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Abstract—The dynamic dispatch (DD) of battery energy 

storage systems (BESSs) in microgrids integrated with volatile 

energy resources is essentially a multiperiod stochastic 

optimization problem (MSOP). Because the life span of a BESS is 

significantly affected by its charging and discharging behaviors, 

its lifecycle degradation costs should be incorporated into the DD 

model of BESSs, which makes it non-convex. In general, this 

MSOP is intractable. To solve this problem, we propose a 

reinforcement learning (RL) solution augmented with 

Monte-Carlo tree search (MCTS) and domain knowledge 

expressed as dispatching rules. In this solution, the Q-learning 

with function approximation is employed as the basic learning 

architecture that allows multistep bootstrapping and continuous 

policy learning. To improve the computation efficiency of 

randomized multistep simulations, we employed the MCTS to 

estimate the expected maximum action values. Moreover, we 

embedded a few dispatching rules in RL as probabilistic logics to 

reduce infeasible action explorations, which can improve the 

quality of the data-driven solution. Numerical test results show 

the proposed algorithm outperforms other baseline RL 

algorithms in all cases tested. 

 
Index Terms—microgrid, energy storage, volatile energy 

resource, dynamic dispatch, reinforcement learning. 

 

NOMENCLATURE 

 

For the management of battery energy storage systems: 

SOC Battery state of charge  

 battery self-discharge rate  

B battery charging/discharging efficiency  

PB charging/discharging power of the battery 

Ca capacity of the battery 

VB-nom rated voltage of the battery 
 lifetime throughput of the battery 

Nf number of cycles until failure of the battery 
min max,B BP P  minimum, maximum power of the battery 

min max,SOC SOC   minimum, maximum state of charge 

c electricity tariff  
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min max,PCC PCCP P  minimum, maximum power at PCC  

DOD Depth of discharge 

  

In the Markov decision process: 

a, s, R action, state, immediate reward 

, ,  set of all actions, states, rewards 

Pr probability transition function  

 policy (action selection rule) 

Q(s,a) value function for taking action a in state s 

 step-size parameter  

 discount-rate parameter 
t n

tG +  cumulative rewards from t to t+n 

|a s  potential function for the domain knowledge  

f  set of feasible actions 

I. INTRODUCTION 

A. Background 

olatile energy resources, such as loads from renewable 

energy based distributed generators (DGs) and electric 

vehicles (EVs), significantly affect the operation of power 

systems. In microgrids, we can coordinate volatile energy 

resources and energy storage to mitigate power fluctuations [1]. 

Hence, battery energy storage systems (BESSs) are widely used 

to balance the power and shave peaks in microgrids [2]. 

Furthermore, BESSs can be scheduled to increase the 

electricity revenue for microgrid entities by charging energy in 

low-price periods and discharging energy in high-price periods 

[3]. Therefore, how to dynamically dispatch the BESS such that 

the operational costs of the microgrids are minimized while 

satisfying the operational constraints of the distribution 

network is a key challenge.  

Many studies have focused on the dynamic dispatch of 

BESSs. Some works employ deterministic optimization models. 

However, due to the stochastic nature of DGs and EVs, the 

dynamic dispatch of BESSs is essentially a multiperiod 

stochastic optimization problem (MSOP). One way to solve 

MSOPs is to apply scenario-based stochastic programming 

(SP). In this approach, Monte Carlo simulations are employed 

to repeatedly generate scenarios across a multistep process. The 

computational burden increases exponentially with the number 

of scenarios investigated. Additionally, the life span of a BESS 

is significantly influenced by its charging and discharging 

behavior. When incorporating the lifecycle degradation costs of 
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BESSs into the microgrid optimization objectives, considerable 

cost reduction may be achieved in different applications, e.g., 

the microgrid planning and operation [4], and the coordinated 

operation of the BESS and renewable energy [5]. However, 

most of the existing SP models either assume zero degradation 

costs for the BESS, or simplify the battery cycle life to a linear 

function of the Depth of Discharge (DOD), which may 

introduce additional estimation error on the BESS degradation 

cost [6]. When a more accurate degradation cost model is used 

for BESSs, the MSOP generally becomes nonconvex and 

computationally challenging [7]. 

Reinforcement learning (RL) may be a viable alternative for 

tackling an MSOP with a non-convex objective function [8]. 

RL arose from dynamical systems theory, and is formalized by 

the Bellman Equation and Markov decision process (MDP). A 

fundamental issue in RL is the balance of exploration and 

exploitation, which facilitates action-value estimation and 

policy improvement. It is common for a RL agent to 

occasionally explore some random actions and learn from 

experience. In Q-learning, this trial-and-error learning process 

is guaranteed with asymptotic convergence. As the 

bootstrapping steps increase, the error of action value 

estimation decreases (i.e., the error reduction property); yet the 

conventional RL algorithm suffers from increased computation 

complexity. To reduce the computation burden of the 

multi-step RL for tackling MSOPs, the Monte-Carlo tree search 

(MCTS) method may be a viable solution that shows 

remarkable success recently [9]. Motivated by these 

achievements, we study how to incorporate MCTS into 

Q-learning to solve the stochastic dispatch of BESS in 

microgrids. 

B. Related work 

The early related researchers mainly employ deterministic 

models for scheduling BESSs. Reference [10] introduces linear 

programing (LP) to mitigate fluctuations in photovoltaic (PV) 

output and increase the electricity revenue in the microgrid. In 

addition to increasing the electricity revenue, the efficiency of 

the BESS is considered in [11], in which a non-linear 

optimization model is formulated and solved by a 

meta-heuristic algorithm. Reference [12] formulates a 

quadratic programming (QP) to achieve economic microgrid 

dispatch. A different objective is considered in [13], namely to 

satisfy the constraints of the distribution network by tracking 

the power profile established on a day-ahead basis. They 

formulate a QP and employ model predictive control (MPC) to 

schedule the BESS. These deterministic models neglect the 

intermittency and variability of volatile energy resources.  

