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Abstract—Traditional traffic optimization solutions assume
that the graph structure of road networks is static, missing
opportunities for further traffic flow optimization. We are in-
terested in optimizing traffic flows as a new type of graph-based
problem, where the graph structure of a road network can adapt
to traffic conditions in real time. In particular, we focus on the
dynamic configuration of traffic-lane directions, which can help
balance the usage of traffic lanes in opposite directions. The rise
of connected autonomous vehicles offers an opportunity to apply
this type of dynamic traffic optimization at a large scale. The
existing techniques for optimizing lane-directions are however
not suitable for dynamic traffic environments due to their high
computational complexity and the static nature.

In this paper, we propose an efficient traffic optimization
solution, called Coordinated Learning-based Lane Allocation
(CLLA), which is suitable for dynamic configuration of lane-
directions. CLLA consists of a two-layer multi-agent architecture,
where the bottom-layer agents use a machine learning technique
to find a suitable configuration of lane-directions around indi-
vidual road intersections. The lane-direction changes proposed
by the learning agents are then coordinated at a higher level
to reduce the negative impact of the changes on other parts
of the road network. Our experimental results show that CLLA
can reduce the average travel time significantly in congested road
networks. We believe our method is general enough to be applied
to other types of networks as well.

Index Terms—Graphs, Spatial Database, Reinforcement
Learning

I. INTRODUCTION

The goal of traffic optimization is to improve traffic flows in
road networks. Traditional solutions normally assume that the
structure of road networks is static regardless of how traffic can
change at real time [1], [2]. A less-common way to optimize
traffic is by performing limited changes to road networks
which when is-use are deployed in very small scale. We focus
on dynamic lane-direction changes, which can help balance the
usage of traffic lanes in many circumstances, e.g. as soon as
when the traffic lanes in one direction become congested while
the traffic lanes in the opposite direction are underused [3],
[4]. Unfortunately, the existing techniques for optimizing lane-
directions are not suitable for dynamic traffic environment at
large scale due to their high computational complexity [5]–[7].
We develop an efficient solution for optimizing lane-directions
in highly dynamic traffic environments. Our solution is based
on an algorithm that modifies the property of a road network

graph for improving traffic flow in the corresponding road
network, introducing a new graph problem.

(a) Traffic before lane-
direction change

(b) Traffic after lane-
direction change

Figure 1: The impact of lane-direction change on traffic flow. There
are 20 vehicles moving in the north-bound direction and 2 vehicles
moving in the south-bound direction.

The impact of dynamic lane-direction configurations can be
shown in the following example, where 20 vehicles are moving
north-bound and 2 vehicles are moving south-bound (Figure 1)
at a certain time. In Figure 1a, there are 4 north-bound lanes
and 4 south-bound lanes. Due to the large number of vehicles
and the limited number of lanes, the north-bound traffic is
highly congested. At the same time, the south-bound vehicles
are moving at a high speed as the south-bound lanes are almost
empty. Figure 1b shows the dramatic change of traffic flow
after lane-direction changes are applied when congestion is
observed, where the direction of E, F and G is reversed. The
north-bound vehicles are distributed into the additional lanes,
resulting in a higher average speed of the vehicles. At the
same time, the number of south-bound lanes is reduced to 1.
Due to the low number of south-bound vehicles, the average
speed of south-bound traffic is not affected. The lane-direction
change helps improve the overall traffic efficiency in this case.
This observation was used by traffic engineers of certain road
segments for many years and applied in a more static way.
We aim to scale this to extreme levels in time and space.
The benefit of dynamic lane-direction changes can also be
observed in preliminary tests, where we compare the average
travel time of vehicles in two scenarios, one uses dynamic
lane-direction configurations, another uses static lane-direction
configurations. The dynamic lane-direction configurations are
computed with a straightforward solution (Section IV). The
result shows that lane-direction changes reduce travel times
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Figure 2: The average travel time of vehicles when using static and
dynamic lane-direction configurations.

by 14% on average when the traffic increases (see Figure 2).
In traffic engineering terms this is a dramatic reduction.

Despite their potential benefit, dynamic lane-direction
changes cannot be easily applied to existing traffic systems
as they require additional signage and safety features [8].
The emergence of connected autonomous vehicles (CAVs) [9]
however can make dynamic lane-direction changes a common
practice in the future. Our previous work shows that CAVs
have the potential to enable innovative traffic management
solutions [10]. Compared to human-driven vehicles, CAVs are
more capable of responding to a given command in a timely
manner [6]. CAVs can also provide detailed traffic telemetry
data to a central traffic management system in real time. This
helps the system to adapt to dynamic traffic conditions.

We formulate lane allocation based on real-time traffic as
a new graph problem with the aim to find a new graph
G′t from a road network (G) (i.e., dynamically optimize the
graph) such that total travel time of all vehicles in the road
network is minimized. In order to optimize the flow of the
whole network, all the traffic lanes in the network must
be considered. In many circumstances, one cannot simply
allocate more traffic lanes at a road segment for a specific
direction when there is more traffic demand in the direction.
This is because a lane-direction change at a road segment
can affect not only the flow in both directions at the road
segment but also the flow at other road segments. Due to
the complexity of the problem, the computation time can be
very high with the existing approaches as they aim to find the
optimal configurations based on linear programming [5]–[7],
and hence are not suitable for frequent recomputation over
large networks.

To address the above mentioned issues, we propose a
light-weight and effective framework, called a Coordinated
Learning-based Lane Allocation (CLLA) framework, for op-
timizing lane-directions in dynamic traffic environments. The
CLLA approach finds the configurations that effectively im-
prove the traffic efficiency of the whole network, while keeping
the computation cost of the solution low. The key idea is that
traffic optimization can be decoupled into two processes: i)
a local process that proposes lane-direction changes based
on local traffic conditions around road intersections, and b)
a global process that evaluates the proposed lane-direction

Figure 3: The hierarchical architecture of our traffic management
solution based on lane-direction changes.

changes based on their large scale impact.
The architecture of our hierarchical solution is illustrated in

Figure 3. The bottom layer consists of a set of autonomous
agents that operate at the intersection level. An agent finds
suitable lane-direction changes for the road segments that
connect to a specific intersection. The agent uses reinforcement
learning [11], which helps determine the best changes based
on multiple dynamic factors. The agents send the proposed
lane-direction changes to the upper layer, which consists of a
coordinating agent. The coordinating agent maintains a data
structure, named Path Dependency Graph (PDG), which is
built based on the trip information of connected autonomous
vehicles. With the help of the data structure, the coordinat-
ing agent evaluates the global impact of the proposed lane-
direction changes and decides what changes should be made
to the traffic lanes. The decision is sent back to the bottom
layer agents, which will make the changes accordingly.

