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Abstract

Equipping a spacecraft with multiple solar-powered electric engines (of the same

or different types) compounds the task of optimal trajectory design due to pres-

ence of both real-valued inputs (power input to each engine in addition to the

direction of thrust vector) and discrete variables (number of active engines).

Each engine can be switched on/off independently and “optimal” operating

power of each engine depends on the available solar power, which depends on

the distance from the Sun. Application of the Composite Smooth Control (CSC)

framework to a heliocentric fuel-optimal trajectory optimization from the Earth

to the comet 67P/Churyumov-Gerasimenko is demonstrated, which presents a

new approach to deal with multiple-engine problems. Operation of engine clus-

ters with 4, 6, 10 and even 20 engines of the same type can be optimized.

Moreover, engine clusters with different/mixed electric engines are considered

with either 2, 3 or 4 different types of engines. Remarkably, the CSC framework
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allows us 1) to reduce the original multi-point boundary-value problem to a

two-point boundary-value problem (TPBVP), and 2) to solve the resulting TP-

BVPs using a single-shooting solution scheme and with a random initialization

of the missing costates. While the approach we present is a continuous neighbor

of the discontinuous extremals, we show that the discontinuous necessary con-

ditions are satisfied in the asymptotic limit. We believe this is the first indirect

method to accommodate a multi-mode control of this level of complexity with

realistic engine performance curves. The results are interesting and promising

for dealing with a large family of such challenging multi-mode optimal control

problems.

Keywords: Multiple Engines, Trajectory Optimization, Composite Smooth

Control, Indirect Method, Numerical Continuation Method, Primer Vector,

Fuel-Optimal, Hybrid Systems

1. Introduction

Over the past six decades, significant technological developments have been

made that drastically improve, and arguably, revolutionize the capacity of space

probes to accomplish missions beyond what had been possible using earlier tech-

nologies [1, 2, 3, 4, 5, 6]. Specifically, the recent breakthroughs that have taken

place in advanced Solar Electric Propulsion (SEP) systems [7] are noticeable in

reducing launch mass and enabling inexpensive missions [8, 9, 10, 11, 12, 13, 14].

Electric engines (thrusters) operate at a higher level of mass efficiency com-

pared to chemical rockets, which leads to delivering larger payloads and ability

to reach a diverse set of targets, specifically, for small-body rendezvous missions.

Efficiencies can be gained not only through an order of magnitude reduction of

propellant required, but also through a reduction in the mass of engine, pro-

pellant tanks, and support structure. A simultaneous advancement in low size,

weight and power sensors, communication and computer systems have further

expanded possibilities. As a consequence, much more can be accomplished with

smaller and less expensive spacecraft. SEP is now envisioned for many in-space
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logistics supply purposes and for cargo missions [15, 16, 17].

In spite of the progress made recently, certain challenges still remain that

have to be surmounted when SEP systems are used as the primary means of

producing propulsion force. Due to very small thrust values that these engines

produce, they have to operate for longer duration. It is also possible to config-

ure a cluster of thrusters to create additional thrust and reduce the flight time.

A more complicated facet of designing trajectories with SEP systems is the in-

herent coupling between the available power and the trajectory state (primarily

inverse square dependence of available solar power on the distance to the Sun).

Furthermore, while we have approximate insight on aging of solar power

systems and electric propulsion systems, the long mission duration lead to un-

certainties in the actual SEP system performance versus the models used to

optimize the planned trajectory. These considerations, collectively, demand a

paradigm shift with respect to the tools needed for solving trajectory optimiza-

tion problems [18]. In this paper, we deal with deterministic hybrid system

models for SEP trajectory optimization.

Trajectory optimization problems, in particular, and optimal control prob-

lems, in general, are solved by direct methods, indirect methods [19, 20] or

variants thereof [21, 22]. The resulting optimal trajectories play a pivotal role

in efficient operation of a number of flight vehicles [23, 24]. Here, we focus on

indirect optimization methods since satisfaction of the resuling first-order nec-

essary conditions of optimality guarantees at least a local extremal solution [25].

Moreover, the obtained extremals are usually of higher accuracy compared to

their direct approximations. Depending on the type of problem and constraints

it may be necessary to solve either a two-point boundary-value problems (TP-

BVPs), or in more complicated cases, a multi-point boundary-value problems

(MPBVP).

For initial analysis, it is a common practice to consider simplified models

for SEP systems. A single engine is assumed to operate at effective constant

specific impulse and efficiency values [26, 27, 28, 29, 30]. However, the actual

performance of SEP systems depends on the input power, which has to be taken
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into consideration for obtaining more realistic trajectories [31, 32, 33, 34, 35,

36, 37, 38, 39, 40]. More accurate knowledge of the capability of a spacecraft to

change its trajectory is obtained when more realistic models of the SEP system

and dynamics are used [41, 42, 43].

Depending on the mission design stage (i.e., a preliminary design study or

a final study for actual guidance), a variety of tools are developed that incor-

porate various levels of fidelity for sub-system models, perturbation models,

and planetary ephemerides data. A fairly comprehensive review of the mod-

els, objective functions, and solution approaches commonly used for spacecraft

trajectory optimization is provided in [44]. Low- to medium- to high-fidelity

models/tools for designing spacecraft trajectories exist that formulate and solve

the resulting optimal control problem by various optimization methodologies

[31, 45, 46, 47, 48].

The focus of this work is to demonstrate the application of the Composite

Smooth Control (CSC) framework developed in part 1 [49] to problems with

multiple modes of operation. In particular, we study fuel-optimal interplane-

tary trajectory optimization when the propulsion system consists of a cluster of

engines. In the case of multiple engines, we permit multiple modes in the sense

that one, or two or many engines can be selected in such a fashion that opti-

mality conditions are satisfied. A prominent feature of the proposed approach

is that not only the optimal instances of transition between different operat-

ing modes, but also the optimal number of engines as well as their operating

conditions are revealed without a priori assumptions.

The key difference in the CSC framework (compared to Ref. [50]) is in si-

multaneous smooth transitions between possible modes of operations and having

smooth bang-bang control inputs. The former is achieved by constraints (power-

driven constraints in the considered problems), whereas the latter is achieved by

the switching function of the associated control mode. In the CSC framework,

bang-bang control profiles of thrusters are also incorporated. There is an im-

portant implementation subtlety when formulating and solving problems that

consist of bang-bang type controls: the constraint that determines the activation
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of the bang-bang control is the so-called switching function associated with that

specific control. In other words, for each control input that has a bang-bang

control structure, the switching function, S, serves as the constraint (S = 0)

and is considered as the argument of the hyperbolic tangent smoothing (HTS)

method [51]. Therefore, the time associated with this constraint is obtained

implicitly, and in an autonomous manner. This means that the time of control

switches (between the two extreme limits) are also determined autonomously.