Some other researchers formulate the BESS scheduling 

problem as stochastic optimization models, which tackle the 

uncertainties associated with volatile energy resources. In [14], 

a two-stage stochastic mixed-integer programming (SMIP) is 

formulated to optimize the dispatching policy for microgrids. In 

[15], the problem of storage co-optimization is addressed by 

formulating a two-stage SMIP using piecewise-linear 

approximation of the value function. In [16], the day-ahead 

scheduling of the BESS in the microgrid is studied. The 

optimization model incorporates the battery degradation cost 

using the rainflow algorithm. Yet this work assumes unlimited 

energy exchange with the distribution network. In [17], a 

two-stage stochastic mixed-integer nonlinear model is 

formulated, and the battery degradation cost was considered by 

simplifying its cycle life as a linear function of the DOD. A 

similar battery cycle life model is considered in [18]. This work 

formulates the BESS degradation cost model as an equivalent 

fuel-run generator, which enables it to be incorporated into a 

unit commitment problem. In addition to the two-stage SP 

models, a multistage SP model is formulated in [19], and solved 

by a customized stochastic dual dynamic programming 

algorithm.  

Besides the above methods, some works have explored RL 

methods for scheduling BESSs. A deep reinforcement learning 

method is used in [20] to provide the energy management 

results for the microgrid. In [21], the Q-learning method is used 

to optimize the energy management in the microgrid, which 

considers the variability of stochastic entities. A cooperative 

RL algorithm is proposed in [7], whose dispatch objectives 

incorporate a non-convex BESS degradation cost model. In [8], 

a dual Q-iterative learning algorithm is proposed to minimize 

the microgrid operation cost. In addition to these studies, RL 

based solutions are seen in other related problems or fields with 

promising results. [22] studies a dynamic pricing problem in 

the microgrid, where the basic Q-learning model is adopted and 

improved by defining the energy consumption-based 

approximate state and adopting the virtual experience updates. 

[23] develops a RL method for the optimal management of the 

operation and maintenance of power grids. In this solution the 

tabular Q-learning is used to learn the optimal policy and the 

neural network then replaces the tabular representation of the 

state-action value function. However, the RL methods used in 

these works ignore the uncertainties between state transitions 

along the multistep bootstrapping trajectories [19]. 

In the field of machine learning, combining the MCTS 

method and embedding domain knowledge into data-driven 

solutions can enhance their performances, which inspire us on 

tackling MSOPs. For the MCTS algorithms, [24] introduces its 

basic idea, in which tree search policies are used to 

asymptotically focus the Monte Carlo trials on multistep 

bootstrapping trajectories that are promising to high-return 

rewards. [25] presents a survey of different variants of MCTS. 

[26] adopts the MCTS to achieve fast multistep simulations in 

the computationally intensive game GO. In the studies of 

incorporating domain knowledge, [27, 28] demonstrate the 

performance enhancement of RL solutions by leveraging 

different kinds of domain knowledge. To numerically express 

the rule based domain knowledge, the probabilistic soft logic 

(PSL) is formalized in [29]. In [30], the PSL is used to map 

knowledge rules into neural networks. In [31], the PSL is 

employed to supervise the learning process by knowledge rules. 

Contributions 

We formulate a multiperiod stochastic model for dispatching 

the BESS in microgrids. The degradation cost model of BESSs 

adopted in this work is a benchmark model employed in the 

microgrid simulation tool HOMER [32] and other applications 

[33, 34]. In our RL based solution, the key for identifying 

statistically optimal dispatching policies is the estimation of 
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expected maximum action values. This may be achieved by 

naively computing the optimal value function in the scenario 

based search trees containing bd possible sequences of actions, 

where b is the number of discretized actions per state (tree’s 

breadth) and d is the number of steps (tree’s depth). So, its 

computation complexity increases rapidly as the number of 

scenarios increases. To reduce the computation burden, we 

employ the MCTS algorithm that has made prolific 

achievements in playing Go. However, from the perspective of 

game theory, the MCTS in Go tackles two-player zero-sum 

deterministic game [25], yet in our case it tackles single-player 

stochastic power dispatching. How to integrate the MCTS into 

the Q-learning for solving the MSOP is a key challenge in this 

work. Moreover, in order to incorporate the domain knowledge 

for performance enhancement, a knowledge incorporation 

scheme is needed to numerically express different knowledge 

rules and combine them for reducing infeasible action 

explorations. The novelty and contributions of our work are 

two-fold: 

1) We propose a RL solution incorporated with MCTS to 

tackle the MSOP. In this solution, the Q-learning with function 

approximation is employed as the basic learning architecture 

that allows multistep bootstrapping and continuous policy 

learning. To alleviate the computation burden of randomized 

multistep simulations, a MCTS algorithm is developed to 

efficiently estimate the expected maximum action values in the 

iterative learning process. 

2) We develop a knowledge incorporation scheme to embed 

the rules into the learning process. In this scheme, the 

probabilistic soft logic is adopted to map knowledge rules into 

potential functions. The potential functions are then combined 

by soft logic operations to confine the state-wise feasible action 

space and enhance the performance of the learned policy. 

As far as we know, this is the first work of incorporating 

MCTS and domain knowledge into RL methods in power 

system applications. 

The remainder of the paper is organized as follows. The 

problem is formulated in Section II. Its solution is given in 

Section III. The results in case studies are reported in Section 

IV and the paper concludes in Section V. 

II. PROBLEM FORMULATION 

Figure 1 presents a simplified configuration of the problem. 

The microgrid is connected to the distribution network at the 

point of common coupling (PCC). Components of the 

microgrid include DG, EV, other loads, and the BESS. The 

active power of these components is marked with a positive 

power flow direction in the figure. For notational convenience, 

we introduce PSUM to represent (PDG - PEV - POL). 

Other 
Load

PDG

PEV

POL

PB

PPCCPSUM

+ +

DG

Distribution

Network

Positive Power flow

Dispatchable resource

Non-dispatchable resource

EV BESS  

Fig. 1. Simplified architecture of a grid-connected microgrid; dashed arrows 
define the positive direction of power flow. 

