discharging behavior

and the corresponding SOC of the BESS.

We then analyze the computation performance of the

developed MCTS algorithm, whose role is mainly to give

efficient estimations of the maximum action values over

multistep bootstrapping trajectories. To evaluate the degree of

accomplishment of this role, we compare the numerical results

of MCTS and three algorithms by varying the number of

iterations while fixing the investigated scenarios. As listed in

Table 1, the compared algorithms include a random search

algorithm (RS) that used a random policy during bootstrapping,

an exhaustive search algorithm (ES) enumerating candidate

actions, and a heuristic search algorithm based on the genetic

algorithm (GA). The number of iterations in the numerical tests

is varied from 101 to 104. In each iteration budget, we repeat the

computations of these algorithms for 10 times and record the

mean and variance of different algorithms. The mean values are

normalized by the min-max normalization. The variances of BS

are omitted because they are zero.

Table 1
Performances of different algorithms in estimating the maximum action values.

Number of

iterations
Mean of maximum action value Variance of estimation

MCTS RS GA ES MCTS RS GA

101 0.81 0.34 0.17 0 0.62 0.99 0.49
102 0.92 0.42 0.26 0.18 0.34 1.56 0.11

103 0.97 0.38 0.34 0.42 0.10 2.00 0.01

104 1 0.39 0.38 0.74 0.02 2.17 0

The mean value indicates that MCTS is the most efficient

algorithm in discovering the maximum multi-step action values.

The variance of MCTS is asymptotically reduced as the number

of iterations increase, which justifies the robustness and

asymptotic convergence of this algorithm. However, ES is the

least efficient in estimating the action values. RS is highly

stochastic without convergence guarantees regardless of the

increase of iterations. For GA, although its variance is the

smallest and reached almost 0 after 104 iterations, its

estimations of the maximum action value improves slowly

when the computation effort increases. One possible

explanation is that the iterative searching in GA is stuck in

some local optimum after 104 iterations. From above

comparisons, we can conclude that the MCTS is the

best-performing algorithm for achieving the computation task

(20).

We further demonstrate the performance of incorporating the

knowledge rules into supervising the Q-learning process. In this

test, we compare the proposed algorithm (knowledge

incorporation, 4-stage bootstrapping) with two other algorithms,

namely Algorithm 1 (no knowledge incorporation, 4-stage

bootstrapping) and Algorithm 2 (knowledge incorporation,

1-stage bootstrapping) in terms of the rewards obtained and the

actual dispatching results. To increase the learning efficiency

when extending the bootstrapping depth from 1 to 4, in our

algorithm the immediate reward of one-step state transition is

set as the initial value for the follow-up action value updating.

Figure 6 depicts the accumulated rewards obtained by these

algorithms along the learning trajectory. It shows our algorithm

is the most effective one in maximizing the cumulative rewards.

Specifically, the advantages in the estimating rewards of our

algorithm over Algorithm 1 and 2 are highlighted in the earlier

and later learning trajectories, respectively. This result shows

that knowledge incorporation is useful when the agent has

insufficient experiences. Moreover, extending the

bootstrapping depth in conjunction with knowledge

incorporation can facilitate the agent to increase its rewards in

the long run.

Figures 7 and 8 present further comparison results regarding

the actual dispatching performance of these algorithms. In

Figure 7, the explorative policy of Algorithm 1 is poor that

exacerbate the fluctuations in PPCC, but our explorative policy

always provide feasible policies that reduce power fluctuations.

In Figure 8, Algorithm 2 overdraws the BESS capacity at 67 h,

which forces the BESS to charge energy afterwards.

Consequently, the power tracking result at the PCC is worsen

thereafter. In contrast, our algorithm appropriately manages the

SOC and always maintains the power tracking at the PCC.

Table 2 compared the actual power management results

obtained using the proposed algorithm and Algorithm 2. The

results are calculated based on the 72-hour power management

results presented in Fig.8. Specifically, the electricity revenue

 8

is calculated by equation (15), the BESS degradation cost is

calculated by equation (16), and the Standard deviation of PPCC

is calculated by
71

set 2

, ,

0

1
()

72
PCC t PCC t

t

P P
=

− , which measures the

level of power fluctuation at PCC. For simplicity, the results are

shown in per unit values and the results of Algorithm 2 are used

as base values. Obviously, our algorithm achieves power

tracking with smaller power fluctuations (evidenced by the

standard deviation of PPCC), and the microgrid gains more tariff

revenue with lower BESS degradation costs.