The main contributions of our work are as follows:
• We formulate dynamic lane allocation as a new graph

problem (Dynamic Resource Allocation problem).
• We propose a hierarchical multi-agent solution (called

CLLA) for efficient dynamic optimization of lane-
directions that uses reinforcement learning to capture
dynamic changes in the traffic.

• We introduce an algorithm and innovative data structure
(called path dependency graph) for coordinating lane-
direction changes at the global level.

• Extensive experimental evaluation shows that CLLA
significantly outperforms other traffic management so-
lutions, making it a viable tool for mitigating traffic
congestion for future traffic networks.

II. RELATED WORK

A. Traffic Optimization Algorithms

Existing traffic optimization algorithms are commonly based
on traffic flow optimization with linear programming [2], [12],
[13]. The algorithms are suitable for the situations where traffic
demand and congestion levels are relatively static. When there
is a significant change in the network, the optimal solutions
normally need to be re-computed from scratch. Due to the
high computational complexity of finding an optimal solution,
the algorithms may not be suitable for highly dynamic traffic
environments.

With the rise of reinforcement learning [14], a new gen-
eration of traffic optimization algorithms have emerged [15]–
[17]. In reinforcement learning, a learning agent can find the



rules to achieve an objective by repeatedly interacting with
an environment. The interactive process can be modelled as a
finite Markov Decision Process, which requires a set of states
S and a set of actions A per state. Given a state s of the
environment, the agent takes an action a. As the result of the
action, the environment state may change to s′ with a reward r.
The agent then decides on the next action in order to maximize
the reward in the next round. Reinforcement learning-based
approaches can suggest the best actions for traffic optimization
given a combination of network states, such as the queue
size at intersections [18], [19]. They have an advantage over
linear programming-based approaches, since if trained well,
they can optimize traffic in a highly dynamic network. In other
words, there is no need to re-train the agent when there is a
change in the network. For example, Arel et al. show that a
multi-agent system can optimize the timing of adaptive traffic
lights based on reinforcement learning [19]. Different to the
existing approaches, our solution uses reinforcement learning
for optimizing lane-directions.

A common problem with reinforcement learning is that the
state space can grow exponentially when the dimensionality of
the state space grows linearly. For example, let us assume that
the initial state space only has one dimension, the queue size
at intersections. If we add two dimensions to the state space,
traffic signal phase and traffic lane configuration, there will be
three dimensions and the state space is four times as large as
the original state space. The fast growth of the state space can
make reinforcement learning unsuitable for real deployments.
This problem is known as the curse of dimensionality [20]. A
common way to mitigate the problem is by using a function
approximator such as a neural network. Such techniques have
been mainly used for dynamic traffic signal control [21], [22],
while we extend the use of the technique to dynamic lane-
direction configurations.

Many existing traffic optimization solutions use model-
based reinforcement learning, where one needs to know the
exact probability that a specific state transits to another specific
state as a result of a specific action [23], [24]. Nonetheless,
such an assumption is unrealistic since the full knowledge of
state transition probabilities can hardly be known for highly
complex traffic systems. Different to model-based approaches,
our optimization solution employs a model-free algorithm, Q-
learning [25], which does not require such knowledge and
hence is much more applicable to real traffic systems.

Coordination of multi-agent reinforcement learning can be
achieved through a joint state space or through a coordination
graph [26]. Such techniques however require agents to be
trained on the targeted network. Since our approach uses an
implicit mechanism to coordinate, once an agent is trained, it
can be used in any road network.

B. Lane-direction Configurations

Research shows that dynamic lane-direction changes can
be an effective way to improve traffic efficiency [3]. However,
existing approaches for optimizing lane-directions are based
on linear programming [5]–[7], [27], which are unsuitable for

dynamic traffic environments dues to their high computational
complexity. For example, Chu et al. use linear programming
to make lane-allocation plans by considering the schedule of
connected autonomous vehicles [6]. Their experiments show
that the total travel time can be reduced. However, the compu-
tational time grows exponentially when the number of vehicles
grows linearly, which can make the approach unsuitable for
highly dynamic traffic environments. Other approaches per-
form optimization based on two processes that interact with
each other [5], [7], [27]. One process is for minimizing the
total system cost by reversing lane directions while the other
process is for making route decisions for individual vehicles
such that all the vehicles can minimize their travel times. To
find a good optimization solution, the two processes need to
interact with each other iteratively. The high computational
cost of the approaches can make them unsuitable for dynamic
traffic optimizations. Furthermore, all these approaches assume
exact knowledge of traffic demand over the time horizon
is known beforehand; this assumption does not hold when
traffic demand is stochastic [28]. On the contrary, CLLA
is lightweight and can adapt to highly dynamic situations
based on reinforcement learning. The learning agents can
find the effective lane-direction changes for individual road
intersections even when traffic demand changes dramatically.

C. Traffic Management with Connected Autonomous Vehicles

Some recent development of traffic management solutions
is tailored for the era of connected autonomous vehicles.
Telebpour and Mahmassani develop a traffic management
model that combines connected autonomous vehicles and
intelligent road infrastructures for improving traffic flow [29].
Guler et al. develop an approach to improve traffic efficiency
at intersection using connected autonomous vehicles [30]. We
use the CAVs as an opportunity for lane optimization. To the
best of our knowledge, we are the first to study dynamic
lane-direction changes at large scale networks in the era of
connected autonomous vehicles.

III. PROBLEM DEFINITION

In this section, we formalize the problem of traffic optimiza-
tion based on dynamic configuration of lane directions. Our
problem is similar to Network Design Problem [31], however
NDP is based on the assumption of knowledge of traffic
demand for whole time horizon at time zero and the output
network is designed for a common state. We try to configure
a graph (road network) at regular time intervals based on
real-time traffic, thus we name this problem, Dynamic Graph
Resource Allocation problem.

Let G(V,E) be a road network graph, where V is a set
of vertices and E is a set of edges. Let us assume that edge
e ∈ E connects between vertex x ∈ V and vertex y ∈ V . The
edge has three properties. The first property is the the total
number of lanes, ne, which is a constant number. The second
property is the number of lanes that start from x and end in y,
ne1 . The third property is the number of lanes in the opposite



direction (from y to x), ne2 . ne1 and ne2 can change but they
are always subject to the following constraint.

ne1 + ne2 = ne (1)

We assume that a CAV follows a pre-determined path based
on an origin-destination (O-D) pair. Let the number of unique
O-D pairs of the existing vehicles be k at a given time t. For
the ith (i <= k) O-D pair, let di,t be the traffic demand at
time t, i.e., the number of vehicles with the same O-D pair at
that time. The traffic demand can be stochastic. Let the travel
time of vehicle j with the ith O-D pair be TTi,j , which is the
duration for the vehicle to move from the origin to destination.