A. Constraints 

Let t be the time index. The active power constraint imposed 

by the distribution utility at the PCC is 
min max

, , , , ,( )PCC t PCC t SUM t B t PCC tP P P P P = − +              (1) 

The branch power flow model developed in [35] is adopted 

for the power flow calculation of the microgrid, 
2 2

2
( )

( ) ( )

( )

ij ijg d

ij j ij jj j

j ji

p q
p p r p p

v




+
+ − = +                 (2) 

2 2

2
( )

( ) ( )

( )

ij ijg d

ij j ij jj j

j ji

p q
q q x q q

v




+
+ − = +                 (3) 

2 2

2 2 2 2

2

( ) ( )
( ) ( ) 2( ) [( ) ( ) ]

( )

ij ij

j i ij ij ij ij ij ij

i

p q
v v r p x q r x

v

+
= − + + +     (4) 

where i, j represent nodes of a line in the micrgorid. 
ijp  and 

ijq  

are active and reactive power delivered through the line. 
iv  and 

jv  are voltage magnitudes. 
ijr  and 

ijx  are resistance and 

reactance of the line. g

ip  and g

iq  are active and reactive power 

generation at node i. d

jp  and d

jq  are active and reactive power 

demand at node j. ( )j  is the set of all child nodes of node j.  

The operational constraints in microgrid are given by (5)-(8), 
min max

iv v v                                    (5) 
2 2 max 2( ) ( ) ( )ij ij ijp q AP+                          (6) 

min max

DG DG DGP P P                               (7) 
min max

B B BP P P                               (8) 

where the node voltage amplitude, power flow of lines, power 

generation of DGs, and power charging/discharging of BESSs 

are constrained by their thresholds. Variable max

ijAP  denotes 

the maximum apparent power of the line. 

The SOC of the BESS is given by 

 ,

1

,

(1 )
B t

t t B

t B nom

P T
SOC SOC

CaV
 −= − −                    (9) 

In the charging mode, B  1 and PB,t  0. In the discharging 

mode, B  1 and PB,t  0. T is the time interval.  

To prevent damages caused by overcharge/overdischarge, 

the SOCt is restricted by 

 min max

tSOC SOC SOC                         (10) 

The life-cycle throughput of a BESS is related to the number 

of operation cycles, SOC in individual cycles, etc. [32], 

,
( ) (1 )

1000 /
t

nom B nomSOC

t f t

Ca V
N e SOC

W kW

 
=   −         (11) 

where  is an empirical parameter. The level of BESS 

degradation is measured by |PB,t|/2
t
 [33]. 

B. Objective function 

Assume t is the decision time (which means all state 

variables are known up to t). In order to maximize the 

operational profits of the BESS, we can formulate the following 

multiperiod stochastic optimization model, 

1 2 1

1 2

Pr 1 1 Pr |Pr

2 2 Pr |Pr 1 1

max ( , ) [max ( , )

[max ( , ) ... [max ( , )]...]]

t t t

t n t n

t t t t
a a

t t t n t n
a a

z R s a R s a

R s a R s a

 



+ + +

+ − + −

+ +

+ + + − + −

= + +

+ +
 (12) 
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where ( , )t i t iR s a+ +  is the immediate reward of taking action at+i 

in state st+i. Pr  is the probability measure of state transitions 

and 
1Pr |Prt i t i+ + −
 denotes the expectation taken corresponding to 

the conditional probability measure (
1Pr | Prt i t i+ + −

).  is the 

discount factor. The superscript   is used to distinguish 

stochastic variables from deterministic variables. This notation 

is also used hereinafter for vectors containing stochastic 

variables. 

In our case, at and st are given by 

,

set

, ,( , , , )

t B t

t t SUM t t PCC t

a P

s SOC P c P

=


=

               (13) 

where 
tc  and set

,PCC tP  are the time-of-use tariff (TOU) and the 

active power at PCC expected by the distribution utility, 

respectively. The BESS is considered as the only dispatchable 

component. Because st+i is an unknown future state at decision 

time t, ,SUM t iP +  is modeled as a stochastic variable owing to the 

volatile energy resources. Because our focus of uncertainty is 

the power generation/consumption in volatile energy resources, 

ct+i and set

,PCC t iP +
 are modelled as deterministic variables. 

The immediate reward, R, contains three factors, defined as 

   
1 1, 2 2, 3 3,+t t t tR R R R  = +                              (14) 

where wi (i=1,2,3) are the weights of the different factors. 

Individual factors are specified as  

1, , ,

1,

2, , ,

, 0
=

, 0

t B t B t

t

t B t B t

c P T P
R

c P T P






                              (15) 

 
,

2,

,2

B t

t

life t

P T
R C

Q
= −


                                 (16) 

set

3, , ,=t PCC t PCC tR P P− −                             (17) 

where R1 is the electricity revenue generated by leveraging the 

TOU tariff. R2 is minus the degradation cost of the BESS due to 

lifecycle degradation. C is the investment cost of BESS [6, 33]. 

R3 is minus the penalty cost for power tracking errors at the 

PCC. 

The optimal solution to the above MSOP is a dynamic 

schedule of multistep charging/discharging actions of BESS. 

This solution maximizes the microgrid operational benefits 

indicated by (12)-(17). At the decision time t, although only at 

is actually performed, the follow-up scheduled actions can 

estimate the expected future rewards of at more accurately. 

III. PROPOSED METHOD 

The basic form of RL algorithm is modeled by a tuple 

( , , , )  in the framework of MDP.  is the state space 

containing all state variables, is the action space involving 

all decisions of BESS charging/discharging power, 

:   is the reward function of the state-action pair, 

: [0,1]  → is the transition probability from a 

state-action pair to a successor state, which defines the 

dynamics of the environment. In deterministic problems, = 1  

and st+1 is a deterministic function of state-action pair (st, at). 

However, in stochastic problems such as our case, there is some 

Pr   that measures the transition probability. Because 

predicting the precise transition probabilities of volatile energy 

is challenging, we develop a RL based approximate solution. 

A. Basic Q-learning architecture with function approximation 

To balance the exploration and exploitation in Q-learning, 

the ε-greedy action selection policy is commonly used, 

arg max ( ( , ))   with probability 1-

random action            with probability         

t t
a

Q s a









= 



(18) 

where ε is a small positive value. ( ( , ))t tQ s a  is the expected 

value of taking action at in state st.  

Assume action at has been selected in state st, to estimate its 

long-term reward we employ n-step bootstrapping to update the 

action value estimates. The cumulative n-step future rewards in 

a bootstrapping trajectory is given by 
1

1 2( , )t n n

t t t t t t nG s a R R R + −

+ + += + + +               (19) 

where ( , )t n

t t tG s a+  is the cumulative action values from st to st+n. 

