
Risk- and Variance-Aware Electricity Pricing
Robert Mieth, Jip Kim and Yury Dvorkin

Abstract—The roll-out of stochastic renewable energy sources
(RES) undermines the efficiency of power system and market
operations. This paper proposes an approach to derive electricity
prices that internalize RES stochasticity. We leverage a chance-
constrained AC Optimal Power Flow (CC AC-OPF) model, which
is robust against RES uncertainty and is also aware of the
resulting variability (variance) of the system state variables. Using
conic duality theory, we derive and analyze energy and balancing
reserve prices that internalize the risk of system limit violations
and the variance of system state variables. We compare the risk-
and variance-aware prices on the IEEE 118-node testbed.

I. INTRODUCTION

Power systems and electricity markets struggle to accommo-
date the massive roll-out of renewable energy sources (RES),
which are stochastic in nature and impose additional risks
on the system operations and market-clearing decisions. The
current industry practice to mitigate these risks is based on
procuring additional reserves, which are selected based on
exogenous and often ad-hoc policies (e.g., 95-percentile rule
in ERCOT, [1], or (5+7) rule in CAISO, [2]).

Alternatively, such risk assessments can be carried out
endogenously, i.e. while optimizing operational and market-
clearing decisions, using high-fidelity prediction and historical
data parameterizing the RES stochasticity. Bienstock et al. [3]
proposed a risk-aware approach to solving an Optimal Power
Flow (OPF) problem that uses chance constraints (CC) to
internalize the RES stochasticity and risk tolerance of the
system operator to violating system constraints. Since [3],
the CC-OPF has been shown to scale efficiently for large
networks [4], accommodate various assumptions on the RES
stochasticity (e.g. parametric distributions and distributional
robustness) [4]–[6], as well as to accurately account for AC
power flow physics, [7], [8]. However, this framework has
primarily been applied to risk-aware operational planning in
a vertically integrated environment, neglecting market consid-
erations. From a market design perspective, RES stochasticity
has been primarily dealt with using scenario-based stochastic
programming, e.g. [9]–[11], which is more computationally
demanding than chance constraints, [3].

With the exception of our recent work in [12], [13],
chance constraints have so far been overlooked in electricity
pricing applications. The chance-constrained market design
proposed in [13] leads to a stable robust equilibrium that,
unlike scenario-based approaches in [9]–[11], guarantees de-
sirable market properties, i.e. welfare maximization, revenue
adequacy and cost recovery, under various assumptions on
the RES stochasticity. Therefore, the resulting energy and
reserve prices make it possible to better approximate real-
time operating conditions for look-ahead dispatch applications,

thus improving consistency between look-ahead and real-
time stages. However, [13] neglects network constraints, an
important modeling feature for real-life market applications.

This paper uses a chance-constrained AC OPF (CC AC-
OPF) from [7] to derive network-aware electricity prices that
internalize the RES stochasticity with the intention to produce
more accurate signals to market participants. This convex
formulation allows the use of duality theory to derive risk-
aware marginal-cost-based prices, which are similar to tradi-
tional deterministic locational marginal prices (LMPs) based
on linear duality, [14]. Furthermore, the CC AC-OPF can
explicitly consider reactive power and voltage support services
and analyze their role in the deliverabilty of active power, thus
supporting the design of a more “complete” electricity market,
[15], [16]. Completing the market by allowing all assets and
services (active and reactive power, reserve capacity, trans-
mission and voltage support) to be transacted, [16], makes it
possible to co-align technical needs and requirements imposed
by the physical aspects of power system operations and price
signals received by market participants. We also extend the
CC AC-OPF to follow a variance-aware dispatch paradigm,
introduced in [17], to compute variance-aware prices and
analyze the relationship between the system cost, risk and
variance.

II. MODEL FORMULATION

This paper builds on the AC-CCOPF model presented in [7]
with model assumptions and modifications explained below.

A. Preliminaries

Consider a transmission network with set of nodes N , set of
lines L, set of generators G and set of renewable generators
U (e.g. wind or commercial solar farms). For simplicity of
notation, we assume that each node hosts one conventional
and one renewable generator, such that G = U = N . We
denote the set of PQ and PV nodes as NPQ,NPV ⊂ N
and index reference (θV ) node as i = ref . Nodes without
generation or with more than one generator can be handled by
setting the generation limit to zero or by changing notations,
respectively; both modification will not affect the proposed
method. Let vectors pG indexed as pG,i, pD indexed as pD,i,
and pU indexed as pU,i, denote the total active power output
of conventional generators, the total active power demand and
the active power injections from renewable generation at every
node. The corresponding reactive power injections are denoted
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qG, qD, qU and the resulting vectors of net active and reactive
power injections are thus given by:

p = pG − pD + pU , (1a)
q = qG − qD + qU . (1b)

In the following, we assume that there is no curtailment of
renewable generation and that that all loads pD are fixed. We
denote v and θ, indexed as vi and θi, as the vectors of voltage
magnitudes and voltage angles. The range of feasible voltage
magnitudes is given as v ∈ [vmin, vmax]. Each line in L is a
tuple ij denoting its connected nodes i, j ∈ N . For simplicity,
we assume a single line between two nodes. Vectors fp and
fq indexed as fpij and fqij denote the active and reactive power
flows from node i to node j. Note that fpij 6= fpji and fqij 6=
fqji due to power losses on the line. The vector of apparent
power flow limits is denoted as smax, indexed by smaxij . We
summarize the physical relationship between p, q, fp, fq , v
and θ as

F (p, q, v, θ) = 0, (2)

where F (p, q, v, θ) are the non-linear, non-convex AC power
flow equations, [7, Eq. (2)].