Number of Iterations (N)

A
cc

u
m

u
la

te
d
 R

ew
ar

d
s

0 1000 2000 3000 4000 5000 6000 7000 8000

200

300

400

500

100

0

Proposed Algorithm

Algorithm 1

Algorithm 2

Fig. 6 Comparison of accumulated rewards obtained by three algorithms. The

higher the reward, the better the algorithm performance.

0 10 20 30 40 50 60 70
-100

0

100

200

P
o

w
e

r
(k

W
)

Time (hour)

50

Proposed AlgorithmSUMP set
PCCP Algorithm 1

Fig. 7 PPCC regulation results using the explorative policies generated by the

proposed algorithm and Algorithm 1.

0 10 20 30 40 50 60 67
0

50

100

150

P
o

w
e

r
 (

k
W

)

Algorithm 2 Proposed Algorithm

Time (hour)
70

SUMP set
PCCP

Fig. 8 PPCC regulation results obtained using the optimal policies of the

proposed algorithm and Algorithm 2.

Table 2
Dispatch results comparisons of the proposed algorithm and algorithm 2.

 Proposed algorithm Algorithm 2

Electricity revenue 1.05 1
BESS degradation cost 0.92 1

Standard deviation of PPCC 0.79 1

B. Test case 2

This test is referenced from a real grid-connected microgrid

system installed in Zhejiang, China. Figure 9 shows the

configuration and parameters of the test system. It is a hybrid

AC/DC microgrid connected to the medium-voltage

distribution grid. The AC bus of the microgrid contains 200 kW

solar power, 300 kW residential/commercial load, and 500

kW×2 h lead-carbon BESS. The AC bus links the DC bus via a

power electronic transformer. The DC bus contains 250 kW

solar power,10 kW wind power,250 kW residential/commercial

load and 60 kW×2 EV fast charging facilities. We then train

and compare the proposed RL algorithm and the baseline RL

algorithm (i.e. 1-stage bootstrapping) for dispatching the BESS

based on realistic historical load profiles. The aim of the RL

agent is to increase the net operation revenue of the microgrid

(i.e. the TOU revenue minus the degradation cost of the BESS)

while reducing the power fluctuations at the PCC (i.e. measured

by
23

set 2

, ,

0

1
()

24
PCC t PCC t

t

P P
=

−). The investment cost of the BESS is

¥ 2/Wh. The TOU tariffs are referenced from the actual tariffs

in Zhejiang Province (i.e. ¥ 1.02/kWh from 8:00-22:00;

¥ 0.51/kWh for the rest of the day). Other parameters remain

the same as in the test case 1.

Table 3 lists the dispatching results of the two algorithms

based on the daily power profiles. The net operation revenue

and the standard deviation of PPCC in four days are given. These

four days represent different renewable power generation and

load consumption patterns in the spring, summer, autumn, and

winter, respectively. As can be seen, the proposed method

obtains higher revenue with lower power fluctuation at the PCC

in all seasons. The biggest gap in revenues is in the autumn, i.e.

our method gains ¥ 300.3 more than the baseline method. The

largest gap regarding the power fluctuation at the PCC is in the

summer, i.e. our method achieves 3% less power fluctuation at

the PCC than the baseline method. On average, the daily

revenues of our method and the baseline method are ¥ 710.3

and ¥ 560.9, respectively. In the long run, using the proposed

method can considerably shorten the cost recovery period for

the BESS investor. The above tests provide a first necessary

step to prove the effectiveness of the proposed algorithm.

Future research efforts will be devoted to test the proposed

method on additional numerical models of microgrids.

10kV AC BUS

1MWh

Distribution grid

~ =

100kW

=
=

=
=
~

5kW

150kW

=
=

100kW

=
=
~

5kW

AC 400V

100kW

60kW×2150kW

560V DC BUS

~
=

=

200kW

Power electric
transformer

Circuit breaker

~ =

200kW

Fig. 9 Configuration of the hybrid AC/DC microgrid system; the parameters of
the BESS, distributed energy resources and loads are presented.