It is a function of sequential actions 
1, 1( ,..., )t t na a+ + −

 conditioned 

on (st, at). 

To further incorporate uncertainties for action value updating, 

we calculate the expectation of t n

tG + , i.e. ( )t n

tG + . The law for 

updating the expected action value is 

1 1,...,
( ( , )) ( ( , )) [ max ( ( , )) ( ( , ))]

t t n

t n

t t t t t t t t ta a
Q s a Q s a G s a Q s a

+ + −

+ + −  (20) 

where 
1 1,...,
max ( ( , ))

t t n

t n

t t ta a
G s a

+ + −

+  is the expected maximum action 

value obtained by taking the best-performing actions 

(at+1,…,at+n-1), following (st, at). 

To allow continuous policy learning, the function 

approximation is employed in the above tabular Q-learning 

architecture that achieves a parametric approximation of the 

action value function, 

( , ; ) ( ( , ))Q s a Q s aθ                         (21) 

where dθ  is a finite-dimensional weight vector. In this 

work, the basic neural network in [36] is adopted as the 

function approximator, whose weights can be updated 

following the gradient descent rule. 

The formulation of (20) distinguishes our Q-learning model 

from [7, 8] that do not incorporate the mechanism of multistep 

bootstrapping under uncertainty. However, this formulation 

makes the conventional Q-leaning suffer from increased 

computation complexity, as more simulation steps and 

scenarios need to be addressed for estimating the stochastically 

optimal rewards. We tackle this issue by developing the MCTS 

algorithm in subsection B. 

B. MCTS algorithm 

Different from the MCTS algorithms developed in 

deterministic games, the MCTS employed in this work needs to 

incorporate stochastic scenarios into the estimation procedure 

of expected maximum action values. Here we outline the key 

ideas of the developed algorithm. More details of this algorithm 

is explained in the Appendix. 

At decision time t, the MCTS is applied to estimate 

1 1,...,
max ( ( , ))

t t n

t n

t t ta a
G s a

+ + −

+
, where the sequential states are 

represented as tree nodes, and the actions are tree edges 

connecting different nodes. Let { }t n

t +  be a stochastic vector 

for the probability distribution of stochastic variables over a 
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planning horizon n, we refer to a scenario 

1

t n

t t t n +

+ +       as a realization (or sampling 

trajectory) of the stochastic process { }t n

t + . We then use the 

notion of SSPt as a scenario sampling pool for providing the 

generative scenarios, 
inf sup inf sup

, 1 , 1 , ,SSP {[ , ]...,[ , ]}t SUM t SUM t SUM t n SUM t nP P P P+ + + +=            (22) 

where inf sup,SUM SUMP P  are lower and upper bounds for the 

confidence interval of 
SUMP .  

From SSPt, the generative scenarios containing n stochastic 

variables 
, 1 ,{ ,..., }SUM t SUM t nP P+ +

 are sequentially sampled that 

forms different possible scenarios. Let 

, 1 ,SSP { ,..., }m m m

t SUM t SUM t nP P+ +=  be the mth scenario, a search tree is 

built incrementally that stems from the root node 
1

m

ts +
 and 

expands from a father nodes t is +  to some child node 1t is + +  (
1

m

ts +
 

is transitioned from st, at in the mth scenario). The tree 

expansion follows the UCT (upper confidence bound for trees) 

policy 

1

1 1

childern of 1 1

( ) ln ( )
argmax ( )

( ) ( )t i t i

t n

t i t i t i

s s t i t i

G s N s

N s N s


+ + +

+

+ + + + +

 + + + +

+             (23) 

where ( )t iN s +  and 1( )t iN s + +  are the visit counts of the father 

and child nodes, respectively.   is a constant variable 

determining the level of exploration. Initially, (23) prefers 

nodes with low visit counts. Asymptotically, the nodes that are 

promising with high values are identified. This policy balances 

the exploitation of learned value function and the exploration of 

unvisited nodes. 

When a child node is selected in the mth scenario, the Monte 

Carlo rollout policy r  begins at this node and ends at the 

terminal node m

t ns +
. Each rollout performs a sequential 

simulation and constitutes n state variables, we use { ,

1

m l

ts +
,…, 

,m l

t ns +
} to denote the simulation trajectory in the lth rollout. Then 

the rollout statistics of all traversed edges are backed up, 

,

1

( , ) ( , )
L

m m l

t i t i t i t i

l

N s a s a+ + + +

=

=                       (24) 

,

1

1
( , ) ( , )

( , )

L
m m l t n

t i t i t i t im
lt i t i

t i
Q s a s a G

N s a

+

+ + + +

=+ +
+

=          (25) 

where is the indicator function. If edge
,( , )m l

t i t is a+ + was 

traversed, ,( , ) 1m l

t i t is a+ + = ; Otherwise ,( , ) 0m l

t i t is a+ + = . t n

t i
G +

+
 is the 

accumulated reward from the node 
t is +

 to the end node 
t ns +

. 

(24)-(25) updates the visit counts and mean action value 

function in all simulations passing through that edge.  

After L rollouts are executed in the mth scenario, we identify 

the set of best-performing actions and obtain the n-step 

maximum action value for (st, at), 

1 1

1 1 1 1 1
,...,

( , | SSP ) ( , , ) max ( , | SSP )
t t n

t n m m t n m m

t t t t t t t t t t t ta a
G s a R s a s G s a

+ + −

+ +

+ + + + += + (26) 

By repeating the above process in different scenarios, the 

expected maximum action values is approximated as 

1 1,...,
1

1
max ( ( , )) max ( ( , | SSP ))

t t n

M
t n t n m

t t t t t t t

m
a aM

G s a G s a
+ + −

+ +

=

        (27) 

where M is the number of scenarios investigated. 

There are two differences that distinguish the above MCTS 

and the MCTS deployed in deterministic games such as Go [25]. 