Collectively, in addition to incorporating smooth transitions due to multiple

time- or state-triggered constraints, CSC enables us to incorporate switching-

function-triggered constraints that govern bang-bang type control inputs.

2. Power System and Perturbation Modeling

In this section, a review of the solar electric power models, and thruster

performance data is given. Then, equations of motion are given while taking

into account the power sub-system and actuation models.

2.1. Solar Arrays and Spacecraft Sub-system Power Models

There are multiple ways to model power sub-system of spacecraft [31, 41].

A detailed discussion of the power sub-system is given in Part 1 and we review

the main points. The available power, Pava, to be distributed to engines can be

calculated as

Pava = PSA(t, r) − Ps/c(r), (1)

where

PSA(t, r) = ψ(t)φ(r)P0,BOL , (2)

φ(r) =
1

r2

[

A1 +
A2

r + A3

r2

1 +A4r +A5r2

]

, (3)

ψ(t) = (1− σ)τ(t), (4)

where P0,BOL denote the nominal beginning-of-life power produced by the solar

arrays at one astronomical unit (AU) from the Sun. Ps/c(r) denotes the power
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needed for operation of spacecraft systems and the power processing unit (PPU).

In Eq. (4), σ denotes the efficiency decay rate of the solar arrays measured as a

fractional rate per year (usually 0.02 to 0.04 per year) and τ(t) denotes elapsed

time from the launch time measured in years [43]. For numerical results in this

paper, Ps/c = Pppu and Pppu is assumed to be the required power to operate all

spacecraft sub-systems other than the engine(s). The empirical approximations

of Eq. (3) is fit to represent a more complicated model; the details and the A

coefficients are given in Part 1 [49]. While a single PPU is able of powering

a limited number of engines [4], we assumed that only one PPU is capable of

powering all of the engines in the numerical results. The proposed framework

can readily extend to situations that multiple PPUs have to be used, but, our

focus is on the utility of the general CSC framework.

2.2. Practical Engine Models

In low-fidelity trajectory design, the dependency of both specific impulse

and thrust value to power are ignored, and instead, effective constant values are

used. In this work, however, we consider more realistic engine models. These

models represent approximations of the actual performance of SEP engines.

These are based on experiments and simulations that cover a finite, but a large

set (on the order of 40 to 100 or larger) of operating points. Each operating

point is characterized by a local mass flow rate and thrust magnitude [8]. A

best-fit second-order polynomial interpolation approximation is shown to be an

adequate surrogate model for a preliminary mission analysis [52, 53]. Rather

than linear interpolation using a grid, continuous interpolation can be used. We

adopt fourth-order polynomials interpolation (with power as the independent

variable) for thrust and mass flow rate defined as

T (Pen) = aTP
4
en + bTP

3
en + cTP

2
en + dTPen + eT, (5)

ṁ(Pen) = amP
4
en + bmP

3
en + cmP

2
en + dmPen + em, (6)

where Pen ∈ [Pmin, Pmax] denotes the engine input power and Pmin and Pmax

represent the lower and upper limits, respectively, over which an engine operates.
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The power variation interval depends on the particular engine’s operational

characteristics. For these representative quartic polynomial surrogate models

given in Eqs. (5) and (6), Table 1 summarizes the surrogate model coefficients

of six SEP engines [54, 43], which we adopt for the present study. The input

power is in kilowatts and the mass flow rate is in milligram/s. Figure 1 shows

the performance curves of the six engines listed in Table 1.

Table 1: Engine performance coefficients; P , T , ṁ, and Isp are given in kilowatts, miliNewton,

milligram/s, and seconds, respectively.

BPT4000 BPT4000 BPT4000 Next TT10 NEXT TT11 NSTAR

High-Isp High-Thrust ExtHigh-Isp High-Isp High-Thrust

ID 1 2 3 4 5 6

aT -0.095437 0.173870 1.174296 -0.19082 0.101855017 5.145602

bT 1.637023 -1.150940 -10.102479 2.96519 -2.04053417 -36.720293

cT -9.517167 -2.118891 19.422224 -14.41789 11.4181412 90.486509

dT 72.030104 77.342132 47.927765 54.05382 16.0989424 -51.694393

eT -7.181341 -8.597025 -1.454064 -1.92224e-6 11.9388817 26.337459

am -0.008432 -0.011949 0.086106 -0.004776 0.011021367 0.36985

bm 0.148511 0.235144 -0.727280 0.05717 -0.207253445 -2.5372

cm -0.802790 -1.632373 1.328508 -0.09956 1.21670237 6.2539

dm 3.743362 6.847936 1.998082 0.03211 -1.71102132 -5.3568

em 1.244345 0.352444 1.653105 2.13781 2.75956482 2.5060

Pmin 0.302 0.302 0.302 0.638 0.64 0.525

Pmax 4.839 4.839 4.839 7.266 7.36 2.6

T@Pmin 13.748 14.537 14.523 29.356 26.401 19.215

T@Pmax 251.68 280.97 184.42 237.16 234.28 93.37

ṁ@Pmin 2.305 2.278 2.358 2.132 2.11 1.078

ṁ@Pmax 12.765 15.358 7.235 2.123 5.786 3.162

Isp@Pmin 608.03 650.71 627.95 1404.19 1275.68 1817.05

Isp@Pmax 2010.55 1865.46 2599.43 4217.93 1839.50 2106.19

η@Pmin 0.136 0.154 0.148 0.317 0.258 0.326

η@Pmax 0.513 0.531 0.486 0.675 0.644 0.530

2.3. Equations of Motion

In the heliocentric phase of flight, the spacecraft motion is predominantly

governed by the gravitational attraction of the Sun. In addition, the space-

craft is equipped with a cluster of engines and its mass, m, changes due to the

consumption of propellant. The equations of motion are expressed in terms
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Figure 1: Performance of engines listed in Table 1 over their admissible power ranges [43, 54].

of the modified equinoctial orbital elements (MEEs) [55] due to them being

found superior to other sets of coordinates/elements for describing low-thrust

trajectories [29, 30].