Table 3
Result comparisons using based on daily power profiles in different seasons.

Typical day Proposed method Baseline RL

Spring
Net revenue (¥) 473.6 400.8

SD of PPCC 0.161 0.169

Autumn
Net revenue (¥) 873.5 543.2

SD of PPCC 0.39 0.419

Summer Net revenue (¥) 1223.7 1134.0
SD of PPCC 0.138 0.168

Winter Net revenue (¥) 270.3 165.4

SD of PPCC 0.242 0.266

SD: standard deviation

V. CONCLUSION

In this paper, we present a multiperiod stochastic

optimization model for the dynamic management of battery in

microgrids. The model is developed to minimize the

 9

operational costs of the microgrid, taking into account the

nonconvex degradation cost function of the battery energy

storage system. Then, we provide a reinforcement learning

solution augmented with Monte-Carlo Tree Search and

knowledge rules. We first express the knowledge rules into the

potential function in the form of soft logic. These knowledge

rules are used to confine the state-wise action space, which can

reduce the number of infeasible actions explored by the

learning agent. To alleviate the computation burden of

multistep bootstrapping under uncertainty, the Monte-Carlo

Tree search algorithm is modified to increase the estimation

efficiency of the expected maximum action values. The results

of our numerical tests show that the proposed algorithm

asymptotically optimizes the dispatch policy and outperforms

other algorithms.

APPENDIX

The appendix explains how the RL agent learns the

dispatching policy in more detail. First, the key steps of the

modified MCTS method is explained. Then, the full algorithm

of the proposed method is presented.

A. The MCTS algorithm

To incorporate uncertainties when estimating the cumulative

action value for any state action pair, e.g., (st, at), five steps are

needed when performing the MCTS, as shown in Fig. A.1.

a. Generation. This step provides randomized sequences

containing n sequential stochastic variables, i.e.

, 1 ,[,...,]SUM t SUM t nP P+ + . The realization of ,SUM t iP + can be expressed

as , , ,

forecast

SUM t i SUM t i SUM t iP P P+ + += +  , where ,SUM t iP + is the forecast

error. We use the truncated normal distribution (TN) with

predefined confidence intervals (CIs) to construct
SUMP based

on the maximum likelihood estimator (MLE),

i.e., , , + ,
ˆ~ (,)SUM t i SUM t i SUM t iP TN P P+ + , where

,SUM t iP +
 and ,

ˆ
SUM t iP + are

the sample mean and variance (The details of the TN refer to

[9]). Then the Monte Carlo sampling method is used to generate

scenarios (the mth scenario denotes by SSPm

t
), and (30) is used

to form the feasible action space m

f .

b. Selection. This stage selects explorative policies in the

generated scenarios. Given the mth scenario, assume the

current in-tree simulation step begins at node 1

m

ts + and ends at

m

t ns + , each node s of the tree stores the state-action pair (,)s a ,

and each edge stores the statistics { (,), (,)}G s a N s a , where

(,)N s a is the visit count and (,)G s a is the mean action value

for that edge.

c. Expansion. This stage incrementally expands the tree

until the terminal nodes in a generative scenario. The UCT

criterion is used to decide which child node to be expanded.

Then the Monte Carlo rollout policy r begins at this node and

ends at a terminal node. During tree expansion, the successively

joined leaf nodes result in different combinations of sequential

state-action pairs.

d. Backpropagation. This stage updates the rollout statistics

of each in-tree node backwards from the terminal node to the

root node by (24) and (25). After reaching the computation

budget (e.g. constraint of iteration, time or memory), the set of

state-action pairs with the highest expected rewards is

identified as marked in the red rectangle in Fig. A.1.

e. Update. This stage updates the action value estimation

results for each scenario by (26), and finally accumulate the

expected action value estimations of all scenarios by (27).