The first difference is that in Go only a deterministic scenario is 

investigated for estimating the value function. In our case, we 

incorporate different possible scenarios for deriving the 

expected value function. This is achieved by using the notion of 

SSP in (22) to allow scenarios generation based on any explicit 

or implicit probability function, and the expected optimal value 

are accumulated from individual scenarios by (26)-(27). The 

second difference is that in Go only the estimated value of the 

last-stage state (i.e. the terminal node) in each rollout is backed 

up for updating the value function, which is not an accurate 

estimation in our case. Thereby, we temporally memorize and 

accumulate the action values of each transition between father 

and child nodes by (24)-(25) for updating the value function in 

each rollout. 

C. Scheme for incorporating knowledge rules 

Two definitions are given below to leverage dispatching 

rules for reducing infeasible explorations in the RL algorithm. 

Definition 1. Let 
1{ , ( | )}Y

y y yk a s ==  be a set of weighted 

rule sets, where ( | )yk a s  is the yth rule estimating the feasibility 

of action a conditioned on state s, y is the weight of ky. 

In practice the knowledge rules can be classified as hard 

rules and soft rules. Here we consider three rules in the rule set 

(if desired additional rules can also be included), 
inf sup

1 1 1

inf sup

2 1 , 1

3 1 , 1 , ,

( | , ) :

( | , ) :

( | , ) :

t t t t

t t t PCC PCC t PCC

t t t PCC t PCC t Threshold t

SOC SOC SOCk a s s

k a s s P P P

k a s s P P P

+ +

+ +

+ +

 


 


− 

           (28) 

where k1 and k2 are hard rules that require SOC and PPCC to 

remain within allowable ranges when taking action at in state st 

and transitioned to a successor state st+1. The hard rules are 

definitely not violated, otherwise the security of the power 

distribution network or the BESS will be damaged. k3 is a soft 

rule that expects the actual PPCC to have small fluctuations 

between successive states when taking an action. How to use a 

soft rule depends on actual needs. For example, when the BESS 

is funded by an end user who focuses only on electricity 

revenue, k3 can be relaxed because otherwise some candidate 

actions with higher rewards will be excluded.  

Definition 2. Let ( | )
yk a s  be an individual potential 

function of action a conditioned on state s and examined by rule 

ky. Let ( | )a s  be the total potential function of action a 

conditioned on s and examined by the rule set . Also, let f  

be the set of feasible action spaces evaluated by ( | )a s . 

( | )
yk a s  can be seen as the numerical expression of rule ky. 

However, when there exists multiple rules, the logic inferences 

among them are needed for deriving a final result of the 

feasibility of candidate actions, especially when these rules are 

not consistent in evaluating the feasibility of an action. 

Therefore, we introduce PSL to map knowledge rules into the 

scalar values taken in the interval [0, 1]. The mapping of ky into 

an individual potential function is typically of the form 

(max{0, })
y yk kd = , where 

ykd is a measure of the distance to 

satisfiability of ky [29]-[30]. For hard rules ky (l=1, 2), 1
ykd =  
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when the candidate action is evaluated as feasible according to 

ky, otherwise 0
ykd = . For the soft rule k3, an exponential 

operator is used to measure its distance to satisfiability, i.e., 

3

, 1 ,

,

exp( )
PCC t PCC t

k

Threshold t

P P
d

P

+ −
= − . 

We then derive the total potential function ( | )a s  from all 

individual potential functions using certain logic operators. 

Because we have soft rules that take truth values in [0, 1], the 

classic Boolean logic is replaced by the Lukasiewicz logic that 

allows continuous truth values taken from the interval [0, 1]. 

The logic operators such as AND (  ), OR (  ), NOT (  ) are 

redefined as [29]-[30] 

max{ 1, 0}

max{ 1, 0}

1

y j y j

y j y j

y y

k k k k

k k k k

k k

   

   

 

  = + −


 = + −


 = −

                     (29) 

This redefinition allows a simple and flexible inference 

among different rules. In this work, let   be the total potential 

function of all hard rules, and   be the potential function of all 

soft rules, we have 
1 2k k  =  , 

3k = , and   =  . Hence 

f
 is decided by  

{ | ( | ) }f a a s =                          (30) 

where   is the threshold. 

D. The developed RL algorithm 

Fig. 2 displays the episodic learning implementations of our 

RL algorithm.  

1t t= +

Agent formulates state 

Start

1t =

Environment

multistage Bootstrapping 

(stochastic simulation)

for m = 1 : M  do

1. Randomized scenario generation
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End for
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Exploitation
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f
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t ns +

1 1,...,
max ( ( , ))
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+

  

Fig .2 Flow chart of the proposed RL algorithm; two gray boxes highlight the 

novelty of this algorithm. 

At decision time t, the RL agent observes its state vector and 

n stochastic variables 
, 1 ,{ ,..., }SUM t SUM t nP P+ +

. Conditioned on these 

variables, the incorporated knowledge rules are then mapped 

into the potential function for confining the global action space 

 into feasible action space f . Then, based on the basic 

Q-learning framework, the agent selects either an exploitative 

action at with probability 1-ε, or an exploratory action at with 

probability ε from 
,f t

. Next, the agent interacts with the 

stochastic environment and estimates the expected rewards that 

can be obtained over a n-step bootstrapping trajectories. Note 

that this trajectory starts from the state-action pair (st,at), and 

the MCTS is used to sequentially select the remaining n-1 

actions from at+1 to at+n-1 and estimate the expected maximum 

cumulative rewards. After simulations of a number of scenarios, 

the estimated rewards and the parameters of the neural network 

are updated. The RL agent then continues its learning from the 

current decision time t towards the next decision time t+1, and 

the above computation process are repeated. 

IV. CASE STUDY 

In this section, two microgrid systems are provided to 

conduct case studies. In Subsection A, a microgrid in [33] is 

used to verify in detail the performance of the proposed 

algorithm. In Subsection B, a real microgrid system in China is 

used to show the effectiveness of the method. 

