
Robust Path Planning and Control For Polygonal Environments via
Linear Programming

Mahroo Bahreinian1, Erfan Aasi2 and Roberto Tron3

Abstract— We propose a novel approach for navigating in
polygonal environments by synthesizing controllers that take as
input relative displacement measurements with respect to a set
of landmarks. Our algorithm is based on solving a sequence of
robust min-max Linear Programming problems on the elements
of a cell decomposition of the environment. The optimization
problems are formulated using linear Control Lyapunov Func-
tion (CLF) and Control Barrier Function (CBF) constraints, to
provide stability and safety guarantees, respectively. The inner
maximization problem ensures that these constraints are met
by all the points in each cell, while the outer minimization
problem balances the different constraints in a robust way. We
show that the min-max optimization problems can be solved
efficiently by transforming it into regular linear programming
via the dualization of the inner maximization problem. We test
our algorithm to agents with first and second order integrator
dynamics, although our approach is in principle applicable
to any system with piecewise linear dynamics. Through our
theoretical results and simulations, we show that the resulting
controllers: are optimal (with respect to the criterion used in
the formulation), are applicable to linear systems of any order,
are robust to changes to the start location (since they do not
rely on a single nominal path), and to significant deformations
of the environment.

I. INTRODUCTION

Path planning is a major research area in the context of
mobile robots, as it deals with the problem of finding a path
from an initial state toward a goal state while considering
collision avoidance. Traditional path planning methods focus
on finding single nominal paths in a given known map, and the
majority of them makes the implicit assumption that the agent
possesses a lower-level state feedback controller for following
such nominal path in the face of external disturbances and
imperfect models. Biological system do not rely on the
same restrictive assumptions; for instance, consider a person
navigating in an unfamiliar room: despite the fact that the
person does not have a precise blueprint of the floor, and does
not know its precise location, they can reliably and robustly
navigate toward a desired door, from any location in the room.
While this ability in biological systems is the result of complex
and not fully understood mechanisms, in this paper we aim to
narrow the gap between planning algorithms and biological
systems by synthesizing output-feedback controllers that

This work was supported by ONR MURI N00014-19-1-2571 “Neuro-
Autonomy: Neuroscience-Inspired Perception, Navigation, and Spatial
Awareness”

1Mahroo Bahreinian is with Division of Systems Engineering at Boston
University, Boston, MA, 02215 USA. Email: mahroobh@bu.edu

2Erfan Aasi is with Department of Mechanical Engineering at Boston
University, Boston, MA, 02215 USA. Email: eaasi@bu.edu

3Roberto Tron is with Faculty of Department of Mechanical Engineering
at Boston University, Boston, MA, 02215 USA. Email: tron@bu.edu

are robust to imprecise map knowledge. By synthesizing
controllers instead of specific paths, we more tightly integrate
the high-level path planning and the low-level regulation
tasks, allowing the agent to cope with disturbances without
replanning; moreover, the focus on the controllers allows us to
plan by directly using measurements (outputs) available to the
agent, instead of assuming full state knowledge; finally, since
the controllers depend on the environment indirectly (through
measurements that are taken online), we empirically show
that such controllers are robust to (often very significant)
changes in the map. In order to pursue strong theoretical
guarantees, in this paper we assume agents with controllable
linear dynamics, and environments that admit a polygonal
convex cell decomposition (e.g., via Delaunay triangulations
[9] or trapezoidal decompositions [22]). Methods to address
these limitations are planned as part of our future work (see
also the Conclusions section).

Previous work. Existing works on path planning can
be roughly classified into two categories: combinatorial
path planning methods, and sample-based path planning
methods [11]. Some of the path planning methods consider a
continuous model for the environment and therefore provide
a continuous path, such as potential fields [18], [20] and
navigation functions [27], while the other group solves the
planning problem by abstracting the environment to a finite
representation and find a discrete path, such as probabilistic
roadmaps [16] and cell decomposition methods [25].

One of the well known combinatorial path planning algo-
rithms is cell decomposition where a complex environment
is decomposed into a set of cells, avoiding obstacles by
planning straight paths in individual cells; for each individual
step, traditional methods use midpoints [7], [23], [28], while
more recent solutions aim to optimize path length [19].
Our work can be seen as a descendant of previous work
that handles the cell decomposition vis-á-vis the continuous
dynamic through a hybrid system perspective by synthesizing
a state-feedback controller for each cell. Initial work proposed
potential-based controllers [8], while others characterize the
theoretical conditions [13] and closed-form solutions [3] for
linear affine controllers. Although the latter approaches were
extended to nonlinear systems in [10] and to uncertain maps
[32] (using intelligent re-planning), they all assume that each
cell in the decomposition is a simplex (a polytope in Rd
with d + 1 vertices, e.g., a 2-D triangle). In contrast, our
method can handle arbitrary convex polytopes, and design
output-feedback controllers (instead of state-feedback).

Sampling-based planning algorithms, such as rapidly ex-
ploring random tree (RRT), have become popular in last

ar
X

iv
:1

91
0.

