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Optimal Control of Wave Energy Converters Using Epsilon-Trig

Regularization Method*

Kshitij Mall1 and Ehsan Taheri1

Abstract— The wave energy converter (WEC) devices pro-
vide access to a renewable energy source. Developing control
strategies to harvest maximum wave energy requires solving a
constrained optimal control problem. It is shown that singular
control arcs may constitute part (or the entire) of extremal
trajectories. Characterizing the optimal control structure, es-
pecially with the possibility of many switches between regular
and singular control arcs, is challenging due to lack of a priori
information about: 1) optimal sequence as well as number of
the regular and singular control arcs, and 2) the corresponding
optimal switch times (from a regular to a singular arc and
vice versa). This investigation demonstrates the application of
a recently developed construct, the Epsilon-Trig Regularization
Method (ETRM), to the problem of maximizing energy har-
vesting for a point-absorber WEC model in the presence of
control constraints. Utility of the ETRM for the WEC problem
is demonstrated by comparing its high-quality results against
those in the literature for a number of test cases.

I. INTRODUCTION

We are considering the problem of harvesting maximum

wave energy from devices that make use of the surface

motion of the waves [1]. The most commonly known devices

in this category are point- and linear-absorber models. Con-

trol strategies to maximize energy absorption of WECs are

achieved by solving a constrained optimal control problem

(OCP), which is an active area of research [2]–[7]. OCPs

are traditionally solved using direct and indirect [8]–[11]

methods.

The maximum wave energy harvesting problem of a point-

absorber WEC has a control-affine Hamiltonian structure.

For such Hamiltonian systems, a frequent phenomenon that

may occur is the appearance of singular arcs, which usually

complicates the solution procedure. The coefficient of the

control input in affine-control Hamiltonian systems is called

the switching function. The sign of the switching function

may alternate between positive and negative values thereby

leading to the switching of the control input. Singular arcs,

however, correspond to the cases in which the switching

function vanishes for finite time intervals. In such cases, the

Pontryagin’s Minimum Principle (PMP) is not sufficient to

characterize the extremal control and additional steps have

to be taken. However, the mere existence of a control-affine

structure in the Hamiltonian does not necessarily mean that

the optimal control will consist of singular arcs [12].

A common practice for solving problems with mix regular-

singular control structure involves a number of steps includ-
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ing 1) utilization of higher-order optimality conditions to find

the control associated with a singular arc [13] and 2) dividing

the entire problem into optimally connected segments of

known regular and singular arcs. The algebraic expression

for a singular control is obtained by taking successive time

derivatives of the switching function until the control appears

explicitly, which is a tedious task and is problem dependent.

Additional conditions have also to be satisfied to ensure

that the resulting singular control minimizes the Hamiltonian

[14].

The aforementioned challenges can be overcome through

the Epsilon-Trig Regularization Method (ETRM) [10]. The

key step in this method is to alter the equations of mo-

tion (EOMs) of the OCP using trigonometric functions.

This modification leads to significant consequences such

that both regular and singular control arcs can be realized

in a straightforward fashion. Another appealing feature is

achieved by adopting the ETRM, namely, the original multi-

point boundary-value problem (MPBVP) is reduced to a

two-point boundary value problem (TPBVP); the latter is

remarkably easier to solve.

The main contribution of this work is the application of

the ETRM to the WEC problem, which is known to have

extremal solutions that consist of regular and singular control

arcs. However, ETRM makes the numerical solution signifi-

cantly easier such that a standard boundary-value solver such

as MATLAB’s bvp4c can be used to solve these challenging

problems.

The remainder of this paper is organized as follows.

Section II describes the point-absorber WEC model used

in this study. A discussion of the TPBVP formulation and

solution process for the WEC problem is given in Section

III. Section IV demonstrates the results and provides a

comparison of solutions with those in the literature. Finally,

concluding remarks are given in Section V.

II. POINT ABSORBER MODEL FOR WAVE

ENERGY CONVERTER

Figure 1 depicts the schematic for a typical point-absorber

WEC model, where hydraulic cylinders are attached to a

buoy [15], [16]. The motion of the waves creates a vertical

motion in the buoy, which results in pushing the hydraulic

cylinders. These cylinders then drive the hydraulic motors,

which in turn drive a generator. The power take-off (PTO)

systems comprising of the hydraulic cylinders and motors

thus translate the oscillating motion of the buoy to useful

electrical energy.

http://arxiv.org/abs/1910.09053v1
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Fig. 1. A schematic of the WEC point absorber model.