A. Test case 1 

Figure 3 presents the modified microgrid system from [33], 

which contains two PV systems, two EV charging stations, one 

BESS, and other loads connected to each node. The rated 

capacity of the two PV systems, i.e. PV1 and PV2, are 40kW 

and 20kW, respectively. Two EV charging stations, i.e. EVCS1 

and EVCS2, contain 5 AC charging posts and 10 AC charging 

posts, respectively. The rated power of each charging post is 7 

kW. Typical charging modes of EVs include constant current 

charging, constant voltage charging, etc. The BESS is a 500 

kWh lead-acid battery pack. Figure 4 depicts the hourly active 

power of different components in the microgrid, which shows 

the high volatility of DGs and EVs. In the stochastic scenarios, 

the 95% confidence level of SUMP is assumed. For simplicity, 
set

PCCP  is set as 50 kW, and the TOU tariffs are referenced from 

the actual tariffs in China. For the thresholds of the knowledge 

rules, we restrict the SOC in rule k1 to be within [30%, 90%], 

PPCC in rule k2 is set to [0, 100 kW], and the variation between 

the PPCC of two consecutive states in rule k3 is maintained below 

50 kW. The training and testing procedures of our algorithm 

follow [7], [23]. The parameters ε in (18) and   in (22) are set 

to 1% and 0.7, respectively. The bootstrapping stage is set to 4.  
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Fig. 3 Tested microgrid system; it contains two PV systems, two EV charging 

stations, one BESS, and 6 residential load points. 
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Fig. 4 Hourly active power of the microgrid; different curves are shown in 

different colors. 

We first test the feasibility of the proposed algorithm in 

realizing its objectives expressed in (12). Figure 5 shows the 

power management results of BESS in nearly three consecutive 

days. In sub-figure (a), PSUM fluctuats significantly because of 

the volatile resources DGs and EVs. In contrast, the dispatching 

of BESS regulates PPCC for a close tracking of set

PCCP . Sub-figure 

(b) shows that the dispatching solution of BESS in general 

procures energy during low-price low-load periods and sells 

energy during high-price high-load periods, which increass the 

electricity revenues. Moreover, a regular charging/discharging 

behavior of BESS is showed by the SOC curve, thus preventing 

the accelerated degradation rate caused by over-charging or 

over-discharging. 
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Fig. 5 Power management results of the proposed algorithm. (a) shows the 

power regulation result at PCC; (b) shows the charging/discharging behavior 

and the corresponding SOC of the BESS. 

We then analyze the computation performance of the 

developed MCTS algorithm, whose role is mainly to give 

efficient estimations of the maximum action values over 

multistep bootstrapping trajectories. To evaluate the degree of 

accomplishment of this role, we compare the numerical results 

of MCTS and three algorithms by varying the number of 

iterations while fixing the investigated scenarios. As listed in 

Table 1, the compared algorithms include a random search 

algorithm (RS) that used a random policy during bootstrapping, 

an exhaustive search algorithm (ES) enumerating candidate 

actions, and a heuristic search algorithm based on the genetic 

algorithm (GA). The number of iterations in the numerical tests 

is varied from 101 to 104. In each iteration budget, we repeat the 

computations of these algorithms for 10 times and record the 

mean and variance of different algorithms. The mean values are 

normalized by the min-max normalization. The variances of BS 

are omitted because they are zero.  

Table 1 
Performances of different algorithms in estimating the maximum action values. 

Number of 

iterations  
Mean of maximum action value Variance of estimation  

MCTS RS GA ES MCTS RS GA 

101 0.81 0.34 0.17 0 0.62 0.99 0.49 
102 0.92 0.42 0.26 0.18 0.34 1.56 0.11 

103 0.97 0.38 0.34 0.42 0.10 2.00 0.01 

104 1 0.39 0.38 0.74 0.02 2.17 0 

The mean value indicates that MCTS is the most efficient 

algorithm in discovering the maximum multi-step action values. 

The variance of MCTS is asymptotically reduced as the number 

of iterations increase, which justifies the robustness and 

asymptotic convergence of this algorithm. However, ES is the 

least efficient in estimating the action values. RS is highly 

stochastic without convergence guarantees regardless of the 

increase of iterations. For GA, although its variance is the 

smallest and reached almost 0 after 104 iterations, its 

estimations of the maximum action value improves slowly 

when the computation effort increases. One possible 

explanation is that the iterative searching in GA is stuck in 

some local optimum after 104 iterations. From above 

comparisons, we can conclude that the MCTS is the 

best-performing algorithm for achieving the computation task 

(20).  

We further demonstrate the performance of incorporating the 

knowledge rules into supervising the Q-learning process. In this 

test, we compare the proposed algorithm (knowledge 

incorporation, 4-stage bootstrapping) with two other algorithms, 

namely Algorithm 1 (no knowledge incorporation, 4-stage 

bootstrapping) and Algorithm 2 (knowledge incorporation, 

1-stage bootstrapping) in terms of the rewards obtained and the 

actual dispatching results. To increase the learning efficiency 

when extending the bootstrapping depth from 1 to 4, in our 

algorithm the immediate reward of one-step state transition is 

set as the initial value for the follow-up action value updating. 

Figure 6 depicts the accumulated rewards obtained by these 

algorithms along the learning trajectory. It shows our algorithm 

is the most effective one in maximizing the cumulative rewards. 

Specifically, the advantages in the estimating rewards of our 

algorithm over Algorithm 1 and 2 are highlighted in the earlier 

and later learning trajectories, respectively. This result shows 

that knowledge incorporation is useful when the agent has 

insufficient experiences. Moreover, extending the 

bootstrapping depth in conjunction with knowledge 

incorporation can facilitate the agent to increase its rewards in 

the long run. 

Figures 7 and 8 present further comparison results regarding 

the actual dispatching performance of these algorithms. In 

Figure 7, the explorative policy of Algorithm 1 is poor that 

exacerbate the fluctuations in PPCC, but our explorative policy 

always provide feasible policies that reduce power fluctuations. 

In Figure 8, Algorithm 2 overdraws the BESS capacity at 67 h, 

which forces the BESS to charge energy afterwards. 

Consequently, the power tracking result at the PCC is worsen 

thereafter. In contrast, our algorithm appropriately manages the 

SOC and always maintains the power tracking at the PCC. 