07
97

6v
2

 [
ee

ss
.S

Y
]

 1
2

O
ct

 2
02

0

few years due to their good practical performance, and
their probabilistic compleness [15], [23], [24]. For trajectory
planning that takes into account non-trivial dynamical systems
of the robot, kinodynamic RRT [23], [24] and closed-
loop RRT (CL-RRT, [21]) and CL-RRT# grow the tree
by sampling control inputs and then propagating forward
the nonlinear dynamics (with the optional use of stabilizing
controllers and tree rewiring to approach optimality). Further
in this line of work, there has been a relatively smaller amount
of works on algorithms that focus on producing controllers
as opposed to simple reference trajectories.

The safeRRT algorithm [6], [30] generates a closed-loop
trajectory from initial state to desired goal by expanding a tree
of local state-feedback controllers to maximize the volume of
corresponding positive invariant sets while satisfy the input
and output constraints. Based on the same idea and following
the RRT approach, the LQR-tree algorithm [29] creates a
tree by sampling over state space and stabilizes the tree with
an linear quadratic regulator (LQR) feedback. With respect to
the present paper, the common traits among all these works
is the use of a full state feedback (as opposed to output
feedback), although they do not require prior knowledge of
convex cell decomposition of the environment.

Finally, our work builds upon real-time synthesis of point-
wise controls that trade off safety and stability for nonlinear
input-affine systems through a Quadratic Program (QP)
formulation [2], [14]. To the best of our knowledge, our
paper is the first to use similar conditions for synthesizing
controls over entire convex regions rather than single points.

Proposed approach and contributions. In this work, we
propose a novel approach to synthesize a set of output-
feedback controllers on a convex cell decomposition of a
polygonal environment via Linear Programming (LP). We
define constraints in terms of a Control Lyapunov Function
(CLF) and Control Barrier Functions (CBF) to ensure, respec-
tively, stability and safety (collision avoidance) throughout
all the states in a cell, while automatically balancing the two
aspects to maximize robustness. Our formulation results in
a linear min-max optimization problem, which is solved by
converting it to a LP form.

With respect to previous work: 1) We allow a cell to be
any generic convex polytope (instead of a simplex). 2) We
consider output feedback based on any affine function of the
state (under the natural assumption that the overall dynamics
is controllable), although, for the sake of presenting a concrete
application, we focus on controls using measurements of the
relative position of the agent with respect to landmarks in
the environment. 3) We apply the CLF-CBF to the new
framework of control synthesis. We believe that our solution
can be extended to sample-based methods and non-linear
systems, although these are beyond the scope of the current
paper (see the Conclusions section for details).

II. NOTATION AND PRELIMINARIES

In this section we review CLF and CBF constraints in the
context of our application on agents with linear dynamics
and a convex cell decomposition of the environment.

A. System dynamics
We start by considering a control-affine dynamical system1

ẋ = Ax+Bu, (1)

where x ∈ X denotes the state, u ∈ U the system input,
and A ∈ Rnx×nx , B ∈ Rnx×nu define the linear dynamics,
and X ⊂ Rnx , U ⊂ Rnu denotes limits on the states, and
actuators, respectively.We assume Xdyn and U are polytopic,

Xdyn = {x | Ax,dynx ≤ bx,dyn}, U = {u | Auu ≤ bu}, (2)

where Ax,dyn∈Rsd×nx , Au∈Rsu×nu , bx,dyn∈Rnx , bu∈Rnu ,
and that 0 ∈ Xdyn. sd and su are the number of dynamic
constraints and controller constraints respectively.

Since the system (1) can be higher-order, but the environ-
ment constrains only positions, we give the following.

Definition 1: We assume that a subset of the state x in
(1) represents the position xpos = Pposx of the agent in the
world, while xdyn = Pdynx represents the rest of the state (e.g.,
velocities in a second order system), where Ppos ∈ Rd×nx

and Pdyn ∈ R(nx−d)×nx are orthogonal projection matrices.
Remark 1: In this section, we only define constraints for

the dynamic part of the states, xdyn, i.e., PposA
T
xdyn

= 0. The
constraints on xpos will be derived from the environment.

B. High relative degree functions and transverse dynamics
Given a function h of the state of the dynamical system

(1), the following notions characterize the relation between
the derivatives along the system’s trajectories and the inputs
u of the system. Note that we assume that h is sufficiently
smooth so that all the necessary derivatives are well defined.

Definition 2: The Lie derivative of a differentiable function
h for the dynamics (1) with respect to the vector field Ax

is defined as LAxh(x) = ∂h(x(t))
∂x

T
Ax. The Lie derivative

of order r is denoted as LrAx, and is recursively defined
by LrAxh(x) = LAx(L

r−1
Ax h(x)), with L1

Axh(x) = LAxh(x)
[33].

Definition 3: A function h(x) is said to have relative
degree r with respect to the dynamics (1) if LBLiAxh(x) = 0
for 0 ≤ i ≤ r−1 and LBLrAxh(x) 6= 0; equivalently, it is the
minimum order of the time derivative of the system, hr(x),
that explicitly depends on the inputs u. The Lie derivative of
h(x) with relative degree r for dynamics (1) is defined as

hr(x) = LrAxh(x) + LBLr−1Ax h(x)u (3)
Definition 4: Given a function h(x) with relative degree

r for the dynamics (1), we define the transversal state

ξh(x) =


h(x)

ḣ(x)
...

hr−1(x)

 =


h(x)
LAxh(x)

...
Lr−1Ax h(x)

 , (4)

and the transversal dynamics

ξ̇h(x) = Fξh(x) +Gµh,

h(x) = Cξh
(5)

1The CLF-CBF concepts are applicable to input-affine systems, but in this
work we assume linear time-invariant systems, and affine barrier functions.

where F ∈ Rr×r , G ∈ Rr and C ∈ R1×r are defined as

F =


0 1 . . . 0
...