The derivation of the optimality conditions is achieved in a simpler manner

if a distinction is made between the trajectory dynamics of MEEs and time

rate of change of spacecraft mass. Let x = [p, f, g, h, k, l]⊤ denote the vector

of MEEs and let a = [ar, at, an]
⊤ represents all of the non-two-body gravita-

tional accelerations expressed in the LVLH frame acting on the spacecraft. The

dynamics of MEEs can be written as

ẋ =A(x, t) + B(x, t)a, (7)

where A ∈ R
6×1 denotes the two-body gravity-induced part of the dynamics

and B ∈ R
6×3 is the control influence matrix (these matrices are defined in [30]).

The MEE set has five slow variables and one (very regular) fast variable, l. The
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acceleration vector, a, in Eq. (7) can be written as

a = uprop + asb, (8)

where uprop denotes the control acceleration vector due to the engines and asb

denotes the perturbing accelerations vector due to secondary bodies (i.e., the

other planets in the Solar System or solar radiation pressure). Another state of

the system is the spacecraft mass and its time rate of change depends on the

operation of engines. The details of modeling thrust acceleration term due to

operation of engines, uprop, and mass time rate of change are explained in the

next section.

3. Propulsion System with Multiple SEP Engines

For a cluster of engines, the complete dynamical system consists of the time

rate of change of spacecraft mass. Let Ne denote the number of engines, and

under the assumption that engine thrust vectors are all aligned, the total thrust

vector produced by the engines, T, and time rate of change of spacecraft mass,

ṁ can be written as

T = α̂

Ne
∑

i=1

Ti, ṁ =

Ne
∑

i=1

ṁi, (9)

where α̂ denotes the unit thrust steering vector and Ti and mi denote the

thrust magnitude and time rate of change of mass due to the operation of the

i-th engine (for i = 1, · · · , Ne). For simplicity, we assume all thrust vectors are

parallel (direction α̂). In practice, cant angles are frequently used such that

all thrust vectors act along a line that passes through the mass center. In the

following, we investigate two types of clusters: 1) an engine cluster with the

same type of engines, and 2) an engine cluster with different (or mixed) types of

engines. The first cluster type is considered initially to explain the formulation

and structure of the problem. The second type of cluster is a bit more involved,

but it can be viewed as an extension of the first type of cluster.
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4. Formulation of Fuel-Optimal Boundary-Value Problem

For a fuel-optimal problem, the cost functional is written in Mayer form as

J = −m(tf ), (10)

where the minimization of the negative value of the final mass is sought. For

an initial fixed dry mass, the above objective corresponds to minimizing the

propellant consumption. Let λ = [λp, λf , λg, λh, λk, λl]
⊤ denote the costate

vector associated with the MEEs, x and let λm denote the costate associated

with the mass state, m. The Hamiltonian becomes

H = λ⊤

[

A(x, t) + B(x, t)

[

T

m
+ asb

]]

− λmṁ. (11)

From the expression for the Hamiltonian given in Eq. (11), together with

the Euler-Lagrange equation, the dynamics of the costates can be derived as

λ̇ =−

[

∂H

∂x

]⊤

, λ̇m =−
∂H

∂m
.

We should mention that in all our recent and current research, we make

frequent use of an automated code (that is developed in MATLAB and employ

the symbolic toolbox features) to derive the costate dynamics associated to the

state dynamics. For instance, in this work, the contribution of the two-body

gravitational model to costate dynamics, λ̇two-body, is calculated through the

automated tool (or derived algebraically by hand). However, the contribution

of the secondary body gravity perturbations, λ̇sb, are evaluated through the

complex-based derivative method, and are added numerically to the costate

dynamics associated with the two-body dynamics (see Part 1 [49] for details).

Consequently, the total contribution due to secondary bodies can be written as

λ̇sb =

Nsb
∑

i=1

λ̇sb,i, (12)

where Nsb denotes the number of considered secondary bodies. The costate

dynamics associated with the MEEs can then be computed as

λ̇ = λ̇two-body + λ̇sb. (13)
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Depending on the type of maneuver, different boundary conditions can be

enforced. In this paper, we are dealing with time-fixed rendezvous-type prob-

lems, where only the final mass is free. The final position and velocity vectors

of the spacecraft in these types of maneuvers are required to match their target

body counterparts (denoted by subscript ‘T ’). It is assumed that the spacecraft

leaves the Earth’s Sphere of Influence (SOI) on a parabolic trajectory, i.e., with

zero hyperbolic excess velocity v∞ = 0 and that, on a solar scale, the SOI is

negligibly small compared to 1 AU. This is a frequently used first approximation

in the solar orbit transfer preliminary mission design. The final boundary con-

ditions (seven equality constraints) can be written in the vector function form

as

ψ(x(tf ), tf ) =
[

[x(tf )− xT ]
⊤, λm(tf ) + 1

]⊤

= 0, (14)

where xT = [pT , fT , gT , hT , kT , lT ]
⊤ denotes the target state values. Since a

rendezvous maneuver is considered, the final value of the mass costate has to

be -1 (due to Mayer problem transversality condition). Another unknown of

the problem, for multi-revolution trajectories, is the number (Nrev) of en-route

revolutions in the transfer orbit, which has to be determined. Its value is taken

into consideration when the change in the true longitude, l, is to be enforced as

a boundary condition,

lT = lf + 2πNrev, (15)

where lf is the true longitude of the final point (corresponding to Nrev = 0). The

final value, lT , is the updated target value for the final true longitude taking into

account any additional number of revolutions. Previous studies [56, 57] have

shown that for each number of revolutions in the feasible set of Nrev integers,

there is one local extremal for fuel-optimal trajectories.

Let z = [x⊤,m,λ⊤, λm]⊤ denote the state-costate vector, then, we can write,

ż = F = [ẋ⊤, ṁ, λ̇⊤

two-body, λ̇m]⊤, (16)

where α = α∗, P = P ∗(S), and c = c∗(S). Once the optimal values of the

control components are substituted into F, the equations of motion can be

integrated numerically, if initial conditions are fully specified.
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In the type of maneuver we consider, only the initial states, x(t0) = x0 and

m(t0) = m0, are specified. The final state x(tf ) as well as the final costates

are functions of the initial costates, η(t0), where η(t0) = [λ⊤(t0), λm(t0)]
⊤ is

the vector of seven unknown variables to be determined such that Eq. (14)

is satisfied. Thus, we have a TPBVP that requires a starting estimate η(t0)

within the domain of convergence of the particular algorithm to satisfy the

prescribed boundary conditions. There are seven constraints in Eq. (14) and

seven unknown elements in [29, 30].

5. Operation Logic for Spacecraft with Multiple SEP Engines

This problem is quite challenging since not only the number of operating

engines, but also the operating power level of active engines are not known a

priori, and have to be optimized. The traditional approach to handle these

cases is to evaluate the Hamiltonian for all possible combinations of control

choices and to select control inputs such that the Hamiltonian is minimized (or

maximized, depending upon the formulation) [58, 41].