Table 2 compared the actual power management results 

obtained using the proposed algorithm and Algorithm 2. The 

results are calculated based on the 72-hour power management 

results presented in Fig.8. Specifically, the electricity revenue 
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is calculated by equation (15), the BESS degradation cost is 

calculated by equation (16), and the Standard deviation of PPCC 

is calculated by
71

set 2

, ,

0

1
( )

72
PCC t PCC t

t

P P
=

− , which measures the 

level of power fluctuation at PCC. For simplicity, the results are 

shown in per unit values and the results of Algorithm 2 are used 

as base values. Obviously, our algorithm achieves power 

tracking with smaller power fluctuations (evidenced by the 

standard deviation of PPCC), and the microgrid gains more tariff 

revenue with lower BESS degradation costs. 
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Fig. 6 Comparison of accumulated rewards obtained by three algorithms. The 

higher the reward, the better the algorithm performance. 
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Fig. 7 PPCC regulation results using the explorative policies generated by the 

proposed algorithm and Algorithm 1. 
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Fig. 8 PPCC regulation results obtained using the optimal policies of the 

proposed algorithm and Algorithm 2. 

Table 2 
Dispatch results comparisons of the proposed algorithm and algorithm 2. 

 Proposed algorithm Algorithm 2 

Electricity revenue 1.05  1 
BESS degradation cost 0.92 1 

Standard deviation of PPCC 0.79 1 

B. Test case 2 

This test is referenced from a real grid-connected microgrid 

system installed in Zhejiang, China. Figure 9 shows the 

configuration and parameters of the test system. It is a hybrid 

AC/DC microgrid connected to the medium-voltage 

distribution grid. The AC bus of the microgrid contains 200 kW 

solar power, 300 kW residential/commercial load, and 500 

kW×2 h lead-carbon BESS. The AC bus links the DC bus via a 

power electronic transformer. The DC bus contains 250 kW 

solar power,10 kW wind power,250 kW residential/commercial 

load and 60 kW×2 EV fast charging facilities. We then train 

and compare the proposed RL algorithm and the baseline RL 

algorithm (i.e. 1-stage bootstrapping) for dispatching the BESS 

based on realistic historical load profiles. The aim of the RL 

agent is to increase the net operation revenue of the microgrid 

(i.e. the TOU revenue minus the degradation cost of the BESS) 

while reducing the power fluctuations at the PCC (i.e. measured 

by 
23

set 2

, ,

0

1
( )

24
PCC t PCC t

t

P P
=

− ). The investment cost of the BESS is 

¥ 2/Wh. The TOU tariffs are referenced from the actual tariffs 

in Zhejiang Province (i.e. ¥ 1.02/kWh from 8:00-22:00; 

¥ 0.51/kWh for the rest of the day). Other parameters remain 

the same as in the test case 1. 

Table 3 lists the dispatching results of the two algorithms 

based on the daily power profiles. The net operation revenue 

and the standard deviation of PPCC in four days are given. These 

four days represent different renewable power generation and 

load consumption patterns in the spring, summer, autumn, and 

winter, respectively. As can be seen, the proposed method 

obtains higher revenue with lower power fluctuation at the PCC 

in all seasons. The biggest gap in revenues is in the autumn, i.e. 

our method gains ¥ 300.3 more than the baseline method. The 

largest gap regarding the power fluctuation at the PCC is in the 

summer, i.e. our method achieves 3% less power fluctuation at 

the PCC than the baseline method. On average, the daily 

revenues of our method and the baseline method are ¥ 710.3 

and ¥ 560.9, respectively. In the long run, using the proposed 

method can considerably shorten the cost recovery period for 

the BESS investor. The above tests provide a first necessary 

step to prove the effectiveness of the proposed algorithm. 

Future research efforts will be devoted to test the proposed 

method on additional numerical models of microgrids. 

10kV AC BUS

1MWh

Distribution grid

~ =

100kW

=
=

=
=
~

5kW

150kW

=
=

100kW

=
=
~

5kW

AC 400V

100kW

60kW×2150kW

560V DC BUS

~
=

=

200kW

Power electric 
transformer

Circuit breaker

~ =

200kW

 
Fig. 9 Configuration of the hybrid AC/DC microgrid system; the parameters of 
the BESS, distributed energy resources and loads are presented. 

 

Table 3 
Result comparisons using based on daily power profiles in different seasons. 

Typical day  Proposed method Baseline RL 

Spring 
Net revenue (¥) 473.6 400.8 

SD of PPCC  0.161 0.169 

Autumn 
Net revenue (¥) 873.5 543.2 

SD of PPCC 0.39 0.419 

Summer Net revenue (¥) 1223.7 1134.0 
SD of PPCC 0.138 0.168 

Winter Net revenue (¥) 270.3 165.4 

SD of PPCC 0.242 0.266 

SD: standard deviation 

V. CONCLUSION 

In this paper, we present a multiperiod stochastic 

optimization model for the dynamic management of battery in 

microgrids. The model is developed to minimize the 
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operational costs of the microgrid, taking into account the 

nonconvex degradation cost function of the battery energy 

storage system. Then, we provide a reinforcement learning 

solution augmented with Monte-Carlo Tree Search and 

knowledge rules. We first express the knowledge rules into the 

potential function in the form of soft logic. These knowledge 

rules are used to confine the state-wise action space, which can 

reduce the number of infeasible actions explored by the 

learning agent. To alleviate the computation burden of 

multistep bootstrapping under uncertainty, the Monte-Carlo 

Tree search algorithm is modified to increase the estimation 

efficiency of the expected maximum action values. The results 

of our numerical tests show that the proposed algorithm 

asymptotically optimizes the dispatch policy and outperforms 

other algorithms.  

APPENDIX 

The appendix explains how the RL agent learns the 

dispatching policy in more detail. First, the key steps of the 

modified MCTS method is explained. Then, the full algorithm 

of the proposed method is presented. 

A. The MCTS algorithm 

To incorporate uncertainties when estimating the cumulative 

action value for any state action pair, e.g., (st, at), five steps are 

needed when performing the MCTS, as shown in Fig. A.1.  

a. Generation. This step provides randomized sequences 

containing n sequential stochastic variables, i.e. 