1

m

ts +SSPt

a. Generation b. Selection c. Expansion d. BackPropagation e. Update

max

,t ts a ,t ts a

max

{G,N}{G,N}

{G,N} {G,N}

max

,t ts a

max

{G,N}{G,N}

{G,N} {G,N}

~ r

,t ts a

{G,N}{G,N}

{G,N}

~ r

,t ts a

... ...SSPm

t

, 1

m

SUM tP +

,

m

SUM t iP +

,

m

SUM t nP +

1

m

ts + 1

m

ts +

m

t is +

m

t ns +

,1m

t ns +

,m L

t ns +

,m L

t is +

1

1ts +

1

t is +

1

t ns +

t n

tG +

1SSPt

1

m

ts +

m

t is +

m

t ns +

t n

tG +

SSPm

t

1

M

ts +

M

t is +

M

t ns +

t n

tG +

SSPM

t

1SSPt SSPM

t
... ...

m

t is +

Fig. A.1 Diagram of the modified Monte-Carlo tree search method.

B. The full algorithm

The proposed approach is shown in Algorithm 1. The main

part of this algorithm is shown from line 1 to line 13, where the

MCTS method is denoted as the function MCTSSEARCH and

realized from line 14 to line 45.

In the main part of the Algorithm 1, given time t, the state st

is observed and the ε-greedy policy is used to select an action at

from the feasible action space f . The SSPt is then generated

to provide different possible scenarios for the future n time

stamps. Given the mth scenario, the MCTSSEARCH is

performed, whose input parameter
1

m

ts +
 is transitioned from (st,

at). When M scenarios have been evaluated, the expected

maximum action value for (st, at) can be approximated. This

approximated value is marked as the label of a training example,

corresponding to input parameters st, at,
inf sup inf sup

, 1 , 1 , ,(,),...,(,)SUM t SUM t SUM t n SUM t nP P P P+ + + + . In total, T training

examples are provided for learning the weights of the

parameterized action-value function (i.e. the neural network)

following the gradient descent law.

In the function MCTSSEARCH
1(m

ts +) , the subfunctions

TREEPOLICY, DEFAULTPOLICY and BACKUP are iteratively

executed. In one iteration, the TREEPOLICY determines how to

expand the tree from a father node to a child node. In this

 10

subfunction, the unvisited nodes are assigned higher priority for

node expansion than the visited node selected by the

subfunction BESTCHILD. The subfunction DEFAULTPOLICY

then performs fast simulations from a current node, e.g. m

t is +
 to

the terminal node, and
r

Q
 records the cumulative rewards of

the simulated trajectory. Afterwards, the subfunction BACKUP

updates the cumulative rewards of nodes
1,...,m m

t i ts s+ +
 given by

the TREEPOLICY and the DEFAULTPOLICY. When the

computation budget is reached (e.g., constraint of time,

iteration or memory), we identify a complete path of the search

tree, with tree edges representing the optimal actions

{
1

m

ta +
,…,

1

m

t na + −
} and tree nodes representing the corresponding

states {
1

m

ts +
,…, m

t ns +
}. Note that in line 31, f denotes the state

transition function; in the subfunction DEFAULTPOLICY, the

variable
r

Q is used to sum up the sequential rewards of a

simulation trajectory rather than only the terminal reward.

Algorithm 1 Multistep Q-learning incorporated with

MCTS

1: Initialize action-value function (, ;)Q s a θ arbitrarily

2: for t=1, T do

3: observe st

4: select at from
f
 using the ε-greedy policy

5: generate SSPt according to (22)

6: for m=1, M do

7: sample scenario
, 1 ,SSP { ,..., }m m m

t SUM t SUM t nP P+ +=

8: perform MCTSSEARCH(
1

m

ts +
)

9: estimate the maximum action value by (26)

10: end for

11: estimate the expected maximum action value by (27)

12: update (20) and the weights θ of the neural network

13: end for

14: function MCTSSEARCH(
1

m

ts +
)

15: create root node as
1

m

ts +

16: while within computational budget do

17:
1REE OLICY()T Pm m

t i ts s+ +

18: EFAULT OLICY()D P
r

m

t iQ s +

19: BACKUP(,
r

m

t is Q+
)

20: return a(BESTCHILD(
1

m

ts +
))

21: function TREEPOLICY(s)

22: while s is nonterminal do

23: if s not fully expanded then

24: return EXPAND(s)