For a given time t, the average travel time of all the vehicles,
which will reach their destination during a time period T after
t, can be defined as

ATT<t,t+T> =

k∑
i=1

mi∑
j=1

TTi,j/

k∑
i=1

mi (2)

where mi is the number of vehicles with the ith O-D pair that
will complete their trips between t and t+ T .

We define and solve a version of the problem where
at frequent regular intervals we optimize travel time, while
changing the lane arrangement in all edges. We find a new
graph G′t(V,E

′) at a given time t from previous G at previous
time step. Let e′1, e

′
2 ∈ E′ and e′1 connects from vertex x to

vertex y and e′2 connects vertex y to vertex x. We find for
all edges the values of ne′1 and ne′2 , such that the average
travel time ATT<t,t+T> is minimized. We call this Dynamic
Resource Allocation problem.

IV. DEMAND-BASED LANE ALLOCATION (DLA)

When considering dynamic lane-direction changes, a
straightforward solution can use a centralized approach to
optimize lane-directions based on the full knowledge of traffic
demand, i.e., the number of vehicle paths that pass through
the road links. We call this solution Demand-based Lane
Allocation (DLA). Algorithm 1 shows the implementation (in
pseudo code) of such an idea to compute the configuration
of lane-directions. DLA allocates more lanes for a specific
direction when the average traffic demand per lane in the
direction is higher than the average traffic demand per lane
in the opposite direction. To specify the directions, we define
two terms, upstream and downstream. The terms are defined
as follows. Let us assume that all the vertices of the road
network graph are ordered by the identification number of the
vertices. Given two vertices, v1 and v2, and a direction that
points from v1 to v2, we say that the direction is upstream if
v1 is lower than v2 or downstream if v1 is higher than v2.

DLA first computes the traffic demand at the edges that are
on the path of the vehicles (Line 1-6). The traffic demand is
computed for the upstream direction (upe) and the downstream
direction (downe) separately. Then it quantifies the difference
of the average traffic demand per lane between the two
directions (Line 9-11). Based on the difference between the
two directions, DLA decides whether the number of lanes in

a specific direction needs to be increased (line number 11-
14). We should note that increasing the number of lanes in
one direction implies that the number of lanes in the opposite
direction is reduced. DLA only reduces the number of lanes
in a direction if the traffic demand in that direction is lower
than a threshold (Line 12). The complexity of the algorithm
is O(k|E|), where |E| is the number of edges in G and k is
the number of O-D pairs.

While straightforward to implement and effective, there are
two notable drawbacks of DLA. First, the algorithm does not
consider real-time traffic conditions, such as the queue length
at a given time, during optimization; the only information used
for optimization is (assumed apriori known) traffic demand
and exact knowledge of traffic demand is difficult to obtain in
dynamic road networks [28]. This can make the lane-direction
configuration less adaptive (and less applicable) to real-time
traffic conditions. Second, the lane-direction optimization for
individual road segments is performed individually, not consid-
ering the potential impact of a lane-direction change at a road
segment on other road segments in the same road network.
Therefore, a lane-direction change that helps improve traffic
efficiency at a road link may lead to the decrease of traffic
efficiency in other parts of the road network.

V. COORDINATED LEARNING-BASED LANE ALLOCATION
(CLLA)

To tackle the problems of the straightforward solution, we
propose a fundamentally different solution, a Coordinated
Learning-based Lane Allocation (CLLA) framework. CLLA
uses a machine learning technique to help optimize lane-
direction configurations, which allows the framework to adapt
to a high variety of real-time traffic conditions. In addition,
CLLA coordinates the lane-direction changes by considering
the impact of a potential lane-direction change on different
parts of the road network. DLA, on the other hand, does not
consider the global impact of lane-direction changes. Another
difference between the two is that DLA requires the full path
of vehicles to be known for computing traffic demand. As
detailed later, CLLA only needs to know partial information
about vehicle paths in addition to certain information about
real-time traffic conditions, such as intersection queue lengths
and lane configuration road segments which can be obtained
from inductive-loop traffic detectors.

CLLA uses a two-layer multi-agent architecture. The bot-
tom layer consists of learning agents that are responsible
for optimizing the direction of lanes connected to specific
intersections. Using the multi-agent approach can significantly
boost the speed of learning. The lane-direction changes that are
decided by the learning agents are aggregated and evaluated
by a coordinating agent at the upper layer, which will send the
globally optimized lane-direction configuration to the bottom
layer for making the changes.

A more detailed overview of CLLA is shown in Fig-
ure 4. As the figure shows, an agent in the bottom layer
only observes the local traffic condition around a specific
intersection. Agents make decisions on lane-direction changes



Algorithm 1: Demand-based Lane Allocation (DLA)
Input: A road network graph G(V,E).
Input: The set of paths. A path is a sequence of edges

on the shortest path between a specific
Origin-Destination (O-D) pair. The set of paths
includes the paths of all unique O-D pairs.

Input: The demands associated with the paths, where a
demand is the number of vehicles that follow a
specific path.

Input: th: demand threshold.
Input: g: minimal gap in traffic demand that can trigger

a lane-direction change.
1 foreach p ∈ paths do
2 foreach e ∈ p do
3 if p passes e in the upstream direction then
4 upe += demand of p

5 if p passes e in the downstream direction then
6 downe += demand of p

7 foreach e ∈ E do
8 minLoad ← min(upe, downe)
9 down′e ← downe / number of downstream lanes

10 up′e ← upe / number of upstream lanes

11 gap ← down′e − up′e
up′e + down′e

12 if minLoad < th then
13 if gap > g then
14 move one upstream lane to the set of

downstream lanes
15 if gap < −g then
16 move one downstream lane to the set of

upstream lanes
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Figure 4: An overview of the CLLA’s architecture

independently. Whenever an agent needs to make a lane-
direction change, it sends the proposed change to the co-
ordinating agent in the upper layer. The agents also send
certain traffic information to the upper layer periodically. The
information can help indicate whether there is an imbalance
between upstream traffic and downstream traffic at specific
road segments. The coordinating agent evaluates whether a
change would be beneficial at the global level. The evaluation
process involves a novel data structure, Path Dependency
Graph (PDG), to inform decisions sent from the bottom layer.
The coordinator may allow or deny a lane-direction change

request from the bottom-layer. It may also decide to make
further changes to lane-directions in addition to the requested
changes. After evaluation, the coordinating agent informs the
bottom-layer agents of the changes to be made.