There are multiple strategies to specify operational logic for multi-engine

spacecraft [43], (e.g., 1) the maximum number of active engines, and 2) the

minimum number of active engines). We focus our attention to a particular case

where each engine needs to be switched off or operate only either at its maximum

or minimum power setting, i.e., Pen ∈ {0, Pmin, Pmax}. In general, we allow for

two power settings, whereas the zero-power setting is a consequence of taking

into account the optimality criteria. In other words, each of the considered power

settings has a corresponding switching function, which determines whether that

particular power setting is active or not. The proposed methodology, as will

be explained, takes into account all combinations and the optimality principle

is used to select the “best” combination of engines per considered selection

strategy.

Many “if → then” conditions will emerge from the optimality conditions

and trial solutions of the resulting necessary conditions have to impose these

12



switches as the trajectory is propagated (so that the proper combination of

engines and their associated power inputs are selected such that the Hamiltonian

is minimized). Consequently, we look to impose a specific set of operating

conditions for the several existing engines.

In this work, we propose a simple innovative workaround to the above prob-

lem, which involves two steps: 1) first, a classification step is performed to

determine all of the possible combination of engines’ operation modes in ad-

vance and out of the optimization process. This leads to a set of finite discrete

operation modes (each with its own power level). 2) It is then straightforward

to apply the CSC framework outlined in part 1 in order to ensure that certain

operation modes are used for distribution of power through activation functions.

An interesting aspect of using the proposed strategy is that a trivial pre-

processing calculation can be used to produce the operation modes once the

number of engines and their power range of operation are determined. In prac-

tice, the number of engines would rarely exceed eight, i.e., Ne < 8 [31]. In

addition, it is anticipated that not all distinct combinations of the operation

modes will necessarily be utilized during a particular optimal maneuver.

6. Same-Type Engine Clusters

Under the assumption that all engines are of the same type, we can express

the thrust and time rate of change of mass as

T = α̂ [TNe@Pmax + TNe@Pmin] , (17)

ṁ = ṁNe@Pmax + ṁNe@Pmin, (18)

where TNe@Pmax (TNe@Pmin) denotes the thrust magnitude corresponding to the

number of engines that operate at their maximum (minimum) power levels.

Similarly, ṁNe@Pmax (ṁNe@Pmin) denotes the time rate of change of mass corre-

sponding to the number of engines that operate at their maximum (minimum)

power levels.

Let Ne@Pmax and Ne@Pmin denote the number of engines that operate at

their maximum and minimum admissible power limits, respectively. We can
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write

TNe@Pmax = Ne@Pmax
2PmaxηPmax

cPmax
, TNe@Pmin = Ne@Pmin

2PminηPmin

cPmin
,

ṁNe@Pmax = −
TNe@Pmax

cPmax
, ṁNe@Pmin = −

TNe@Pmin

cPmin
.

Here, ηPmax and ηPmin correspond to the efficiency of the engines at maxi-

mum and minimum power settings, respectively. Also, cPmax and cPmin are the

maximum and minimum exhaust velocities. By substituting the thrust acceler-

ation, uprop = T/m into the RHS of Eq. (7) we have

ẋ = A+
1

m
[TNe@Pmax + TNe@Pmin]Bα̂, (19)

ṁ = ṁNe@Pmax + ṁNe@Pmin. (20)

Recall that each engine can only operate at two modes. Thus, the unknown

control inputs that have to be determined are α̂, Ne@Pmax, and Ne@Pmin, i.e.,

the direction of the total thrust vector and the number of engines operating at

their respective upper and lower power limits.

6.1. Operation Modes For Same-Type Engine Clusters

An example is considered for explaining the process. Specifically, a low-

thrust trajectory optimization from the Earth to the comet 67P/Churyumov-

Gerasimenko is considered while several clusters of engines are available with

BPT-4000 Extra-High-Isp engines. In this paper, for demonstration purposes,

clusters with 4, 6, 10 and even 20 engines are considered.

For a BPT-4000 Extra-High-Isp engine, Pen ∈ [302, 4839] Watts (see Table

1). It is assumed that the nominal power at 1 AU is P@1AU = 30 KWatts and

a minimum of Ps/c = 500 Watts is devoted to subsystems of the spacecraft. In

order to apply the engine selection logic, we need to define the lower and upper

bounds on the distance to determine the drop in nominal power. The range

of distance from the Sun can be determined through analysis of the orbital

elements of the target body and a minimum distance to the Sun that is specific

to each problem. For this representative example, we have chosen r ∈ [0.8, 2.0]

AU.
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Table 2 summarizes all operation modes. Here, Pused denotes the aggregate

power used by the engines for the specified mode and number of engines oper-

ating at the maximum or minimum power. We emphasize that if an operation

mode is engaged, it is still possible for some of the engines in that particular

operation mode not to operate. In fact, the operation of an engine is engaged

by the optimality principle through the respective switching function of that

particular engine. This is identical to a scenario in which there is enough power

to switch an engine on, however, the optimality principle is not satisfied, which

means that an engine will not switch on.

In Table 2, Ne@Pmax (Ne@Pmin) denotes the number of engines that operate

at their corresponding maximum (minimum) power settings. For the prescribed

values, there are 14 operating modes when Ne = 4. In general, the number

of operation modes depends on several factors including engines power bounds,

number of total engines, nominal power at 1 AU, and the prescribed range for the

distance from the Sun. Also, hardware specific operating constraints may affect

the number of modes one considers in a given problem. The four-engine example

considered here admits all 14 mathematical permutations. We emphasize that

no optimization is performed at this stage and these mode definition results are

obtained through a trivial pre-processing step.

Table 2: Representative operation modes for a trajectory from the Earth to comet 67P with

four BPT-4000 Extra-High-Isp engines (Ne = 4); power unit is Watts.

Mode # Pused Ne@Pmax Ne@Pmin Mode # Pused Ne@Pmax Ne@Pmin

1 19,356 4 0 8 5443 1 2

2 14,819 3 1 9 5141 1 1

3 14,517 3 0 10 4839 1 0

4 10,282 2 2 11 1208 0 4

5 9,980 2 1 12 906 0 3

6 9,678 2 0 13 604 0 2

7 5,745 1 3 14 302 0 1
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Note also that efficiency degradation of the solar arrays is not taken into

account when we generated the data in Table 2. However, this will not impact

the entirety of the problem. Each operation mode is characterized by its unique

power value, Pused. On the other hand, efficiency degradation of the solar

arrays will eventually impact the available power, Pava, through Eq. (1). At

any time instant, the effects due to efficiency degradation or any other type of

losses will only impact the time of transition between operation modes, which

is automatically determined during the optimization process. In the case that

multiple PPUs have to operate, we just need to add the required power to Pused

and this allows us to handle the cases with multiple running PPUs. Application

of the CSC framework to smoothly make a transition between operation modes

is explained in the following section.