B. Uncertain Power Injections

We model the real-time deviations from the forecasted
renewable active power generation pU by the random vector ω,
indexed by ωi, so that the real-time injection from uncertain
renewable sources is given by pU (ω) = pU +ω. The expected
value and covariance matrix of ω are given by E[ω] = 0 and
Var[ω] = Σ and we write Ω = e>ω and S2 = e>Σe, where
e is the vector of ones. The corresponding uncertain reactive
power qU (ω) is linked to the active power generation through
a constant power factor cosφi, i.e. qU,i(ω) = qU,i + γiωi,
where γi :=

√
1−cos2 φi/cosφi can either be optimized or fixed

in advance. Vector γ collects all γi, i ∈ U .

C. System Response

To mitigate the effects of ω, the controllable generators
adjust their output pG(ω) and qG(ω) to maintain the active and
reactive power balance. Subsequently, system state variables
v(ω), θ(ω), fp(ω), fq(ω) will respond to those changes
based on the system controls and their physical relationship
F (p(ω), q(ω), v(ω), θ(ω)) = 0.

As in [3], [7], [18] the response of each generator is given
by participation factors 0 ≤ αi ≤ 1 that represent the
relative amount of the system-wide forecast error (Ω) that the
generator at node i has to compensate for. Therefore, the real-
time active power output of each generator is:

pG,i(ω) = pG,i − αiΩ, (3)

and we require
∑
i∈G αi = 1 to balance the system. Vector

α collects all αi, i ∈ G. The response of reactive power
generation qG,i(ω), voltage magnitudes vi(ω) and voltage
angles θi(ω) is determined by the type of node i. At PV nodes
vi(ω) = vi,∀i ∈ NPV, is controlled and qG,i(ω), θi(ω),∀i ∈
NPV, are implicitly determined by power flow equations

F (p, q, v, θ). Similarly, at PQ nodes qG,i(ω) = qG,i,∀i ∈
NPQ, is controlled and vi(ω), θi(ω),∀i ∈ NPQ, are implic-
itly determined by power flow equations F (p, q, v, θ). Finally,
at the θV node vref (ω) = vref and θref (ω) = 0. Thus,
active and reactive power response at the θV node is also de-
termined implicitly by power flow equations F (p, q, v, θ). The
resulting active and reactive power flows are implicitly given
by fpij(ω) = fpij(v(ω), θ(ω)) and fqij(ω) = fqij(v(ω), θ(ω)).

D. Production Cost

The production cost of each generator is approximated by
a quadratic function, [19]:

ci(pG,i) = c2,i(pG,i)
2 + c1,ipG,i + c0,i (4)

and, for the compactness of derivations, we denote c2,i =
1/2bi, c1,i = ai/bi and c0,i = a2i /2bi. Given uncertainty ω
and the response in (3), the expected operating cost is:

E[ci(g
P
i (ω))] = ci(pG,i) +

α2
i

2bi
S2. (5)

E. Linearization of AC Power Flow Equations

As discussed in Section II-C, some system state variables
are determined implicitly by the non-linear, non-convex AC
power flow equations in (2), which do not permit a direct
solution. Therefore, we linearize F (p, q, v, θ) = 0 around a
given (forecast) operating point using Taylor’s theorem as in
[7]. Let (p̄, q̄, f̄p, f̄q, v̄, θ̄) be the linearization result, then the
nodal power injections and line flows are:

pi = p̄i + Jp,vi (v̄, θ̄)v + Jp,θi (v̄, θ̄)θ (6)

qi = q̄i + Jq,vi (v̄, θ̄)v + Jq,θi (v̄, θ̄)θ (7)

fpij = f̄pij + Jf
p,v

ij (v̄, θ̄)v + Jfp,θij (v̄, θ̄)θ (8)

fqij = f̄qij + Jf
q,v

ij (v̄, θ̄)v + Jfq,θij (v̄, θ̄)θ, (9)

where Jp,vi , Jp,θi , Jq,vi , Jq,θi , Jf
p

ij , J
fp,θ
ij , Jf

q,v
ij , Jfq,θij are row-

vectors of sensitivity factors describing the change of active
and reactive nodal injections as functions of v and θ derived
from the AC power flow linearization. Similarly, the response
of voltages, flows and reactive power outputs to ω can be
modeled as (see Appendix A):

qG,i(ω) = qG,i + [Rqi (I − αe
>) +Xq

i diag(γ)]ω (10)

vi(ω) = vi + [Rvi (I − αe>) +Xv
i diag(γ)]ω (11)

fpij(ω) = fpij + [Rf
p

ij (I − αe>) +Xfp

ij diag(γ)]ω (12)

fqij(ω) = fqij + [Rf
q

ij (I − αe>) +Xfq

ij diag(γ)]ω, (13)

where row-vectors Rqi , Rvi , Rf
p

ij , Rf
q

ij map adjustments of the
respective variables to active power changes, row-vectors Xq

i ,
Xv
i , Xfp

ij , Xfq

ij map adjustments of the respective variables
to reactive power changes and I is the identity matrix. Note
that sensitivity vectors Rqi , X

q
i , R

v
i , X

v
i , R

fp

ij , X
fp

ij , R
fq

ij , X
fq

ij

can be zero, if i is a PV or PQ node, and depend on a
chosen linearization point.



F. Chance Constrained Optimal Power Flow

For a given operating point (pG, qG, v, θ, γ, α) the system
will respond to any realization of ω according to (3), (6)–
(13). To ensure that this system response does not violate the
physical system limits with a high probability, we formulate
the following chance constraints:

P(pminG,i ≤ pG,i(ω) ≤ pmaxG,i ) ≥ 1− 2εp i ∈ G (14)

P(qminG,i ≤ qG,i(ω) ≤ qmaxG,i ) ≥ 1− 2εq i ∈ G (15)

P(vmini ≤ vi(ω) ≤ vmaxi ) ≥ 1− 2εv, i ∈ N (16)

P((fpij(ω))2 + (fqij(ω))2 ≤ (smaxij )2) ≥ 1− εf ij ∈ L,
(17)

where εp, εq , εv , εf < 1/2 can be chosen to tune the risk level
associated with the individual chance constraints. Using (10)–
(13), we can obtain computationally tractable reformulations
of chance constraints (14)–(17), [3], [7], [18], and formulate
the deterministic equivalent of the CC AC-OPF:

EQV-CC : min
pG,qG
v,α,θ

∑
i∈G

ci(pG,i) +
∑
i∈G

α2
i

2bi
S2 (18a)

s.t.
(λpi , λ

q
i ) : (6), (7) (18b)

(βpij , β
q
ij) : (8), (9) (18c)

(χ) :
∑
i∈G

αi = 1 (18d)

(δp,+i ) : pG,i + αizεpS ≤ pmaxG,i i ∈ G (18e)

(δp,−i ) : − pG,i + αizεpS ≤ −pminG,i i ∈ G (18f)

(δq,+i ) : qG,i + zεq t
q
i ≤ q

max
G,i i ∈ G (18g)

(δq,−i ) : − qG,i + zεq t
q
i ≤ −q

min
G,i i ∈ G (18h)

(ζqi ) :
∥∥∥(Rqi−ρ

q
i e
>+Xq

i diag(γ)) Σ
1/2
∥∥∥
2
≤ tqi i ∈ G

(18i)
(νqi ) : Rqiα = ρqi i ∈ G (18j)

(µ+
i ) : vi + zεv t

v
i ≤ vmaxi i ∈ N (18k)

(µ−i ) : − vi + zεv t
v
i ≤ −vmini i ∈ N (18l)

(ζvi ) :
∥∥∥(Rvi −ρvi e>+Xv

i diag(γ)) Σ
1/2
∥∥∥
2
≤ tvi i ∈ G

(18m)
(νvi ) : Rvi α = ρvi i ∈ N (18n)

(ηij) : (af
p

ij )2 + (af
q

ij )2 ≤ (smaxij )2, ij ∈ L (18o)

(ξf
p,+
ij ) : − af

p

ij + zεf/2.5t
fp

ij ≤ f
p
ij ij ∈ L (18p)

(ξf
p,−
ij ) : − af

p

ij + zεf/2.5t
fp

ij ≤ −f
p
ij ij ∈ L (18q)

(ξf
p,0
ij ) : zε/5t

fp

ij ≤ a
fp

ij ij ∈ L (18r)

(ξf
q,+
ij ) : − af

q

ij + zεf/2.5t
fq

ij ≤ f
q
ij , ij ∈ L (18s)

(ξf
q,−
ij ) : − af

q

ij + zεf/2.5t
fq

ij ≤ −f
q
ij , ij ∈ L (18t)

(ξf
q,0
ij ) : zεf/5t

fq

ij ≤ a
fq

ij ij ∈ L (18u)

(ζ�ij) :
∥∥∥(R�i − ρ�i e> +X�i diag(γ)) Σ

1/2
∥∥∥
2
≤ t�i

ij ∈ L, � = fp, fq (18v)
(ν�ij) : R�ijα = ρ�ij ij ∈ L, � = fp, fq, (18w)

where Greek letters in parentheses in (18b)–(18w) denote
dual multipliers of constraints. Objective (18a) minimizes the
expected cost as in (5). Eqs. (18b)–(18c) are the active and
reactive power balances and flows based on the linearized
AC power flow equations. Eq. (18d) is the balancing reserve
adequacy constraint and (18e)–(18w) are the deterministic
reformulation of chance constraints (14)–(17), [7]. Constraints
(18e)–(18f) limit the active power production pG,i and the
amount of reserve αizεpS provided by each generator, [13],
[20]. Risk parameters are given by zε = Φ−1(1 − ε), where
Φ−1(1 − ε) is the (1 − ε)-quantile of the standard normal
distribution, if ω follows a normal distribution. Although less
restrictive assumptions on the distribution of ω can be invoked
in (18), e.g. by means of non-Gaussian parametric distributions
[5] or distributionally robust formulations [4], [13], this paper
assumes normally distributed forecast errors for the sake of
presentation clarity. The standard deviation of reactive power
outputs, voltage levels and flows resulting from the uncertainty
and the system response is given by the SOC constraints (18i),
(18m) and (18v). Given the convexity of the SOC constraints,
auxiliary variables tqi , t

v
i , tf

p

ij , tf
q

ij relate these standard devia-
tions to the reactive output limits (18g)–(18h), voltage bounds
(18k)–(18l) and flow limits (18p)–(18u). Due to its quadratic
dependency on the uncertain variable, the chance constraint in
(17) requires a more complex reformulation than (14)–(16). To
accommodate this reformulation, we follow [7] and introduce
auxiliary variables af

p

ij , af
q

ij and risk parameters εf/2.5 and εf/5
(i.e. εf divided by 2.5 and 5), respectively. This yields an inner
approximation of (17) that ensures feasibility of the the AC
OPF with desired confidence 1−εf and the conservatism of the
approximation can be tuned by adapting the divisor (2.5 and
5), [7]. Note that the two-sided chance constraints in (14)–(17)
are expressed as one-sided chance constraints in (18e)–(18w)
since simultaneous violations of both the upper and lower
capacity or voltage limits are physically impossible. Auxiliary
variables ρvi , ρf

p

ij , ρf
q

ij and constraints (18j), (18n) and (18w)
have been introduced to simplify subsequent derivations. As
a result, (18) includes convex quadratic objective and second-
order conic constraints. Although it can be reformulated into a
convex conic program to gain computational tractability, [21],
the form in (18) allows for a clear presentation below.

III. RISK-AWARE PRICING

The EQV-CC endogenously trades off the expected
operating point (pG, qG, v, θ, γ, α) and the risk of sys-
tem limit violations defined by the choice of parameters
zεg , zεq , zεv , zεf/2.5, zεf/5. Since the EQV-CC is a convex pro-
gram, we can use its dual form to compute the marginal
prices for active and reactive power, and balancing reserve
that internalize this trade-off.



A. Prices with Chance Constraints on Generation

First, we consider a modification of the EQV-CC given as:

GEN-CC : min
pG,qG
v,α,θ

∑
i∈N

ci(pG,i) +
∑
i∈N

α2
i

2bi
S2 (19a)

s.t. (18b)–(18f)

(δq,+i , δq,−i ) : qminG,i ≤ qG,i ≤ qmaxG,i (19b)

(µ−i , µ
+
i ) : vmini ≤ vi ≤ vmaxi (19c)

(ηij) : (fpij)
2 + (fqij)

2 ≤ (smaxij )2, (19d)

where, relative to the EQV-CC in (18), chance constraints are
only enforced on active power generation limits and reac-
tive power, voltage and power flow constraints are enforced
deterministically by (19b)–(19d). In other words, the GEN-
CC determines the optimal balancing participation of each
generator and, thus, the optimal amount and allocation of
committed reserve given by αizεgS. Therefore, the GEN-CC
replicates a traditional deterministic OPF that allocates the
reserve requirement (

∑
i∈G αizεgS = zεgS) among individual

generators, see [7].
Using the GEN-CC, we compute the following prices:

Proposition 1. Consider the GEN-CC in (19). Let λpi , λqi be
dual multipliers of the nodal active and reactive power balance
at node i in (18b). Then λpi and λqi are given as:

λpi =
pG,i + ai

bi
+ δp,−i − δp,+i (20)

λqi = δq,−i − δq,+i . (21)

Proof. The first order optimality conditions of (19) for pG,i,
qG,i, αi, f

p
ij , f

q
ij are:

(pG,i) : λpi + (δp,+i − δp,−i ) =
pG,i + ai

bi
i ∈ G (22a)

(qG,i) : λqi + (δq,+i − δq,−i ) = 0 i ∈ G (22b)

(αi) : zεpS(δp,+i + δp,−i ) + χ =
αi
bi
S2 i ∈ G (22c)

(fpij) : 2fpijηij + βf
p

ij = 0 ij ∈ L (22d)

(fqij) : 2fqijηij + βf
q

ij = 0 ij ∈ L. (22e)

Eqs. (20)–(21) follow directly from (22a)–(22b). �

Dual multiplier λpi of the active power balance, itemized in
(20), is interpreted as the real power LMP at node i and a
function of production cost coefficients ai, bi and scarcity rent
δp,+i , δp,−i related to active generation limits. Dual multiplier
λqi of the reactive power balance, itemized in (21), is inter-
preted as the reactive power LMP given by scarcity rent δq,+i ,
δq,−i related to reactive generation limits. Although there is no
explicit production cost for reactive power in (18a), providing
reactive power can have a non-zero value, if at least one
reactive power limit is binding. Further, Proposition 1 shows
that both λpi and λqi in (20)–(21) do not explicitly depend on
uncertainty and risk parameters.

In contrast, the price for balancing reserve explicitly de-
pends on the uncertainty and set risk levels:

Proposition 2. Consider the GEN-CC in (19). Let χ be the
dual multiplier of the balancing adequacy constraint in (18d).
Then χ is given as:

χ =
1∑
i∈G bi

(
S2 + zεpS

∑
i∈G

bi(δ
p,+
i + δp,−i )

)
. (23)

Proof. Using (18d) to eliminate αi in (22c) yields (23). �

Dual multiplier χ of (18d) is interpreted as the price
for balancing reserve, because it enforces sufficiency of the
system-wide reserve. As per (23), χ is an explicit function of
the uncertainty S2 = e>Σe and risk parameter zεg . Notably,
the balancing reserve price is always non-zero, if there is
uncertainty in the system (i.e. S > 0), even if all constraints
(18e)–(18f) are inactive, i.e. δp,+i = δp,−i 0,∀i ∈ G. In this
case, χ is independent of the risk parameters and is determined
by the total uncertainty S2 weighted by the total marginal
generator cost

∑
i∈G bi of all generators, i ∈ G, including

those generators that do not provide any balancing reserve,
i.e. αi = 0.

B. Prices with Complete Chance Constraints

We now consider the complete EQV-CC in (18), i.e. includ-
ing chance constraints on reactive power generation, voltages
and flows, and prove the following proposition:

Proposition 3. Consider the EQV-CC in (18). Let λpi , λqi
be dual multipliers of the nodal active and reactive power
balances at node i as in (18b). Further, let χ be the dual
multiplier of the balancing adequacy constraint in (18d). Then
(i) λpi and λqi are given as (20)–(21) and (ii) χ is given as:

χ=
1∑
i∈Gbi

Influenced by generator decisions︷ ︸︸ ︷(
S2+zεS

∑
i∈G

bi(δ
+
i +δ−i ) +

Influenced by system decisions︷ ︸︸ ︷∑
i∈G

bi(y
q
i+y

v
i +yf

p

+yf
q

)
)
,

(24)

where:

yqi = zεq
∑
j∈G

[Rqj ]iδ
q
j

(Rqj+Xq
j diag(γ))Σe−RqjαS2

σqG,j (α, γ)
(25)

yvi = zεv
∑
j∈N

[Rvj ]iµj
(Rvj +Xv

j diag(γ))Σe−RvjαS2

σvj (α, γ)
(26)

y�i = 2
∑
jk∈L

[R�jk]iζ
�
ij

(R�jk+X�jk diag(γ))Σe−R�jkαS2

σ�jk(α, γ)
,

(27)

where � = fp, fq and δqj = δq,+j + δq,−j , µj = µ+
j +

µ−j , and ζ�ij = zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij . Terms

σqG,j (α, γ), σvj (α, γ), σfpjk(α, γ), σfqjk(α, γ) denote the stan-
dard deviations of reactive power at node j, voltage at node j,
active power flow on line jk and reactive power flow on line
jk, respectively, and [·]i denotes the i-th element of a vector.

Proof. The first order optimality conditions of (18) for pG,i,
qG,i, αi, f

p
ij , f

q
ij and auxiliary variables are:

(22a), (22b), (28b) and (28c)



(αi) : χ+ zεpS(δp,+i + δp,−i ) +
∑
j∈G

νqj [Rqj ]i +
∑
j∈N

νvj [Rvj ]i

+
∑
jk∈L

νf
p

jk [Rf
p

jk ]i +
∑
jk∈L

νf
q

jk [Rf
q

jk ]i =
αi
bi
S2

i ∈ G (28a)

(tqi ) : zεp(δq,+i + δq,−i )− ζqi = 0 i ∈ G (28b)

(ρqi ) : ζqi
(Rqi − ρ

q
i e
> +Xq

i diag(γ))Σe∥∥(Rqi − ρ
q
i e
> +Xq

i diag(γ)) Σ1/2
∥∥
2

− νqi = 0

i ∈ G (28c)

(ρvi ) : ζvi
(Rvi − ρvi e> +Xv

i diag(γ))Σe∥∥(Rvi − ρvi e> +Xv
i diag(γ)) Σ1/2

∥∥
2

− νvi = 0

i ∈ N (28d)

(tvi ) : zεv (µ+
i + µ−i )− ζvi = 0 i ∈ N (28e)

(fpij) : βf
p

ij − ξ
fp,+
ij + ξp,−ij = 0 ij ∈ L (28f)

(fqij) : βqij − ξ
fq,+
ij + ξf

q,−
ij = 0 ij ∈ L (28g)

(ρ�ij) : ζvi
(R�ij − ρ�ije> +X�ij diag(γ))Σe∥∥(R�ij − ρvi e> +X�ij diag(γ)) Σ1/2

∥∥
2

− ν�ij = 0

ij ∈ L, � = fp, fq (28h)

(a�ij) : 2ηija
�
ij − (ξ�,+ij + ξ�,−ij )− ξ�,0ij = 0

ij ∈ L, � = fp, fq (28i)

(t�ij) : zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − ζ

�
ij = 0

ij ∈ L, � = fp, fq (28j)

The result (i) follows directly from the proof of Proposition 1.
The result (ii) follows from (28a) by eliminating αi using
(18d). Note that terms νqi , νvi , νf

p

ij , νf
q

ij are given by (28c),
(28d) and (28h). Further, tqi = σqG,i(α, γ), if ζqi > 0 as per
(18i), tvi = σvj (α, γ), if ζvi > 0 as per (18m) and t�ij =
σ�jk(α, γ), if ζ�ij > 0 as per (18v) for � = fp, fq . Thus,
for any ζqi , ζ

v
i , ζ

fp

ij , ζ
fq

ij = 0 the dependency on the standard
deviation would disappear. Finally, terms ζqi , ζ

v
i , ζ

fp

ij , ζ
fq

ij are
given by (28b), (28e) and (28j). �

Similar to the result of Proposition 1, prices λpi and λqi
do not explicitly depend on uncertainty and risk parameters.
On the other hand, relative to (23), balancing reserve price
χ depends on additional terms yqi , yvi , yf

p

i , yf
q

i , see (24),
that relate the balancing reserve provided by each generator
at node i to the risk of reactive power and voltage limits
violation at every node j ∈ N and to the risk of power flow
violations on every line jk ∈ L. This risk awareness is not part
of the generator decisions, which are only driven by its own
production limits and cost, as indicated in (24). As a result
of this incompleteness, given system-wide balancing price χ,
generators may elect for balancing participation factors which
are sub-optimal from the system perspective. This can be
overcome either by further completing the market in terms
of transmission and voltage prices as proposed in [16], or
by augmenting the system-wide balancing price to reflect
location-specific constraints, e.g. χ̃i := χ+yqi +yvi +yf

p

i +yf
q

i .

IV. VARIANCE-AWARE PRICING

The risk-aware results of the EQV-CC in (18) yield solutions
with a high variability (variance) of system state variables,
which has been shown to complicate real-time operations,
[17], [22]. The variances of reactive power generation, voltage
magnitudes, and active and reactive flows can directly be
computed from the standard deviations related to tqi , t

v
i , tf

p

ij ,
tf
q

ij , respectively. We introduce the metric V (tqi , t
v
i , t

fp

i , t
fq

i )
that models a connection between the variances and system
cost in the following variance-aware formulation:

VA-CC : min
pG,qG
v,α,θ

∑
i∈N

ci(pG,i) +
∑
i∈N

α2
i

bi
S2+V (tqi , t

v
i , t

fp

ij , t
fq

ij )

s.t. (18b)–(18w). (29)

Specifically, metric V (·) penalizes the variance of state vari-
ables and, thus, it can be used to trade-off the overall system
variance and the expected operating cost in the system as
discussed in [17]. We define metric V (·) as:

V (tqi , t
v
i , t

fp

ij , t
fq

ij ) =
∑
i∈G

(Ψq
i (t

q
i )

2) +
∑
i∈N

Ψv
i (t

v
i )

2

+
∑
ij∈L

(Ψfp

ij (tf
p

ij )2 + Ψfq

i (tf
q

ij )2),
(30)

where Ψq
i , Ψv

i , Ψfp

ij , Ψfq

ij are variance penalty factors in the
units of [$/MVAr2], [$/V2], [$/MW2] and [$/MVAr2], respectively.
Note that active power standard deviation tpi is already con-
trolled by the generation cost and the constraints on αi.

Proposition 4. Consider the VA-CC in (29). Let λpi , λqi be
dual multipliers of the nodal active and reactive power balance
at node i as in (18b). Further, let χ be the dual multiplier of
the balancing adequacy constraint in (18d). Then (i) λpi and
λqi are given by (20)–(21) and (ii) χ is given as:

χ=
1∑
i∈Gbi

(
S2+zεS

∑
i∈G

bi(δ
+
i +δ−i ) +

∑
i∈G

bi(y
q
i+y

v
i +yf

p

+yf
q

)
)
,

(31)

where:

yqi =
∑
j∈G

[Rqj ]iζ
q
j

(Rqj+Xq
j diag(γ))Σe−RqjαS2

σqG,j (α, γ)
(32)

yvi =
∑
j∈N

[Rvj ]iζ
v
j

(Rvj +Xv
j diag(γ))Σe−RvjαS2

σvj (α, γ)
(33)

y�i = 2
∑
jk∈L

[R�jk]iζ
�
ij

(R�jk+X�jk diag(γ))Σe−R�jkαS2

σ�jk(α, γ)

(34)

ζqj = zεq (δ
q,+
j + δq,−j )− 2σqGj (α, γ)Ψq

j (35)

ζvj = zεv (µ+
j + µ−j )− 2σvj (α, γ)Ψv

j (36)

ζ�jk = zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − 2σ�jk(α, γ)Ψ�j

(37)

where � = fp, fq .



Proof. The first-order optimality conditions of (29) for pG,i,
qG,i, αi, f

p
ij , f

q
ij and auxiliary variables are:

(22a), (22b), (28c), (28d) and (28f)–(28i)

(αi) : zεpS(δp,+i + δp,−i ) + χ+
∑
j∈G

νqj [Rqj ]i

+
∑
j∈N

νvj [Rvj ]i +
∑
jk∈L

ν�jk[R�jk]i = (
1

bi
+ 2Ψp

i )αiS
2

i ∈ G, � = fp, fq (38a)

(tqi ) : zεp(δq,+i + δq,−i )− ζqi = 2tqiΨ
q
i i ∈ G (38b)

(tvi ) : zεv (µ+
i + µ−i )− ζvi = 2tviΨ

v
i i ∈ N (38c)

(t�ij) : zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − ζ

�
ij = 2t�ijΨ

�
ij

ij ∈ L, � = fp, fq (38d)

The result (i) follows directly from the proof of Proposition 1.
The result (ii) follows from re-arranging (38a) using (18d) to
eliminate αi. Note that terms νqi , νvi , νf

p

ij , νf
q

ij are given by
(28c), (28d) and (28h) and terms (35)–(37) follow from (38b)–
(38d). Similarly to the proof of Proposition 3, tvi = σvj (α, γ),
if ζvi > 0 as per (18m), tf

p

ij = σfpjk(α, γ), if ζf
p

ij > 0 as per
(18m), and tf

q

ij = σfpjk(α, γ), if ζf
q

ij > 0 as per (18v). �

Relative to the results of Proposition 3, terms yqi , yvi , yf
p

i ,
yf

q

i now include an inherent trade-off between the risk of limit
violation and the absolute standard deviations weighted by
penalty factors Ψp

i , Ψq
i , Ψv

i , Ψfp

ij , Ψfq

ij , see (35)–(37). Since
dual multipliers ζqj , ζ

v
j , ζ

fp

jk , ζ
fq

jk must be non-negative by def-
inition, the scarcity rents of reactive power δq,+j , δq,−j , voltage
magnitude µ+

j , µ
−
j , active power flows ξf

p,+
ij , ξp,−ij , ξf

p,0
ij and

reactive power flows ξf
q,+
ij , ξf

q,−
ij , ξf

q,0
ij and risk parameters

zεg , zεv , zεf set an upper bound to the standard deviations
σpG,j , σvj , σfpjk , σf

q
jk

weighted by the penalty factors.

V. CASE STUDY

We conduct numerical experiments using the modified
118-node IEEE test system from [7], which includes 11
wind farms with the total forecast power output of 1196 MW
(≈ 28.2 % of the total active power demand). As in [4], [7],
the wind power forecast error is zero-mean with the standard
deviation of σpU,i = 0.125pU,i,∀i ∈ U . In addition to the
GEN-CC, EQV-CC and VA-CC, we solve a deterministic AC
OPF (reference) case using the forecast renewable generation
and αi = 0,∀i ∈ G. All calculations have been performed for
risk levels ε = 0.1 and ε = 0.01 assuming that εp = εq =
εv = εf = ε. Additionally, the VA-CC has been computed for
various values of Ψ = {0.1, 1, 10, 100, 1000} assuming that
Ψp
i = Ψq

i = Ψv
i = Ψ,∀i ∈ N and Ψfp

ij = Ψfq

ij = Ψ,∀ij ∈ L.
All models are implemented in Julia using JuMP [23] and
the code and input data are reported in [24]. The linearization
point (see Section II-E) has been obtained as described in
[7] using the IPOPT solver, [25], and the chance-constrained
models have been solved using the MOSEK solver, [26].

A. Cost and Price Analysis
Table I compares the results of the deterministic, GEN-

CC, EQV-CC and VA-CC cases for different values of ε and
Ψ. As expected, the objective value and expected generation
cost increase as we introduce additional chance constraints
and increase the value of Ψ, thus internalizing the cost of re-
dispatch to ensure larger security margins and lower variance
of state variables. Similarly to the results in [17], which uses
DC power flow assumptions, increasing variance penalty factor
Ψ does not significantly raise the expected generation cost.
This observation suggests that this reduction in state variable
variances is achieved by adjustments to those variables which
are not limited by binding constraints in the optimal solution.
In other words, the variance of variables related to non-binding
constraints can be controlled without significantly affecting
the optimal values of other variables. Note that the variance
of variables related to binding chance constraints is a priori
controlled by the violation tolerance of these constraints.

Also, increasing conservatism of the model increases
system-wide balancing reserve price χ for both values of ε.
For example, in the GEN-CC, the value of χ is only driven
by chance constraints on power output limits of generators, as
per Proposition 2, while the EQV-CC and VA-CC introduce
additional components (e.g. reactive power, voltage and flow
variances) to price χ as per Propositions 3 and 4. Location-
specific prices λpi and λqi for all network nodes are displayed
in Fig. 1a), while Figs. 1b)–c) map the relative difference
between λpi for the VA-CC case with Ψ = 100 and ε = 0.01
and the deterministic case. At the majority of nodes, prices
λpi (indicated by the box-plots in Fig. 1a) remain within 32–
38 $/MWh. Note that unlike χ, which significantly increases
for more conservative models, prices for λpi and λqi do not
vary as much as conservatism increases. This corresponds
to our findings in Propositions 1–4, which show that active
and reactive power prices do not explicitly depend on the
uncertainty and risk parameters. However, at some nodes,
prices λpi and λqi in the GEN-CC and VA-CC cases exhibit
larger deviations, e.g. see λpi at nodes 20 and 23, which are
also in proximity of wind farms, as shown in Fig. 1c). A
resulting high flow variance on the line between nodes 19
and 23 causes price differentiation at nodes 19, 20, 21 and
23, 24, 25.

B. Analysis of Variance of State Variables
Table I shows how the aggregated variance of state variables∑
i σ

2
qG,i ,

∑
i σ

2
vi ,
∑
i σ

2
fpij

,
∑
i σ

2
fqij

change relative to the
EQV-CC case as penalty Ψ increases. Even if Ψ is set to a
small value, the variance of state variables reduce significantly,
without a large increase in the objective function, expected
generation cost, and prices λpi and λqi . Furthermore, as the
value of ε increases, the relative reduction in variances of all
state variables slightly reduces. The effect of variance penalty
Ψ on prices is two-fold. First, it does not affect prices λpi
and λqi relative to the EQV-CC case. Second, system-wide
balancing price χ, which internalizes the variance penalties as
per Proposition 4, increases with penalty Ψ.



TABLE I: Optimal Solutions of the deterministic, GEN-CC, EQV-CC and VA-CC cases.

Risk Level
Model Det GEN-CC EQV-CC VA-CC (Ψ = Ψp

i = Ψq
i = Ψv

i = Ψfp

ij = Ψfq

ij , ∀i, ∀ij)

Ψ – – – 0.1 1 10 100 1000
ε p

=
ε q

=
ε v

=
ε f

=
0
.1

Objective [$] 91103.22 91107.33 92237.67 92237.74 92238.30 92243.86 92296.91 92764.30

Exp. Gen. Cost [$] 91103.22 91107.33 92237.67 92237.68 92237.68 92237.72 92239.70 92260.83
∆ rel. to EQV-CC 98.770% 98.774% 100.000% 100.000% 100.000% 100.000% 100.002% 100.025%

χ [$] – 8.72 28.10 28.11 28.23 29.40 40.35 125.54

∆
∑

i σ
2
qG,i

[%] – – 100.0% 0.132% 0.103% 0.090% 0.087% 0.064%
∆

∑
i σ

2
vi

[%] – – 100.0% 3.459% 1.215% 0.349% 0.269% 0.225%
∆

∑
ij σ

2
f
p
ij

[%] – – 100.0% 61.071% 60.458% 60.537% 59.798% 59.614%

∆
∑

ij σ
2
f
q
ij

[%] – – 100.0% 55.808% 54.793% 54.925% 54.584% 54.313%

ε p
=
ε q

=
ε v

=
ε f

=
0
.0

1 Objective [$] 91103.22 91107.71 93744.95 93745.01 93745.57 93751.17 93805.19 94281.35

Exp. Gen. Cost [$] 91103.22 91107.71 93744.95 93744.95 93744.94 93744.96 93747.04 93772.27
∆ rel. to EQV-CC 97.182% 97.187% 100.000% 100.000% 100.000% 100.000% 100.002% 100.029%

χ [$] – 9.74 25.93 25.94 26.03 26.95 37.47 126.42

∆
∑

i σ
2
qG,i

[%] – – 100.0% 0.194% 0.188% 0.187% 0.163% 0.149%
∆

∑
i σ

2
vi

[%] – – 100.0% 25.384% 4.570% 1.073% 0.752% 0.650%
∆

∑
ij σ

2
f
p
ij

[%] – – 100.0% 64.291% 64.526% 64.404% 62.879% 62.103%

∆
∑

ij σ
2
f
q
ij

[%] – – 100.0% 54.022% 54.241% 54.193% 52.940% 52.626%

Fig. 1: (a) Active and reactive power prices λpi and λqi for the deterministic, GEN-CC and EQV-CC cases and VA-CC with
Ψ = 100 for risk level ε = 0.01. The orange line within the blue box represents the median value, the left and right edges of
the box represent the first and third quartiles and the outliers are plotted as circles. (b) Difference of active power prices λpi in
the VA-CC (Ψ = 100) relative to the deterministic case (in %). (c) Magnification of the area indicated by the doted rectangle
in (b).

VI. CONCLUSION

This paper described an approach to internalize RES
stochasticity and risk parameters in electricity prices. Using
SOC duality, these risk- and variance-aware prices are derived
from a chance-constrained AC-OPF and are itemized in terms
of active and reactive power, voltage support and power flow
components. We proved that active and reactive power prices
do not explicitly depend on uncertainty and risk parameters,
while expressions for balancing reserve prices explicitly in-
clude these parameters. Further, introducing variance penalties

on the system state variables has been shown to internalize the
trade-off between variance, risk and system cost at a modest
increase in the expected operating cost. The results have
been demonstrated and analyzed on the modified IEEE 118-
node testbed. Future work includes extensions of the proposed
market-clearing model to account for risk-averse strategies
of market participants, enable risk trading instruments using
our preliminary work in [27], and to account for multi-period
trading horizons.
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APPENDIX A

Rewrite (6)–(7) in the following form:[
p(ω)
q(ω)

]
−
[
p̄
q̄

]
=

[
Jp,v Jp,θ

Jq,v Jq,θ

] [
v(ω)
θ(ω)

]
= J

[
v(ω)
θ(ω)

]
, (A.1)

where the rows of matrices J� are equal to sensitivity vectors
J�i for i ∈ N and � = {(p, v); (p, θ); (q, v); (q, θ)}. First, we
sort the rows of the terms in (A.1) by node types and introduce
superscripts PQ, PV , θV to indicate the node type:pPQ(ω)

pPV (ω)
qPQ(ω)


pθV (ω)
qPV (ω)
qθV (ω)

−
p̄PQp̄PV

q̄PQ


 p̄θVq̄PV

q̄θV

 =

[
JA JB

JC JD

]
vPQ(ω)
θPQ(ω)
θPV (ω)


vPV (ω)
vθV (ω)
θθV (ω)

, (A.2)

where JA−D denote the blocks of re-arranged matrix J
from (A.1). Quantities pPQ(ω), pPV (ω), qPQ(ω) are explic-
itly given by the uncertain generation and the respective
system responses such that:pPQ(ω)
pPV (ω)
qPQ(ω)

−
p̄PQp̄PV

q̄PQ

 =

pPQGpPVG
qPQG

+

 (ω + αΩ)PQ

(ω + αΩ)PV

(diag(γ)ω)PQ

 . (A.3)

Notably, pU and pD are not part of the right-hand side of (A.3)
because they are fixed parameters. Further, vPV (ω) = vPV ,
vθV (ω) = vPV , and θθV (ω) = θθV as discussed in Sec-
tion II-C. We use this relationship and (A.2)–(A.3) to compute
the reactions of the uncontrolled variables to uncertainty ω:vPQ(ω)

θPQ(ω)
θPV (ω)

−
vPQθPQ

θPV

 = (JA)−1

 (ω + αΩ)PQ

(ω + αΩ)PV

(diag(γ)ω)PQ

 . (A.4)

Note that although vPQ, θPQ, θPV implicitly depend on the
AC power flow equations, these variables are endogenous to
the model and not subject to uncertainty. Similarly, we get:pθV(ω)
qPV(ω)
qθV(ω)

−
pθVqPV

qθV

−
 p̄θVp̄PV

q̄θV

=JC(JA)−1

 (ω + αΩ)PQ

(ω + αΩ)PV

(diag(γ)ω)PQ

 .
(A.5)

Using (A.4), we immediately obtain (11) by separating matrix
(JA)−1. Similarly, we obtain (10) from separating matrix
JC(JA)−1. In analogy, (12)–(13) can be obtained by noting
that pi =

∑
j:ij∈L f

p
ij and qi =

∑
j:ij∈L f

q
ij and combining

the sensitivity factors respectively.
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