, 1 ,[ ,..., ]SUM t SUM t nP P+ + . The realization of ,SUM t iP +  can be expressed 

as , , ,

forecast

SUM t i SUM t i SUM t iP P P+ + += +  , where ,SUM t iP +  is the forecast 

error. We use the truncated normal distribution (TN) with 

predefined confidence intervals (CIs) to construct 
SUMP  based 

on the maximum likelihood estimator (MLE), 

i.e., , , + ,
ˆ~ ( , )SUM t i SUM t i SUM t iP TN P P+ + , where 

,SUM t iP +
 and ,

ˆ
SUM t iP +  are 

the sample mean and variance (The details of the TN refer to 

[9]). Then the Monte Carlo sampling method is used to generate 

scenarios (the mth scenario denotes by SSPm

t
), and (30) is used 

to form the feasible action space m

f .  

b. Selection. This stage selects explorative policies in the 

generated scenarios. Given the mth scenario, assume the 

current in-tree simulation step begins at node 1

m

ts +  and ends at 

m

t ns + , each node s  of the tree stores the state-action pair ( , )s a , 

and each edge stores the statistics { ( , ), ( , )}G s a N s a , where 

( , )N s a  is the visit count and ( , )G s a  is the mean action value 

for that edge. 

c. Expansion. This stage incrementally expands the tree 

until the terminal nodes in a generative scenario. The UCT 

criterion is used to decide which child node to be expanded. 

Then the Monte Carlo rollout policy r  begins at this node and 

ends at a terminal node. During tree expansion, the successively 

joined leaf nodes result in different combinations of sequential 

state-action pairs. 

d. Backpropagation. This stage updates the rollout statistics 

of each in-tree node backwards from the terminal node to the 

root node by (24) and (25). After reaching the computation 

budget (e.g. constraint of iteration, time or memory), the set of 

state-action pairs with the highest expected rewards is 

identified as marked in the red rectangle in Fig. A.1. 

e. Update. This stage updates the action value estimation 

results for each scenario by (26), and finally accumulate the 

expected action value estimations of all scenarios by (27). 
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Fig. A.1 Diagram of the modified Monte-Carlo tree search method. 

 

B. The full algorithm 

The proposed approach is shown in Algorithm 1. The main 

part of this algorithm is shown from line 1 to line 13, where the 

MCTS method is denoted as the function MCTSSEARCH and 

realized from line 14 to line 45.  

In the main part of the Algorithm 1, given time t, the state st 

is observed and the ε-greedy policy is used to select an action at 

from the feasible action space f . The SSPt is then generated 

to provide different possible scenarios for the future n time 

stamps. Given the mth scenario, the MCTSSEARCH is 

performed, whose input parameter 
1

m

ts +
 is transitioned from (st, 

at). When M scenarios have been evaluated, the expected 

maximum action value for (st, at) can be approximated. This 

approximated value is marked as the label of a training example, 

corresponding to input parameters st, at, 
inf sup inf sup

, 1 , 1 , ,( , ),...,( , )SUM t SUM t SUM t n SUM t nP P P P+ + + + . In total, T training 

examples are provided for learning the weights of the 

parameterized action-value function (i.e. the neural network) 

following the gradient descent law. 

In the function MCTSSEARCH
1( m

ts + ) , the subfunctions 

TREEPOLICY, DEFAULTPOLICY and BACKUP are iteratively 

executed. In one iteration, the TREEPOLICY determines how to 

expand the tree from a father node to a child node. In this 
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subfunction, the unvisited nodes are assigned higher priority for 

node expansion than the visited node selected by the 

subfunction BESTCHILD. The subfunction DEFAULTPOLICY 

then performs fast simulations from a current node, e.g. m

t is +
 to 

the terminal node, and 
r

Q
 records the cumulative rewards of 

the simulated trajectory. Afterwards, the subfunction BACKUP 

updates the cumulative rewards of nodes 
1,...,m m

t i ts s+ +
 given by 

the TREEPOLICY and the DEFAULTPOLICY. When the 

computation budget is reached (e.g., constraint of time, 

iteration or memory), we identify a complete path of the search 

tree, with tree edges representing the optimal actions 

{
1

m

ta +
,…,

1

m

t na + −
} and tree nodes representing the corresponding 

states {
1

m

ts +
,…, m

t ns +
}. Note that in line 31, f denotes the state 

transition function; in the subfunction DEFAULTPOLICY, the 

variable 
r

Q  is used to sum up the sequential rewards of a 

simulation trajectory rather than only the terminal reward. 

 

Algorithm 1 Multistep Q-learning incorporated with 

MCTS 

1: Initialize action-value function ( , ; )Q s a θ  arbitrarily 

2: for t=1, T do 

3:    observe st  

4:    select at from 
f
 using the ε-greedy policy 

5:    generate SSPt according to (22) 

6:        for m=1, M do  

7:           sample scenario 
, 1 ,SSP { ,..., }m m m

t SUM t SUM t nP P+ +=  

8:           perform MCTSSEARCH(
1

m

ts +
) 

9:           estimate the maximum action value by (26) 

10:      end for 

11:   estimate the expected maximum action value by (27) 

12:   update (20) and the weights θ  of the neural network 

13: end for 

14: function MCTSSEARCH(
1

m

ts +
) 

15:    create root node as 
1

m

ts +
 

16:    while within computational budget do 

17:         
1REE OLICY( )T Pm m

t i ts s+ +  

18:         EFAULT OLICY( )D P
r

m

t iQ s +  

19:         BACKUP( ,
r

m

t is Q+
) 

20:    return a(BESTCHILD(
1

m

ts +
)) 

21: function TREEPOLICY(s) 

22:    while s is nonterminal do  

23:        if s not fully expanded then 

24:           return EXPAND(s) 

25:        else EST HILD( )B Cs s   

26:           return s 

27: function EXPAND(s) 

28:   choose a   untried actions from ( )s  

29:   add a new child s  to s 

30:   Initialize ( )=0G s  

31:   ( , )s f s a   and ( )a s a   

32:   return s   

33: function BESTCHILD(s) 

34:   return 
childern of

( ) ln ( )
argmax ( )

( ) ( )s s

G s N s

N s N s





+ 

 
 

35: function DEFAULTPOLICY(s)     

36:   Initialize ( , )=(0,0)
r

Q j  

37:   while s is non-terminal do  

38:        choose random action a 

39:       ( , )s f s a  , ( , )
r r

jQ Q R s a   +   and 1j j= +  

40:   return 
r

Q
 for state s      

41: function BACKUP(s, 
r

Q )        

42:   while s is not null do         

43:       ( ) ( ) 1N s N s +  

44:       ( ) ( )
r

G s G s Q +   

45:       parent ofs s  
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