6.2. Implementation Details for Same-Type Engine Clusters

The most crucial step in the proposed scheme is to determine the number of

operating engines, i.e., Ne@Pmin, Ne@Pmax, which are discrete values. Once these

integers are known, we can evaluate the RHS of the set of state-costate dynamics

and propagate them numerically to solve the shooting problem. However, we

managed to overcome this difficulty by re-casting the problem into a set of

finite operation modes with their associated feasible number of engines. As a

consequence, if we manage to find an approach to determine the best operation

mode, we automatically have information about the potential number of engines

for that operation mode. However, this does not mean that all engines within an

operation mode are used; optimality criteria govern the engine operation within

each operation mode.

It is at this stage that CSC framework is employed. The following steps have

to be performed at each time instant, t ∈ [t0, tf ]:

• Step 1: Pava is calculated using Eq. (1).

• Step 2: depending on the value of Pava, one of the operation modes

will typically be weighed more heavily compared to the other modes (and
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it is not known which mode will become engaged). More generally, let

σ ∈ N denote the total number of operation modes and also let w =

[wi, · · · , wσ]
⊤ (with wi ∈ [0, 1] for i = 1, · · · , σ) denote the vector of

activation weights corresponding to the total number of operation modes.

We are interested in a smooth approximation, thus, we have to sum over

weighted contributions of all existing operation modes.

Except for the operation modes #1 and #14, each wi consists of two

multiplicative activation functions. For example, if Pava > 19, 356W, the

first operation mode is engaged, and if Pava < 302W, there is not enough

power at all. For instance, if 14517 ≤ Pava < 14819, then there is also

enough power to activate the third operation mode. The activation weight

of the third operation mode can be written in terms of two multiplicative

activation functions (consistent with the convention defined in part 1 [49],

i.e., particular constraint followed by the number of involved constraints)

as

w3 = ζw3,1ζw3,2,

where we make use of the two inequality constraints to define the smooth

activation functions

ζw3,1 =
1

2

[

1− tanh

(

gw3,1

ρc

)]

, gw3,1 = Pava − 14819 < 0,

ζw3,2 =
1

2

[

1− tanh

(

gw3,2

ρc

)]

, gw3,2 = 14517− Pava ≤ 0.

In the above relations, gw3,1 and gw3,2 denote the first and the second con-

straints that have to be taken into account for specifying the activation

weight associated with w3. ρc denotes constraint-type smoothing parame-

ter to be used during the homotopic process. The same procedure can be

followed for the other activation weight functions according to the above

procedure. Operation modes #1 and #14 can be treated similarly. It is

easy to verify that in the interior of power range, 14, 517 ≤ Pava < 14, 819,

that w3 ≈ 1, and, we will find all other analogous weights are approxi-

mately zero. Additionally, as Pava approaches Pused = 14, 517 watts, the
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transition from w3 ≈ 0 to w3 ≈ 1 is smooth and an uncontrollably sharp

switch from zero to unity is controlled by selection of ρc suitably small.

For all operation modes we have used the same smoothing parameter, ρc.

The details follow the general procedure outlined in Section 4.1 in Part 1.

The output of this step is w, which will be used in the next step.

• Step 3: Let Ñe@Pmax ∈ N
σ denote the vector associated with number

of engines operating at Pmax, and let Ñe@Pmin ∈ N
σ denote the vector

associated with number of engines operating at Pmin. For example, if

we write Table 2 as a three-column table, the second column represents

the Ñe@Pmax vector and the third column represents the Ñe@Pmin vector.

The composite smooth representations (superscript ‘s’) of Ne@Pmax and

Ne@Pmin can be expressed as

Ns
e@Pmax = w⊤Ñe@Pmax, (21)

Ns
e@Pmin = w⊤Ñe@Pmin. (22)

At this stage, we have smooth, controllably sharp, representations for

the problematic discrete design variables. However, we should construct

smooth representations for the power sent to engines as well.

• Step 4: First, we form the switching functions corresponding to each

engine’s operating power as

S@Pmax =
‖λ⊤

B‖

m
+

λm
c@Pmax

, (23)

S@Pmin =
‖λ⊤

B‖

m
+

λm
c@Pmin

. (24)

We can form analogous smooth thrust activation functions for power using

the following relations

ζPmax =
1

2

[

1 + tanh

(

S@Pmax

ρb

)]

, (25)

ζPmin =
1

2

[

1 + tanh

(

S@Pmin

ρb

)]

. (26)
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• Step 5: the smoothed thrust and time rate of change of mass are written

as

T s
Ne@Pmax = Ns

e@PmaxζPmax
2PmaxηPmax

cPmax
, (27)

T s
Ne@Pmin = Ns

e@PminζPmin
2PminηPmin

cPmin
, (28)

ṁs
Ne@Pmax = −

T s
Ne@Pmax

cPmax
, (29)

ṁs
Ne@Pmin = −

T s
Ne@Pmin

cPmin
, (30)

where ηPmax (ηPmin) and cPmax (cPmin) denote the efficiency and exhaust

velocity values at maximum (minimum) power setting, respectively. Al-

together, the thrust associated with maximum power is multiplied by

two controllably smooth, activation coefficients in order to accomplish

a smooth approximation of the number of engines (through Ns
e@Pmax) and

a smooth approximation of the engine switching, ζPmax. The same proce-

dure is followed for the thrust associated with minimum power. Once the

thrust value is known, the time rate of change of mass is straightforward

and is achieved by a simple division. Ultimately, these smooth approx-

imation will be used to evaluate the total thrust and mass time rate of

change as

T = α̂ [T s
Ne@Pmax + T s

Ne@Pmin] , (31)

ṁ = ṁs
Ne@Pmax + ṁs

Ne@Pmin. (32)

At this stage, it is possible to determine all the information required for

evaluating the RHS of Eq. (19) and to propagate the differential equations to

solve a TPBVP with smooth control inputs. The optimal direction of thrust

steering vector is governed by the primer vector, which is a universal law when

the direction of thrust vector is free and is determined as the definition of

Lawden’s primer vector:

α̂ = −
λ⊤

B

‖λ⊤B‖
. (33)
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In summary, the above steps are outlined to achieve smoothing at two levels:

1) a smooth transition between a finite set of operation modes, and 2) a smooth

approximation of the switching function that commands engines to switch on

or off. The combination of these two levels of smoothing determines the close

neighbor of the optimal solution for the considered engine power settings.