...
. . .

...
0 0 0 1
0 0 0 0

 , G =


0
...
0
1

 C = [10 . . . 0], (6)

and the virtual control input µh = hr is a function of the
actual input u.
We use these concepts below to define higher-order CBFs
and CLFs.

Remark 2: When h(x) is an affine function (see Sec. III-
A), all Lie derivatives are linear functions of x, and the system
(6) can be interpreted as (1) in observable canonical form.

C. Safety Constraints by Control Barrier Function

Suppose we have a sufficiently smooth function h(x) :
Rn → R which defines a safe set C such that

C = {x ∈ Rn| h(x) ≥ 0},
∂C = {x ∈ Rn| h(x) = 0},

Int(C) = {x ∈ Rn| h(x) > 0}.
(7)

We say that the set C is forward invariant (also said positive
invariant [6]) if x(t0) ∈ C implies x(t) ∈ C, for all t ≥ t0
where x(t) is well defined [31].

Definition 5 (ECBF, [26]): Consider the control system
(1), and a continuously differentiable function h(x) with
relative degree r ≥ 0 defining a set C as in (7). The function
h(x) is an Exponential Control Barrier Function (ECBF) if
there exist ch ∈ Rr and control inputs u ∈ U such that

LrAxh(x) + LBLr−1Ax h(x)u+ cTh ξh(x) ≥ 0,∀x ∈ Int(C).
(8)

Proposition 1: Given an ECBF h(x) and control inputs u
from Definition 5, if ch stabilizes the transversal dynamics,
i.e., the closed-loop matrix Ah −BhcTh is stable, then

1) LjAh(x) ≥ −p1L
j−1
A h(x) for 1 ≤ j ≤ r , p1 ≥ 0

2) the set C is forward invariant.
Proof: From [26, equation (41) and Theorem 2], for

the family of outputs yi : Rn → R for i = 1, . . . , r we have

yi = ẏi−1 + piyi−1 (9)

where pi ∈ R+ for i = 1, . . . , r is a pole location of µh =
−cTh ξh, Ci = {x ∈ Rn|yi ≥ 0} ,and y0 = L0

Ah(x) so

y1 = L0
Ah(x) + p1L0

Ah(x) ≥ 0 (10)

which implies LjAh(x) ≥ −p1L
j−1
A h(x).

For proof of claim 2 see [26, Theorem 1].
Note that if r = 1, h(x) is also a special case of a Zeroing
Control Barrier Function (ZCBF, [31], [33]).

D. Stability Constraints by Control Lyapunov Function

In this section we present an analogous definition extending
CLFs [1] to higher-order relative degrees.

Definition 6: Consider the control system (1), and a con-
tinuously differentiable function V (x) defined over a set X
with V (x) ≥ 0 and relative degree r ≥ 0. The function V (x)

is a Exponential Control Lyapunov Function (ECLF) if there
exists cV ∈ Rr and control inputs u ∈ U such that

LrAV (x) + LBLr−1A V (x)u+ cTV ξV (x) ≤ 0,∀x ∈ X . (11)
For r = 1, we recover the definition of Exponentially
Stabilizing CLFs (ES-CLFs, [1]). It is possible to use the
ECLF to design controllers that exponentially stabilize the
original dynamics (1), as shown by the following:

Proposition 2: Given an ECLF V (x) and controls u from
Definition 6, if X is a forward-invariant set, and cTV stabilizes
the transversal dynamics, i.e., the matrix F −GcTV is stable,
then:

1) LjAV (x) ≤ −q1Lj−1A V (x) for 1 ≤ j ≤ r , q1 ≥ 0

2) limt→∞ V (x(t)) = 0 with exponential convergence;
3) If V (x) in addition satisfies

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (12)

where α1, α2 are class-K functions, then limt→∞ x = 0
with exponential convergence.
Proof: The proof mirrors a simplified version of the

ideas in [26]. Setting the virtual input µV in the transversal
dynamics to µV = −cTV ξV , we have that limt→∞ ξV = 0
with exponential convergence (since it is an LTI system
and cV contains stabilizing feedback gains). We can apply
µV ≤ −cTV ξV , then

ξ̇V ≤ (F −GcTV)ξV , (13)

in which the last element correspond to the condition in
(11). Subclaim 1) can be proved similar to the claim 1 in
Proposition 1 where qi ∈ R+ for i = 1, . . . , r is a pole
location of µV = −cTV ξV . Applying Gronwall’s comparison
lemma [12], we then conclude that limt→∞ ξV = 0, which,
in particular, implies subclaim 2). Finally, subclaim 3) can
be shown using 2) in combination with (12) and standard
arguments from Lyapunov theory [17, Chapter 4].

Note that this result can be applied to any point other than
the origin with a simple change of coordinates.