25: else EST HILD()B Cs s

26: return s

27: function EXPAND(s)

28: choose a  untried actions from ()s

29: add a new child s to s

30: Initialize ()=0G s

31: (,)s f s a  and ()a s a 

32: return s

33: function BESTCHILD(s)

34: return
childern of

() ln ()
argmax ()

() ()s s

G s N s

N s N s





+ 

 

35: function DEFAULTPOLICY(s)

36: Initialize (,)=(0,0)
r

Q j

37: while s is non-terminal do

38: choose random action a

39: (,)s f s a  , (,)
r r

jQ Q R s a   +  and 1j j= +

40: return
r

Q
 for state s

41: function BACKUP(s,
r

Q)

42: while s is not null do

43: () () 1N s N s +

44: () ()
r

G s G s Q + 

45: parent ofs s

REFERENCES

[1] Muhammad FZ, Elhoussin E, Mohamed B. Microgrids energy

management systems: A critical review on methods, solutions, and
prospects. Appl Energy 2018;222:1033-1055.

[2] Luo X, Wang J, Mark D, Jonathan C. Overview of current development in

electrical energy storage technologies and the application potential in
power system operation. Appl Energy 2015;137:511-536.

[3] Zhang C, Wu J, Zhou Y, Cheng M, Long C. Peer-to-Peer energy trading in

a Microgrid. Appl Energy 2018;220:1-12.
[4] Gonçalo C, Thomas B, Nicholas D, Wang D, Miguel H, Leander K.

Battery aging in multi-energy microgrid design using mixed integer linear

programming. Appl Energy 2018;231:1059-1069.
[5] Wang Y, Zhou Z, Botterud A, Zhang K, Ding Q. Stochastic coordinated

operation of wind and battery energy storage system considering battery

degradation. J Mod Power Sys Clean Energy 2016;4(4):581–592.
[6] Liu C, Wang X, Wu X, Guo J. Economic scheduling model of microgrid

considering the lifetime of batteries. IET Gener Transm Distrib

2017;11(3):759-767.
[7] Liu W, Zhuang P, Liang H, Peng J, Huang Z. Distributed Economic

Dispatch in Microgrids Based on Cooperative Reinforcement Learning.

IEEE Trans Neural Networks & Learning Sys 2018;29(6):2192-2203.
[8] Wei Q, Liu D, Shi G. A novel dual iterative Q-learning method for optimal

battery management in smart residential environments. IEEE Trans Ind

Electron 2015;62(4):2509-2518.
[9] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. MIT

Press, London;2018.

[10] Hopkins MD, Pahwa A, Easton T. Intelligent dispatch for distributed
renewable resources. IEEE Trans Smart Grid 2012;3(2):1047-1054.

[11] Karami H, Sanjari M, Hosseinian SH, Gharehpetian GB. An optimal

dispatch algorithm for managing residential distributed energy resources.
IEEE Trans Smart Grid 2014;5(5):2360-2367.

[12] Mahmoodi M, Shamsi P, Fahimi B. Economic dispatch of a hybrid
microgrid with distributed energy storage. IEEE Trans Smart Grid

2015;6(6):2607-2614.

[13] Giorgio AD, Liberati F, Lanna A, Pietrabissa A, Priscoli FD. Model
Predictive Control of Energy Storage Systems for Power Tracking and

Shaving in Distribution Grids. IEEE Trans Sustain Energy

2017;8(99):496-504.
[14] Talari S, Yazdaninejad M, Haghifam MR. Stochastic-based scheduling of

the microgrid operation including wind turbines, photovoltaic cells, energy

storages and responsive loads. IET Gener Transm Distrib
2015;9(12):1498-1509.

[15] Xi X, Sioshansi R, Marano V. A stochastic dynamic programming model

for co-optimization of distributed energy storage. Energy Sys
2014;5(3):475-505.

[16] Alamgir Hossain Md, Hemanshu RP, Stefano S, Forhad Z, Josep MG.

Energy scheduling of community microgrid with battery cost using particle
swarm optimization. Appl Energy 2019;254:511-536.

[17] Su W, Wang J, Roh J. Stochastic energy scheduling in microgrids with

intermittent renewable energy resources. IEEE Trans Smart Grid
2014;5(4):1876-1883.