6.3. Numerical Continuation Procedure

Similar to the discussion in Section 4.4 of part 1 [49], there is a connection

between the resulting smooth TPBVP and the original non-smooth OCP. Specif-

ically, all of the control inputs are continuous and differentiable, which leads to

having smooth, continuous state and costate dynamics. While these dynamics

are rigorously smooth, the switches can be tuned by sweeping the smoothing

parameter to be sufficiently sharp that they are qualitatively indistinguishable

from the discontinuous controls that they approximate. In particular, we have

a two-parameter family of smooth (superscript ‘s’) neighboring OCPs that ap-

proach the actual OCP as the continuation parameters tend to zero. One can

construct smoothed approximate neighbors that satisfy the invariant embedding

constraint






































ẋs = ẋs(zs,Us, t)

ṁs = ṁs(zs,Us, t),

λ̇s = λ̇s(zs,Us, t),

λ̇sm = λ̇sm(zs,Us, t),

U
s

→U
∗

−−−−−−−→
ρ=ρmax→0







































ẋ∗ = ẋ∗(z∗,U∗, t),

ṁ∗ = ṁ∗(z∗,U∗, t),

λ̇∗ = λ̇∗(z∗,U∗, t),

λ̇∗m = λ̇∗m(z∗,U∗, t),

(34)

where ρ = [ρb, ρc]
T denote the vector of smoothing parameters. Smooth and

optimal control vectors (that consist of all control variables) are given as

Us ∈ [αs(ρ), Ns
e@Pmax(ρb, ρc), N

s
e@Pmin(ρb, ρc)] ,

U∗ ∈ [α∗(ρ), N∗

e@Pmax(ρb, ρc), N
∗

e@Pmin(ρb, ρc)]

∣

∣

∣

∣

∣

ρ=ρmin≈0

.

Note that the control vector consists of three components: direction of the

thrust vector, α, number of engines operating at maximum power setting,
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Ne@Pmax, and number of engines operating at minimum power Ne@Pmin. As

the continuation parameters approach zero, the smooth control vector, Us ap-

proaches the values corresponding to the non-smooth OCP, U∗. The numerical

continuation procedure is straightforward and is analogous to methods widely

used for solving optimal control problems [59, 60]. In the next section, the re-

sults of applying the outlined set of steps on a low-thrust fuel-optimal trajectory

optimization problem is demonstrated.

6.4. Numerical Results for Earth-to-Comet 67P Problem: Same-Type Engine

Cluster

To demonstrate the utility of the proposed framework, a low-thrust trajec-

tory from the Earth to comet 67P/Churyumov-Gerasimenko is considered. Due

to the large change between the inclination, eccentricity, and semi-major axis

orbital elements of the Earth and those of the comet, low-thrust trajectories

would consist of more than one revolution around the Sun and may take up to

4 years [43]. Since we are going to take into account the perturbing acceleration

due to all planets, the initial position vector cannot match that of the Earth.

Therefore, it is assumed that the spacecraft is on the boundary of the SOI of

the Earth with a positive along-the-track offset equal to one Earth SOI radius.

Therefore, the initial position and velocity vectors of the spacecraft at t = t0

are

r0 =











−1671985.95664453

−151914424.309981

1699.37510504324











km, v0 =











29.3070443053298

−0.596900982440449

−4.10911520334288× 10−4











km/s.

(35)

The final position and velocity vectors are

rf =











−465627493.14461

−50530561.3073027

40190127.9500019











km, vf =











−9.7217789589445

−14.6294809300934

−0.234945260833124











km/s. (36)
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The spacecraft is assumed to leave the Earth on June 17, 2024, and would

reach the comet on April 28, 2029. The time of flight is fixed at tf − t0 = 1776

days. The initial mass of the spacecraft is m0 = 3000 kg, the beginning-of-life

power is set to P0,BOL = 30 kW and σ = 2% per year. It is assumed that

500 Watts of power is used to energize the PPU and operate various spacecraft

sub-systems during the entire time of flight. For the BPT-4000 Extra-High-

Isp engine, the following values are used: ηPmax = 0.48576, ηPmin = 0.14806,

cPmax = 25491.663 (m/s), cPmin = 6158.059 (m/s), Pmax = 4839 Watts, Pmin =

302 Watts. These parameters have been used to generate the power levels

summarized in Table 3.

Planetary perturbations in the modeling represents the disturbing acceler-

ation due to all of the planets of the Solar System from the innermost planet

Mercury to the outermost planet Neptune, Nsb = 8. The numerical CX method

(with its implementation outlined in part 1) is used to evaluate the contribution

of planetary perturbations into costate dynamics.

Table 3: Summary of the results for the Earth-to-67P problem with a cluster of four BPT-4000

Extra-High-Isp thrusters; ρb = ρc = 1.0× 10−2.

Case Two-body Power Degradation Planetary mf

# Model Model Perturbation (kg)

µsunr/r
3 φ(r) = 1/r2 ψ(t) asb

1 Yes Yes No No 1930.507

2 Yes Yes Yes No 1922.064

3 Yes Yes Yes Yes 1922.301

To quantify the impact of various models, and given the flexibility of the

tool, three cases are considered and are listed in Table 3. The difference in these

cases is due to the inclusion of solar power system degradation and planetary

perturbation models summarized as follows

• Case 1: two-body gravitational model without consideration of variation

of power due to change in distance and degradation of the solar arrays,
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and no inclusion of planetary perturbations,

• Case 2: two-body gravitational model with consideration of variation of

power due to change in distance and degradation of the solar arrays, and

no inclusion of planetary perturbations,

• Case 3: two-body gravitational model with consideration of variation of

power due to change in distance and degradation of the solar arrays, and

with inclusion of planetary perturbations.

Figure 2 depicts the location of the Earth on its orbit at the time of departure

(June 17, 2024), low-thrust trajectory, and location of the comet on its orbit at

the end of flight (April 28, 2029), all in the heliocentric J2000 frame of reference.