E. Polygonal environment decomposition

We assume a compact polygonal environment P ⊂ Rnx ,
not necessarily simply-connected, decomposed in a finite
number of convex cells {Xi,pos}, such that

⋃
i Xi,pos = P , and

set Xi,pos is a polytope defined by linear inequality constraints
of the form AT

xpos,i
x ≤ bxpos,i.

Our goal is to design a different linear feedback controller
u for each cell Xi. The feedback signal used by the controller
will be based on linear relative measurements with respect
to a set of landmarks.

Definition 7: A landmark is defined as a point ŷ ∈ Rd
whose location is known and fixed in the environment.
For each convex section Xi, we have a finite number of
landmarks. In this paper, we choose the landmarks as the
vertices of the convex section Xi, although this choice does
not make any difference in terms of the actual method.

(a) (b) (c)

Fig. 1: The polygonal environment in Fig .1a is decomposed
to 8 convex sections Fig .1b and the corresponding graph is
shown in Fig . 1c

F. High-level planning

We consider two overall objectives for the controller design:
(O1) Point stabilization: given the stabilization point (where

ẋ = 0) in the environment and starting from any point, we
aim to converge to the stabilization point (e.g. Fig. 2a).

(O2) Patrolling: starting from any point, we aim to patrol the
environment by converging to a path, and then traversing
the same path (e.g. Fig. 4a).

To specify the convergence objective for each controller u,
we first abstract the polygonal environment P into a graph
G = (V, E), where each vertex i ∈ V represents a cell Xi in
the partition of P , and an edge (i, j) ∈ E if and only if cells
corresponding to i and j have a face in common.

In the case of the point stabilization objective (O1), the
stabilization point is one of the vertices of the graph and if
the stabilization point is in the middle of the cell, without loss
of generality, we can decompose the cell into new convex
cells such that the stabilization point is one of the vertices of
the new cells. Then, we add one vertex to the set V , which
will be the stabilization point and also, we add edges between
the new vertex and any cell that has a face in common with
the cell includes the stabilization point to the set E .

For each cell, we then select one exit edge (a pointer)
such that, when considered together, all such edges provide
a solution in the abstract graph G to the high level objective.
For instance, in the case of objective (O1), the exit edge
of each cell will point in the direction of the shortest path
toward the vertex of the stabilization point. In the case of
objective (O2), following the exit edges will lead to a cyclic
path in the graph.

To give an example, the polygonal environment in Fig. 1a is
converted to the connected graph in Fig. 1c based on the cell
decomposition of the environment in Fig. 1b. Starting from
the first node in Fig. 1c which is shown by the green point,
we find the path from the start node to the equilibrium node
shown by the red point, through the path planning algorithms
(e.g. using Dijkstra’s algorithm). Regarding to that path, we
define the exit face as the face of the convex section the path
moves through and based on that we design the controller.

Definition 8: For each cell Xi in the decomposition of the
environment, we define an exit face Pexit or, respectively,
stabilization point Pexit = {xg} to be the face or, respectively,
vertex corresponding to the exit edge in the abstract graph
G. The exit direction z is an inward-facing normal or,
respectively, direction of Pexit.

In this work we desire to design a controller for each
convex section of the environment that drives the system in
the exit direction toward the exit face or the stabilization
point, while avoiding the boundary of the environment.

Overall, thanks to the high level planning in the abstract
graph G, and the controller design in each cell Xi (explained
in the sections below) the system will traverse a sequence of
cells to reach a given equilibrium point, or achieve a periodic
steady state behavior (examples in Section V) according to
the desired objective.

III. PROBLEM SETUP
The goal of this section is to synthesize a robust controller

for a convex cell X (with respect to previous sections, we
dropped the subscript i to simplify the notation) where X =
Xdyn ∩ Xpos. According to Definition 1 we divide x into two
parts, xpos and xdyn. We assume that the agent has direct
access to xdyn, but for xpos the agent can only measure the
the relative displacements between the robot’s position xpos
and the landmarks in the environment, which corresponds to
the output function

y = (Y − xpos1
T)∨, (14)

where Y ∈ Rd×nl is a matrix of landmark locations and A∨

represents the vectorized version of a matrix A. Our goal
is to find a feedback controller that, given y, provides an
input u that drives the system toward an exit face or vertex
of X while avoiding obstacles (non-exit faces of X). Note
that the landmarks do not necessarily need to belong to X .
We assume (1) is controllable and choose a controller of the
form

u(K1,K2) = K1y +K2xdyn, (15)

where K1 ∈ Rnu×dnl and K2 ∈ Rnu×(nx−d) are feedback
gains that need to be designed. Note that Y − xpos1

T gives
a matrix where each column is the relative displacement
between each landmark and the current position of the system;
as such, we are looking for a controller that feeds back linear
combinations of these displacements. From the distributivity
property of vectorization we can write u as

u(K1,K2) = K1Y
∨ −K1(1nl ⊗ Id)xpos +K2xdyn

= K1Y
∨ +Kxx,

(16)

where Kx ∈ Rnu×nx and Kx =
[
−K1(1nl ⊗ Id) K2

]
.

Remark 3: In general, our framework can handle general
linear output y = Cx +D, but we focus here on the path
planning application.