Agents Coordinator Road Network

T
T

T

T
im

e

requests from agents

lane direction
 changes

buffer requests

Figure 5: The CLLA’s communication timeline between agents and
the coordinator

We should note that the coordinator does not need to
evaluate a lane-direction change request as soon as it arrives.
As shown in Figure 5, the coordinator evaluates the lane-
direction changes periodically. The time interval between the
evaluations is T . All the requests from the bottom-layer agents
are buffered during the interval. The exact value of the interval
needs to be adjusted case by case. A short interval may
increase the computational cost of the solution. A long interval
may decrease the effectiveness of the optimization.

A. CLLA Algorithm

Algorithm 2 shows the entire optimization process of
CLLA. During one iteration of the algorithm, each learning
agent finds the lane-direction changes around a specific road
intersection using the process detailed in Section V-B. The
proposed change is stored as an edge-change pair, which is
buffered in the system (Line 5). When it is time to evaluate
the proposed changes, the system uses the Direction-Change
Evaluation algorithm (Section V-C) to quantify the conflicts
between the proposed changes (Line 8). For example, when
a learning agent proposes to increase the number of upstream
lanes on road segment s1 while another agent proposes a
lane-direction change on a different road segment s2, which
can lead to the increase of the downstream traffic flow on
s1, there is a conflict between the proposed changes for s1.
The Change Evaluation algorithm also expands the set of the
proposed changes that may be beneficial. Upon returning from
the Change Evaluation algorithm, CLLA checks the expanded
set of edge-change pairs. For each edge-change pair, if the
number of conflicts for the edge are below a given limit, the
change is applied to the edge (Line 12).

B. Learning-based Lane-direction Configuration

In the CLLA framework, the bottom-layer agents use the
Q-learning technique to find suitable lane-direction changes
based on real-time traffic conditions. Q-learning aims to find
a policy that maps a state to an action. The algorithm relies on
an action value function, Q(s, a), which computes the quality
of a state-action combination. In Q-learning, an agent tries
to find the optimal policy that leads to the maximum action



Algorithm 2: Coordinated Lane Allocation (CLLA)
Input: T , action evaluation interval
Input: ECinitial, set of edge-change pairs proposed by

the learning agents
Input: ECexpanded, set of edge-change pairs given by

the coordinator
Input: mc, the maximum number of conflicts between

lane-direction changes before a proposed
lane-direction change can be applied to an edge.

Input: G(V,E), a road network graph.
Input: l, the lookup distance for building Path

Dependency Graph.
Input: dp, the maximum search depth in Path

Dependency Graph for evaluating lane-direction
changes.

1 while True do
2 foreach agent ∈ Agents do
3 determine the best lane-direction change for all

the edges (road segments) that connect to the
vertex (road intersection) controlled by the
agent

4 foreach edge e that needs a lane-direction
change do

5 ECinitial.insert({e, change})

6 if T = t then
7 t← 0
8 ECexpanded ← Direction-Change Evaluation

(ECinitial, G, l, dp)
9 ECinitial ← ∅

10 foreach {e, change} in ECexpanded do
11 if number of conflicts on e is less than mc

then
12 apply the lane-direction change to e

13 t← t+ 1

value. Q-learning updates the action value function using an
iterative process as shown in Equation 3.

Qnew
t (s, a) = (1− α)Qt(s, a) + α(rt+1 + γm

a
axQ(st+1, a))

(3)
where s is the current state, a is a specific action, st+1 is
the next state as a result of the action, m

a
axQ(st+1, a) is the

estimated optimal action value in the next state, value rt+1 is
an observed reward at the next state, α is a learning rate and γ
is a discount factor. In CLLA, the states, actions and rewards
used by the learning agents are defined as follows.

1) States: A learning agent can work with four types of
states. The first state represents the current traffic signal phase
at an intersection. The second state represents the queue length
of incoming vehicles that are going to pass the intersection
without turning. The third state represents the queue length of
incoming vehicles which are going to turn at the intersection.
The fourth state represents the queue length of outgoing
vehicles, i.e., the vehicles that have passed the intersection.

Although it is possible to add other types of states, we find
that the combination of the four states can work well for traffic
optimization.

2) Actions: There are three possible actions: increasing the
number of upstream lanes by 1, increasing the number of
downstream lanes by 1 or keeping the current configuration.
When the number of lanes in one direction is increased,
the number of lanes in the opposite direction is decreased
at the same time. Since a learning agent controls a specific
road intersection, the agent determines the action for each
individual road segment that connects with the intersection.
An agent is allowed to take a lane-changing action only when
there is a traffic imbalance on the road segment (see Equation 4
for the definition of traffic imbalance).

3) Rewards: We define the rewards based on two factors.
The first factor is the waiting time of vehicles at an intersec-
tion. When the waiting time decreases, there is generally an
improvement of traffic efficiency. Hence the rewards should
consider the difference between the current waiting time and
the updated waiting time of all the vehicles that are ap-
proaching the intersection. The second factor is the difference
between the length of vehicle queues at different approaches
to an intersection. When the queue length of one approaching
road is significantly longer than the queue length of another
approaching road, there is a higher chance that the traffic
becomes congested in the former case. Therefore we need to
penalize the actions that increase the difference between the
longest queue length and the shortest queue length. The fol-
lowing reward function combines the two factors. A parameter
β is used to give weights for the two factors. We normalized
the two factors to stabilize the learning process by limiting
reward function between 1 to -1. To give equal priority to
both factors, we set β to 0.5 in the experiments.

R = (1− β)× Current wait time− Next wait time
max(Next wait time, Current wait time)

−β × Queue length difference
Aggregated road capacity

C. Coordination of Lane-direction Changes

We develop the coordinating process based on the observa-
tion that a locally optimized lane-direction change may conflict
with the lane-direction changes that happen in the surrounding
areas. A conflict can happen due to the fact that the effect of
a lane-direction change can spread from one road segment
to other road segments. For example, let us assume that a
constant portion of the upstream traffic that passes through
road segment x will also pass through road segment y in the
upstream direction later on. An increase of the upstream lanes
on x can lead to a significant increase of upstream traffic on
x due to the increased traffic capacity in the direction. Over
time, the traffic volume change on x can lead to the increase
of the upstream traffic on y, which implies that the number
of upstream lanes at y may need to be increased to suit the
change of traffic volume. In this case, the lane-direction change
at y can be seen as a consequential change caused by the



change at x. However, the learning agent that controls the
lane-directions at y may suggest an increase of downstream
lanes based on the current local traffic condition at y. If this
is the case, the locally optimized change will conflict with
the consequential change. The key task of the coordinating
process is quantifying such conflicts in road networks. If there
are a large number of conflicts at a road segment, the locally
optimized change should not be applied because it may have
a negative impact on the traffic flows at the global level later
on. This is a key idea behind the coordination process of our
solution. As shown in Section V-A, our solution applies a
proposed lane-direction change to a road segment only when
the number of the conflicts is below a given threshold.