The optimal solution corresponds to making two revolutions around the Sun,

i.e., Nrev = 2.
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Figure 2: Same-type engines: trajectory from the Earth to comet 67P case 3 with 4 × BPT-

4000 Extra High-Isp engines.

Figure 3 shows the time history of the osculating true anomaly and the

thrust profile for the optimal trajectory. The majority of thrusting occurs at
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Figure 3: Same-type engines: time history of osculating true anomaly and thrust for case 3

with 4 × BPT-4000 Extra High-Isp engines.
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Figure 4: Same-type engines, time history of the power levels and number of potential engines

on the optimal trajectory for case 3 with 4 × BPT-4000 Extra High-Isp engines.
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the perihelion passages. Figure 4 shows the time history of the operation modes

and the number of engines. Only the first 11 operation modes are engaged

during this “optimal” trajectory. We draw your attention to the fact that the

trajectory consists of zero-thrust arcs at the beginning and at the end of the

trajectory. This indicates that the particular configuration of the propulsion

system is more capable and the trajectory starts and terminates on the so-

called late-departure and early-arrival boundaries. These boundaries will trace

a curve and are revealed as part of the optimal switching surfaces introduced

by Taheri and Junkins [56].
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Figure 5: Same-type engines: time history of the switching functions for case 3 with 4 ×

BPT-4000 Extra High-Isp engines.

Another important point is that the particular number of engines associated

with each operation mode is just an indication of the number and operation

power setting of potential engines. It does not necessarily mean that all of the

engines for that particular operation mode will become active. The activation

depends on optimality criteria and depends on the sign of the respective switch-

ing functions. In order to clarify this point, Figure 5 depicts the time history

of the switching functions defined in Eqs. (23) and (24). In fact, it shows that
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only those engines that operate at the maximum power are contributing to the

thrust and rate of change of mass, whereas the engine(s) at the lowest power

setting is (are) always inactive. Solar arrays may have generated enough power

to turn engines on, however, the optimality principle sets the command to turn

an engine (or a set of engines) on or off.

At the end of trajectory, S@Pmax is still positive. However, the 11
th operation

mode is engaged (see middle sub-plot in Figure 4), which corresponds to having

only 4 engines that can only operate at Pmin (see Table 2). The combination of

the mentioned factors leads to a zero-thrust arc.

6.5. Same-Type Engine Clusters With Large Number of Engines

In order to test the performance of the CSC framework, we studied cases in

which the number of engines was increased to 6, 10 and a hypothetical cluster

with 20 engines. A condensed list of operation modes of each cluster is given

in Table 4. The total number of operation modes can be further reduced if

the feasible range of distance from the Sun is taken into account. Here we have

considered the total number of operation modes purely based on the combination

of engines.

Table 4: Representative first and last operation modes for a trajectory from the Earth to comet

67P with multiple BPT-4000 Extra-High-Isp engines (Ne ∈ {6, 10, 20}) and the optimal final

mass for case 1; power unit is Watts.

Ne Mode # Pused Ne@Pmax Ne@Pmin mf (kg)

6
1 29,034 6 0

1939.844
27 302 0 1

10
1 43,853 9 1

1939.844
64 302 0 1

20
1 46,873 9 11

1939.815
164 302 0 1

Of course, having 20 engines is likely not realistic, but we use this scenario

as a verification and demonstration step to assess the performance of the CSC

26



framework for such a problem with 164 different operation modes. No other

known optimal control approach is known that can accommodate these many

propulsion system operation modes. The dry mass of each engine is about 7.5

kg, which adds up to 150 kg if a vehicle design analysis is conducted. More

importantly, the required power would impact the dimension and weight of

the solar arrays. However, the same vehicle/engine parameters of the previous

section are used. In order to simplify the results, only case 1, is considered

where the solar array degradation and third-body perturbations are ignored.

The last column of Table 4 presents the final mass.

Figures 6 and 7 depict the time history of thrust, power levels, and number

of engines for solutions with 6 and 20 engines. Figure 6 shows that whenNe = 6,

only the first 22 (out of the total 27) operation modes are engaged. However,

when Ne = 20, operation modes #52 through #157 are engaged. The thrust

profiles in Figures 6 and 7 show similar trends especially during the first thrust

arcs and up to the last two the thrust arcs. While a complicated set of switches

is evident (the third sub-figure of Figure 7), the resulting optimal 20-engine

thrust profile is qualitatively very similar to the 6-engine profile of Figure 6.

Of course, in our analysis, the inert mass variations due to having a greater

number of engines are not taken into account. Therefore, the final masses re-

ported in Table 4 do not differ from each other significantly (and are comparable

to Case 1 in Table 3). This demonstration is simply used to verify the appli-

cability of our approach. The results indicate that the proposed smoothing

method is capable of handling discrete set of power modes as high as 164. The

time history of thrust for a cluster with 10 engines (with 64 operating modes)

is identical to the one in Figure 6 and is not plotted. The switching functions

also are identical to those depicted in Figure 5.

7. Mixed/Different-Type Engine Clusters

A more complicated strategy is needed if/when all of the engines within a

cluster are not of the same type. In these situations, each individual engine has
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Figure 6: Same-type engines: the thrust, power levels and number of potential operating

engines vs. time for case 1 with 6 × BPT-4000 Extra High-Isp engines.
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to be taken into account twice: one with its power input set at Pmin and one

with its power input set to Pmax. Each of these two settings are multiplied by a

smoothed activation function, γ (with appropriate indexing). As a consequence,

Eq. (9) can be written as

T = α̂

Ne
∑

i=1

[γi@PminTi@Pmin + γi@PmaxTi@Pmax] , (37)

ṁ =

Ne
∑

i=1

[γi@Pminṁi@Pmin + γi@Pmaxṁi@Pmax] (38)

where the unknown control inputs are α̂, and γi@Pmin and γi@Pmax (for i =

1, · · · , Ne).

7.1. Implementation Details for Mixed-Type Engine Clusters

Unlike a cluster with the same type of engines, we need to determine the

activation function of individual engines. In addition, each engine has two dis-

tinct power settings (excluding Pen = 0). Therefore, in general we can not group

them into two categories and turn the problem into the task of determining the

number of active engines in that particular category. Here we need to deal with

each engine’s on/off switching individually.

Immediately after the activation functions are known, we can substitute their

values into Eqs. (37) and (38) and evaluate the RHS of the set of state-costate dy-

namics and propagate them numerically to solve the shooting problem. Again,

we choose a strategy to cast the problem into a set of operation modes. The

only difference is that the columns of the operating table will grow depending

on the number of considered engines.