Figure 2 depicts the various forces on the buoy. The

dynamics of the WEC involve four forces: 1) a hydrostatic

force, fs, 2) a hydrodynamic damping force, fc, 3) an

excitation force, fe, and 4) a PTO force. The following

assumptions are used in this study: 1) a linear dynamic model

corresponding only to the heave motion is used, 2) the PTO

force is chosen as the control force, which is assumed to

act in the opposite direction to the heave motion, and 3) the

wave frequency dependence of the hydrodynamic damping

force is neglected.
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Fig. 2. Dynamic forces in the WEC point absorber model.

Let x denote the vertical displacement of the buoy. For a

buoy with mass m, the dynamical model can be expressed

as

mẍ = fs + fc + fe − u, (1)

where the hydrostatic force, fs = −kx, is the buoyancy

force on the buoy, which is similar to the spring force with

a spring constant k. The hydrodynamic force, fc = −cẋ,

acts similar to the damping force on the system with a

hydrodynamic damping constant, c. The excitation force,

fe =
∑n

i=1
Ai sin(ωit + φi), is the pressure effect around

the immersed buoy or the float system (a periodic excitation

force is considered here). In the relation for fe, Ai and

φi are the amplitude and the phase for the frequency ωi,

respectively, t is the time, and n is the total number of terms.

The objective is to maximize the extracted energy, E, over

a prescribed time interval, t ∈ [t0.tf ], which can be written

as

E =

∫ tf

t0

u(t)ẋ(t)dt. (2)

III. WAVE ENERGY CONVERTER PROBLEM

FORMULATION AND SOLUTION PROCESS

Since we employ PMP, we re-write the cost functional

from Eq. (2) to the form given in Eq. (3a), which is subjected

to EOMs as shown in Eq. (3b). The resulting OCP is given

as

J = −

∫ tf

t0

u(t)x2(t)dt, (3a)

ẋ1 = x2, ẋ2 =
fe + fs + fc − u

m
, ẋ3 = 1, (3b)

where x1 is the displacement, x2 is the velocity magnitude,

x3 is the time, and γ is the control magnitude such that

u ≤ |γ|. In Eq. (3b), the excitation force, fe, can be

approximated as a periodic or a non-periodic function. The

ETRM regularizes this OCP using two simple trigonometric

modifications given as

u = γ sinuTRIG, (4a)

ẋ1 = x2 + ǫ cosuTRIG, (4b)

where ǫ is the error parameter used to regularize u and

uTRIG is the new control. The Hamiltonian associated with

the regularized system can be written as

H = −γx2 sinuTRIG + λx1
(x2 + ǫ cosuTRIG) (5)

+
λx2

(fe − kx1 − cx2 − γ sinuTRIG)

m
+ λx3

.

Using the first order necessary conditions of optimality, also

known as the Euler-Lagrange equations, the EOMs for the

costates can be formed as shown in Eq. (6). The EOM for

the costate λx3
depends on the derivative of fe with respect

to x3. The periodic form of fe for cases 1 and 2 with n = 5,

and the non-periodic form of fe for case 3 with n = 8 are

discussed in the next section.

λ̇x1
=

kλx2

m
, (6a)

λ̇x2
= −λx1

+
cλx2

m
+ γ sinuTRIG, (6b)

λ̇x3
= −

λx2

∑n

i=1
Aiωi cos(ωix3 + φi)

m
. (6c)

The switching function for this problem, H1, is shown in

Eq. (7a). Note that H1 is the switching function associated

with the control in the original (non-regularized) problem.

The optimal control law is given in Eq. (7b) using the Euler-

Lagrange equations, which is dependent on H1. Even if the

value of H1 vanishes, the optimal control can be explicitly



found from among these two control options using the PMP.

H1 =
−(λx2

+mx2)

m
, (7a)

u∗

TRIG =























arctan

(

γH1

ǫλx1

)

,

arctan

(

γH1

ǫλx1

)

+ π.

(7b)

IV. RESULTS

In order to demonstrate the utility of the ETRM, three

problem cases are shown and discussed in this study. The

differences are mainly due to the type of boundary conditions

enforced on the initial position and velocity, bounds on the

control, and the type of excitation force. These cases are

selected to represent a range of possible scenarios for the

WEC problem and allow us to compare the results with those

reported in Ref. [17]. For the WEC problem m is 2×105 kg,

k is 1.2×105 kg/s2, and c is 105 kgm2/s3. Table I summarizes

the three cases for the WEC problem.

TABLE I

SUMMARY OF THE CONSIDERED CASES.

Case Initial Control Excitation

# Conditions Bound (×105 N) Force Type

1 Fixed | γ | ≤ 1.5 Periodic
2 Free | γ | ≤ 1.5 Periodic
3 Free | γ | ≤ 1.0 Non-Periodic

A comparison is drawn between this study and Ref. [17]

for cases 1 and 2. Since case 3 uses the fitted non-periodic

function, no comparison is made with Ref. [17], which

uses non-periodic data from real experiments. In addition,

brute-force application of methods that use variants of direct

optimization methods fails for problems with singular control

arcs unless remedial actions are taken. In order to clarify this

point, the solution obtained using a pseudo-spectral method

(PSM) is given for case 1.

In the numerical simulations corresponding to cases 1 and

2, f eP
is the periodic excitation force as shown in Eq. (8a)

with an amplitude vector, AP, described in Eq. (8b). The

frequency vector, ωP, based on a periodic time period, TP ,

is shown in Eq. (8c). The value of TP is equal to 10 s, which

is consistent with the literature [17]. The phase vector of the

excitation force, φP, is shown in Eq. (8d).

f eP
=

5
∑

i=1

APi sin(ωPix3 + φPi), (8a)

AP = [1, 0.1, 0.03, 0.5, 0.01]× 105 (N), (8b)

ωP =

[

2π

T P

,
0.5π

T P

,
12π

T P

,
4π

T P

,
0.1π

T P

]

(rad/s), (8c)

φP =
[π

2
,
π

8
,
π

5
,
π

3
,
π

4

]

(rad). (8d)

Equation (9a) describes the trigonometric fit of the non-

periodic excitation force, f eNP
, used in case 3 of this study,

where the value of ANP is 4×105 N. The constant vectors,

aNP, ωNP, and φNP are used to derive f eNP
and are shown

in Eqs. (9b)–(9d), respectively. Since the OCT relies on

derivatives of the state EOMs, discrete data for f eNP
cannot

be used directly to solve the WEC problem. Therefore, a

continuous fitting (Fourier approximation) function as shown

in Eq. (9a) is used instead.

f eNP
=ANP

8
∑

i=1

aNPi sin(ωNPix3 + φNPi), (9a)

aNP =[6.255, 24.1, 0.4027, 1.511,

0.3596, 0.9603, 0.6938, 20.71] (m), (9b)

ωNP =[0.6837, 0.7458, 1.354, 0.5228,

1.054, 0.3953, 0.3246, 0.7512] (rad/s), (9c)

φNP =[0.4082, 1.727,−0.4019,−1.737,

− 2.663,−1.51,−2.364, 4.73] (rad). (9d)

The subsequent subsections include the results obtained

using the ETRM for the three cases of the WEC problem

(see Table I). Structures of the optimal controls are also

characterized in terms of a sequence of their underlying

control arcs, i.e., ‘B’ and ‘S’ shorthand notations are used

to represent bang and singular control arcs, respectively.

We have adopted a numerical continuation process [18]–

[20] with two continuation sets for the three cases. Using this

continuation approach, a simpler OCP with a time duration

of tf = 1 second and a higher value for the error parameter,

ǫ, is solved initially. In other words, a two-parameter family

of OCPs are formed and the problem is solved by using a

standard homotopy method. Note that one of the homotopy

parameters, tf , is a natural boundary condition on the prob-

lem, whereas ǫ is the control regularization parameter. In the

first continuation set, this simpler initial solution serves as an

initial guess for a subsequent complex problem comprising a

longer time duration. The first continuation set is completed

when the terminal time condition specified in the original

problem is reached after a specified number of steps. The

subsequent continuation set operates on reducing ǫ to a

reasonably small value. The computation times shown for

the three cases in Table III include the times required to

complete these continuation sets.

A. Numerical Results for Case #1

Table II lists the boundary conditions for this case. Ac-

cording to Ref. [17], for the considered dynamics and in the

presence of a periodic excitation, the initial conditions for

the displacement, x1,0, and the velocity, x2,0, can be written

as

x1,0 = −
1

2c

5
∑

i=1

Ai cos(φi)

ωi

, x2,0 =
1

2c

5
∑

i=1

Ai sin(φi). (10)

Figure 3 shows x1 obtained using the ETRM, Ref. [17]

and the PSM; Fig. 4 shows x2 obtained using the ETRM and

the PSM. The solutions for the ETRM and Ref. [17] match

well for the most part. However, the state solutions for the

PSM are found to be completely spurious.



TABLE II

INITIAL AND FINAL CONDITIONS FOR CASE 1.

Attribute Initial Value Final Value

Time (s) 0 50
Displacement (m) -0.5093 Free
Velocity (m/s) 0.7480 Free
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Time [s]
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Fig. 3. Time history of x1 for Case 1.

0 5 10 15 20 25 30 35 40 45 50
Time [s]

-0.5

0

0.5

1

x 2 [
m

/s
]

ETRM
PSM

Fig. 4. Comparison of time histories of x2 for Case 1.

The control solutions for this case using the ETRM,

Ref. [17] and the PSM are shown in Fig. 5. The control

solution resulting from the ETRM is singular for the entire

trajectory except for a small part in the end, where it

assumes a bang form and attains the maximum value. Thus,

the optimal control associated with the ETRM has an S-

B sequence. Traditionally, one would have to solve a 3-

point BVP using the OCT, which is more complicated than

solving this case using the ETRM. On the other hand, control

Fig. 5. Comparison of the time history of control inputs and the switching
function between different methods for Case 1.

solution from Ref. [17] is purely singular, which is not

the optimal strategy. In fact, the optimal control profile of

the ETRM with a final bang harvests 0.841 MJ of energy,

which is 5% greater than the harvested energy in Ref. [17]

(0.8 MJ). The PSM has a jittery control solution, which is

expected as the PSM has issues in solving singular control

problems. When proper strategy is adopted, the PSM would

be able to converge to the optimal solution. However, our

goal is to show that this problem is indeed challenging. The

switching function profile obtained using the ETRM (plotted

in Fig. 5) confirms the observations regarding the optimal

control profile. Initially, the switching function stays at near-

0-values corresponding to the singular control and then gains

negative values corresponding to the bang control.

Figure 6 shows the energy time history plots obtained

using the ETRM and from Ref. [17]. When the value of ǫ is

decreased from an initial chosen value of 0.1 m/s to 0.003

m/s using numerical continuation for the ETRM, higher and

more accurate values are obtained for the harvested wave

energy. We further note that the energy obtained using Ref.

[17] has higher values than the energy obtained using the

ETRM at certain points along the trajectory (e.g., t = 41 s).

Since the objective is to increase the total energy over the

entire time interval and the optimal control law using the

ETRM involves S-B structure, the costates are different at

certain points as compared to Ref. [17]. In fact, the larger

the control bound, the greater the differences would become

since the optimal control input can take larger values.
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Fig. 6. Comparison of the time histories of the harvested energy (upper
plot) and harvested energy vs. ǫ plot for Case 1.

B. Numerical Results for Case #2

For this case the initial values of t, x1, and x2 are 0

each and the final value of t is 50 s. Figure 7 shows the

time history of the states for the ETRM and Ref. [17]. As
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-1
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0

0.5

1

1.5

S
ta

te
s

x
1
 [m]

x
2
 [m/s]

Fig. 7. Time histories of the states for Case 2.

shown in Fig. 8, the control solution obtained using the



ETRM starts with a bang form with a minimum value,

switches to a singular form, and finally attains the bang

form with a maximum value. Thus, the optimal sequence of

control is B-S-B. The switching function matches with this

observation as it initially has positive values corresponding to

the first bang control. It then stays at 0 value corresponding

to the singular control. Finally, it attains negative values

corresponding to the second bang control. The early part

of the optimal control profile obtained using the ETRM is

identical to the control profile of Ref. [17], however, the

final bang arc leads to a better energy harvest. Traditionally,

one would have to solve a 4-point BVP using the OCT,

which is more complicated than case 1. Figure 9 shows the

Fig. 8. Comparison of the time histories of the optimal control and
switching function associated with the ETRM for Case 2.

energy time history plot for this case. The value of ǫ for the

ETRM is decreased in an exact manner as case 1, resulting

in higher and more accurate values of the harvested wave

energy. The harvested energy associated with the ETRM

control profile for this case is 0.76 MJ, whereas the energy

harvested by the control profile of Ref. [17] is 0.71 MJ. Thus,

a 6.5% improvement is achieved by using the ETRM due

to the additional final bang arc. This seemingly negligible

improvement gains considerable importance in WEC arrays

or “farms”, where such an improvement becomes multi-fold

for a large number of WECs. Note that the method proposed

in Ref. [17] is indeed a simple strategy that may lead to

sub-optimal control strategies, but it attains a near-optimal

control profile.
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Fig. 9. Comparison of the time histories of harvested energies and changes
in the harvested energy vs. ǫ for Case 2.

C. Numerical Results for Case #3

The boundary conditions for this case are identical to those

of case 2; Fig. 10 shows the states solutions. In this case, the

bounds on the control are tighter as compared to cases 1 and

2. Note that only the results obtained using the ETRM are

included for this case. Figure 11 shows the control profile for
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Fig. 10. Time histories of the states for Case 3.

this case, which has a complicated structure comprising of

the following sequence: B-S-B-S-B-S-B-S-B-S-B-S-B. Thus,

the control solution has six singular arcs and seven bang arcs.

Traditionally, based on Fig. 11, one would have to solve

a 14-point BVP using the indirect methods, which is more

complicated than cases 1 and 2. However, the ETRM solves a

simpler TPBVP for this case. The bounds on the controls are

implemented in an automated and implicit manner using the

ETRM. The switching function, shown in Fig. 11, vanishes

for the singular part, has positive values for the negative

bang parts and negative values for the positive bang parts of

the control solution. Thus, the switching function profile is in

excellent agreement with the optimal control profile obtained

for this case. Figure 12 shows the energy time history plot for
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Fig. 11. Time history of control and switching function for Case 3.

this case. The values of ǫ for this case are decreased exactly

like cases 1 and 2, leading to higher and more accurate

values for the energy harvested from the waves. The energy

harvested for case 3 is nearly twice the value of energy



harvested in cases 1 and 2, which is due to the more energetic

non-periodic excitation force in case 3.
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Fig. 12. Time history of harvested energy (upper plot) and change in the
total harvested energy vs. ǫ1 for Case 3.

D. Summary of Results

The results for the three cases are summarized in Table III.

The energy results for cases 1 and 2 demonstrate nearly 5%

and 6.5% improvements, respectively, over the results from

Ref. [17]. The main difference between the results is caused

by the terminal segment of the control, where the ETRM

takes a bang form. The results in this study indicate that a

final bang arc leads to a higher value for the absorbed energy

and takes precedence over a singular arc. All computations

TABLE III

SUMMARY OF RESULTS FOR DIFFERENT CASES; SOLVER RELATIVE AND

ABSOLUTE TOLERANCES ARE 1× 10
−4 FOR ALL CASES; ǫ IS 1× 10

−3 .

Attribute Case 1 Case 2 Case 3

Energy (MJ) 0.8412 0.7599 1.5040
Energy (MJ) Ref. [17] 0.7966 0.7166 -
Computation Time (s) 152.84 157.95 135.48

were performed on a personal computer with a 2.5-GHz Intel

i5 processor using MATLAB 2014b built-in BVP solver,

bvp4c.

V. CONCLUSIONS

In this study, the application of the Epsilon Trig Regular-

ization Method (ETRM) is demonstrated to the problem of

maximum-energy-absorption for a point-absorber WEC. The

ETRM is a simple, efficient, and powerful method for dealing

with OCPs with control constraints based on trigonometry.

Using the ETRM, two trigonometric terms are added to the

path cost of standard optimal control formulation and one of

state equations to implement the regularization.

We considered three scenarios for the WEC problem. The

results indicate that high-quality and accurate solutions were

obtained for these cases by using the ETRM as compared

to the solutions obtained from the literature and a direct

solver package based on pseudo-spectral methods (PSM).

Singular control solutions obtained using the PSM involve

many jitters, which are unrealistic to implement in a real

world scenario. The results indicate that more wave energy

can be harvested by using a combination of singular and bang

control profiles (obtained using the ETRM) as compared to a

purely singular control profile (as proposed in the literature).
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