To help identify the conflicts between lane-direction
changes, we develop a novel data structure, named Path De-
pendency Graph (PDG). The data structure maintains several
types of traffic information, including the path of traffic flow,
the proposed lane-direction changes and the current traffic
conditions. The coordinating agent uses PDG to search for
the locations of consequential lane-direction changes. The
conflicts between lane-direction changes are then identified
by comparing the consequential lane-direction changes and
the proposed lane-direction changes at the same locations.
The coordinating agent also proposes additional lane-direction
changes using PDG.

A PDG (PDG(V PDG, EPDG)) consists of a number of
vertices and a number of directional edges. A vertex v ∈
V PDG represents a road segment. The corresponding road
segments of the two vertices must appear in the path of a
vehicle. A vertex can connect to a number of out-degree edges
and a number of in-degree edges. The direction of an edge
depends on the order of traffic flow that goes through the
two road segments. An edge that starts from vertex v1 and
ends in vertex v2 shows that the traffic flow will pass through
v1’s corresponding road segment first then pass through v2’s
corresponding road segment later. We should also note that the
two road segments, which are linked by an edge, do not have
to share a common road intersection, i.e., they can be disjoint.
Given the path of all the vehicles, a PDG can be constructed
such that all the unique road segments on the vehicle paths
have corresponding vertices in the graph. For each pair of
the road segments on a vehicle path, there is a corresponding
edge in the graph. If the path of two or more vehicles goes
through the same pair of road segments, there is only one
corresponding edge in the graph.

A vertex of PDG has the following properties.
• Proposed Change: The proposed lane-direction change

at the corresponding road segment. This may be submit-
ted from a learning agent or created by the system during
the coordinating process. The property value can be 1, 0
and −1. A value of 1 means the upstream direction gets
one more lane. A value of 0 means there is no need for a
change. A value of −1 means the downstream direction
gets one more lane.

• Consequential Changes: A list of potential lane-
direction changes caused by lane-direction changes at

other road segments. Similar to the Proposed Change
property, the value of a consequential change can be 1,
0 and −1.

• Imbalance: The lane direction which has a considerably
higher traffic load than the other direction. The property
value can be upstream, downstream and none. In our
implementation, the imbalance of traffic load is measured
based on the queue length in the opposite directions.
Let qup be the upstream queue length and qdown be the
downstream queue length. Let the total queue length in
both directions be qtotal. Let P be a threshold percentage.
The property value is computed as follows.

Imbalance =


upstream, if qup/qtotal > P

downstream, if qdown/qtotal > P

0, otherwise
(4)

Due to the dynamic nature of traffic, imbalance value may
change frequently, leading to frequent changes of lane-
directions. This may not be ideal in practice. One can get
a steady imbalance value by adding certain restrictions in
the computation. For example, one may require that the
ratio between upstream queue length and the total queue
length must be above the threshold for a certain period
of time before setting the imbalance value to upstream.

• Current Lane Configuration: The number of upstream
lanes and the number of downstream lanes in the corre-
sponding road segment.

An edge of PDG has a property called impact, which shows
whether a lane-direction change at the starting vertex can lead
to the same change at the ending vertex. The value of this
property can be 1 or −1. A value of 1 means the change at
both vertices will be the same. For example, if the change
at the starting vertex is increasing the number of upstream
lanes, the change at the ending vertex will also be increasing
the number of upstream lanes. A value of −1 means the
changes at the vertices will be opposite to each other. The
relationship between the changes and the property value is
shown in Equation 5, where the starting vertex is v1 and the
ending vertex is v2. The property value is determined based on
the path of the majority of the vehicles that move between the
two corresponding road segments. If the path passes through
both road segments in the same direction, the property value
is 1. Otherwise, the property value is −1. The impact property
is key for finding the consequential change at the ending
vertex given the change at the starting vertex. As shown in
Equation 6, the consequential change at the ending vertex can
be computed based on the property value and the initial change
at the starting vertex.

impact(v1,v2) = changev1 × changev2 (5)

changev2 = impact(v1,v2) × changev1 (6)

When constructing a PDG, it may not be necessary to consider
the full path of vehicles due to two reasons. First, the full path
of vehicles can consist of a large number of road segments.



The size of the graph can grow exponentially when the length
of path increases. Second, due to the highly dynamic nature of
traffic, the coordination of lane-direction changes should only
consider the traffic conditions in the near future. Therefore,
in our implementation, we set an upper limit to the number
of road segments in vehicle paths when building a PDG. The
limit is called lookup distance in our experiments.

We show an example road network (Figure 6a) and its
corresponding PDG (Figure 6b). The road network has 12
roads segments (A to L). There are two paths going through
the network, path α and path β. Path α passes through 4 edges
(A, F, I, J). Path β passes through 3 edges (C, F, H). The 7
edges correspond to 7 vertices in the PDG. The PDG contains
3 edges starting from A (A-F, A-I, A-J) because path α passes
through A, F, I and J in the road network. Similarly, the PDG
contains 2 edges that starting from F.

For each edge in the PDG, the value of its impact property
is attached to the edge. As path α goes through the edges (A,
F, I and J) in the upstream direction (Figure 6a), the impact
value at all the edges between the corresponding vertices is
1 in the PDG (Figure 6b). Differently, the impact value of
the edge C-H is -1 in the PDG. This is because path β goes
through C in the upstream direction but it goes through H in
the downstream direction.
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The coordinator uses the Direction-Change Evaluation al-
gorithm (Algorithm 3) to quantify the conflicts between lane-
direction changes. The algorithm traverses through a PDG in a
breadth-first manner in iterations. The number of iterations is
controlled by a depth parameter (shown as dp in Algorithm 3).
In the first round of iteration, the algorithm starts with the
lane-direction changes that are proposed by the bottom-layer
learning agents. For each vertex with a proposed change, its
first-depth neighbours (out-degree nodes) are visited (Step 6).
For each of the neighbours, the consequential change caused
by the proposed change is computed. This can be done with
the process shown in Equation 6. Then the algorithm updates
the count of conflicts at the neighbour’s corresponding road
network edge. In the next iteration, the algorithm starts with all
the neighbour vertices that are visited in the previous round.
After each iteration dp is decremented. The algorithm stops
when dp reaches zero.

The Direction-Change Evaluation algorithm not only quan-
tifies the conflicts between lane-direction changes but also

expands the set of lane-direction changes for the road segments
that are visited during the traversal of the PDG. The rationale
is that the bottom-layer learning agents may not propose lane-
direction changes for road segments when they do not predict
any benefit of the change based on local traffic conditions.
However, the lane-direction changes in other parts of the road
network may eventually affect the traffic conditions at these
road segments, leading to traffic congestions. The algorithm
pre-emptively attempts lane-direction changes for these road
segments when it predicts that there can be consequential
changes caused by the changes in other parts of the road
network. This can help mitigate incoming traffic congestions.
As shown in Step 6 of Algorithm 3, a Direction-Change Cre-
ation algorithm is used for proposing additional lane-direction
changes. Details of the Direction-Change Creation algorithm
are shown in Algorithm 4. Every time coordinator executes
Direction-Change Evaluation, a new lane configuration is
computed and new G′t(V,E

′) is generated.
Complexity of Coordinating Process. Let us assume there

are m number of requests from bottom layer agents. The
degree of a node in PDG is deg(v), where v ∈ V PDG. The
algorithm traverses m BFTs throughout the PDG for certain
depth dp. Then complexity of m BFTs is O(m(deg(v)dp)).
However, according to lemma A.1, deg(v) is independent of
the road network size or number of paths for a given l. The
depth dp is constant irrespective of the road network size.
Then the algorithm complexity can be reduced to O(m); the
algorithm complexity is linear in the number of requests from
agents within the buffering period. In the worst case, there
can be requests for each road segment of the road network,
G(V,E), leading to the complexity of O(|E|).

Distributed version. Algorithm 3 can work with a set of
distributed agents (coordinating agents) in the upper layer.
In Algorithm 3, execution is independent of the order of
requests coming from the bottom layer agents. Therefore,
requests can be processed in a distributed manner. Every
coordinating agent traverses first depth and inform changes
to other agents. Once every agent finishes their first depth,
all coordinating agents start their second depth, and so on. In
such a setting, the complexity of the algorithm is O(1). In
this work, we implemented the centralized version, however,
when applied to larger road networks, the distributed version
can be implemented.

VI. EXPERIMENTAL METHODOLOGY

We compare the proposed algorithm, CLLA, against DLA
and two other baseline algorithms using traffic simulations.
We evaluate the performance of the algorithms for two road
networks based on real traffic data. The effects of individual
parameters of CLLA and DLA are also evaluated. The rest of
the section details the settings of the experiments.

A. Experimental setup

Simulation Model. We simulate a traffic system similar
to the ones used for reinforcement learning-based traffic
optimization in [23], [32]. In our implementation, vehicles



Algorithm 3: Direction-Change Evaluation
Input: ECinitial, a set of edge-change pairs proposed by

the learning agents
Input: G(V,E), A road network graph. Each edge in the

graph has a property, conflict count, which has
an integer value that is set to 0 initially.

Input: l, the lookup distance of PDG
Input: dp, the depth of search
Output: ECexpanded, a set of edge-change pairs given

by the coordinator
1 Build a PDG based on the next l road segments on the

path of vehicles. For each PDG vertex, its properties,
proposed change and consequential changes, are set
to empty values initially.

2 Create an empty set N . For each edge-change pair in
ECinitial, find the corresponding vertex v in PDG and
update its proposed change property. Add v to N .

3 Set the current depth of search to dp.
4 If the current depth is above 0, do the following steps.

Otherwise, jump to Step 8.
5 Create an empty set N ′.
6 For each v in N , first check whether v has a proposed

change. If not, get a proposed change for v using the
Direction-Change Creation algorithm. Then for each
of v’s neighbours at the end of its out-degree arcs, vo,
identify the consequential change at the vertex that is
caused by the proposed change at v. Add the
consequential change to the consequential changes of
vo if the change does not exist on the list. If vo already
has a proposed change but the proposed change is
different to the consequential change at vo, increase the
conflict count of the corresponding road network edge
by 1. Add vo to N ′.

7 Decrease the current depth of search by 1. Replace the
vertices in N with the vertices in N ′. Go back to Step
4.

8 For each PDG vertex v with a proposed change, create a
corresponding edge-change pair and add the pair to
EAexpanded. Exit the algorithm.

on a road link are modelled based on travel time, which is
the sum of two values, pure transmit time and waiting time.
Pure transmit time is the time taken by a vehicle to travel
through the road link at the free-flow speed. Waiting time is the
duration that a vehicle waits in a traffic signal queue. When the
direction of a lane needs to be changed, all existing vehicles
in the lane need to leave the lane and move into the adjacent
lane in the same direction. Vehicles travelling in the opposite
direction can use the lane only after it is cleared of traffic.

Road Networks. We run experiments based on the real
taxi trip data from New York City [33]. The data includes
the source, the destination and the start time of the taxi trips
in the city. We pick two areas for simulation (Figure 8a
and Figure 8b) because the areas contain a larger number of
sources and destinations than other areas. The road network of
the simulation areas is loaded from OpenStreetMap [34]. For a

Algorithm 4: Direction-Change Creation
Input: v, a PDG vertex that corresponds to an edge in a

road network graph. The value of the imbalance
property is set to none initially.

Output: change, the proposed lane-direction change for
e, which can be 1(upstream), 0(none) and
−1(downstream). The default value is 0.

1 consequentialup: whether the consequential changes at v
include one that increases the number of upstream lanes.

2 consequentialdown: whether the consequential changes
at v include one that increases the number of
downstream lanes.

3 if imbalance = upstream then
4 if consequentialup = True and

consequentialdown = False then
5 change← 1 (change one lane from downstream

to upstream)

6 if imbalance = downstream then
7 if consequentialup = False and

consequentialdown = True then
8 change← −1 (change one lane from upstream

to downstream)

9 if imbalance = none then
10 if (consequentialup = True and downstream has

more lanes than upstream then
11 change← 1 (change one lane from downstream

to upstream)
12 if (consequentialdown = True and upstream has

more lanes than downstream then
13 change← −1 (change one lane from upstream

to downstream)

(a) Long Island (LI) (b) Midtown Manhattan (MM)
Figure 7: The road network of two simulation areas in New York

specific taxi trip, the source and the destination are mapped to
the nearest OpenStreetMap nodes. The shortest path between
the source and destination is calculated. The simulated vehicles
follow the shortest paths generated from the taxi trip data.