 11

[18] Nguyen TA, Crow ML. Stochastic Optimization of Renewable-Based
Microgrid Operation Incorporating Battery Operating Cost. IEEE Trans

Pow Sys 2016;31(3):2289-2296.

[19] Bhattacharya A, Kharoufeh JP, Zeng B. Managing Energy Storage in
Microgrids: A Multistage Stochastic Programming Approach. IEEE Trans

Smart Grid 2018;9(1):483-496.

[20] Shirajum Munir Md, Sarder FA, Nguyen HT, Choong SH. When Edge
Computing Meets Microgrid: A Deep Reinforcement Learning Approach.

IEEE IoT Journal 2019; 6(5): 7360-7374.

[21] Elham F, Leen-Kiat S, Sohrab A. Reinforcement Learning Approach for
Optimal Distributed Energy Management in a Microgrid. IEEE Trans Pow

Sys 2018;33(5):5749-5758.

[22] Kim BG, Zhang Y, Van der Schaar M, Lee JW. Dynamic pricing and
energy consumption scheduling with reinforcement learning. IEEE Trans

Smart Grid 2016;7(5):2187-2198.

[23] Rocchetta Bellanib RL, Compare M, Ziob E, Patellia E. A reinforcement
learning framework for optimal operation and maintenance of power grids.

Appl Energy 2019;241:291-301.

[24] Coulom R. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In: Proc 5th Int Conf Comput and Games;2006. p. 72-83.

[25] Browne C, Powley E, Whitehouse D, Lucas S, Cowling PI, Rohlfshagen P,

Tavener S, Perez D, Samothrakis S, Colton S. A Survey of Monte Carlo
Tree Search Methods. IEEE Trans Comput Intel and AI in Games

2012;4(1):1-49.

[26] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Driessche G,
Schrittwieser J, Antonogou I, Panneershelvam V, Lanctot M, Dieleman S,

Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M,
Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with

deep neural networks and tree search. Nature 2016;529(7587):484-489.

[27] Christiano P, Leike J, Brown TB, Martic M, Legg S, Amodel D. Deep
reinforcement learning from human preferences. In: the Annual

Conference on Neural Information Processing Systems (NIPS); 2017. p.

1-17.
[28] Huang J, Wu F, Precup D, Cai Y. Learning Safe Policies with Expert

Guidance. In: 32nd Conference on Neural Information Processing Systems

(NeurIPS); 2018. p. 1-10.
[29] Bach S, Broecheler M, Huang B, Getoor L. Hinge-Loss Markov Random

Fields and Probabilistic Soft Logic. Journal of Machine Learning Research

2017;18:1-67.

[30] Hu Z, Ma X, Liu Z, Hovy E, Xing E. Harnessing Deep Neural Networks

with Logic Rules. In: Proc. 54th Annual Meeting of the Association for

Computational Linguistics; 2016. p. 2410-2420.
[31] Sachan M, Dubey A, Mitchell T, Roth D, Xing E. Learning Pipelines with

Limited Data and Domain Knowledge: A Study in Parsing Physics

Problems. In: 32nd Conference on Neural Information Processing Systems
(NeurIPS); 2018. p. 1-12.

[32] Lambert T, Gilman P, Lilienthal P. Micropower system modeling with ho

mer, 2006. www.homerenergy.com/documents/MicropowerSystemModel
ingWithHOMER.pdf.

[33] Ma T, Yang H, Lu L. A feasibility study of a stand-alone hybrid

solar-wind-battery system for a remote island. Appl Energy
2014;121:149-158,.

[34] Zhao B, Zhang X, Chen J, Wang C, Guo L. Operation optimization of

standalone microgrids considering lifetime characteristics of battery
energy storage system. IEEE Trans Sustain Energy 2013;4(4):934-943.

[35] Baran ME, Wu FF. Optimal capacitor placement on radial distribution

systems. IEEE Trans Power Del 1989;4(1):725-734.

[36] Si J, Wang Y. On-line learning control by association and reinforcement.

IEEE Trans Neural Netw 2001;12(2):264-276.

http://www.homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf
http://www.homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf

