
1

Modern Multicore CPUs are not Energy
Proportional: Opportunity for Bi-objective
Optimization for Performance and Energy

Semyon Khokhriakov, Ravi Reddy Manumachu, and Alexey Lastovetsky

Abstract—Energy proportionality is the key design goal followed by architects of modern multicore CPUs. One of its implications is
that optimization of an application for performance will also optimize it for energy.
In this work, we show that energy proportionality does not hold true for multicore CPUs. This finding creates the opportunity for
bi-objective optimization of applications for performance and energy. We propose and study the first application-level method for
bi-objective optimization of multithreaded data-parallel applications for performance and energy. The method uses two decision
variables, the number of identical multithreaded kernels (threadgroups) executing the application and the number of threads in each
threadgroup, so that a given workload is partitioned equally between the threadgroups.
We experimentally demonstrate the efficiency of the method using four highly optimized multithreaded data-parallel applications, 2D
fast Fourier transform based on FFTW and Intel MKL, and dense matrix-matrix multiplication using OpenBLAS and Intel MKL. Four
modern multicore CPUs are used in the experiments. The experiments show that the optimization for performance alone results in the
increase in dynamic energy consumption by up to 89% and optimization for dynamic energy alone results in performance degradation
by up to 49%. By solving the bi-objective optimization problem, the method determines up to 11 globally Pareto-optimal solutions.
Finally, we propose a qualitative dynamic energy model employing performance monitoring counters (PMCs) as parameters, which we
use to explain the discovered energy nonproportionality and the Pareto-optimal solutions determined by our method. The model shows
that the energy nonproportionality on our experimental platforms for the two data-parallel applications is due to the activity of the data
translation lookaside buffer (dTLB), which is disproportionately energy expensive.

Index Terms—multicore processor, energy proportionality, energy optimization, bi-objective optimization, parallel computing, load
balancing, performance optimization, fast Fourier transform, matrix multiplication, performance monitoring counters

F

1 INTRODUCTION

Energy proportionality is the key design goal pursued by
architects of modern multicore CPU platforms [1], [2]. One of its
implications is that optimization of an application for performance
will also optimize it for energy. Modern multicore CPUs however
have many inherent complexities, which are: a) Severe resource
contention due to tight integration of tens of cores organized in
multiple sockets with multi-level cache hierarchy and contending
for shared on-chip resources such as last level cache (LLC), in-
terconnect (For example: Intel’s Quick Path Interconnect, AMD’s
Hyper Transport), and DRAM controllers; b) Non-uniform mem-
ory access (NUMA) where the time for memory access between
a core and main memory is not uniform and where main memory
is distributed between locality domains or groups called NUMA
nodes; and c) Dynamic power management (DPM) of multiple
power domains (CPU sockets, DRAM).

The complexities were shown to result in complex (non-linear)
functional relationships between performance and workload size
and between dynamic energy and workload size for real-life data-
parallel applications on modern multicore CPUs [3], [4], [5].
Motivated by these research findings and based on further deep
exploration, we show that energy proportionality does not hold

• S.Khokhriakhov, R. Reddy and A. Lastovetsky are with the School of
Computer Science, University College Dublin, Belfield, Dublin 4, Ireland.
E-mail: semen.khokhriakov@ucdconnect.ie, ravi.manumachu@ucd.ie,
alexey.lastovetsky@ucd.ie

true for multicore CPUs. This creates the opportunity for bi-
objective optimization of applications for performance and energy
on a single multicore CPU.

We present now an overview of notable state-of-the-art meth-
ods solving the bi-objective optimization problem of an appli-
cation for performance and energy on multicore CPU platforms.
System-level methods are introduced first since they dominated the
landscape. This will be followed by recent research in application-
level methods. Then we describe the proposed solution method
solving the bi-objective optimization problem of an application
for performance and energy on a single multicore CPU.

Solution methods solving the bi-objective optimization prob-
lem for performance and energy can be broadly classified into
system-level and application-level categories. System-level meth-
ods aim to optimize performance and energy of the environ-
ment where the applications are executed. The methods employ
application-agnostic models and hardware parameters as decision
variables. They are principally deployed at operating system (OS)
level and therefore require changes to the OS. They do not involve
any changes to the application. The methods can be further divided
into the following prominent groups:

I. Thread schedulers that are contention-aware and that exploit
cooperative data sharing between threads [6], [7]. The goal of
a scheduler is to find thread-to-core mappings to determine
Pareto-optimal solutions for performance and energy. The
schedulers operate at both user-level and OS-level with those
at OS-level requiring changes to the OS. Thread-to-core map-

ar
X

iv
:1

91
0.

06
67

4v
1

 [
cs

.D
C

]
 1

5
O

ct
 2

01
9

2

ping is the key decision variable. Performance monitoring
counters such as LLC miss rate and LLC access rate are
used for predicting the performance given a thread-to-core
mapping.

II. Dynamic private cache (L1 and L2) reconfiguration and
shared cache (L3) partitioning strategies [8], [9]. The pro-
posed solutions in this category mitigate contention for
shared on-chip resources such as last level cache by physi-
cally partitioning it and therefore require substantial changes
to the hardware or OS [10].

III. Thermal management algorithms that place or migrate
threads to not only alleviate thermal hotspots and temperature
variations in a chip but also reduce energy consumption dur-
ing an application execution [11], [12]. Some key strategies
are dynamic power management (DPM) where idle cores
are switched off, Dynamic Voltage and Frequency Scaling
(DVFS), which throttles the frequencies of the cores based
on their utilization, sand migration of threads from hot cores
to the colder cores.

IV. Asymmetry-aware schedulers that exploit the asymmetry
between sets of cores in a multicore platform to find thread-
to-core mappings that provide Pareto-optimal solutions for
performance and energy [13], [14]. Asymmetry can be ex-
plicit with fast and slow cores or implicit due to non-uniform
frequency scaling between different cores or performance
differences introduced by manufacturing variations. The key
decision variables employed here are thread-to-core mapping
and DVFS. Typical strategy is to map the most power-
intensive threads to less power-hungry cores and then apply
DVFS to the cores to ensure all threads complete at the same
time whilst satisfying a power budget constraint.

In the second category, solution methods optimize applica-
tions rather than the executing environment. The methods use
application-level decision variables and predictive models for
performance and energy consumption of applications to solve
the bi-objective optimization problem. The dominant decision
variables include the number of threads, loop tile size, workload
distribution, etc. Following the principle of energy proportionality,
a dominant class of such solution methods aim to achieve optimal
energy reduction by optimizing for performance alone. Definitive
examples are scientific routines offered by vendor-specific soft-
ware packages that are extensively optimized for performance.
For example, Intel Math Kernel Library [15] provides extensively
optimized multithreaded basic linear algebra subprograms (BLAS)
and 1D, 2D, and 3D fast Fourier transform (FFT) routines for Intel
processors. Open source packages such as [16], [17], [18] offer
the same interface functions but contain portable optimizations
and may exhibit better average performance than a heavily opti-
mized vendor package [19], [20]. The optimized routines in these
software packages allow employment of one key decision variable,
which is the number of threads. A given workload is load-balanced
between the threads. In this work, we show that the optimal
number of threads (and consequently load-balanced workload
distribution) maximizing the performance does not necessarily
minimize the energy consumption of multicore CPUs.

State-of-the-art research works on application-level optimiza-
tion methods [3], [4], [5] demonstrate that due to the aforemen-
tioned design complexities of modern multicore CPU platforms,
the functional relationships between performance and workload
size and between dynamic energy and workload size for real-

life data-parallel applications have complex (non-linear) properties
and show that workload distribution has become an important
decision variable that can no longer be ignored. Briefly, the
total energy consumption during an application execution is the
sum of dynamic and static energy consumptions. Static energy
consumption is defined as the energy consumed by the platform
without the application execution. Dynamic energy consumption
is calculated by subtracting this static energy consumption from
the total energy consumed by the platform during the application
execution. The works [3], [4], [5] propose model-based data
partitioning methods that take as input discrete performance and
dynamic energy functions with no shape assumptions, which
accurately and realistically account for resource contention and
NUMA inherent in modern multicore CPU platforms. Using a
simulation of the execution of a data-parallel matrix multiplication
application based on OpenBLAS DGEMM on a homogeneous
cluster of multicore CPUs, it is shown [3] that optimizing for per-
formance alone results in average and maximum dynamic energy
reductions of 24% and 68%, but optimizing for dynamic energy
alone results in performance degradations of 95% and 100%. For a
2D fast Fourier transform application based on FFTW, the average
and maximum dynamic energy reductions are 29% and 55% and
the average and maximum performance degradations are both
100%. Research work [4] proposes a solution method to solve bi-
objective optimization problem of an application for performance
and energy on homogeneous clusters of modern multicore CPUs.
This method is shown to determine a diverse set of globally Pareto-
optimal solutions whereas existing solution methods give only
one solution when the problem size and number of processors
are fixed. The methods [3], [4], [5] target homogeneous high per-
formance computing (HPC) platforms. Khaleghzadeh et al. [21]
propose a solution method solving the bi-objective optimization
problem on heterogeneous processors. The authors prove that for
an arbitrary number of processors with linear execution time and
dynamic energy functions, the globally Pareto-optimal front is
linear and contains an infinite number of solutions out of which
one solution is load balanced while the rest are load imbalanced.
A data partitioning algorithm is presented that takes as an input
discrete performance and dynamic energy functions with no shape
assumptions.

The research works [3], [4], [5], [21] are theoretical demon-
strating performance and energy improvements based on sim-
ulations of clusters of homogeneous and heterogeneous nodes.
Khokhriakov et al. [20] present two novel optimization methods to
improve the average performance of the FFT routines on modern
multicore CPUs. The methods employ workload distribution as the
decision variable and are based on parallel computing employing
threadgroups. They utilize load imbalancing data partitioning
technique that determines optimal workload distributions between
the threadgroups, which may not load-balance the application in
terms of execution time. The inputs to the methods are discrete
3D functions of performance against problem size of the thread-
groups, and can be employed as nodal optimization techniques to
construct a 2D FFT routine highly optimized for a dedicated target
multicore CPU. The authors employ the methods to demonstrate
significant performance improvements over the basic FFTW and
Intel MKL FFT 2D routines on a modern Intel Haswell multicore
CPU consisting of thirty-six physical cores.

The findings in [3], [4], [5], [20], [21] motivate us to study
the influence of three-dimensional decision variable space on bi-
objective optimization of applications for performance and energy

3

TABLE 1
Specifications of the Intel multicore CPUs, HCLServer01-04, ordered by increasing number of sockets and an increasing number of cores per

socket.

Technical Specifications HCLServer1 (S1) HCLServer2 (S2) HCLServer3 (S3) HCLServer4 (S4)
Processor Intel Xeon Gold 6152 Intel Haswell E5-2670V3 Intel Xeon CPU E5-2699 Intel Xeon Platinum 8180
Core(s) per socket 22 12 18 28
Socket(s) 1 2 2 2
L1d cache, L1i cache 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB 256 KB, 30976 KB 256 KB, 46080 KB 1024 KB, 39424 KB
Total main memory 96 GB 64 GB 256 GB 187 GB
Power meter WattsUp Pro WattsUp Pro - Yokogawa WT310

on multicore CPUs. The three decision variables are: a). The
number of identical multithreaded kernels (threadgroups) involved
in the parallel execution of an application; b). The number of
threads in each threadgroup; and c). The workload distribution
between the threadgroups. We focus exclusively on the first two
decision variables in this work. The number of possible workload
distributions increases exponentially with increasing number of
threadgroups employed in the execution of a data-parallel appli-
cation and it would require employment of threadgroup-specific
performance and energy models to reduce the complexity. It is a
subject of our future work.

We propose and study the first application-level method for bi-
objective optimization of multithreaded data-parallel applications
on a single multicore CPU for performance and energy. The
method uses two decision variables, the number of identical
multithreaded kernels (threadgroups) executing the application
in parallel and the number of threads in each threadgroup. The
workload distribution is not a decision variable. It is fixed so
that a given workload is always partitioned equally between the
threadgroups. The method allows full reuse of highly optimized
scientific codes and does not require any changes to hardware or
OS. The first step of the method includes writing a data-parallel
version of the base kernel that can be executed using a variable
number of threadgroups in parallel and solving the same problem
as the base kernel, which employs one threadgroup.

We demonstrate our method using four multithreaded applica-
tions: a) 2D-FFT using FFTW 3.3.7; b) 2D-FFT using Intel MKL
FFT; c) Dense matrix-matrix multiplication using OpenBLAS; and
d) Dense matrix-matrix multiplication using Intel MKL FFT.

Four different modern Intel multicore CPUs are used in the
experiments: a) A single-socket Intel Skylake consisting of 22
physical cores; b) A dual-socket Intel Haswell consisting of 24
physical cores; c) A dual-socket Intel Haswell consisting of 36
physical cores; and d) A dual-socket Intel Skylake consisting
of 56 cores. Specifications of the experimental servers S1, S2,
S3, and S4 equipped with these CPUs are given in Table 4.
Servers S1, S2, and S4 are equipped with power meters and fully
instrumented for system-level energy measurements. Server S3 is
not equipped with a power meter and therefore is not employed in
the experiments for single-objective optimization for energy and
bi-objective optimization for performance and energy.

Figure 1 illustrates the energy nonproportionality on S2 found
by our method for OpenBLAS DGEMM application solving
workload size, N=16384. Data points in the graph represent
different configurations of the multithreaded application solving
exactly the same problem. Energy proportionality is signified
by a monotonically increasing relationship between energy and
execution time. This is clearly not the case for the relationship
shown in the figure.

Fig. 1. Energy nonproportionality on S2 found by our method for Open-
BLAS DGEMM application solving workload size, N=16384.

The average and maximum performance improvements using
the number of threadgroups and the number of threads per group as
decision variables for performance optimization on a single-socket
multicore CPU (S1) are (7%, 26.3%), (5%, 6.5%) and (27%,
69%) for the OpenBLAS DGEMM, Intel MKL DGEMM and
Intel MKL FFT applications against their best single threadgroup
configurations. Along with performance optimization, the energy
improvements for OpenBLAS DGEMM and Intel MKL DGEMM
are (7.9%, 30%) and (35.7%, 67%) against their best single
threadgroup configurations.

At the same time, the optimization for performance alone
results in average and maximum increases in dynamic energy
consumption of (22.5%, 67%) and (87%, 89%) for the Intel MKL
DGEMM and Intel MKL FFT applications in comparison with
their energy-optimal configurations. The optimization for dynamic
energy alone results in average and maximum performance degra-
dations of (27%, 39%) and (19.7%, 38.2%) in comparison with
their performance-optimal configurations. The average and the
maximum number of globally Pareto-optimal solutions for Intel
MKL DGEMM and Intel MKL FFT are (2.3, 3) and (2.6, 3).

On the 24-core dual-socket CPU (S2), the average and
maximum performance improvements of (16%, 20%) and (8%,
21%) for the OpenBLAS DGEMM and Intel MKL DGEMM
applications against their best single-threadgroup configurations.
Even higher average and maximum performance improvements of
(30%, 50%) are achieved for the FFTW application on the 56-core
dual-socket CPU (S4). Again, the improvements are measured
against the original single-threadgroup basic routine employing
optimal number of threads.

At the same time, we find that optimization of the Open-

4

BLAS DGEMM and Intel MKL DGEMM applications on S2 for
performance only, results in average and maximum increases in
dynamic energy consumption of (15%, 35%) and (7.1%, 49%)
in comparison with their energy-optimal configurations, and opti-
mization of the Intel MKL FFT and FFTW applications on S4 for
performance alone results in average and maximum increases in
dynamic energy consumption of (7%, 25%) and (15%, 57%).

On S2, the optimization of the OpenBLAS DGEMM and
Intel MKL DGEMM applications for energy only, results in
average and maximum performance degradations of (2.5%, 6%)
and (3.7%, 11%). On S4, the average and maximum performance
degradations are (20%, 33%) and (31%, 49%) for the Intel MKL
FFT and FFTW applications. The performance degradations are
over the performance-optimal configuration.

By solving the bi-objective optimization problem on three
servers {S1,S2,S4}, the average and the maximum number of
globally Pareto-optimal solutions determined by out method are
(2.7, 3), (3,11), (2.4, 5) and (1.8, 4) for Intel MKL FFT, FFTW,
OpenBLAS DGEMM and Intel MKL DGEMM applications.
Finally, we propose a qualitative dynamic energy model based on
linear regression and employing performance monitoring counters
(PMCs) as parameters, which we use to explain the discovered
energy nonproportionality and the Pareto-optimal solutions deter-
mined by our method.

The main contributions in this work are the following:

• We show that energy proportionality does not hold true
for multicore CPUs thereby affording an opportunity for
bi-objective optimization for performance and energy.

• We propose and study the first application-level method
for bi-objective optimization of multithreaded data-parallel
applications for performance and energy. The method uses
two decision variables, the number of identical multi-
threaded kernels (threadgroups) and the number of threads
in each threadgroup. Using four highly optimized data-
parallel applications, the proposed method is shown to
determine good numbers of globally Pareto-optimal con-
figurations of the applications providing the programmers
better trade-offs between performance and energy con-
sumption.

• A qualitative dynamic energy model based on linear re-
gression and employing performance monitoring counters
(PMCs) as parameters is proposed to explain the Pareto-
optimal solutions determined by our solution method
for multicore CPUs. The model shows that the energy
nonproportionality on our experimental platforms for the
two data-parallel applications is due to disproportionately
high energy consumption by the data translation lookaside
buffer (dTLB) activity.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 contains brief background on
multi-objective optimization and the concept of Pareto-optimality.
Section 4 describes our solution method. Section 5 describes the
first step of our solution method for two data-parallel applica-
tions, 2D fast Fourier transform and matrix-matrix multiplication.
Section 7 contains the experimental results. Section 7.4 presents
our dynamic energy model employing PMCs as parameters to
explain the cause behind the energy nonproportionality on our
experimental platforms. Section 8 concludes the paper.

2 RELATED WORK

We present an overview of single-objective optimization solution
methods for performance or energy followed by bi-objective
optimization solution methods for both performance and energy on
multicore CPU platforms. Energy models of computing complete
the section.

2.1 Performance Optimization
There are three dominant approaches in this category. First cat-
egory contains research works [22], [23] that have proposed
contention-aware thread-level schedulers that try to minimize
performance losses due to contention for on-chip shared resources.

The second category includes DRAM controller schedulers
that aim to efficiently utilize the shared resource, which is the
DRAM memory system, and last level cache partitioning that
physically partition the shared resources to minimize contention.
DRAM controller schedulers [24], [25] improve the throughput by
ordering threads and prioritizing their memory requests through
DRAM controllers. Last level cache partitioners [26], [27] ex-
plicitly partition the cache when the default cache replacement
policies (such as least-recently-used (LRU)) do not result in effi-
cient execution of applications. These partitioners, however, must
be used in conjunction with schedulers that mitigate contention
for memory controllers and on-chip interconnects.

The final category includes research works that focus on
thread-level schedulers that exploit data sharing between the
threads to co-schedule them [28], [29]. A key building work in
the schedulers are performance models based on PMCs that can
predict performance loss due to co-scheduling or migrating threads
between cores.

2.2 Energy Optimization
There are three important categories dealing with energy op-
timization on multicore CPU platforms. The software category
contains research works that propose shared resource partitioners.
The two hardware categories concern research works that employ
Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic
Power Management (DPM) and thermal management. Zhuravlev
et al. [30] survey the prominent works in all the three categories.

Research works [8], [9] propose dynamic reconfiguration of
private caches and partitioning of shared caches (last level cache,
for example) to reduce the energy consumption without hurting
performance.

DVFS and DPM allow changing the frequencies of the cores
and to lower their power states when they are idle. Considering
the enormity of literature in this category, we will cover only
works that take into account resource contention and thread-to-
core mapping while employing DVFS. Kadayif et al. [31] exploit
the heterogeneous nature of workloads executed by different
processors to set their frequencies so as to reduce energy without
impacting performance. Research works [32], [33] employ DVFS
to reduce resource contention and energy consumption.

The main goal of thermal management algorithms is to find
thread-to-core mappings (or even thread migration) to remove
drastic variations in temperatures or thermal hotspots in the chip
and at the same time reduce the energy consumption without
impacting the performance. They employ as inputs thermal models
that are built using temperature measurements provided by on-chip
sensors [11], [12]. The algorithms are chiefly employed at the OS
level.

5

Asymmetry-aware schedulers have been proposed for energy
optimization on asymmetric multicore systems, which feature a
mix of fast and slow cores, high-power and low-power cores but
that expose the same instruction-set architecture (ISA). Fedorova
et al. [34] propose a system-level scheduler that assigns sequential
phases of an application to fast cores and parallel phases to slow
cores to maximize the energy efficiency. Herbert et al. [35] employ
DVFS to exploit the core-to-core variations from fabrication in
power and performance to improve the energy efficiency of the
multicore platform.

2.3 Optimization for Performance and Energy

Das et al. [36] propose task mapping to optimize for energy
and reliability on multiprocessor systems-on-chip (MPSoCs) with
performance as a constraint. Sheikh et al. [37] propose task
scheduler employing evolutionary algorithms to optimize appli-
cations on multicore CPU platforms for performance, energy, and
temperature. Abdi et al. [38] propose multi-criteria optimization
where they minimize the execution time under three constraints,
the reliability, the power consumption, and the peak temperature.
DVFS is a key decision variable in all of these research works.

The following research works focus on application-level
solution methods. Subramaniam et al. [39] use multi-variable
regression to study the performance-energy trade-offs of the
high-performance LINPACK (HPL) benchmark. They study
performance-energy trade-offs using the decision variables, num-
ber of threads and number of processes. Marszalkowski et al. [40]
analyze the impact of memory hierarchies on time-energy trade-
off in parallel computations, which are represented as divisible
loads. They represent execution time and energy by two linear
functions on problem size, one for in-core computations and the
other for out-of-core computations.

Research works [3], [5] propose data partitioning algorithms
that solve single-objective optimization problems of data-parallel
applications for performance or energy on homogeneous clusters
of multicore CPUs. They take as an input, discrete performance
and dynamic energy functions with no shape assumptions and
that accurately and realistically account for resource contention
and NUMA inherent in modern multicore CPU platforms. Re-
search work [4] proposes a solution method to solve bi-objective
optimization problem of an application for performance and
energy on homogeneous clusters of modern multicore CPUs.
They demonstrate that the method gives a diverse set of globally
Pareto-optimal solutions and that it can be combined with DVFS-
based multi-objective optimization methods to give a better set of
(globally Pareto-optimal) solutions. The methods target homoge-
neous HPC platforms. Chakraborti et al. [41] consider the effect
of heterogeneous workload distribution on bi-objective optimiza-
tion of data analytics applications by simulating heterogeneity
on homogeneous clusters. The performance is represented by a
linear function of problem size and the total energy is predicted
using historical data tables. Khaleghzadeh et al. [21] propose a
solution method solving the bi-objective optimization problem
on heterogeneous processors and comprising of two principal
components. The first component is a data partitioning algorithm
that takes as an input discrete performance and dynamic energy
functions with no shape assumptions. The second component is a
novel methodology employed to build the discrete dynamic energy
profiles of individual computing devices, which are input to the
algorithm.

2.4 Energy Predictive Models of Computation
Energy predictive models predominantly employ performance
monitoring counters (PMCs) as parameters. Bellosa et al. [42]
propose an energy model based on performance monitoring coun-
ters such as integer operations, floating-point operations, memory
requests due to cache misses, etc. that they believed to strongly
correlate with energy consumption. A linear model that is based
on the utilization of CPU, disk, and network is presented in [43].
A more complex power model (Mantis) [44] employs utilization
metrics of CPU, disk, and network components and hardware
performance counters for memory as predictor variables.

Fan et al. [45] propose a simple linear model that correlates
power consumption of a single-core processor with its utilization.
Bertran et al. [46] present a power model that provides per-
component power breakdown of a multicore CPU. Dargie et al.
[47] use the statistics of CPU utilization (instead of PMCs) to
model the relationship between the power consumption of mul-
ticore processor and workload quantitatively. They demonstrate
that the relationship is quadratic for single-core processor and
linear for multicore processors. Lastovetsky et al. [3] present
an application-level energy model where the dynamic energy
consumption of a processor is represented by a discrete function
of problem size, which is shown to be highly non-linear for data-
parallel applications on modern multicore CPUs.

3 MULTI-OBJECTIVE OPTIMIZATION: BACK-
GROUND

A multi-objective optimization (MOP) problem may be defined as
follows [48], [49]:

minimize {F(x) = (f1(x), ..., fk(x))}
Subject to x ∈ S

where there are k(≥ 2) objective functions fi : Rp → R. The
objective is to minimize all the objective functions simultaneously.
F(x) = (f1(x), ..., fk(x))T denotes the vector of objective

functions. The decision (variable) vectors x = (x1, ..., xp) belong
to the (non-empty) feasible region (set) S , which is a subset of
the decision variable space Rp. We call the image of the feasible
region represented by Z (= f(S)), the feasible objective region.
It is a subset of the objective space Rk. The elements of Z are
called objective (function) vectors or criterion vectors and denoted
by F(x) or z = (z1, ..., zk)T , where zi = fi(x),∀i ∈ [1, k] are
objective (function) values or criterion values.

If there is no conflict between the objective functions, then a
solution x∗ can be found where every objective function attains
its optimum [49].

∀x ∈ S, fi(x∗) ≤ fi(x), i = 1, ..., k

However, in real-life multi-objective optimization problems, the
objective functions are at least partly conflicting. Because of this
conflicting nature of objective functions, it is not possible to find
a single solution that would be optimal for all the objectives
simultaneously. In multi-objective optimization, there is no natural
ordering in the objective space because it is only partially ordered.
Therefore we must treat the concept of optimality differently from
single-objective optimization problem. The generally used concept
is Pareto-optimality.

Definition 1. A decision vector x∗ ∈ S is Pareto-optimal if there
does not exist another decision vector x ∈ S such that fi(x) ≤

6

Fig. 2. An example showing the set S of decision variable vectors, the
set Z of objective vectors, and Pareto-optimal objective vectors shown
by bold line. S ⊂ R3,Z ⊂ R2.

fi(x
∗),∀i = 1, ..., k and fj(x) < fj(x

∗) for at least one index
j [48].

An objective vector z∗ ∈ Z is Pareto-optimal if there does
not exist another objective vector z ∈ Z such that zi ≤ z∗i ,∀i =
1, ..., k and zj < z∗j for at least one index j.

Definition 2. A decision vector x∗ ∈ S is weakly Pareto-optimal
if there does not exist another decision vector x ∈ S such that
fi(x) < fi(x

∗),∀i = 1, ..., k [48].

An objective vector z∗ ∈ Z is Pareto-optimal if there does
not exist any other vector for which all the component objective
vector values are better.

Mathematically speaking, every Pareto-optimal point is an
equally acceptable solution of the multi-objective optimization
problem. Therefore, user preference relations (or preferences of
decision maker) are provided as input to the solution process to
select one or more points from the set of Pareto-optimal solutions
[48].

In Figure 2, a feasible region S ⊂ R3 and its image, a feasible
objective region Z ⊂ R2, are shown. The thick blue line in the
figure showing the objective space contains all the Pareto-optimal
objective vectors. The vector z∗ is one of them.

In this work, we consider bi-objective optimization where
performance and dynamic energy are the objectives.

4 SOLUTION METHOD SOLVING BI-OBJECTIVE
OPTIMIZATION PROBLEM ON A SINGLE MULTICORE
CPU

In this section, we describe our solution method, BOPPETG, for
solving the bi-objective optimization problem of a multithreaded
data-parallel application on multicore CPUs for performance and
energy (BOPPE). The method uses two decision variables, the
number of identical multithreaded kernels (threadgroups) and the
number of threads in each threadgroup. A given workload is
always partitioned equally between the threadgroups.

The bi-objective optimization problem (BOPPE) can be for-
mulated as follows: Given a multithreaded data-parallel appli-
cation of workload size n and a multicore CPU of l cores,
the problem is to find a globally Pareto-optimal front of solu-
tions optimizing execution time and dynamic energy consumption
during the parallel execution of the workload. Each solution is
an application configuration given by (threadgroups, threads per
group).

The inputs to the solution method are the workload size of the
multi-threaded data-parallel application, n; the number of cores in
the multicore CPU, l; the multithreaded base kernel, mtkernel;
the base power of the multicore CPU platform, Pb. The outputs
are the globally Pareto-optimal front of objective solutions, Popt,
and the optimal application configurations corresponding to these
solutions, Copt. Each Pareto-optimal solution of objectives o is
represented by the pair, (so, eo), where so is the execution time
and eo is the dynamic energy. Associated with this solution
is an array of application configurations, A(go, to), containing
decision variable pairs, (go, to), where go represents the number
of threadgroups each containing to threads.

The main steps of BOPPETG are as follows:
Step 1. Parallel implementation allowing (g,t) configura-

tion: Design and implement a data-parallel version of the base
kernel mtkernel and that can be executed using g identical
multithreaded kernels in parallel. Each kernel is executed by a
threadgroup containing t threads. The workload n is divided
equally between the g threadgroups during the execution of the
data-parallel version. The data-parallel version should essentially
allow its runtime configuration using number of threadgroups and
number of threads per group with the workload equally partitioned
between the threadgroups.

Step 2. Initialize g and t: All the runtime configurations,
(g,t), where the product, g × t, is less than or equal to the total
number of cores (l) in the multicore platform are considered. g ←
1, t← 1. Go to Step 3.

Step 3. Determine time and dynamic energy of the (g,t)
configuration of the application: The data-parallel version com-
posed in Step 1 is run using the (g,t) configuration. Its execution
time and dynamic energy consumption are determined as follows:
so = tf − ti, eo = ef −Pb× so, where ti and tf are the starting
and ending execution times and ef is the total energy consumption
during the execution of the application. Go to Step 4.

Step 4. Update Pareto-optimal front for (g,t): The solution
(so, eo) if Pareto-optimal is added to the globally Pareto-optimal
set of objective solutions, {Popt}, and existing member solutions
of the set that are inferior to it are removed. The optimal appli-
cation configurations corresponding to the solution (so, eo) are
stored in Copt. Go to Step 5.

Step 5. Test and Increment (g,t): If t < l, t← t+ 1, go to
Step 3. Set g ← g + 1, t ← 1. If g × t ≤ l, go to Step 3. Else
return the globally Pareto-optimal front and optimal application
configurations given by {Popt, Copt} and quit.

In the following section, we illustrate the first step of BOP-
PETG for two applications, matrix-matrix multiplication and 2D
fast Fourier transform. We show in particular how BOPPETG can
reuse highly optimized scientific kernels with careful design and
development of parallel versions of the application.

5 PARALLEL MATRIX-MATRIX MULTIPLICATION

We illustrate the first step of our solution method (BOPPETG)
for implementing the data-parallel version of dense matrix-matrix
multiplication (PMMTG).

The PMMTG application computes the matrix product (C =
α × A × B + β × C) of two dense square matrices A and B of
size N × N . The application is executed using p threadgroups,
{P1, ..., Pp}. To simplify the exposition of the algorithms, we
assume N to be divisible by p.

7

(a)

(b)

(c)

Fig. 3. (a). PMMTG-V: Matrices B and C are vertically partitioned among the threadgroups. (b). PMMTG-H: Matrices A and C are horizontally
partitioned among the threadgroups. (c). PMMTG-S: The p threadgroups are arranged in a square grid of size

√
p × √p. All the matrices are

partitioned into squares among the threadgroups.

Fig. 4. 2D-DFT of signal matrix M of size N × N using p threadgroups. a). PFFTTG-V using vertical decomposition of the signal matrix. b).
PFFTTG-H using horizontal decomposition of the signal matrix.

There are three parallel algorithmic variants of PMMTG.
In PMMTG-V, the matrices B and C are partitioned vertically
such that each threadgroup is assigned N

p of the columns of
B and C as shown in the Figure 3a. Each threadgroup Pi

computes its vertical partition CPi using the matrix product,
CPi = α × A × BPi + β × CPi . In PMMTG-H, the matrices
A and C are partitioned horizontally such that each threadgroup
is assigned N

p of the rows of B and C as shown in the Figure

3b. Each threadgroup Pi computes its horizontal partition CPi

using the matrix product, CPi = α × APi × B + β × CPi .
In PMMTG-S, the p threadgroups {P1, ..., Pp} are arranged in
a square grid Qst, s ∈ [1,

√
p], t ∈ [1,

√
p]. The matrices A, B,

and C are partitioned into equal squares among the threadgroups
as shown in the Figure 3c. In each matrix, each threadgroup
Pi(= Qst) is assigned a sub-matrix of size N√

p ×
N√
p and

computes its square partition CQst using the matrix product,

8

1 vo id *dgemm (vo id * i n p u t)
2 {
3 i n t i = * (i n t *) i n p u t ;
4 o p e n b l a s s e t n u m t h r e a d s (t) ;
5 g o t o s e t n u m t h r e a d s (t) ;
6 omp se t num threads (t) ;
7 i f (i == 1)
8 {
9 cblas dgemm (CblasRowMajor , CblasNoTrans ,

10 CblasNoTrans , N/ p , N, N, a lpha , A1 , N,
11 B , N, be t a , C1 , N) ;
12 }
13 . . .
14 i f (i == p)
15 {
16 cblas dgemm (CblasRowMajor , CblasNoTrans ,
17 CblasNoTrans , N/ p , N, N, a lpha , Ap , N,
18 B , N, be t a , Cp , N) ;
19 }
20 }
21

22 i n t main () {
23 i n t row ;
24 # pragma omp p a r a l l e l f o r num threads (p* t)
25 f o r (row = 0 ; row < N/ p ; row ++) {
26 memcpy(&A1 [row*N] , &A[row*N] , N* s i z e o f (d ou b l e)) ;
27 . . .
28 memcpy(&Ap [row*N] , &A[(p−1)*N*(N/ p) +row*N] ,
29 N* s i z e o f (d ou b l e)) ;
30 memcpy(&C1 [row*N] , &C[row*N] , N* s i z e o f (d ou b l e)) ;
31 . . .
32 memcpy(&Cp [row*N] , &C [(p−1)*N*(N/ p) +row*N] ,
33 N* s i z e o f (d ou b l e)) ;
34 }
35

36 p t h r e a d t t1 , . . . , t p ;
37 i n t i 1 = 1 , . . . , i p = p ;
38 p t h r e a d c r e a t e (& t1 , NULL, dgemm , &i 1) ;
39 . . .
40 p t h r e a d c r e a t e (& tp , NULL, dgemm , &i p) ;
41 p t h r e a d j o i n (tp , NULL) ;
42 . . .
43 p t h r e a d j o i n (t1 , NULL) ;
44

45 # pragma omp p a r a l l e l f o r num threads (p* t)
46 f o r (row = 0 ; row < N/ p ; row ++)
47 {
48 memcpy(&A[row*N] , &A1 [row*N] , N* s i z e o f (d ou b l e)) ;
49 . . .
50 memcpy(&A[(p−1)*N*(N/ p) +row*N] , &Ap [row*N] ,
51 N* s i z e o f (d ou b l e)) ;
52 memcpy(&C[row*N] , &C1 [row*N] , N* s i z e o f (d ou b l e)) ;
53 . . .
54 memcpy(&C [(p−1)*N*(N/ p) +row*N] , &Cp [row*N] ,
55 N* s i z e o f (d ou b l e)) ;
56 }
57 }

Fig. 5. OpenBLAS implementation of parallel matrix-matrix multiplication
using horizontal decomposition (PMMTG-H) and employing p thread-
groups of t threads each.

CQst = α×
∑√p

k=1(Ask ×Bkt) + β × CQst . Ask is the square
block in matrix A located at (s, k). Bkt is the square block in
matrix B located at (k, t).

5.1 Implementation of PMMTG-H Based on OpenBLAS
DGEMM
We describe an OpenBLAS implementation of PMMTG-H (Fig-
ure 5) here. The implementations of the other PMMTG algorithms
employing Intel MKL and OpenBLAS are described in the sup-
plemental.

The inputs to an implementation are: a). Matrices A, B, and
C of sizes N × N ; b). Constants α and β; c) The number of
threadgroups, {P1, · · · , Pp}; d). The number of threads in each
threadgroup represented by t. The output matrix, C, contains the
matrix product.

The vertical partitions of A and C, {APi , CPi}, i ∈ [1, p],
assigned to the threadgroups, {P1, ..., Pp}, are initialized in Lines
24-34. Then p pthreads representing the p threadgroups are cre-
ated, each a multithreaded OpenBLAS DGEMM kernel executing
t OpenMP threads (Lines 36-43).The p threadgroups compute the
matrix-matrix product (Lines 1-20). The result is gathered in the
matrix C (Lines 45-56).

The implementations using Intel MKL differ from those using
OpenBLAS. In Intel MKL, the matrix-matrix computation by a
threadgroup is performed using an OpenMP parallel region with t
threads whereas the same is done in OpenBLAS using a pthread.

6 PARALLEL 2D FAST FOURIER TRANSFORM

We present here the first step of our solution method (BOPPETG)
to compose the data-parallel version of 2D Fast Fourier Transform
(PFFTTG). The sequential 2D FFT algorithm is described first
before the two parallel algorithmic variants of 2D Fast Fourier
Transform.

The definition of 2D-DFT of a two-dimensional point discrete
signal M of size N ×N is below:

M [k][l] =
N−1∑
i=0

N−1∑
j=0

M [i][j]× ωki
N × ω

lj
N

ωN = e−
2π
N , 0 ≤ k, l ≤ N − 1

M is the signal matrix where each element M [i][j] is a
complex number. The total number of complex multiplications
required to compute the 2D-DFT is Θ(N4).

The sequential row-column decomposition method reduces this
complexity by computing the 2D-DFT using a series of 1D-
DFTs, which are implemented using a fast 1D-FFT algorithm. The
method consists of two phases called the row-transform phase and
column-transform phase. Figure 4 depicts the method, which is
mathematically summarized below:

M [k][l] =
N−1∑
i=0

N−1∑
j=0

M [i][j]× ωki
N × ω

lj
N

=
N−1∑
i=0

ωki
N × (

N−1∑
j=0

M [i][j]× ωlj
N)

=
N−1∑
i=0

ωki
N × (M̃ [i][l])

=
N−1∑
i=0

(M̃ [i][l])× ωki
N

ωN = e−
2π
N , 0 ≤ k, l ≤ N − 1

It computes a series of ordered 1D-FFTs of size N on the
N rows. That is, each row i (of length N) is transformed via a
fast 1D-FFT to M̃ [i][l],∀l ∈ [0, N − 1]. The total cost of this
row-transform phase is Θ(N2 log2N). Then, it computes a series
of ordered 1D-FFTs on the N columns of M̃ . The column l of
M̃ is transformed to M [k][l],∀k ∈ [0, N − 1]. The total cost
of this column-transform phase is Θ(N2 log2N). Thus, by using
the row-column decomposition method, the complexity of 2D-FFT
is reduced from Θ(N4) to Θ(N2 log2N). All the FFTs that we
discuss in this work are considered in-place.

The PFFTTG application employing our solution method
computes the 2D-DFT of the signal matrix of size N × N using

9

p threadgroups, {P1, ..., Pp}. It is based on the sequential 2D-
FFT row-column decomposition method. There are two parallel
algorithmic variants of PFFTTG, PFFTTG-H and PFFTTG-V. To
simplify the exposition of the algorithms, we assume N to be
divisible by p.

6.1 PFFTTG-H: Using Horizontal Decomposition of Sig-
nal Matrix M
The parallel 2D-FFT algorithm, PFFTTG-H, consists of four steps:

Step 1. 1D-FFTs on rows: Threadgroup Pi executes sequen-
tial 1D-FFTs on rows (i− 1)× N

p + 1, ..., i× N
p .

Step 2. Matrix Transposition: Transpose the matrix M.
Step 3. 1D-FFTs on rows: Threadgroup Pi executes sequen-

tial 1D-FFTs on rows (i− 1)× N
p + 1, ..., i× N

p .
Step 4. Matrix Transposition: Transpose the matrix M.
The computational complexity of Steps 1 and 3 is

Θ(N2

p log2N). The computational complexity of Steps 2 and

4 is Θ(N2

p). Therefore, the total computational complexity of

PFFTTG-H is Θ(N2

p log2N).
The algorithm is illustrated in the Figure 4.

6.2 PFFTTG-V: Using Vertical Decomposition of Signal
Matrix M
The parallel 2D-FFT algorithm, PFFTTG-V, consists of four steps:

Step 1. 1D-FFTs on columns: Threadgroup Pi executes
sequential 1D-FFTs on columns (i− 1)× N

p + 1, ..., i× N
p .

Step 2. Matrix Transposition: Transpose the matrix M.
Step 3. 1D-FFTs on columns: Threadgroup Pi executes

sequential 1D-FFTs on columns (i− 1)× N
p + 1, ..., i× N

p .
Step 4. Matrix Transposition: Transpose the matrix M.
The computational complexity of Steps 1 and 3 is

Θ(N2

p log2N). The computational complexity of Steps 2 and

4 is Θ(N2

p). Therefore, the total computational complexity of

PFFTTG-V is Θ(N2

p log2N).
The algorithm is illustrated in the Figure 4.

6.3 Implementation of PFFTTG-H Based on FFTW
Figure 6 illustrates the FFTW implementation of PFFTTG-H.
The shared memory implementations of other PFFTTG algorithms
based on Intel MKL and FFTW are described in the supplemental.

The inputs to an implementation are: a). Signal matrix M of
size N × N ; b). The number of threadgroups, p, {P1, · · · , Pp};
c). The number of threads in each threadgroup represented by t.
The output is the transformed signal matrix M (considering that
we are performing in-place FFT).

Lines 17-18 show the initialization of FFTW multithreaded
runtime. Lines 19-25 show the creation of p FFT plans, each plan
executed by a threadgroup of t threads. Lines 1-11 illustrate the
creation of a plan using fftw dft plan many routine. Lines 26-
39 show the execution and destruction of the plans (1D-FFTs on
rows) by the threadgroups. This is followed by transpose of the
signal matrix (Line 40). Lines 41-46 contain the creation of p
FFT plans (1D-FFTs on rows) followed by their execution by the
threadgroups. Finally, the signal matrix is transposed again (Line
61). The FFTW runtime is then destroyed (Line 62).

The implementations based on Intel MKL differ from
those employing FFTW. In FFTW, only plan execution
(fftw plan many dft) and plan destruction (fftw destroy plan)
are thread-safe and can be called in an OpenMP parallel region.

1 f f t w p l a n f f t w 1 d i n i t p l a n (c o n s t i n t s ign , c o n s t i n t m,
2 c o n s t i n t n , f f tw complex * X, f f tw complex * Y)
3 {
4 i n t r ank = 1 , howmany = m;
5 i n t s [] = {n} , i d i s t = n ;
6 i n t o d i s t = n , i s t r i d e = 1 ;
7 i n t o s t r i d e = 1 , * inembed = s , *onembed = s ;
8 r e t u r n f f t w p l a n m a n y d f t (rank , s , howmany ,
9 X, inembed , i s t r i d e , i d i s t , Y, onembed ,

10 o s t r i d e , o d i s t , s i gn , FFTW ESTIMATE) ;
11 }
12 i n t f f t w 2 d (c o n s t i n t s ign , c o n s t i n t p , c o n s t i n t N,
13 c o n s t u n s i g n e d i n t t , c o n s t u n s i g n e d i n t b l o c k S i z e ,
14 f f tw complex * X
15)
16 {
17 f f t w i n i t t h r e a d s () ;
18 f f t w p l a n w i t h n t h r e a d s (t) ;
19 f f t w p l a n plan1 , p lan2 , . . . , p l a n p ;
20 p l a n 1 = f f t w 1 d i n i t p l a n (s ign , N/ p , N, X, X) ;
21 p l a n 2 = f f t w 1 d i n i t p l a n (s ign , N/ p , N,
22 &X[(N/ p) *N] , &X[(N/ p) *N]) ;
23 . . .
24 p l a n p = f f t w 1 d i n i t p l a n (s ign , N−(p−1) * (N/ p) , N,
25 &X[(p−1) * (N/ p) *N] , &X[(p−1) * (N/ p) *N]) ;
26 # pragma omp p a r a l l e l s e c t i o n s num threads (p)
27 {
28 # pragma omp s e c t i o n
29 {
30 f f t w e x e c u t e (p l a n 1) ;
31 f f t w d e s t r o y p l a n (p l a n 1) ;
32 }
33 . . .
34 # pragma omp s e c t i o n
35 {
36 f f t w e x e c u t e (p l an1 2) ;
37 f f t w d e s t r o y p l a n (p l an 12) ;
38 }
39 }
40 h c l t r a n s p o s e b l o c k (X, 0 , N, N, t , b l o c k S i z e) ;
41 p l a n 1 = f f t w 1 d i n i t p l a n (s ign , N/ p , N, X, X) ;
42 p l a n 2 = f f t w 1 d i n i t p l a n (s ign , N/ p , N,
43 &X[(N/ p) *N] , &X[(N/ p) *N]) ;
44 . . .
45 p l a n p = f f t w 1 d i n i t p l a n (s ign , N−(p−1) * (N/ p) , N,
46 &X[(p−1) * (N/ p) *N] , &X[(p−1) * (N/ p) *N]) ;
47 # pragma omp p a r a l l e l s e c t i o n s num threads (p)
48 {
49 # pragma omp s e c t i o n
50 {
51 f f t w e x e c u t e (p l a n 1) ;
52 f f t w d e s t r o y p l a n (p l a n 1) ;
53 }
54 . . .
55 # pragma omp s e c t i o n
56 {
57 f f t w e x e c u t e (p l an1 2) ;
58 f f t w d e s t r o y p l a n (p l an 12) ;
59 }
60 }
61 h c l t r a n s p o s e b l o c k (X, 0 , N, N, nt , b l o c k S i z e) ;
62 f f t w c l e a n u p t h r e a d s () ;
63 }

Fig. 6. FFTW implementation using horizontal decomposition of signal
matrix and executed by p threadgroups of t threads each.

7 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present our experimental results for matrix-
matrix multiplication (PMMTG) and 2D fast Fourier transform
(PFFTTG) employing our solution method.

To make sure the experimental results are reliable, we follow
a statistical methodology described in the supplemental. Briefly,
for every data point in the functions, the automation software
executes the application repeatedly until the sample mean lies
in the 95% confidence interval and a precision of 0.025 (2.5%)
has been achieved. For this purpose, Student’s t-test is used as-
suming that the individual observations are independent and their

10

population follows the normal distribution. The validity of these
assumptions is verified by plotting the distributions of observations
and using Pearson’s Test. The speed/time/energy values shown in
the graphical plots are the sample means.

Four multicore CPUs shown in the Table 4 and described
earlier are used in the experiments. Three platforms {S1, S2, S4}
have a power meter installed between their input power sockets
and the wall A/C outlets. S1 and S2 are connected with a Watts Up
Pro power meter; S4 is connected with a Yokogawa WT310 power
meter. S3 is not equipped with a power meter and therefore is not
employed in the experiments for single-objective optimization for
energy and bi-objective optimization for performance and energy.

The power meter provides the total power consumption of the
server. It has a data cable connected to one USB port of the
server. A script written in Perl collects the data from the power
meter using the serial USB interface. The execution of the script
is non-intrusive and consumes insignificant power. WattsUp Pro
power meters are periodically calibrated using the ANSI C12.20
revenue-grade power meter, Yokogawa WT310. The maximum
sampling speed of WattsUp Pro power meters is one sample every
second. The accuracy specified in the data-sheets is ±3%. The
minimum measurable power is 0.5 watts. The accuracy at 0.5 watts
is ±0.3 watts. The accuracy of Yokogawa WT310 is 0.1% and the
sampling rate is 100k samples per second.

HCLWattsUp API [50] is used to gather the readings from
the power meter to determine the dynamic energy consumption
during the execution of PMMTG and PFFTTG applications.
HCLWattsUp has no extra overhead and therefore does not in-
fluence the energy consumption of the application execution.

Fans are significant contributors to energy consumption. On
our platform, fans are controlled in two zones: a) zone 0: CPU or
System fans, b) zone 1: Peripheral zone fans. There are 4 levels to
control the speed of fans:

• Standard: BMC control of both fan zones, with CPU zone
based on CPU temp (target speed 50%) and Peripheral
zone based on PCH temp (target speed 50%)

• Optimal: BMC control of the CPU zone (target speed
30%), with Peripheral zone fixed at low speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed 50%),
Peripheral zone fixed at 75%

• Full: all fans running at 100%

To rule out the contribution of fans in dynamic energy con-
sumption, we set the fans at full speed before executing the appli-
cations. When set at full speed, the fans run constantly at ∼13400
rpm until they are set to a different speed level. In this way, energy
consumption due to fans is included only in the static power
consumption of the platform. The temperature of our platform and
speeds of the fans (with Full setting) is monitored with the help of
Intelligent Platform Management Interface (IPMI) sensors, both
with and without the application run. An insignificant difference
in the speeds of fans is found in both the scenarios.

7.1 Parallel Matrix-Matrix Multiplication Using Open-
BLAS DGEMM and Intel MKL DGEMM
7.1.1 Performance Optimization on a Single Socket Multi-
core CPU
Fiqure 7 shows the execution times of PMMTG using OpenBLAS
DGEMM for different threadgroup combinations on a single-
socket CPU (S1). The base version corresponds to the application

Fig. 7. Performance of PMMTG application employing OpenBLAS
DGEMM for different (g,t) configurations on S1.

Fig. 8. Performance of PMMTG application employing Intel MKL
DGEMM for different (g,t) configurations on S1.

configuration employing one threadgroup with optimal number of
threads, which is 44 threads. The best combination is (g,t)=(22,1)
for all the three workload sizes. It outperforms the base combi-
nation by 20% for N=29696 and N=35328, and about 11% for
N=30720. Furthermore, the average performance improvement
over the base combination for 41 tested workload sizes in the
range, 5120 ≤ N ≤ 36000, is 7%. The starting problem size of
5120 is chosen to ensure that the workload size exceeds the last
level cache.

Fiqure 8 shows the execution times of PMMTG using Intel
MKL DGEMM. The best combinations (g,t) are {(4,11),(2,22)}
for all the three workload sizes. They outperform the base com-
bination by 6%. The average performance improvement over
the base combination for 21 tested workload sizes in the range,
5120 ≤ N ≤ 36000, is 5%.

7.1.2 Performance Optimization on a Dual-socket Multicore
CPU
Figure 7.1.2 shows the comparision between base and best combi-
nations for OpenBLAS DGEMM and Intel MKL DGEMM on
S3. The base version corresponds to application configuration
employing one threadgroup with optimal number of threads.

Unlike the base version, the best combinations for OpenBLAS
DGEMM and Intel MKL DGEMM do not have any performance
variations (drops). The best combination for Intel MKL DGEMM
is 18 threadgroups with 2 threads each. It outperforms the base
version by 8% on the average and the next best combination,
12 threadgroups with 2 threads each, by 2.5%. Our solution

11

Fig. 9. Comparision between the base and best versions for Intel MKL
DGEMM and OpenBLAS DGEMM on S3.

Fig. 10. Dynamic energy consumption for PMMTG employing Open-
BLAS DGEMM for different (g,t) configurations on S1.

method removed noticeable drops in performance for workload
sizes 16384, 20480, and 24576, with performance improvements
of 36.5%, 14.5% and 21.5%.

7.1.3 Energy Optimization on a Single Socket Multicore
CPU

Fiqure 10 shows the dynamic energy consumptions for PMMTG
using OpenBLAS DGEMM of different threadgroup combinations
on a single-socket CPU (S1). The base version corresponds to
application configuration employing one threadgroup with optimal
number of threads, which is 44 threads. The best combination for
sizes N=29696 and N=30720 is (g,t)=(22,1). It outperforms the
base combination by 20%. The best combination for N = 35328
is (g,t)=(1,22), which outperforms the base combination by 23%.
Furthermore, the average improvement (or energy savings) over
the base combination for 41 tested workload sizes in the range,
5120 ≤ N ≤ 35000, is 8%.

Fiqure 11 shows the dynamic energy consumptions for
PMMTG using Intel MKL DGEMM. There are three best combi-
nations for each problem size, (g,t)={(11,4),(22,2),(44,1)}. They
outperform the base combination by 35%. Furthermore, the av-
erage improvement over the base combination for 21 tested
workload sizes in the range, 5120 ≤ N ≤ 35000, is 35.7%.

Fig. 11. Dynamic energy consumption for PMMTG employing Intel MKL
DGEMM for different (g,t) configurations on S1.

Fig. 12. Dynamic energy consumption of PMMTG employing OpenBLAS
DGEMM for different (g,t) configurations on S2.

7.1.4 Energy Optimization on a Dual-socket Multicore CPU

Figure 12 show the results for PMMTG based on OpenBLAS
DGEMM on S2 with three different workload sizes. There are four
best combinations minimizing the dynamic energy consumption
for workload size 16384, (g,t)={(2,24),(3,16),(6,8),(24,2)}. The
energy savings for these combinations compared with the best base
combination, (g,t)=(1,24), is around 21%. For the workload sizes
17408 and 18432, the best combinations are (12,4) and (4,12).
The energy savings in comparison with the best base combination,
(g,t)=(1,24), for 17408 and (g,t)=(1,44) for 18432, are 15% and
18%. Furthermore, the average improvement over the best base
combination for 19 tested workload sizes in the range, 5120 ≤
N ≤ 35000, is 10%.

Figure 13 show the results for PMMTG based on Intel MKL
DGEMM on S2. The best combination minimizing the dynamic
energy consumption for workload size 28672 involves 12 thread-
groups with 2 threads each. The energy savings for this combina-
tion compared with the best base combination, (1,24), is 10.5%.
For the workload sizes 30720 and 31616, the best combinations
are (12,4) and (12,2). The energy savings in comparison with
the best base combination are 4% and 7%. Furthermore, the
average improvement over the best base combination for 19 tested
workload sizes in the range, 5120 ≤ N ≤ 35000, is 13%.

12

Fig. 13. Dynamic energy consumption of PMMTG employing Intel MKL
DGEMM for different (g,t) configurations on S2.

Fig. 14. Performance of PFFTTG employing FFTW for different (g,t)
configurations on S1.

7.2 Parallel 2D Fast Fourier Transform Using FFTW and
Intel MKL FFT
In this section, we use 2D fast Fourier transform routines
from two packages, FFTW-3.3.7 and Intel MKL. The pack-
ages are installed with multithreading, SSE/SSE2, AVX2,
and FMA (fused multiply-add) optimizations enabled. For In-
tel MKL FFT, no special environment variables are used.
Three planner flags, {FFTW ESTIMATE, FFTW MEASURE,
FFTW PATIENT} were tested. The execution times for the flags
{FFTW MEASURE, FFTW PATIENT} are high compared to
those for FFTW ESTIMATE. The long execution times are due to
the lengthy times to create the plans because FFTW MEASURE
tries to find an optimized plan by computing many FFTs whereas
FFTW PATIENT considers a wider range of algorithms to find a
more optimal plan.

7.2.1 Performance Optimization on a Single Socket Multi-
core CPU
Figure 14 shows the results for PFFTTG employing FFTW on
a single-socket CPU (S1). The best combination, (g, t)=(4,11),
is the same for workload sizes, N=31936 and N=32704. The
improvements over the base combination, (g, t)=(1,44), are 55%
and 57%. For matrix dimension, N=35648, the base combination is
the best and outperforms the next best combination, (g, t)=(2,22),
by 5%.

Figure 15 shows the results for PFFTTG employ-
ing Intel MKL FFT. There are three best combinations,

Fig. 15. Performance of PFFTTG employing Intel MKL FFT for different
(g,t) configurations on S1.

(g, t)=(2,22),(2,11),(4,11), for all the three workload sizes, where
performances differ from each other by less than 5%. Their im-
provement over the base combination, (g, t)=(1,44), for N=18432
is 8%. For workload sizes, N=30720 and N=31616, the perfor-
mance improvements are 25% and 26%. Furthermore, the average
performance improvement over the best base combination for 23
tested workload sizes in the range, 5120 ≤ N ≤ 37000, is 27%.

7.2.2 Performance Optimization on Dual-socket Multicore
CPUs

All results in this section are represented by a 3D surface repre-
sented by axes for performance or energy, number of threadgroups
(g) and the number of threads in each threadgroup, t. The location
of the minimum in the surface is shown by the red dot.

Figure 16a shows the results of PFFTTG using FFTW3.3.7
on S4 for matrix dimension N=30976. The area with minimum
execution time is located in the figure in the region containing
{4,7,8} threadgroups with 10 threads in each group. The minimum
is achieved for the combination (g, t)=(7,10) with the execution
time of 8 seconds. The speedup is around 100% in comparison
with the best combination of threads for one group (g, t)=(1,10)
where the execution time is 16 seconds.

Figure 16b presents the results of PFFTTG using FFTW3.3.7
on S3 for the matrix dimension N=17728. The minimum is centred
around number of threadsgroups equal to {4,7,8}. The minimum
is achieved for the combination, (g, t)=(4,16). The performance
improvement is 80% in comparison with (g, t)=(1,72), which is
the best combination for one group.

7.2.3 Energy Optimization on a Single Socket Multicore
CPU

Figure 17 shows the dynamic energy comparision for PFFTTG
employing FFTW between base and best combinations for work-
load sizes, 31936, 32704, and 35648 on a single-socket CPU (S1).
The best combination (g, t)=(4,11) is the same for workload sizes,
31936 and 32704. The reductions in dynamic energy consumption
in comparison with the base combination, (g, t)=(1,44), are 41%
and 65%. For workload size 35648, the base combination is the
best and outperforms the next best combination (g, t)=(2,22) by
5%. For Intel MKL FFT, the base combination, (g,t)=(1,44), is
the best.

13

(a)

(b)

Fig. 16. (a). Performance profile of FFTW PFFTTG for different (g,t)
configurations on S4 for workload size, N=30976. (b). Performance
profile of FFTW PFFTTG for different (g,t) configurations on S3 for
workload size, N=17728. Red dot represents the minimum.

7.2.4 Energy Optimization on a Dual-socket Multicore CPU
Figures 18a, 18b show the results for PFFTTG employing FFTW
on S4 for matrix sizes equal to N=30464 and N=32192. The
minimum for dynamic energy is located in {4,7,8} threadgroups
with 14 threads in each threadgroup for workload size (N=32192)
and 12 threads in each threadgroup for workload size 30464.
The minimum for the workload size 30464 is achieved for the
combination, (g, t)=(8,12). The dynamic energy consumption for
this combination is 661 Joules. The energy saving is around
30% in comparison with the best combination of threads for
one group (g, t)=(1,45) whose dynamic energy consumption is
918 Joules. The minimum for the workload size (N=32192) is
achieved for the combination, (g, t)=(4,14). The saving is around
35% in comparison with (g, t)=(1,16) where dynamic energy is
2197 Joules.

7.3 Bi-Objective Optimization for Performance and Dy-
namic Energy
7.3.1 Single Socket Multicore CPU
Figure 19a shows the globally Pareto-optimal front for PMMTG
employing Intel MKL DGEMM on S1 for workload size 32768.

Fig. 17. Dynamic energy consumption of PFFTTG employing FFTW for
different (g,t) configurations on S1.

(a)

(b)

Fig. 18. (a). Energy profile of FFTW PFFTTG for different (g,t) con-
figurations on S4 for workload size N=30464. (b). Energy profile of
FFTW PFFTTG for different (g,t) configurations on S4 for workload size
N=32192. Red dot represents the minimum.

Optimizing for dynamic energy consumption alone degrades per-
formance by 27%, and optimizing for performance alone increases
dynamic energy consumption by 30%. The average and maximum
sizes of the Pareto-optimal fronts for Intel MKL DGEMM are
(2.3,3).

14

(a)

(b)

Fig. 19. (a). Pareto-optimal front of Intel MKL DGEMM PMMTG applica-
tion on S1 for workload size N=32768. (b). Pareto-optimal front of Intel
MKL FFT PFFTTG on S1 for workload size N=31744.

Figure 19b shows the globally Pareto-optimal front for
PFFTTG based on Intel MKL FFT on S1 for workload size 31744.
There are two globally Pareto-optimal solutions. Optimizing for
dynamic energy consumption alone degrades performance by
around 31%, and optimizing for performance alone increases
dynamic energy consumption by 87%. The average and maximum
sizes of the Pareto-optimal fronts for Intel MKL FFT are (2.6,3).

No bi-objective trade-offs were observed for FFTW and Open-
BLAS applications. We will investigate two lines of research in
our future work. One is the influence of workload distribution;
The other is the absence of bi-objective trade-offs for open-source
packages such as FFTW and OpenBLAS using a dynamic energy
predictive model.

7.3.2 Dual-socket Multicore CPUs

In this section, we will focus on bi-objective optimization on dual-
socket CPUs, S2 and S4.

Figures 20a shows the globally Pareto-optimal fronts for
PFFTTG FFTW on S4 for workload size, N=30464. The max-
imum number of globally Pareto-optimal solutions is 11. The
optimization for dynamic energy consumption alone degrades per-
formance by 49%, and optimizing for performance alone increases
dynamic energy consumption by 35%.

Figure 20b shows the globally Pareto-optimal front for
PFFTTG employing Intel MKL FFT on S2 for workload size,
N=22208. Optimizing for dynamic energy consumption alone
degrades performance by 33%, and optimizing for performance
alone increases dynamic energy consumption by 10%. The aver-

(a)

(b)

Fig. 20. (a). Pareto-optimal front of FFTW PFFTTG on S4 for workload
size, N=30464. (b). Pareto-optimal front of Intel MKL FFT PFFTTG on
S4 for workload size, N=22208.

age and maximum sizes of the Pareto-optimal fronts for FFTW
and Intel MKL FFT are (3,11) and (2.7, 3).

Figure 21a shows the globally Pareto-optimal front for
PMMTG employing Intel MKL DGEMM on S2 for workload
size, N=17408. Optimizing for dynamic energy consumption alone
degrades performance by 5.5%, and optimizing for performance
alone increases dynamic energy consumption by 50.7%. The
average and maximum sizes of the Pareto-optimal fronts are (1.8,
4).

Figure 21b shows the globally Pareto-optimal front for
PMMTG based on OpenBLAS DGEMM on S2 for workload
size, N=17408. There are six globally Pareto-optimal solutions.
Optimizing for dynamic energy consumption alone degrades per-
formance by around 5%, and optimizing for performance alone
increases dynamic energy consumption by 20%. The average and
maximum sizes of the Pareto-optimal fronts are 2.4 and 5.

The execution time of building the four dimensional discrete
graph with performance and dynamic energy as two objectives
and the two decision variables can be cost-prohibitive for its em-
ployment in dynamic schedulers and self-adaptable data-parallel
applications. We will explore approaches to reduce this time in
our future work.

7.4 Analysis Using Performance and Dynamic Energy
Models
In this section, we propose a qualitative dynamic energy model
employing performance monitoring counters (PMCs) as parame-
ters. The model reveals the cause behind the energy nonpropor-

15

(a)

(b)

Fig. 21. (a). Pareto-optimal front of Intel MKL DGEMM PMMTG ap-
plication on S2 for workload size, N=17408. (b). Pareto-optimal front
of OpenBLAS DGEMM PMMTG application on S2 for workload size,
N=17408.

tionality in modern multicore CPUs. The model along with the
execution time of the application is used to analyze the Pareto-
optimal front determined by our solution method on a dual-socket
multicore platform.

PMCs are special-purpose registers provided in modern micro-
processors to store the counts of software and hardware activities.
The acronym PMCs is used to refer to software events, which are
pure kernel-level counters such as page-faults, context-switches,
etc. as well as micro-architectural events originating from the
processor and its performance monitoring unit called the hardware
events such as cache-misses, branch-instructions, etc. Software
energy predictive models based on PMCs is one of the leading
methods of measurement of energy consumption of an application
[51].

The experimental platform S2 and the application OpenBLAS-
DGEMM is employed for the analysis. Likwid tool [52] is used
to obtain the PMCs. On this platform, it offers 164 PMCs, which
are divided into 28 groups (L2CACHE, L3CACHE, NUMA, etc.).
The groups are listed in the supplemental. All the PMCs for each
workload size executed using different application configurations,
(#threadgroups (g), #threads per group (t)) are collected. Each
PMC value is the average for all the 24 physical cores. We
analyzed the data to identify the major performance groups,
which are highly correlated with the dynamic energy consumption.
The highest correlation is contained in the data provided by
TLB DATA performance group. This group provides data activity,
such as load miss rate, store miss rate and walk page duration, in
L1 data translation lookaside buffer (dTLB), a small specialized

(a)

(b)

Fig. 22. (a). Measured (left) and predicted (right) dynamic energy con-
sumption of OpenBLAS DGEMM on S2 for workload size, N=16384.
(b). Measured (left) and predicted (right) dynamic energy consumption
of OpenBLAS DGEMM on S2 for workload size, N=17408.

cache of recent page address translations. If a dTLB miss occurs,
the OS goes through the page tables. If there is a miss from
the page walk, a page fault occurs resulting in the OS retrieving
the corresponding page from memory. The duration of the page
walk has the highest positive correlation with dynamic energy
consumption based on our experiments.

Non-negative multivariate regression is employed to construct
our model of dynamic energy consumption based on the PMC data
from dTLB. The model is shown below:

Edynamic = β1 × T + β2 × L+ β3 × S (1)

where β1 is the average CPU utilization, β2 and β3 are the
regression coefficients for the PMC data. T is the execution time
of the application, L is the time of page walk caused by load miss
and S is the time of page walk caused by store miss in dTLB.
The coefficients of the model ({β1, β2, β3}) are forced to be non-
negative to avoid erroneous cases where large values for them
gives rise to negative dynamic energy consumption prediction
violating the fundamental energy conservation law of computing.

To test this model, we use two workload sizes 16384 and
17408. The PMC data that is obtained for these sizes and that
is used to train the model is shown in the tables 2 and 3. The
rows of the tables are sorted in increasing order of time. The
blue colour in the tables shows the rows that are in the Pareto-
optimal front. The time of page walk (last two columns, 4 and
5) is measured in cycles. As can be seen from the tables, the
dynamic energy decreases as the number of cycles decreases.There
is however a trade-off between the execution time of application
and the page walk time. For a Pareto-optimal solution, a long

16

TABLE 2
L1 dTLB PMC data for size 16384

Combination (g, t) Dynamic Energy (J) Time (sec) L1 dTLB load miss duration (Cyc) L1 dTLB store miss duration (Cyc)
(1,48) 824.2743 14.112 108.373 124.326
(4,12) 740.0211 14.177 113.515 105.363
(8,6) 729.1005 14.244 104.564 89.3753
(2,24) 802.6687 14.314 105.328 82.5185
(16,3) 750.6159 14.615 100.924 90.2733
(3,16) 631.3098 14.772 97.9180 76.1889
(6,8) 667.4856 14.818 96.8957 58.0210
(12,4) 528.0411 15.057 97.0492 52.8966
(24,2) 1352.141 15.875 100.106 82.7514
(48,1) 1719.012 18.685 111.902 85.9282

TABLE 3
L1 dTLB PMC data for size 17408

Combination (g, t) Dynamic Energy (J) Time (sec) L1 dTLB load miss duration (Cyc) L1 dTLB store miss duration (Cyc)
(4,12) 1320.0702 16.2478 105.961 122.191
(1,48) 1271.5506 16.3034 99.5398 63.7090
(8,6) 1266.3294 16.3166 95.7896 58.9096
(2,24) 1287.6882 16.4498 98.2180 74.6859
(16,3) 1250.5616 16.6824 95.2988 58.3551
(6,8) 1130.2412 16.9668 93.4336 47.9097
(3,16) 1052.0283 17.0187 90.5275 45.7483
(24,2) 1824.5795 18.0755 106.804 55.5686
(12,4) 1795.7680 20.5520 93.6595 46.5541
(48,1) 2164.1212 20.9868 96.6999 71.4943

execution time corresponds to smaller number of load and store
cycles and thereby less dynamic energy consumption.

Two dynamic energy models for the workload sizes 16384
(Table 2) and 17408 (Table 3) were constructed. The coeffi-
cients for the workload size 16384 are {β1 = 253.680, β2 =
39.536, β3 = 13.647}. The coefficients for the workload size
17408 are {β1 = 137.953, β2 = 12.564, β3 = 3.835}. We
then predict the dynamic energy consumption using the model and
compare with the dynamic energy measured using HCLWattsUp.
The Figures 22a and 22b illustrate the comparison. The x axis
represents the number of a row in the Tables 2, 3. The modeled
dynamic energy demonstrates the same trend as the measured
dynamic energy using HCLWattsUp.

TLB activity has been the focus of research in [53], [54], [55]
where the authors state that the address translation using the TLB
consumes as much as 16% of the chip power on some processors.
The authors propose different strategies to improve the reuse of
TLB caches. Our solution method employing threadgroups (or
grouping using multithreaded kernels) allows to fill the page tables
more evenly and reduce the duration of page walk resulting in less
dynamic energy consumption.

To summarize, our proposed dynamic model based on param-
eters reflecting TLB activity (the duration of page walk) shows
that the energy nonproportionality on our experimental platforms
for the data-parallel applications is due to the activity of the data
translation lookaside buffer (dTLB), which is disproportionately
energy expensive. This finding may encourage the chip design
architects to investigate and remove the nonproportionality in
these platforms. There may be other causes behind the lack of
energy proportionality as the range of applications and platforms
is broadened that we would explore in our future research.

8 CONCLUSION

Energy proportionality is the key design goal followed by ar-
chitects of modern multicore CPUs. One of its implications is
that optimization of an application for performance will also
optimize it for energy. However, due to the inherent complexities
of resource contention for shared on-chip resources, NUMA,
and dynamic power management in multicore CPUs, state-of-
the-art application-level optimization methods for performance
and energy [3], [4], [5], [21], demonstrate that the functional
relationships between performance and workload size and be-
tween dynamic energy and workload size for real-life data-parallel
applications have complex (non-linear) properties and show that
workload distribution has become an important decision variable.

This motivated us to explore in-depth the influence of three-
dimensional decision variable space on bi-objective optimization
of applications for performance and energy on multicore CPUs.
The three decision variables are: a). The number of identical mul-
tithreaded kernels (threadgroups) involved in the parallel execution
of an application; b). The number of threads in each threadgroup;
and c). The workload distribution between the threadgroups. We
focused exclusively on the first two decision variables in this work.

By experimenting with these decision variables, we discov-
ered that energy proportionality does not hold true for modern
multicore CPUs. Based on this finding, we proposed the first
application-level optimization method for bi-objective optimiza-
tion of multithreaded data-parallel applications for performance
and energy on a single multicore CPU. The method uses two
decision variables, the number of identical multithreaded kernels
(threadgroups) and the number of threads in each threadgroup. A
given workload is partitioned equally between the threadgroups.

We demonstrated our method using four highly optimized
multithreaded data-parallel applications, 2D fast Fourier trans-
form based on FFTW and Intel MKL, and dense matrix-matrix
multiplication written using Openblas DGEMM and Intel MKL,

17

on four modern multicore CPUs one of which is a single socket
multicore CPU and the other three dual-socket with increasing
number of physical cores per socket. We showed in particular that
optimizing for performance alone results in significant increase
in dynamic energy consumption whereas optimizing for dynamic
energy alone results in considerable performance degradation and
that our method determined good number of globally Pareto-
optimal solutions.

Finally, we proposed a qualitative dynamic energy model em-
ploying performance monitoring counters (PMCs) as parameters,
which we used to explain the Pareto-optimal solutions determined
for modern multicore CPUs. The model showed that the energy
nonproportionality on our experimental platforms for the two data-
parallel applications is caused by disproportionately high energy
consumption by the data translation lookaside buffer (dTLB)
activity.

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under Grant
Number 14/IA/2474. We thank Roman Wyrzykowski and Lukasz
Szustak for allowing us to use their Intel servers, HCLServer03
and HCLServer04.

9 SUPPLEMENTARY MATERIAL

9.1 Rationale Behind Using Dynamic Energy Con-
sumption Instead of Total Energy Consumption
There are two types of energy consumptions, static energy, and
dynamic energy. We define the static energy consumption as the
energy consumption of the platform without the given application
execution. Dynamic energy consumption is calculated by subtract-
ing this static energy consumption from the total energy consump-
tion of the platform during the given application execution. The
static energy consumption is calculated by multiplying the idle
power of the platform (without application execution) with the
execution time of the application. That is, if PS is the static power
consumption of the platform, ET is the total energy consumption
of the platform during the execution of an application, which takes
TE seconds, then the dynamic energy ED can be calculated as,

ED = ET − (PS × TE) (2)

We consider only the dynamic energy consumption in our
work for reasons below:

1) Static energy consumption is a constant (or a inherent prop-
erty) of a platform that can not be optimized. It does not
depend on the application configuration.

2) Although static energy consumption is a major concern in
embedded systems, it is becoming less compared to the dy-
namic energy consumption due to advancements in hardware
architecture design in HPC systems.

3) We target applications and platforms where dynamic energy
consumption is the dominating energy dissipator.

4) Finally, we believe its inclusion can underestimate the true
worth of an optimization technique that minimizes the dy-
namic energy consumption. We elucidate using two examples
from published results.

• In our first example, consider a model that reports
predicted and measured total energy consumption of

a system to be 16500J and 18000J. It would report
the prediction error to be 8.3%. If it is known that the
static energy consumption of the system is 9000J, then
the actual prediction error (based on dynamic energy
consumptions only) would be 16.6% instead.

• In our second example, consider two different energy
prediction models (MA and MB) with same predic-
tion errors of 5% for an application execution on two
different machines (A and B) with same total energy
consumption of 10000J. One would consider both the
models to be equally accurate. But supposing it is
known that the dynamic energy proportions for the
machines are 30% and 60%. Now, the true prediction
errors (using dynamic energy consumptions only) for
the models would be 16.6% and 8.3%. Therefore,
the second model MB should be considered more
accurate than the first.

9.2 Shared Memory Implementations of PMMTG Algo-
rithms
The shared memory implementations of PMMTG algorithms us-
ing Intel MKL and OpenBLAS are described here. The inputs
to an implementation are: a). Matrices A, B, and C of sizes
N × N ; b). Constants α and β; c) The number of abstract
processors (groups), {P1, · · · , Pp}; d). The number of threads
in each abstract processor (group) represented by t. The output
matrix, C, contains the matrix product. Each abstract processor is
a group of t threads.

The implementations using Intel MKL differ from those using
OpenBLAS. In Intel MKL, the matrix-matrix computation specific
to a partition is computed using an OpenMP parallel region with
t threads whereas the same is computed in OpenBLAS using a
pthread.

9.2.1 Intel MKL implementation of PMMTG-V
Figure 23 shows the implementation of PMMTG-V using Intel
MKL.

9.2.2 OpenBLAS implementation of PMMTG-V
Figure 24 shows the implementation of PMMTG-V using Open-
BLAS.

9.2.3 Intel MKL implementation of PMMTG-S
Figure 25 shows the implementation of PMMTG-S using Intel
MKL.

9.2.4 OpenBLAS implementation of PMMTG-S
Figure 26 shows the implementation of PMMTG-S using Open-
BLAS.

9.2.5 Intel MKL implementation of PMMTG-H
Figure 27 shows the implementation of PMMTG-H using Intel
MKL.

9.3 Shared Memory Implementations of PFFT Algo-
rithms
The inputs to an implementation are: a). Signal matrix M of
size N × N ; b). The number of abstract processors (groups)
p, {P1, · · · , Pp}; c). The number of threads in each abstract

18

1 i n t row ;
2 # pragma omp p a r a l l e l f o r num threads (p* t)
3 f o r (row = 0 ; row < N; row ++) {
4 memcpy(&B1 [row *(N/ p)] , &B[row*N] ,
5 (N/ p) * s i z e o f (d ou b l e)) ;
6 . . .
7 memcpy(&Bp [row *(N/ p)] , &B [(p−1) * (N/ p) +row*N] ,
8 (N/ p) * s i z e o f (d ou b l e)) ;
9 memcpy(&C1 [row *(N/ p)] , &C[row*N] ,

10 (N/ p) * s i z e o f (d ou b l e)) ;
11 . . .
12 memcpy(&Cp [row *(N/ p)] , &C [(p−1) * (N/ p) +row*N] ,
13 (N/ p) * s i z e o f (d ou b l e)) ;
14 }
15

16 # pragma omp p a r a l l e l s e c t i o n s num threads (p* t)
17 {
18 # pragma omp s e c t i o n / / p r o c e s s o r 1
19 {
20 m k l s e t n u m t h r e a d s l o c a l (t) ;
21 cblas dgemm (CblasRowMajor , CblasNoTrans ,
22 CblasNoTrans , N, N/ p , N, a lpha , A, N,
23 B1 , N/ p , be t a , C1 , N/ p) ;
24 }
25 . . .
26 # pragma omp s e c t i o n / / p r o c e s s o r p
27 {
28 m k l s e t n u m t h r e a d s l o c a l (t) ;
29 cblas dgemm (CblasRowMajor , CblasNoTrans ,
30 CblasNoTrans , N, N/ p , N, a lpha , A, N,
31 Bp , N/ p , be t a , Cp , N/ p) ;
32 }
33 }
34

35 # pragma omp p a r a l l e l f o r num threads (p* t)
36 f o r (row = 0 ; row < N; row ++)
37 {
38 memcpy(&B[row*N] , &B1 [row *(N/ p)] ,
39 (N/ p) * s i z e o f (d ou b l e)) ;
40 . . .
41 memcpy(&B [(p−1) * (N/ p) +row*N] , &Bp [row *(N/ p)] ,
42 (N/ p) * s i z e o f (d ou b l e)) ;
43 memcpy(&C[row*N] , &C1 [row *(N/ p)] ,
44 (N/ p) * s i z e o f (d ou b l e)) ;
45 . . .
46 memcpy(&C [(p−1) * (N/ p) +row*N] , &Cp [row *(N/ p)] ,
47 (N/ p) * s i z e o f (d ou b l e)) ;
48 }

Fig. 23. Intel MKL implementation of PMMTG-V employing p abstract
processors of t threads each.

processor (group) represented by t. The output is the transformed
signal matrix M (considering that we are performing in-place
FFT). Each abstract processor is a group of t threads.

The implementations using Intel MKL differ from those using
FFTW. In FFTW, only plan execution (fftw plan many dft) and
plan destruction (fftw destroy plan) are thread-safe and called be
called in an OpenMP parallel region.

9.3.1 Intel MKL implementation of PFFTTG-H
Figure 28 shows the implementation of PFFTTG-H using Intel
MKL.

9.4 Transpose Routine Invoked in PFFT Algorithms
The routine, hcl transpose block, shown in the Figure 29 per-
forms in-place transpose of a complex 2D square matrix of size
n× n. We use a block size of 64 in our experiments as it is found
to be optimal.

1 vo id *dgemm (vo id * i n p u t) {
2 i n t i = * (i n t *) i n p u t ;
3 o p e n b l a s s e t n u m t h r e a d s (t) ;
4 g o t o s e t n u m t h r e a d s (t) ;
5 omp se t num threads (t) ;
6 i f (i == 1)
7 {
8 cblas dgemm (CblasRowMajor , CblasNoTrans ,
9 CblasNoTrans , N, N/ p , N, a lpha , A, N,

10 B1 , N/ p , be t a , C1 , N/ p) ;
11 }
12 . . .
13 i f (i == p)
14 {
15 cblas dgemm (CblasRowMajor , CblasNoTrans ,
16 CblasNoTrans , N, N/ p , N, a lpha , A, N,
17 Bp , N/ p , be t a , Cp , N/ p) ;
18 }
19 }
20

21 i n t main () {
22 i n t row ;
23 # pragma omp p a r a l l e l f o r num threads (p* t)
24 f o r (row = 0 ; row < N; row ++) {
25 memcpy(&B1 [row *(N/ p)] , &B[row*N] ,
26 (N/ p) * s i z e o f (d ou b l e)) ;
27 . . .
28 memcpy(&Bp [row *(N/ p)] , &B [(p−1) * (N/ p) +row*N] ,
29 (N/ p) * s i z e o f (d ou b l e)) ;
30 memcpy(&C1 [row *(N/ p)] , &C[row*N] ,
31 (N/ p) * s i z e o f (d ou b l e)) ;
32 . . .
33 memcpy(&Cp [row *(N/ p)] , &C [(p−1) * (N/ p) +row*N] ,
34 (N/ p) * s i z e o f (d ou b l e)) ;
35 }
36

37 p t h r e a d t t1 , . . . , t p ;
38 i n t i 1 = 1 , . . . , i p = p ;
39 p t h r e a d c r e a t e (& t1 , NULL, dgemm , &i 1) ;
40 . . .
41 p t h r e a d c r e a t e (& tp , NULL, dgemm , &i p) ;
42 p t h r e a d j o i n (tp , NULL) ;
43 . . .
44 p t h r e a d j o i n (t1 , NULL) ;
45

46 # pragma omp p a r a l l e l f o r num threads (p* t)
47 f o r (row = 0 ; row < N; row ++)
48 {
49 memcpy(&B[row*N] , &B1 [row *(N/ p)] ,
50 (N/ p) * s i z e o f (d ou b l e)) ;
51 . . .
52 memcpy(&B [(p−1) * (N/ p) +row*N] , &Bp [row *(N/ p)] ,
53 (N/ p) * s i z e o f (d ou b l e)) ;
54 memcpy(&C[row*N] , &C1 [row *(N/ p)] ,
55 (N/ p) * s i z e o f (d ou b l e)) ;
56 . . .
57 memcpy(&C [(p−1) * (N/ p) +row*N] , &Cp [row *(N/ p)] ,
58 (N/ p) * s i z e o f (d ou b l e)) ;
59 }
60 }

Fig. 24. OpenBLAS implementation of PMMTG-V employing p abstract
processors of t threads each.

9.5 Application Programming Interface (API) for Mea-
surements Using External Power Meter Interfaces
(HCLWattsUp)

HCLServer01, HCLServer02 and HCLServer03 have a dedicated
power meter installed between their input power sockets and
wall A/C outlets. The power meter captures the total power
consumption of the node. It has a data cable connected to the
USB port of the node. A perl script collects the data from the
power meter using the serial USB interface. The execution of this
script is non-intrusive and consumes insignifcant power.

We use HCLWattsUp API function, which gathers the readings
from the power meters to determine the average power and energy
consumption during the execution of an application on a given

19

1 # pragma omp p a r a l l e l f o r num threads (4* t)
2 f o r (row = 0 ; row < (N/ 2) ; row ++) {
3 memcpy(&A11 [row *(N/ 2)] , &A[row*N] ,
4 (N/ 2) * s i z e o f (d ou b l e)) ;
5 memcpy(&A22 [row *(N/ 2)] , &A[N*(N/ 2) +(N/ 2) +row*N] ,
6 (N/ 2) * s i z e o f (d ou b l e)) ;
7 . . .
8 memcpy(&B11 [row *(N/ 2)] , &B[row*N] ,
9 (N/ 2) * s i z e o f (d ou b l e)) ;

10 memcpy(&B22 [row *(N/ 2)] , &B[N*(N/ 2) +(N/ 2) +row*N] ,
11 (N/ 2) * s i z e o f (d ou b l e)) ;
12 . . .
13 memcpy(&C11 [row *(N/ 2)] , &C[row*N] ,
14 (N/ 2) * s i z e o f (d ou b l e)) ;
15 memcpy(&C22 [row *(N/ 2)] , &C[N*(N/ 2) +(N/ 2) +row*N] ,
16 (N/ 2) * s i z e o f (d ou b l e)) ;
17 . . .
18 }
19

20 # pragma omp p a r a l l e l s e c t i o n s num threads (4)
21 {
22 # pragma omp s e c t i o n / / p r o c e s s o r 1
23 {
24 m k l s e t n u m t h r e a d s l o c a l (t) ;
25 cblas dgemm (CblasRowMajor , CblasNoTrans ,
26 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A11 , N/ 2 ,
27 B11 , N/ 2 , be ta0 , C11 , N/ 2) ;
28 cblas dgemm (CblasRowMajor , CblasNoTrans ,
29 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A12 , N/ 2 ,
30 B21 , N/ 2 , be ta1 , C11 , N/ 2) ;
31 }
32 . . .
33 # pragma omp s e c t i o n / / p r o c e s s o r 4
34 {
35 m k l s e t n u m t h r e a d s l o c a l (t) ;
36 cblas dgemm (CblasRowMajor , CblasNoTrans ,
37 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A21 , N/ 2 ,
38 B12 , N/ 2 , be ta0 , C22 , N/ 2) ;
39 cblas dgemm (CblasRowMajor , CblasNoTrans ,
40 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A22 , N/ 2 ,
41 B22 , N/ 2 , be ta1 , C22 , N/ 2) ;
42 }
43 }
44

45 # pragma omp p a r a l l e l f o r num threads (4* t)
46 f o r (row = 0 ; row < (N/ 2) ; row ++) {
47 memcpy(&A[row*N] , &A11 [row *(N/ 2)] ,
48 (N/ 2) * s i z e o f (d ou b l e)) ;
49 memcpy(&A[N*(N/ 2) +(N/ 2) +row*N] , &A22 [row *(N/ 2)] ,
50 (N/ 2) * s i z e o f (d ou b l e)) ;
51 . . .
52 memcpy(&B[row*N] , &B11 [row *(N/ 2)] ,
53 (N/ 2) * s i z e o f (d ou b l e)) ;
54 memcpy(&B[N*(N/ 2) +(N/ 2) +row*N] , &B22 [row *(N/ 2)] ,
55 (N/ 2) * s i z e o f (d ou b l e)) ;
56 . . .
57 memcpy(&C[row*N] , &C11 [row *(N/ 2)] ,
58 (N/ 2) * s i z e o f (d ou b l e)) ;
59 memcpy(&C[N*(N/ 2) +(N/ 2) +row*N] , &C22 [row *(N/ 2)] ,
60 (N/ 2) * s i z e o f (d ou b l e)) ;
61 . . .
62 }

Fig. 25. Intel MKL implementation of PMMTG-S employing 4 abstract
processors of t threads each and arranged in a 2 × 2 grid.

platform. HCLWattsUp API can provide following four types of
measures during the execution of an application:

• TIME—The execution time (seconds).
• DPOWER—The average dynamic power (watts).
• TENERGY—The total energy consumption (joules).
• DENERGY—The dynamic energy consumption (joules).

We confirm that the overhead due to the API is very minimal
and does not have any noticeable influence on the main mea-
surements. It is important to note that the power meter readings
are only processed if the measure is not hcl::TIME. Therefore,
for each measurement, we have two runs. One run for measuring
the execution time. And the other for energy consumption. The

1 vo id *dgemm (vo id * i n p u t){
2 i n t i = * (i n t *) i n p u t ;
3 o p e n b l a s s e t n u m t h r e a d s (t) ;
4 g o t o s e t n u m t h r e a d s (t) ;
5 omp se t num threads (t) ;
6 i f (i == 1){
7 cblas dgemm (CblasRowMajor , CblasNoTrans ,
8 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A11 , N/ 2 ,
9 B11 , N/ 2 , be ta0 , C11 , N/ 2) ;

10 cblas dgemm (CblasRowMajor , CblasNoTrans ,
11 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A12 , N/ 2 ,
12 B21 , N/ 2 , be ta1 , C11 , N/ 2) ;
13 }
14 . . .
15 i f (i == 4){
16 cblas dgemm (CblasRowMajor , CblasNoTrans ,
17 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A21 , N/ 2 ,
18 B12 , N/ 2 , be ta0 , C22 , N/ 2) ;
19 cblas dgemm (CblasRowMajor , CblasNoTrans ,
20 CblasNoTrans , N/ 2 , N/ 2 , N/ 2 , a lpha , A22 , N/ 2 ,
21 B22 , N/ 2 , be ta1 , C22 , N/ 2) ;
22 }
23 }
24 i n t main () {
25 i n t row ;
26 # pragma omp p a r a l l e l f o r num threads (4* t)
27 f o r (row = 0 ; row < (N/ 2) ; row ++) {
28 memcpy(&A11 [row *(N/ 2)] , &A[row*N] ,
29 (N/ 2) * s i z e o f (d ou b l e)) ;
30 memcpy(&A22 [row *(N/ 2)] , &A[N*(N/ 2) +(N/ 2) +row*N] ,
31 (N/ 2) * s i z e o f (d ou b l e)) ;
32 . . .
33 memcpy(&B11 [row *(N/ 2)] , &B[row*N] ,
34 (N/ 2) * s i z e o f (d ou b l e)) ;
35 memcpy(&B22 [row *(N/ 2)] , &B[N*(N/ 2) +(N/ 2) +row*N] ,
36 (N/ 2) * s i z e o f (d ou b l e)) ;
37 . . .
38 memcpy(&C11 [row *(N/ 2)] , &C[row*N] ,
39 (N/ 2) * s i z e o f (d ou b l e)) ;
40 memcpy(&C22 [row *(N/ 2)] , &C[N*(N/ 2) +(N/ 2) +row*N] ,
41 (N/ 2) * s i z e o f (d ou b l e)) ;
42 . . .
43 }
44

45 p t h r e a d t t1 , . . . , t 4 ;
46 i n t i 1 = 1 , . . . , i 4 = 4 ;
47 p t h r e a d c r e a t e (& t1 , NULL, dgemm , &i 1) ;
48 . . .
49 p t h r e a d c r e a t e (& t4 , NULL, dgemm , &i 4) ;
50 p t h r e a d j o i n (t4 , NULL) ;
51 . . .
52 p t h r e a d j o i n (t1 , NULL) ;
53

54 # pragma omp p a r a l l e l f o r num threads (4* t)
55 f o r (row = 0 ; row < (N/ 2) ; row ++) {
56 memcpy(&A[row*N] , &A11 [row *(N/ 2)] ,
57 (N/ 2) * s i z e o f (d ou b l e)) ;
58 memcpy(&A[N*(N/ 2) +(N/ 2) +row*N] , &A22 [row *(N/ 2)] ,
59 (N/ 2) * s i z e o f (d ou b l e)) ;
60 . . .
61 memcpy(&B[row*N] , &B11 [row *(N/ 2)] ,
62 (N/ 2) * s i z e o f (d ou b l e)) ;
63 memcpy(&B[N*(N/ 2) +(N/ 2) +row*N] , &B22 [row *(N/ 2)] ,
64 (N/ 2) * s i z e o f (d ou b l e)) ;
65 . . .
66 memcpy(&C[row*N] , &C11 [row *(N/ 2)] ,
67 (N/ 2) * s i z e o f (d ou b l e)) ;
68 memcpy(&C[N*(N/ 2) +(N/ 2) +row*N] , &C22 [row *(N/ 2)] ,
69 (N/ 2) * s i z e o f (d ou b l e)) ;
70 . . .
71 }
72 }

Fig. 26. OpenBLAS implementation of PMMTG-S employing 4 abstract
processors of t threads each and arranged in a 2 × 2 grid.

following example illustrates the use of statistical methods to
measure the dynamic energy consumption during the execution
of an application.

The API is confined in the hcl namespace. Lines 10–12
construct the Wattsup object. The inputs to the constructor are

20

1 i n t row ;
2 # pragma omp p a r a l l e l f o r num threads (p* t)
3 f o r (row = 0 ; row < N/ p ; row ++) {
4 memcpy(&A1 [row*N] , &A[row*N] ,
5 N* s i z e o f (d ou b l e)) ;
6 . . .
7 memcpy(&Ap [row*N] , &A[(p−1)*N*(N/ p) +row*N] ,
8 N* s i z e o f (d ou b l e)) ;
9 memcpy(&C1 [row*N] , &C[row*N] ,

10 N* s i z e o f (d ou b l e)) ;
11 . . .
12 memcpy(&Cp [row*N] , &C [(p−1)*N*(N/ p) +row*N] ,
13 N* s i z e o f (d ou b l e)) ;
14 }
15

16 # pragma omp p a r a l l e l s e c t i o n s num threads (p* t)
17 {
18 # pragma omp s e c t i o n / / p r o c e s s o r 1
19 {
20 m k l s e t n u m t h r e a d s l o c a l (t) ;
21 cblas dgemm (CblasRowMajor , CblasNoTrans ,
22 CblasNoTrans , N/ p , N, N, a lpha , A1 , N,
23 B , N, be t a , C1 , N) ;
24 }
25 . . .
26 # pragma omp s e c t i o n / / p r o c e s s o r p
27 {
28 m k l s e t n u m t h r e a d s l o c a l (t) ;
29 cblas dgemm (CblasRowMajor , CblasNoTrans ,
30 CblasNoTrans , N/ p , N, N, a lpha , Ap , N,
31 B , N, be t a , Cp , N) ;
32 }
33 }
34

35 # pragma omp p a r a l l e l f o r num threads (p* t)
36 f o r (row = 0 ; row < N/ p ; row ++)
37 {
38 memcpy(&A[row*N] , &A1 [row*N] ,
39 N* s i z e o f (d ou b l e)) ;
40 . . .
41 memcpy(&A[(p−1)*N*(N/ p) +row*N] , &Ap [row*N] ,
42 N* s i z e o f (d ou b l e)) ;
43 memcpy(&C[row*N] , &C1 [row*N] ,
44 N* s i z e o f (d ou b l e)) ;
45 . . .
46 memcpy(&C [(p−1)*N*(N/ p) +row*N] , &Cp [row*N] ,
47 N* s i z e o f (d ou b l e)) ;
48 }

Fig. 27. Intel MKL implementation of PMMTG-H employing p abstract
processors of t threads each.

the paths to the scripts and their arguments that read the USB
serial devices containing the readings of the power meters.

The principal method of Wattsup class is execute. The inputs
to this method are the type of measure, the path to the executable
executablePath, the arguments to the executable executableArgs
and the statistical thresholds (pIn) The outputs are the achieved
statistical confidence pOut, the estimators, the sample mean (sam-
pleMean) and the standard deviation (sd) calculated during the
execution of the executable.

The execute method repeatedly invokes the executable until
one of the following conditions is satisfied:

• The maximum number of repetitions specified in
maxRepeats is exceeded.

• The sample mean is within maxStdError percent of the
confidence interval cl. The confidence interval of the mean
is estimated using Student’s t-distribution.

• The maximum allowed time maxElapsedT ime speci-
fied in seconds has elapsed.

If any one of the conditions are not satisfied, then a
return code of 0 is output suggesting that statistical con-
fidence has not been achieved. If statistical confidence has

1

2 vo id f f t w 1 d (c o n s t i n t s ign , c o n s t i n t m,
3 c o n s t i n t n , f f tw complex * X, f f tw complex * Y)
4 {
5 i n t r ank = 1 , howmany = m;
6 i n t s [] = {n} ;
7 i n t i d i s t = n , o d i s t = n ;
8 i n t i s t r i d e = 1 , o s t r i d e = 1 ;
9 i n t * inembed = s , *onembed = s ;

10 f f t w p l a n my plan = f f t w p l a n m a n y d f t (
11 rank , s , howmany ,
12 X, inembed , i s t r i d e , i d i s t ,
13 Y, onembed , o s t r i d e , o d i s t ,
14 s ign , FFTW ESTIMATE) ;
15 f f t w e x e c u t e (my plan) ;
16 f f t w d e s t r o y p l a n (my plan) ;
17 r e t u r n ;
18 }
19

20 i n t
21 f f t w 2 d (c o n s t i n t s ign , c o n s t i n t N, c o n s t i n t p ,
22 c o n s t u n s i g n e d i n t nt , c o n s t u n s i g n e d i n t b l o c k S i z e ,
23 f f tw complex * X)
24 {
25 # pragma omp p a r a l l e l s e c t i o n s num threads (p)
26 {
27 # pragma omp s e c t i o n
28 {
29 f f t w 1 d (s ign , N/ p , N, X, X) ;
30 }
31 . . .
32 # pragma omp s e c t i o n
33 {
34 f f t w 1 d (s ign , N−(p−1) * (N/ p) , N,
35 &X[(p−1) * (N/ p) *N] , &X[(p−1) * (N/ p) *N]) ;
36 }
37 }
38

39 h c l t r a n s p o s e b l o c k (X, 0 , N, N, nt , b l o c k S i z e) ;
40

41 # pragma omp p a r a l l e l s e c t i o n s num threads (p)
42 {
43 # pragma omp s e c t i o n
44 {
45 f f t w 1 d (s ign , N/ p , N, X, X) ;
46 }
47 . . .
48 # pragma omp s e c t i o n
49 {
50 f f t w 1 d (s ign , N−(p−1) * (N/ p) , N,
51 &X[(p−1) * (N/ p) *N] , &X[(p−1) * (N/ p) *N]) ;
52 }
53 }
54

55 h c l t r a n s p o s e b l o c k (X, 0 , N, N, nt , b l o c k S i z e) ;
56 }

Fig. 28. Intel MKL implementation of PFFTTG-H employing p abstract
processors of t threads each.

been achieved, then the number of repetitions performed, time
elapsed and the final relative standard error is returned in
the output argument pOut. At the same time, the sample
mean and standard deviation are returned. For our experiments,
we use values of (1000, 95%, 2.5%, 3600) for the parame-
ters (maxRepeats, cl,maxStdError,maxElapsedT ime) re-
spectively. Since we use Student’s t-distribution for the calculation
of the confidence interval of the mean, we confirm specifically that
the observations follow normal distribution by plotting the density
of the observations using R tool.

9.6 Experimental Methodology to Determine the Sam-
ple Mean

We followed the methodology described below to make sure the
experimental results are reliable:

21

1 vo id h c l t r a n s p o s e s c a l a r b l o c k (f f tw complex * X1 ,
2 f f tw complex * X2 , c o n s t i n t i , c o n s t i n t j ,
3 c o n s t i n t N, c o n s t i n t b l o c k s i z e)
4 {
5 i n t p , q ;
6 f o r (p = 0 ; p < min (N−i , b l o c k s i z e) ; p ++) {
7 f o r (q = 0 ; q < min (N−j , b l o c k s i z e) ; q ++) {
8 i n t i nd ex 1 = i *N+ j + p*N+q ;
9 i n t i nd ex 2 = j *N+ i + q*N+p ;

10

11 i f (i nde x1 >= in de x2)
12 c o n t i n u e ;
13

14 d oub l e tmpr = X1 [p*N+q] [0] ;
15 d oub l e tmpi = X1 [p*N+q] [1] ;
16 X1 [p*N+q] [0] = X2 [q*N+p] [0] ;
17 X1 [p*N+q] [1] = X2 [q*N+p] [1] ;
18 X2 [q*N+p] [0] = tmpr ;
19 X2 [q*N+p] [1] = tmpi ;
20 }
21 }
22 }
23

24 vo id h c l t r a n s p o s e b l o c k (f f tw complex * X, c o n s t i n t s t a r t ,
25 c o n s t i n t end , c o n s t i n t n ,
26 c o n s t u n s i g n e d i n t nt , c o n s t i n t b l o c k s i z e)
27 {
28 i n t i , j ;
29 # pragma omp p a r a l l e l f o r s h a r e d (X) p r i v a t e (i , j)

num threads (n t)
30 f o r (i = 0 ; i < end ; i += b l o c k s i z e) {
31 f o r (j = 0 ; j < end ; j += b l o c k s i z e) {
32 h c l t r a n s p o s e s c a l a r b l o c k (
33 &X[s t a r t + i *N + j] ,
34 &X[s t a r t + j *N + i] ,
35 i , j , N, b l o c k s i z e) ;
36 }
37 }
38 }

Fig. 29. Transpose of square matrix of size n× n using blocking.

• The server is fully reserved and dedicated to these exper-
iments during their execution. We also made certain that
there are no drastic fluctuations in the load due to abnormal
events in the server by monitoring its load continuously for
a week using the tool sar. Insignificant variation in the load
was observed during this monitoring period suggesting
normal and clean behaviour of the server.

• An application during its execution is bound to the physi-
cal cores using the numactl tool.

• To obtain a data point, the application is repeatedly exe-
cuted until the sample mean lies in the 95% confidence
interval with precision of 0.025 (2.5%). For this purpose,
we use Student’s t-test assuming that the individual ob-
servations are independent and their population follows
the normal distribution. We verify the validity of these
assumptions using Pearson’s chi-squared test. When we
mention a single number such as execution time (seconds)
or floating-point performance (in MFLOPs or GFLOPs),
we imply the sample mean determined using the Student’s
t-test.
The function MeanUsingT test, shown in Algorithm 1,
determines the sample mean for a data point. For each data
point, the function repeatedly executes the application app
until one of the following three conditions is satisfied:

1) The maximum number of repetitions (maxReps) is
exceeded (Line 3).

2) The sample mean falls in the confidence interval (or
the precision of measurement eps is achieved) (Lines
13-15).

1 # i n c l u d e <w a t t s u p . hpp>
2 i n t main (i n t a rgc , c h a r ** a rgv)
3 {
4 s t d : : s t r i n g p a t h s T o M e t e r s [2] = {
5 ” / o p t / p o w e r t o o l s / b i n / w a t t s u p 1 ” ,
6 ” / o p t / p o w e r t o o l s / b i n / w a t t s u p 2 ” } ;
7 s t d : : s t r i n g a r g s T o M e t e r s [2] = {
8 ”−−i n t e r v a l =1” ,
9 ”−−i n t e r v a l =1” } ;

10 h c l : : Wat tsup w a t t s u p (
11 2 , pa thsToMete r s , a r g s T o M e t e r s
12) ;
13 h c l : : P r e c i s i o n pIn = {
14 maxRepeats , c l , maxElapsedTime , maxStdEr ro r
15 } ;
16 h c l : : P r e c i s i o n pOut ;
17 do ub l e sampleMean , sd ;
18 i n t r c = w a t t s u p . e x e c u t e (
19 h c l : : DENERGY, e x e c u t a b l e P a t h ,
20 e x e c u t a b l e A r g s , &pIn , &pOut ,
21 &sampleMean , &sd
22) ;
23 i f (r c == 0)
24 s t d : : c e r r << ” P r e c i s i o n NOT a c h i e v e d .\ n ” ;
25 e l s e
26 s t d : : c o u t << ” P r e c i s i o n a c h i e v e d .\ n ” ;
27 s t d : : c o u t << ”Max r e p e t i t i o n s ”
28 << pOut . reps max
29 << ” , E l a s p e d t ime ”
30 << pOut . t ime max rep
31 << ” , R e l a t i v e e r r o r ”
32 << pOut−eps−c o n v e r t e d−t o . pdf
33 << ” , Mean en e r gy ”
34 << sampleMean
35 << ” , S t a n d a r d D e v i a t i o n ”
36 << sd
37 << s t d : : e n d l ;
38 e x i t (EXIT SUCCESS) ;
39 }

Fig. 30. Example illustrating the use of HCLWattsUp API for measuring
the dynamic energy consumption

3) The elapsed time of the repetitions of application exe-
cution has exceeded the maximum time allowed (maxT
in seconds) (Lines 16-18).

So, for each data point, the function MeanUsingT test
returns the sample mean mean. The function Measure
measures the execution time using gettimeofday function.

• In our experiments, we set the minimum and maximum
number of repetitions, minReps and maxReps, to 15
and 100000. The values of maxT , cl, and eps are 3600,
0.95, and 0.025. If the precision of measurement is not
achieved before the completion of maximum number of
repeats, we increase the number of repetitions and also the
allowed maximum elapsed time. Therefore, we make sure
that statistical confidence is achieved for all the data points
that we use in our experiments.

9.7 List of PMC groups Provided by Likwid
The list of PMC groups provided by Likwid tool [52] on
HCLServer2 (S2) is shown in the Figure 31.

22

Solution Method 1 Function determining the mean of an experi-
mental run using Student’s t-test.

1: procedure MeanUsingTtest(app,minReps,maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run,
maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, repsOut ∈
Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← measure(TIME)
5: Execute(app)
6: et← measure(TIME)
7: reps← reps+ 1
8: etime← etime+ et− st
9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl cdf tdist Pinv(cl, reps− 1))

× gsl stats sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum
22: etimeOut← etime; mean← sum

reps
23: end procedure

TABLE 4
Specification of the Intel multicore CPU platform, HCLServer2.

Technical Specifications HCLServer2 (S2)
Processor Intel Haswell E5-2670V3
OS CentOS 7.2.1511
Core(s) per socket 12
Socket(s) 2
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Total main memory 64 GB
Power meter WattsUp Pro

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional comput-
ing,” Computer, no. 12, pp. 33–37, 2007.

1 $ l i k w i d−p e r f c t r −a
2

3 Group name D e s c r i p t i o n
4 −−−−−−−−−−− −−
5 BRANCH Branch p r e d i c t i o n miss r a t e / r a t i o
6 CACHES Cache bandwid th i n MBytes / s
7 CBOX CBOX r e l a t e d d a t a and m e t r i c s
8 CLOCK Power and Energy consumpt ion
9 DATA Load t o s t o r e r a t i o

10 ENERGY Power and Energy consumpt ion
11 FALSE SHARE F a l s e s h a r i n g
12 FLOPS AVX Packed AVX MFLOP/ s
13 HA Main memory bandwid th i n MBytes / s s een
14 from Home a g e n t
15 ICACHE I n s t r u c t i o n cache miss r a t e / r a t i o
16 L2 L2 cache bandwid th i n MBytes / s
17 L2CACHE L2 cache miss r a t e / r a t i o
18 L3 L3 cache bandwid th i n MBytes / s
19 L3CACHE L3 cache miss r a t e / r a t i o
20 MEM Main memory bandwid th i n MBytes / s
21 NUMA Loca l and remote memory a c c e s s e s
22 QPI QPI Link Layer d a t a
23 RECOVERY Recovery d u r a t i o n
24 SBOX Ring T r a n s f e r bandwid th
25 TLB DATA L2 d a t a TLB miss r a t e / r a t i o
26 TLB INSTR L1 I n s t r u c t i o n TLB miss r a t e / r a t i o
27 UOPS UOPs e x e c u t i o n i n f o
28 UOPS EXEC UOPs e x e c u t i o n
29 UOPS ISSUE UOPs i s s u e i n g
30 UOPS RETIRE UOPs r e t i r e m e n t
31 CYCLE ACTIVITY Cycle A c t i v i t i e s

Fig. 31. List of PMC groups provided by Likwid tool on HCLServer02

[2] R. Sen and D. A. Wood, “Energy-proportional computing: A new
definition,” Computer, vol. 50, no. 8, pp. 26–33, 2017.

[3] A. Lastovetsky and R. Reddy, “New model-based methods and algo-
rithms for performance and energy optimization of data parallel applica-
tions on homogeneous multicore clusters,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, April 2017.

[4] R. R. Manumachu and A. Lastovetsky, “Bi-objective optimization of
data-parallel applications on homogeneous multicore clusters for per-
formance and energy,” IEEE Transactions on Computers, vol. 67, no. 2,
pp. 160–177, 2018.

[5] R. Reddy Manumachu and A. L. Lastovetsky, “Design of self-adaptable
data parallel applications on multicore clusters automatically optimized
for performance and energy through load distribution,” Concurrency and
Computation: Practice and Experience, vol. 0, no. 0, p. e4958.

[6] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and S. Gob-
riel, “Energy-efficient thread assignment optimization for heterogeneous
multicore systems,” ACM Trans. Embed. Comput. Syst., vol. 14, no. 1,
Jan. 2015.

[7] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy efficiency of
multimedia applications in heterogeneous mobile multi-core processors,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1878–1889, Nov
2017.

[8] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and
partitioning for energy optimization in real-time multi-core systems,”
in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2011, pp. 948–953.

[9] G. Chen, K. Huang, J. Huang, and A. Knoll, “Cache partitioning
and scheduling for energy optimization of real-time mpsocs,” in 2013
IEEE 24th International Conference on Application-Specific Systems,
Architectures and Processors, June 2013, pp. 35–41.

[10] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of scheduling techniques for addressing shared resources in
multicore processors,” ACM Comput. Surv., vol. 45, no. 1, Dec. 2012.

[11] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, “Dynamic thermal
management through task scheduling,” in ISPASS 2008 - IEEE Inter-
national Symposium on Performance Analysis of Systems and software,
April 2008, pp. 191–201.

[12] R. Z. Ayoub and T. S. Rosing, “Predict and act: Dynamic thermal
management for multi-core processors,” in Proceedings of the 2009
ACM/IEEE International Symposium on Low Power Electronics and
Design, ser. ISLPED ’09. ACM, 2009, pp. 99–104.

[13] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operat-
ing system scheduling for performance-asymmetric multi-core architec-

23

tures,” in SC ’07: Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, Nov 2007, pp. 1–11.

[14] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations
on multicore performance symmetry,” in 2007 Design, Automation Test
in Europe Conference Exhibition, April 2007, pp. 1–6.

[15] Intel Math Kernel Library (Intel MKL), “Intel MKL FFT - fast fourier
transforms,” 2019. [Online]. Available: https://software.intel.com/en-us/
mkl

[16] Z. Xianyi, “Openblas, an optimized blas library,” 2019. [Online].
Available: http://www.netlib.org/blas/

[17] FFTW, “Fastest fourier transform in the west,” 2019. [Online].
Available: http://www.fftw.org/

[18] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky., “ZZGem-
mOOC: Multi-GPU out-of-core routines for dense matrix multiplization,”
2019. [Online]. Available: https://git.ucd.ie/hcl/zzgemmooc.git

[19] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-core
implementation for accelerator kernels on heterogeneous clouds,” The
Journal of Supercomputing, vol. 74, no. 2, pp. 551–568, 2018.

[20] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky, “Performance
optimization of multithreaded 2d fast fourier transform on multicore
processors using load imbalancing parallel computing method,” IEEE
Access, vol. 6, pp. 64 202–64 224, 2018.

[21] H. Khaleghzadeh, M. Fahad, A. Shahid, R. Reddy, and A. Lastovetsky,
“Bi-objective optimization of data-parallel applications on heterogeneous
hpc platforms for performance and energy through workload
distribution,” CoRR, vol. abs/1907.04080, 2019. [Online]. Available:
http://arxiv.org/abs/1907.04080

[22] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving performance
isolation on chip multiprocessors via an operating system scheduler,”
in Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, ser. PACT ’07. IEEE Computer
Society, 2007, pp. 25–38.

[23] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Pro-
ceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS XV.
ACM, 2010, pp. 129–142.

[24] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-44. ACM, 2011, pp. 362–373.

[25] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,
“Balancing dram locality and parallelism in shared memory cmp sys-
tems,” in IEEE International Symposium on High-Performance Comp
Architecture, Feb 2012, pp. 1–12.

[26] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan, “Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems,” in 2008 IEEE
14th International Symposium on High Performance Computer Architec-
ture, Feb 2008, pp. 367–378.

[27] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “Rapidmrc:
Approximating l2 miss rate curves on commodity systems for online
optimizations,” in Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIV. ACM, 2009, pp. 121–132.

[28] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The im-
pact of memory subsystem resource sharing on datacenter applications,”
in Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. ACM, 2011, pp. 283–294.

[29] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44. ACM,
2011, pp. 248–259.

[30] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of energy-cognizant scheduling techniques,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1447–1464, July
2013.

[31] I. Kadayif, M. Kandemir, and I. Kolcu, “Exploiting processor workload
heterogeneity for reducing energy consumption in chip multiprocessors,”
in Proceedings Design, Automation and Test in Europe Conference and
Exhibition, vol. 2, Feb 2004, pp. 1158–1163 Vol.2.

[32] M. Kondo, H. Sasaki, and H. Nakamura, “Improving fairness, throughput
and energy-efficiency on a chip multiprocessor through dvfs,” SIGARCH
Comput. Archit. News, vol. 35, no. 1, pp. 31–38, Mar. 2007.

[33] R. Watanabe, M. Kondo, H. Nakamura, and T. Nanya, “Power reduction
of chip multi-processors using shared resource control cooperating with

dvfs,” in 2007 25th International Conference on Computer Design, Oct
2007, pp. 615–622.

[34] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maximizing power
efficiency with asymmetric multicore systems,” ACM Queue, vol. 7,
no. 10, pp. 30:30–30:45, Nov. 2009.

[35] S. Herbert, S. Garg, and D. Marculescu, “Exploiting process variability
in voltage/frequency control,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 8, pp. 1392–1404, Aug 2012.

[36] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined
dvfs and mapping exploration for lifetime and soft-error susceptibility
improvement in mpsocs,” in 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2014, pp. 1–6.

[37] H. F. Sheikh, I. Ahmad, and D. Fan, “An evolutionary technique for
performance-energy-temperature optimized scheduling of parallel tasks
on multi-core processors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 3, pp. 668–681, March 2016.

[38] A. Abdi, A. Girault, and H. R. Zarandi, “Erpot: A quad-criteria schedul-
ing heuristic to optimize execution time, reliability, power consumption
and temperature in multicores,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1–1, 2019.

[39] B. Subramaniam and W. C. Feng, “Statistical power and performance
modeling for optimizing the energy efficiency of scientific computing,”
ser. IEEE/ACM Int’l Conference on Cyber, Physical and Social Comput-
ing (CPSCom), 2010.

[40] J. M. Marszalkowski, M. Drozdowski, and J. Marszalkowski, “Time
and energy performance of parallel systems with hierarchical memory,”
Journal of Grid Computing, vol. 14, no. 1, pp. 153–170, 2016.

[41] A. Chakrabarti, S. Parthasarathy, and C. Stewart, “A pareto framework
for data analytics on heterogeneous systems: Implications for green
energy usage and performance,” in Parallel Processing (ICPP), 2017
46th International Conference on. IEEE, 2017, pp. 533–542.

[42] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system. ACM, 2000.

[43] T. Heath, B. Diniz, B. Horizonte, E. V. Carrera, and R. Bianchini,
“Energy conservation in heterogeneous server clusters,” in 10th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming (PPoPP). ACM, 2005, pp. 186–195.

[44] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-
system power analysis and modeling for server environments,” in In
Proceedings of Workshop on Modeling, Benchmarking, and Simulation,
2006, pp. 70–77.

[45] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in 34th Annual International Symposium on
Computer architecture. ACM, 2007, pp. 13–23.

[46] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “De-
composable and responsive power models for multicore processors using
performance counters,” in Proceedings of the 24th ACM International
Conference on Supercomputing. ACM, 2010, pp. 147–158.

[47] W. Dargie, “A stochastic model for estimating the power consumption of
a processor,” IEEE Transactions on Computers, vol. 64, no. 5, 2015.

[48] K. Miettinen, Nonlinear multiobjective optimization. Kluwer, 1999.
[49] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley

& Sons, 2009, vol. 74.
[50] HCL, “HCLWattsUp: API for power and energy measurements using

WattsUp Pro Meter,” 2016. [Online]. Available: http://git.ucd.ie/hcl/
hclwattsup

[51] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky,
“A comparative study of methods for measurement of energy of
computing,” Energies, vol. 12, no. 11, 2019. [Online]. Available:
https://www.mdpi.com/1996-1073/12/11/2204

[52] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in 2010
39th International Conference on Parallel Processing Workshops. IEEE,
Sep. 2010, pp. 207–216.

[53] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam, “Reducing
data tlb power via compiler-directed address generation,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 312–324, 2007.

[54] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address
translation,” in 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), March 2016, pp. 631–643.

[55] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant memory
mappings for fast access to large memories,” in Proceedings of the 42Nd

https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
http://www.netlib.org/blas/
http://www.fftw.org/
https://git.ucd.ie/hcl/zzgemmooc.git
http://arxiv.org/abs/1907.04080
http://git.ucd.ie/hcl/hclwattsup
http://git.ucd.ie/hcl/hclwattsup
https://www.mdpi.com/1996-1073/12/11/2204

24

Annual International Symposium on Computer Architecture, ser. ISCA
’15. ACM, 2015, pp. 66–78.

	1 Introduction
	2 Related Work
	2.1 Performance Optimization
	2.2 Energy Optimization
	2.3 Optimization for Performance and Energy
	2.4 Energy Predictive Models of Computation

	3 Multi-Objective Optimization: Background
	4 Solution Method Solving Bi-objective Optimization Problem on a Single Multicore CPU
	5 Parallel Matrix-Matrix Multiplication
	5.1 Implementation of PMMTG-H Based on OpenBLAS DGEMM

	6 Parallel 2D Fast Fourier Transform
	6.1 PFFTTG-H: Using Horizontal Decomposition of Signal Matrix M
	6.2 PFFTTG-V: Using Vertical Decomposition of Signal Matrix M
	6.3 Implementation of PFFTTG-H Based on FFTW

	7 Experimental Results and Discussion
	7.1 Parallel Matrix-Matrix Multiplication Using OpenBLAS DGEMM and Intel MKL DGEMM
	7.1.1 Performance Optimization on a Single Socket Multicore CPU
	7.1.2 Performance Optimization on a Dual-socket Multicore CPU
	7.1.3 Energy Optimization on a Single Socket Multicore CPU
	7.1.4 Energy Optimization on a Dual-socket Multicore CPU

	7.2 Parallel 2D Fast Fourier Transform Using FFTW and Intel MKL FFT
	7.2.1 Performance Optimization on a Single Socket Multicore CPU
	7.2.2 Performance Optimization on Dual-socket Multicore CPUs
	7.2.3 Energy Optimization on a Single Socket Multicore CPU
	7.2.4 Energy Optimization on a Dual-socket Multicore CPU

	7.3 Bi-Objective Optimization for Performance and Dynamic Energy
	7.3.1 Single Socket Multicore CPU
	7.3.2 Dual-socket Multicore CPUs

	7.4 Analysis Using Performance and Dynamic Energy Models

	8 Conclusion
	9 Supplementary Material
	9.1 Rationale Behind Using Dynamic Energy Consumption Instead of Total Energy Consumption
	9.2 Shared Memory Implementations of PMMTG Algorithms
	9.2.1 Intel MKL implementation of PMMTG-V
	9.2.2 OpenBLAS implementation of PMMTG-V
	9.2.3 Intel MKL implementation of PMMTG-S
	9.2.4 OpenBLAS implementation of PMMTG-S
	9.2.5 Intel MKL implementation of PMMTG-H

	9.3 Shared Memory Implementations of PFFT Algorithms
	9.3.1 Intel MKL implementation of PFFTTG-H

	9.4 Transpose Routine Invoked in PFFT Algorithms
	9.5 Application Programming Interface (API) for Measurements Using External Power Meter Interfaces (HCLWattsUp)
	9.6 Experimental Methodology to Determine the Sample Mean
	9.7 List of PMC groups Provided by Likwid

	References