Comparison baselines. Different to the proposed solution,
CLLA, the existing approaches for optimizing lane-directions
are based on linear programming, which makes them unsuit-
able for large-scale dynamic optimization due to the high
computation cost. Due to the lack of comparable solutions,
we define three baseline solutions, which are used to compare
against CLLA. In our experiments, the traffic signals use static



timing and phasing, regardless of which solution is used. We
conduct comparative tests against the following solutions:
• No Lane-direction Allocations (no-LA): This solution

does not do any lane-direction change. The traffic is
controlled by static traffic signals only.

• Demand-based Lane Allocations (DLA): In this so-
lution, the lane-direction changes are computed with
Algorithm 1.

• Local Lane-direction Allocations (LLA): This solution
uses multiple learning agents to decide lane-direction
changes. The optimization is performed using the ap-
proach described in Section V-B. LLA is similar to CLLA
but there is no coordination between the agents.

• Coordinated Learning-based Lane Allocations
(CLLA): This is the two layer optimization framework
described in Section V-A.

B. Evaluation Metrics

We measure the performance of the solutions based on the
following metrics.

Average travel time: The travel time of a vehicle is the
duration that the vehicle spends on travelling from its source
to its destination. We compute the average travel time based on
all the vehicles that complete their trips during a simulation.
A higher average travel time indicates that the traffic is more
congested during the simulation. Our proposed solutions aim
to reduce the average travel time. More information about this
metric is shown in Section III.

Deviation from free-flow travel time: The free-flow travel
time of a vehicle is the shortest possible travel time, achieved
when the vehicle travels at the speed limit of the roads
without slowing down at traffic lights during its entire trip.
Deviation from Free-Flow travel Time (DFFT ) is defined as
in Equation 7, where ta is the actual time and tf is the free-
flow travel time. The lowest value of DFFT is 1, which is also
the best value that a vehicle can achieve.

DFFT = ta/tf (7)

C. Parameter Sensitivity Testing

We evaluate the effects of the hyper-parameters of CCLA
and DLA, which are directly related to lane-direction changes
in the simulation model. To evaluate the effects of a specific
parameter, we run a set of tests varying the value of the
parameter (while keeping the value of other parameters at their
default reported in Table I). The average travel time is reported
for each of the tests. The detailed settings of the parameters
are shown in Table I. We describe the parameters as follows.

Cost of lane-direction change in CLLA: The cost of a
lane-direction change is the time spent on clearing the lane
that needs to be changed. When the direction of a lane needs
to be changed, all the existing vehicles in the lane need to
leave the lane before the lane can be used by the vehicles
from the opposite direction. The time spent on clearing the
lane can vary due to various random factors in the real world.
For example, the vehicles in the lane may not be able to move

Parameter Range Default
value

Cost of lane-direction change in CLLA
and DLA (seconds) 40 - 480 120
Aggressiveness of lane-direction change
in CLLA (seconds) 100-1000 300
Depth in CLLA 1-5 2
Lookup distance in CLLA 3-7 5
Update period in CLLA (minutes) 0.3 - 20 0.3
Update period in DLA (minutes) 2.5-20 10

Table I: Settings used in the parameter sensitivity experiments

to an adjacent lane immediately if the adjacent lane is highly
congested. We vary the value of this parameter in a large range,
from 40 seconds to 480 seconds.

Aggressiveness of lane-direction change in CLLA: This
parameter affects the minimum interval between lane-direction
changes. A lane-direction change can only happen when there
is a traffic imbalance between the two directions at a road
segment. The imbalance is computed based on the model as
shown in Equation 4 (Section V-C). Based on an existing
study [3], we set the threshold percentage P of the model
to 65% and require that the traffic imbalance must last for
a minimum time period before a lane-direction change can
be performed. We define the aggressiveness of lane-direction
changes in CLLA as the length of the period. When the period
is short, the system can perform lane-direction changes at
smaller intervals, and vice-versa.

Depth in CLLA: This is the parameter dp used in Algo-
rithm 3. When the depth is larger, CLLA can explore more
vertices in the PDG, which allows it to detect the impact of
a lane-direction change on the road segments that are further
away from the location of the change.

Lookup distance in CLLA: This is the parameter l used
in Algorithm 3. It can affect the number of vertices and the
number of edges in a PDG. With a higher lookup distance,
the PDG needs to consider more road segments in the path of
vehicles, which can help identify the impact of lane-direction
changes at a longer distance but can increase the size of the
graph at the same time.

Update period in CLLA: This parameter controls the fre-
quency at which coordinating agents decide on lane-direction
changes. CLLA is suitable for highly dynamic traffic environ-
ments. Hence the update period ∆t can be set to a low value.
We vary the value of this parameter between 0.3 minute to 20
minutes with the default value set to 0.3 minute.

Update period in DLA: This parameter affects the fre-
quency at which DLA optimizes lane-direction changes. DLA
decides on lane-direction changes based on the traffic demand
that is collected within the update period ∆t prior to the
optimization process. We vary the value of this parameter
between 2.5 min to 20 min with the default value set to 10.

VII. EXPERIMENTAL RESULTS

We now present experimental results when comparing
CLLA against the baseline algorithms in the first part, and
present the sensitivity analysis to the parameter values of the
algorithms in the second part.



Solution Long Island Midtown Manhattan
DLA 10.04% 49.52%
LLA 7.78% 44.19%
CLLA 7.77% 46.12%

Table II: The percentage of vehicles with a DFFT of higher than 10
A. Comparison against the baselines

This experiment compares the performance of the four
solutions, which are described in Section VI-A. We run a
number of simulations in this experiment. For each simulation,
we extract taxi trip information for one hour using the real taxi
trip data from New York. Based on the real data, we generate
traffic in the simulation. The experiment is done for two areas
as shown in Figure 7a and Figure 7b. To simulate a larger
variety of traffic scenarios, we also up-sample the trip data
to generate more vehicles. We define an Up Sampled Factor,
which is the number of vehicles that are generated based on
each taxi trip in the taxi data.

For LLA and CLLA, the learning rate α is 0.001 and the
discount factor used by Q-learning is 0.75. The parameter
minLoad of DLA is set to 100. For other parameters of the
solutions, we use the default values as shown in Table I.

Average travel time: Figure 8a and Figure 8b show the
average travel time achieved with the four solutions. CLLA
outperforms the other solutions in both simulation areas. We
can observe that the average travel time of LLA and CLLA
is significantly lower compared to the average travel time of
no-LA, which shows the benefit of dynamic lane-direction
changes. Although DLA achieves lower travel times than no-
LA, it does not perform well compared to CLLA for both
areas. CLLA performs consistently better than LLA, because
LLA only makes lane-direction changes based on local traffic
information without coordination.

We also test the performance of the solutions for a different
scenario, where the traffic demand is static. Vehicles are
generated at a constant rate during a 30-minute period. Under
this setting, the traffic is less dynamic than the previous
scenario, where the traffic demand is based on real data.
Figure 9a and Figure 9b show the average travel time achieved
with the four solutions. Interestingly, DLA performs as good
as CLLA. This is due to the fact that DLA optimizes traffic
based on the estimated traffic demand. As the traffic demand
is kept constant, the estimated demand can match the actual
demand, resulting in the good performance of DLA. On the
other hand, CLLA is developed for highly dynamic traffic
environments. When the traffic is static, such as in this
scenario, the advantage of the solution is limited.

The results show that DLA can work well with static traffic
but does not work well with highly dynamic traffic. CLLA on
the other hand works well in both environments: substantially
outperforming the baselines in dynamic environments, and
matching the performance of DLA in static environments.

Deviation from free-flow travel time (DFFT): Table II
shows the percentage of vehicles whose travel time is 10 times
or more than their free-flow travel time. The results show that
LLA and CLLA are able to achieve a lower deviation from
the free-flow travel time compared to DLA.
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Figure 8: Performance of four solutions with dynamic traffic
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Figure 9: Performance of four solutions with static traffic

B. Parameter sensitivity testing

For evaluating the effects of individual parameters, we run
simulations in the area shown in Figure 7a. Each simulation
lasts for one hour, during which the traffic is generated based
on the real taxi trip data from the area. Figure 10 shows the
effects of four parameters of CLLA. Figure 11 compares the
effects of the update period between DLA and CLLA.

Our result shows that the travel time increases when the cost
of a lane-direction change increases (Figure 10a). The result
indicates that lane-direction changes may not be beneficial in
all circumstances. When the cost of lane-direction changes is
high, performing the changes can cause significant interruption
to the traffic and negate the benefit of the changes.

Figure 10b shows how the aggressiveness of lane-direction
changes can affect the travel time of vehicles. The result
shows that a low level of aggressiveness and a high level of
aggressiveness have a negative impact on travel times. When
the level of aggressiveness is low, the lane-direction changes
can only happen in large intervals. Hence the changes may
not adapt to the dynamic change of traffic. When the level
of aggressiveness is high, the system changes the direction
of lanes at a high frequency, which can cause significant
interruption to the traffic attributed to taking the time to clear
the lanes during the changes.

Our result shows that the best depth for traversing the PDG
is 2 (Figure 10c). When the depth changes from 1 to 2, we
observe a decrease in travel time. However, when the depth
is higher than 2, we do not observe a decrease of travel time.
When the depth is higher, the system can identify the impact
of a lane-direction change that are further away. However, the
impact can become negligible if the lane-direction change is
far away. This is the reason there is no improvement of travel
time when the depth is higher than 2.

Figure 10d shows that a larger lookup distance can result
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Figure 10: Effects of four parameters of CLLA
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Figure 11: Effects of the update period of CLLA and DLA

in a lower average travel time. When the lookup distance in-
creases, CLLA considers more road segments in a vehicle path
when building the PDG. This helps identify the consequential
lane-direction changes on the same path. The reduction in the
average travel time becomes less significant when the lookup
distance is higher than 2. This is because the impact of a lane-
direction change reduces when the change is further away.

When the update period ∆t of DLA is below 5 minutes or
beyond 15 minutes, it is less likely to get a good estimation
of traffic demand, which can lead to a relatively high travel
time (Figure 11a). The average travel time is at its minimum
when ∆t is set to 10 minutes. Different to DLA, the travel
time achieved with CLLA grows slowly with the increase of
∆t until ∆t reaches beyond 15 minutes. The relatively steady
performance of CLLA shows that the coordination between
lane-direction changes can help mitigate traffic congestion for
a certain period of time in the future. If minimizing the average
travel time is of priority, one can set ∆t to a very low value,
e.g., 5 minutes. If one needs to reduce the computation cost
of the optimization while achieving a reasonably good travel
time, the ∆t can be set to a larger value, e.g., 15 minutes.

VIII. CONCLUSION

We have shown that effective traffic optimization can
be achieved with dynamic lane-direction configurations. Our
proposed hierarchical multi-agent solution, CLLA, can help
reduce travel time by combining machine learning and the
global coordination of lane-direction changes. The proposed
solution adapts to significant changes of traffic demand in
a timely manner, making it a viable choice for realizing
the potential of connected autonomous vehicles in traffic

optimization. Compared to state-of-the-art solutions based on
lane-direction configuration, CLLA runs more efficiently, and
is scalable to large networks.

There are many directions one can investigate further. An
interesting extension would be to incorporate dynamic traffic
signals into the optimization process. Currently we assume that
the connected autonomous vehicles follow the pre-determined
path during their trip. An exciting direction for further research
is to dynamically change vehicle routes in addition to the lane-
direction changes. The dynamic change of speed limit of roads
can also be included in an extension to CLLA.
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APPENDIX
DEGREE OF A VERTEX IN PDG

Lemma A.1. The maximum node density ∆(PDG) is inde-
pendent of the underline road network G(V,E) and number
of vehicle paths.

Proof. Let v ∈ V PDG, maximum vertex degree ∆(PDG) can
be found as follows.

A degree of a vertex vG ∈ G(V,E) (road network) depends
on the number of roads connected to an intersection. A special
property of a road graph is that the degree of a node does
not increase with the network size. Let there be n number of
roads on average, connected to one intersection in G. Then
deg(vG) = n.

Now let us take v ∈ V PDG is also v ∈ E, where v is a
road in the road network. Starting from v, within l lookup
distance, there can be maximum of nl roads. Since n does not
increase with the network size nl also does not increase with
the network size.

Assuming the worse case, there can be paths from v to each
of these nl roads. Let R be the set of roads in nl. According
to the definition of PDG, if there is a path between v and
r ∈ R, ∃ ev,r ∈ V PDG∀r ∈ R. This means there are nl

number of edges from v. Therefore deg(v) = nl. Then the
maximum node density ∆(PDG) = nl

Note that ∆(PDG) is independent of the size of G(V,E)
and number of paths.
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