A. Control Barrier Function
Let Ah,i ∈ R1×nx belongs to the union of all rows of

Axdyn and Axpos except the one row defining the exit face, and
bh,i ∈ R we define the following candidate ECBF:

hi(x) = Ah,ix+ bh,i (17)

where i = {1, . . . , sp + sd} such that sp denotes the number
of faces of X except the one associated to an exit face (or all
of them in the case of a stabilization point) and sd donates
the number of number of boundaries to limit xdyn. We define
sx = sp + sd.

B. Control Lyapunov Function

To stabilize the system, we define the Lyapunov function
V (x) for cell X as,

V (x) = zTx+ bV , (18)

where Pposz ∈ Rd is the exit direction for the cell X (see
Definition 8), and Pdynz = 0, and bV ∈ R is chosen such
that the function reaches its minimum V (x) = 0 when x
is in the exit face (V (x) < 0 correspond to points outside
the cell). Note that this Lyapunov function represents, up to
a constant, the distance d(xpos,Pexit) between the current
system position and the exit face. When the exit face reduces
to an exit point Pexit = xexit, the Lyapunov function states
the distance d(xpos, xexit) between the current position and
exit point, up to a constant, and the minimum of V (x) = 0
reaches when x is identical to the exit point xexit.

Remark 4: The function V (x) can be defined as a function
of the vertices of the exit face instead of its normal. For
instance, in R2, we have

V (x) = det(
[
v1 − v0 xpos

]
) (19)

where v0, v1 are two distinct points (e.g., vertices) in
the exit face (with their order determining the correct
sign in V (x)). Based on the same idea, in R3, V (x) =
det(

[
v1 − v0 v2 − v0 xpos

]
) where v0, v1, v2 are three

distinct points in the exit face (e.g., three vertices of the
exit plane) and respectively . This concept can be generalized
to any dimension.

C. Finding the Controller by Robust Optimization

Our goal is to find controllers u (more precisely, control
gains K) that maximize the motion of the robot toward the
exit face, while avoiding the boundary of the environment.
Using the CLF-CBF constraints reviewed in Section II, we
encode our goal in the following feasibility problem:

find K

s.t. :− (LrAxhi(x) + LBLr−1Ax hi(x)u+ cTb ξbi(x)) ≤ 0,

LrAxV (x) + LBLr−1Ax V (x)u+ cTV ξV (x) ≤ 0,

u ∈ U ,
∀x ∈ X , i = {1, . . . , sh}.

(20)
In practice, we aim to find a controller that satisfies the

constraints in (20) with some margin, hence we focus on the
following robust optimization problem:

min
K,Sl,Sb

wT
b Sb + wlSl

s.t. :− (LrAxhi(x) + LBLr−1Ax hi(x)u+ cTb ξbi(x)) ≤ Sbi,
LrAxV (x) + LBLr−1Ax V (x)u+ cTV ξV (x) ≤ Sl,
Sl, Sb ≤ 0, u ∈ U ,
∀x ∈ X , i = {1, . . . , sh}.

(21)
Note that the constraints in (21) need to be satisfied for all x
in the cell X , i.e., the same control gains should satisfy the

CLF-CBF constraints at every point in the cell. We handle
this type of constraint by rewriting (21) using a min-max
formulation, where (21) is equivalent to,

min
K,Sl,Sb

wT
b Sb + wlSl

s.t. :[
maxx−(LrAxhi(x) + LBL

r−1
Ax hi(x)u+ cTb hi(x))

s.t x ∈ X , u ∈ U

]
≤ Sbi,[

maxx LrAxV (x) + LBLr−1Ax V (x)u+ cTV V (x)
s.t x ∈ X , u ∈ U

]
≤ Sl,

Sl, Sb ≤ 0, i = {1, . . . , sh}.
(22)

the weights wb ∈ Rsh and wl ∈ R are user-defined
constants defining the trade-off between the barrier functions
and Lyapunov function constraints: larger wb implies solutions
moving away from the walls, while larger wl implies solutions
moving faster toward the exit face. Now we compute the
time r-th order derivative of hi(x) such that

hri (x) = LrAxhi(x) + LBLr−1Ax hi(x)u (23)

Combining h(x) from (17) and (23) implies

hri (x) = Ah,iA
r−1(Ax+Bu) = Ah,iA

r−1ẋ, (24)

where Ar represents the r-th power of A. Similar to hri (x),
the time derivative of V (x) is defined as

V r(x) = zAr−1(Ax+Bu) = zAr−1ẋ. (25)

Substituting the Lie derivatives (24) and (25) in (22) results

min
K,Sl,Sb

wT
b Sb + wlSl

s.t. :max
x
− (Ah,iA

r +Ah,iA
r−1BKx +Ah,icb)x

s.t. : Axx ≤ bx

 ≤
Sbi + cbbh,i +Ah,iA

r−1BK1Y
∨max

x
(zTAr + zTAr−1BKx + zTcl)x

s.t. : Axx ≤ bx

 ≤
Sl − clbV − zTAr−1BK1Y

∨,max
x

(AujKx)x

s.t. : Axx ≤ bx

 ≤ buj −AujK1Y
∨

Sb, Sl ≤ 0, i = {1, . . . , sh}, j = {1, . . . , nu}
(26)

In (26), we have a bi-level optimization problem with
constraints that are given themselves by other optimization
problems. As all constraints and objective function are linear
and X is a convex set, (26) and inner maximization problems
are linear programming problem so we can change the min-
max problem (26) to min-min problem by replacing the inner

maximization problems with their dual forms,

min
K,Sl,Sb

wT
b Sb + wlSl

s.t. :
minλb

λTb bx
s.t. :

AT
xλb = −(Ah,iAr +Ah,iA

r−1BKx +Ah,icb)
T

λb ≥ 0,

 ≤
Sbi + cbbh,i +Ah,iA

r−1BK1Y
∨

minλl
λTl bx

s.t. :
AT
xλl = (zTAr + zTAr−1BKx + zTcl)

T

λl ≥ 0

 ≤
Sl − clbV − zTAr−1BK1Y

∨
minλl

λTu bx
s.t. :

AT
xλu = (AujKx)

T

λu ≥ 0

 ≤ buj −AujK1Y
∨

Sb, Sl ≤ 0, i = {1, . . . , sh}, j = {1, . . . , nu}
(27)

where min-min problem (27) is equivalent to the minimization
problem,

min
K,Sl,Sb,λl,λb

wT
b Sb + wlSl

s.t. : λTb bx ≤ Sbi + cbbh,i +Ah,iA
r−1BK1Y

∨

λTl bx ≤ Sl − clbV − zTAr−1BK1Y
∨

λTu bx ≤ buj −AujK1Y
∨

AT
xλb = −(Ah,iAr +Ah,iA

r−1BKx +Ah,icb)

AT
xλl = (zTAr + zTAr−1BKx + zTcl)

T

AT
xλu = (AujKx)

T

λl, λb, λu ≥ 0 Sb, Sl ≤ 0

i = {1, . . . , sh}, j = {1, . . . , nu}
(28)

In the following we prove that the feasible optimal solution
for (26) is also the feasible optimal solution for (28).

Remark 5: By strong duality [5, Theorem 4.4], if a linear
programming problem has an optimal solution, so does its
dual, and the respective optimal costs are equal.
This remark allows us to prove the following.

Lemma 1: Optimization problems (26) and (27) have the
same feasible optimal solution.

Proof: The optimization problems in (26) and (27) have
the same objective functions. Constraints in (26) are in the
form of LP optimization problem and the constraints in (27)
are the duals. According to the Remark 5, the optimal cost
of constraints in (26) and (27) are equal and result the same
constraints with the same objective functions which implies
(26) and (27) have the same optimal solution.

Lemma 2: Optimization problems (27) and (28) have the
same feasible optimal solution.

Proof: Assume we have an optimal solution for (28),
then the solution is also feasible for (27) and the objective
costs are the same. In the same way, if we have an optimal

solution for (27), so there must exist dual variables for inner
optimization problem in (27) which are also feasible for (28)
and result in the same objective cost [4].

Theorem 1: From Lemma 1 and Lemma 2, the optimiza-
tion problems (26), (27) and (28) are equivalent.

Proposition 3: Solving (28) and assuming optimal Sl is
strictly less than zero, then the trajectory exit from the cell
in finite time.

Proof: For the first order system cV > 0 is scalar and
V (x) is positive definite, define maximum distance from the
exit face as

dmax = max{V (x)|Axx ≤ bx}. (29)

For the first order system, the CLF constraints in (27) implies

˙V (x(t)) + cV V (x(t)) ≤ Sl (30)

where Sl < 0 and g1 = cV V (x(t)) ≥ 0 and results in

˙V (x(t)) ≤ Sl − g1 = g2, g2 ≤ 0 (31)

Solving the above differential equation shows V (x(t)) ≤
V (x0)+g2t. To pass the exit face we need to have V (x(t)) =
0 as the V (x(t)) shows the distance from the exit face, so
texit ≤ −dmax

g2
and the controller reaches the exit face in

finite time as −dmax

g2
has a finite value.

IV. STATIONARY POINT

Consider the stabilization objective (O1) defined in Section
II-F, and let xg be the stabilization point in X , i.e., the exit
vertex in Pexit (see Definition 8). In this section we provide
sufficient conditions that show the controllers synthesized
with our proposed method indeed introduce an equilibrium
point at xg. Before proceeding, we need the following. We
use stack() to denote the operator that stacks vertically all
its matrix arguments.

Fact 1: Let Ah,exit be the matrix whose rows are the row
vectors in the set {Ah,i : hi(xg) = 0}. Then z belongs to
the proper cone {v : Ah,exitv ≥ 0}.
This fact is intuitive given Definition 8: Ah,exit represents the
normals of the active constraints at the stabilization point,
and z needs to be inward-pointing. Note that the rows or
Ah,exit are a subset of the rows of Axpos . We can now state
the main result of this section.

Proposition 4: Assume the pair (A, stack(Ah,exit, z
T)) is

observable and that all hi and V have the same relative
degree r. Then, any solution to the min-max problem (21)
(or, equivalently, the linear program (28)) guarantees that
ẋ = 0 when xpos = xg .
Note that the assumption about having a homogeneous relative
degree is reasonable, since zT and Ah,exit all essentially
represent generic planes in the environment.

Proof: Any feasible controller must satisfy the CBF
and CLF constraints in (21). As discussed above, we have
V (xg) = 0 for the Lyapunov function, and hi(xg) = 0
for the constraints corresponding to Ah,exit. Recalling that
L0
AV = V , and using the fact the CLF constraint in (21)

implies Proposition 2, claim 1), we have that LjAV =

(a) Polygonal environment (b) Decomposed environment

Fig. 2: Non-simply connected environment is decomposed to
a set of convex cells.

zTAj ẋ ≤ −cvLj−1A V = zTAj−1ẋ for all 0 ≤ j ≤ r.
A similar argument with the CBF constraint in (21) and
Proposition 1 implies that Ah,exitA

j ẋ ≥ −chAh,exitA
j−1ẋ.

From Fact 1, we have that the sets described by Ah,exitv ≥ 0
and zTv ≤ 0 intersect only at the point v = 0; hence,
stack(Ah,exit, z

T)Aj ẋ = 0 for all 0 ≤ j ≤ r − 1, which
can be compactly described as OAẋ = 0, where OA is
the observability matrix from the pair (A, stack(Ah,exit, z

T)).
Since the latter is observable, OA is full rank, and hence
ẋ = 0 as claimed.
Intuitively, the proof shows that the CLF and CBF constraints
fix xpos to xg , which together with the observability implies
that also xdyn = 0.

V. NUMERICAL EXAMPLES

In this section, we apply our proposed method to two
non-simply connected environments to find a output-feedback
controller, then we deform the environment and implement the
same controller to represent the robustness of the controller.
We apply our method to the fist and second integrator systems
to achieve two planning objectives of our algorithm. The first
example considers the point stabilization (O1) objective and
the second example shows the patrolling (O2) objective (The
choice of the fist and second integrator systems is independent
of the planning objective and complexity of the environment).

A. First Order Controller

Given the environment in Fig 2, we want to find a set of
controllers to move the agent from three different entrances
(start points) of a building to the exit door (goal point). To
achieve this goal, we decompose the layout of the floor
into 16 convex cells. We choose cb = cv = 0.5. Given the
decomposed environment, we find a controller for each cell
individually and move the agent from the start points. In this
example, we assume the landmarks for each cell are same as
the vertices of the cell and we define as z the exit direction
of the cell. Solving the optimization problem (28) finds the
optimal K1 for each cell which implies the optimal controller.
Entering the building from different doors in Fig. 3a, the first
order controller moves the agent from to the exit door without
violating any constraints. Assume the layout of the building
is changed due to the construction purposes in Fig. 3b and

(a) Original environment (b) Deformed environment

Fig. 3: In this example, we deform the layout and apply
the first order controller of the original environment to the
deformed layout. Despite the fact that we deform the layout
significantly, the exact same original controllers generate
successful trajectories.

(a) Non-simply connected environment(b) Changes of the states versus time

Fig. 4: Fig 4a is a non-simply connected environment and the
gray polygon is an obstacle. In Fig. 4a an agent starts from
position (10,40) and continuously moves through all sections.
In Fig. 4b x1 and x2 variation versus time is shown.

the agent enters the building aims to proceed to the exit door.
When the layout deformed, the convex cells change as the
position of landmarks and given the old optimal K1 from
the original layout and new position of landmarks, the agent
is able to proceed to the exit door starting from different
entrances and meeting all the safety and stability constrains.

B. Second Order Controller

In this section, we find a controller for a second order
system and similar to the first order system, we assume the
landmarks are equivalent to the vertices of each cell and we
donate z the exit direction of the cell. we apply our method to
a non-simply connected environment. The controller moves
the agent from the start point at [10, 40] in Fig. 4, we choose
cb = [1, 1]T and cV = [1, 1]T for all i = {1, . . . , sh}. Then,
we enlarge the obstacle and apply the same controller to
the agent in Fig. 5a. Our method guarantees that the agent
moves through the environment completely without violating
safety and stability constraints and when obstacle rotates π/4
counterclockwise in Fig. 5b, the agent moves through the
feasible path to cover all the environment with similar control
gain K1 and K2.

VI. CONCLUSIONS

In this paper we proposed a novel approach to design a
output-feedback controller with cell decomposition, through

(a) Enlarging the obstacle (b) Rotating the obstacle

Fig. 5: In this two examples we deform the obstacle and
apply the second order controller of the original environment
to the new environment.

Linear Programming. We defined a controller such that it
depends on the relative displacement measurements with
respect to the landmarks of the convex cells and formed the
min-max convex problem. Then we changed the min-max
optimization problem to min-min optimization problem by
forming the dual of the inner maximization problems and we
found the controller which is robust to the significant changes
of the environment. We validate our approach on different
examples for the first and second order dynamic control
systems. As presented, our current cell-focused approach has
two limitations: First the controllers are discontinuous at
the boundaries of the cells; this can be addressed by adding
smoothness constraints between cells (at the price of solving a
single large linear program instead of multiple ones). Second,
we assume the environment is already discretized in convex
cells; it is possible to relax this assumption by using sampling
and Voronoi partitions. We plan to study these extensions in
our future work. In addition, we aim to implement our method
to constrained nonlinear systems based on [10]. Moreover,
we also plan to formally investigate theoretical guarantees
for the robustness of the synthesized controllers that we have
empirically demonstrated in this paper.

REFERENCES

[1] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle. Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics. IEEE Transactions on Automatic Control, 59(4):876–891,
2014.

[2] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function
based quadratic programs with application to adaptive cruise control.
In 53rd IEEE Conference on Decision and Control, pages 6271–6278.
IEEE, 2014.

[3] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for
robot motion planning and control in polygonal environments. IEEE
Transactions on Robotics, 21(5):864–874, 2005.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization,
volume 28. Princeton University Press, 2009.

[5] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization,
volume 6. Athena Scientific Belmont, MA, 1997.

[6] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[7] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of robot motion: theory,
algorithms, and implementation. MIT press, 2005.

[8] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local
potential functions for global robot control and navigation. In
Proceedings 2003 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 4,
pages 3546–3551. IEEE, 2003.

[9] S. Fortune. Voronoi diagrams and delaunay triangulations. In
Computing in Euclidean geometry, pages 193–233. World Scientific,
1992.

[10] A. Girard and S. Martin. Motion planning for nonlinear systems using
hybridizations and robust controllers on simplices. In 2008 47th IEEE
Conference on Decision and Control, pages 239–244. IEEE, 2008.

[11] R. Gonzalez, M. Kloetzer, and C. Mahulea. Comparative study of
trajectories resulted from cell decomposition path planning approaches.
In 2017 21st International Conference on System Theory, Control and
Computing (ICSTCC), pages 49–54. IEEE, 2017.

[12] T. H. Gronwall. Note on the derivatives with respect to a parameter
of the solutions of a system of differential equations. Annals of
Mathematics, pages 292–296, 1919.

[13] L. Habets, P. J. Collins, and J. H. van Schuppen. Reachability and
control synthesis for piecewise-affine hybrid systems on simplices.
IEEE Transactions on Automatic Control, 51(6):938–948, 2006.

[14] S.-C. Hsu, X. Xu, and A. D. Ames. Control barrier function based
quadratic programs with application to bipedal robotic walking. In
2015 American Control Conference (ACC), pages 4542–4548. IEEE,
2015.

[15] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research,
30(7):846–894, 2011.

[16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE transactions on Robotics and Automation, 12(4):566–580,
1996.

[17] H. K. Khalil and J. W. Grizzle. Nonlinear systems, volume 3. Prentice
hall Upper Saddle River, NJ, 2002.

[18] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[19] M. Kloetzer, C. Mahulea, and R. Gonzalez. Optimizing cell decom-
position path planning for mobile robots using different metrics. In
2015 19th International Conference on System Theory, Control and
Computing (ICSTCC), pages 565–570. IEEE, 2015.

[20] B. Krogh. A generalized potential field approach to obstacle avoidance
control. In Proc. SME Conf. on Robotics Research: The Next Five
Years and Beyond, Bethlehem, PA, 1984, pages 11–22, 1984.

[21] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How.
Motion planning in complex environments using closed-loop prediction.
In AIAA Guidance, Navigation and Control Conference and Exhibit,
page 7166, 2008.

[22] J.-C. Latombe. Robot motion planning, volume 124. Springer Science
& Business Media, 2012.

[23] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.
[24] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning.

The international journal of robotics research, 20(5):378–400, 2001.
[25] F. Lingelbach. Path planning using probabilistic cell decomposition.

In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, volume 1, pages 467–472. IEEE, 2004.

[26] Q. Nguyen and K. Sreenath. Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints. In 2016
American Control Conference (ACC), pages 322–328. IEEE, 2016.

[27] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential functions. Departmental Papers (ESE), page 323, 1992.

[28] A. Schürmann. Computational geometry of positive definite quadratic
forms. University Lecture Series, 49, 2009.

[29] R. Tedrake. Lqr-trees: Feedback motion planning on sparse randomized
trees. MIT Press, 2009.

[30] A. Weiss, C. Danielson, K. Berntorp, I. Kolmanovsky, and S. Di Cairano.
Motion planning with invariant set trees. In 2017 IEEE Conference
on Control Technology and Applications (CCTA), pages 1625–1630.
IEEE, 2017.

[31] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of
control barrier functions for safety critical control. IFAC-PapersOnLine,
48(27):54–61, 2015.

[32] H. Yan, H. Wang, Y. Chen, and G. Dai. Mobile robot navigation
in the triangulation of dynamic environment. In 2008 International
Conference on Information and Automation, pages 776–783. IEEE,
2008.

[33] G. Yang, C. Belta, and R. Tron. Self-triggered control for safety
critical systems using control barrier functions. arXiv preprint
arXiv:1903.03692, 2019.

	I INTRODUCTION
	II NOTATION AND PRELIMINARIES
	II-A System dynamics
	II-B High relative degree functions and transverse dynamics
	II-C Safety Constraints by Control Barrier Function
	II-D Stability Constraints by Control Lyapunov Function
	II-E Polygonal environment decomposition
	II-F High-level planning

	III PROBLEM SETUP
	III-A Control Barrier Function
	III-B Control Lyapunov Function
	III-C Finding the Controller by Robust Optimization

	IV STATIONARY POINT
	V NUMERICAL EXAMPLES
	V-A First Order Controller
	V-B Second Order Controller

	VI CONCLUSIONS
	References