Since we are studying engine clusters with a mixed sub-cluster or distinct

number of engines, we specify each cluster with an ordered list of engine iden-

tifiers, IDs, that are defined in Table 1. For instance, an engine sequence

E = {1, 2, 3, 4} denotes an engine cluster that consists of the three variants

of BPT-4000 engines, i.e., High-Isp, High-Thrust, Extra High-Isp, and one Next

TT10 High-Isp engine. We can also have an engine cluster E = {3, 4, 6}, which

consists of three distinct types of engines.
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The logic for generation of table of operation modes is not as straightforward

as it is for the same-type engine clusters. In particular, it turns out that for

certain engine sequences, it is possible to have different combinations of engines

operating at different power settings, but require identical Pused. They consist

of different power settings for engines, but the aggregate used power is the same.

Such a situation can occur, for example, if we have a cluster of two BPT-4000

engines with a sequence E = {2, 3}. Despite the fact that these two engines have

different characteristic performance curves, they operate over almost the same

power range, i.e., Pen ∈ [0.302, 4.839], which means that they have identical

maximum and minimum power settings.

Table 5 summarizes the original data table for E = {2, 3} where three dif-

ferent sets of operation modes are distinguishable with the same value of Pused.

There are four columns since there are two engines (each can operate at maxi-

mum or minimum power). The first operation mode, for example, corresponds

to when both engines operate at their maximum power settings, Pmax. Note

that the presented table is just a representative example and there could be sit-

uations in which multiple operation modes have the same value of Pused if there

are more engines. In the end, we need to have a strictly monotonic (decreas-

ing/increasing with respect to power) list of operation modes, where the power

of each mode (Pused) is different from the other operation modes. Note two

distinct modes consuming the same power do not consume the same fuel mass.

Since we are interested in fuel-optimal trajectories, we break the tie between the

operation modes (among the conflicting sets) by selecting the operation mode

with the least value of the rate of change of mass, ṁ. In the given example,

operation modes # 3, 4, and 8 will pass the fuel optimality criterion filtering

process. Table 6 summarizes the resulting operation modes for E = {2, 3}.

As far as the implementation is concerned, the same overall steps outlined in

Section 6.1 are followed to compute the thrust and time rate of change of mass.

The only major difference is that the operations are extended over a larger set

of data points (as opposed to having only two category of engines). Specifi-

cally, element-wise multiplications of matrices and summation over columns of
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Table 5: Representative table of operation modes for a trajectory from the Earth to comet

67P with engine sequence E = {2, 3} and when some of the modes are conflicting.

Mode # Pused (Watts)

Engine ID ṁ

2 3 (mg/s)

Pmin Pmax Pmin Pmax

1 9,678 0 1 0 1 22.59

2 5,141 0 1 1 0 17.72

3 5,141 1 0 0 1 9.51

4 4,839 0 0 0 1 7.23

5 4,839 0 1 0 0 15.36

6 604 1 0 1 0 4.64

7 302 0 0 1 0 2.36

8 302 1 0 0 0 2.28

Table 6: Post-filtering table of operation modes for a trajectory from the Earth to comet 67P

with engine sequence E = {2, 3}.

Mode # Pused (Watts)

Engine ID ṁ

2 3 (mg/s)

Pmin Pmax Pmin Pmax

1 9,678 0 1 0 1 22.59

2 5,141 1 0 0 1 9.51

3 4,839 0 0 0 1 7.23

4 604 1 0 1 0 4.64

5 302 1 0 0 0 2.28
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the resulting operations are performed. Note that w is a matrix obtained by

repeating its vector form k times (where k = 2Ne) to construct a σ × k matrix.

The time rate of change of mass and thrust associated with individual engine

power settings have to be calculated. The details are removed for brevity and

it is straightforward to establish the required relations. The ultimate relation

can be written as

T = α̂

Ne
∑

i=1

[γi@Pminζi@PminTi@Pmin + γi@Pmaxζi@PmaxTi@Pmax] , (39)

ṁ =

Ne
∑

i=1

[γi@Pminζi@Pminṁi@Pmin + γi@Pmaxζi@Pmaxṁi@Pmax] , (40)

where each engine power setting has its own coefficient triggered also by the

switching function for that particular engine and power setting, which are the ζ

coefficients in the above relations. The direction of the total thrust vector is still

governed by Eq. (33). As far as the invariant embedding is concerned, Eq. (34)

still holds and we use a two-parameter family of OCPs. The only difference is

that the control vector consists of additional elements given as

Us =




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
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
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














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α∗
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



























ρ=ρmin≈0

,

where the γ values in the control vectors have absorbed the ζ values.

7.2. Numerical Results for Earth-to-Comet 67P Problem: Different-Type En-

gine Clusters

The methodology outlined in Section 7.1 is used for designing trajectories

from the Earth to comet 67-P. The boundary conditions of the problem, time of

flight, and the initial mass of the spacecraft are all identical to those in Section

6.4.
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Table 7 summarizes the results for eight clusters with different engines (low-

est 2 to largest 4 engines) and with different combinations of engines. A sub-

script index number is assigned to each engine sequence. For each sequence,

the total number of operation modes, the number of engaged modes, and the

final mass is reported. Recall also that engagement of a mode means that those

engines are the best combination, but activation of each engine is triggered by

its switching function. The result of the engine sequence, E6, is identical to the

same-engine result, but is obtained using the proposed scheme for a different-

type engine cluster.

Table 7: Summary of different-type engine clusters the Earth-to-comet 67P problem case 1.

Cluster sequence Total # of Range of mf

Opt. Modes Engaged Modes (kg)

E1 = {2, 3} 5 1-4 1726.413

E2 = {3, 5} 8 1-6 2029.389

E3 = {4, 5} 8 1-6 2152.619

E4 = {2, 4, 5} 26 1-20 2173.261

E5 = {3, 4, 5} 26 1-20 2192.719

E6 = {3, 3, 3, 3} 14 1-11 1930.507

E7 = {2, 2, 3, 3} 14 1-11 1844.453

E8 = {2, 3, 4, 5} 53 1-43 2159.789

Figure 8 shows the details of the trajectory for the engine sequence, E8

and Figure 9 shows the switches between the maximum and minimum power

settings corresponding to the total engaged operation modes. Figure 10 depicts

the time history of the switching functions of those engines that contribute to

the trajectory. This sequence has a total number of eight switching functions.

Once again, only engines with IDs 3, 4 and 5 become active, which means that

we could have removed engine ID 2 from this particular engine cluster. This

type of analysis is quite instrumental for configuring a suitable engine cluster.

In a majority of the cases engines operate at their maximum power settings.
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Figure 8: Different-type engine cluster: time history of osculating true anomaly, thrust, and

operation modes for engine sequence E8 = {2, 3, 4, 5} case 1 with ρb = ρc = 0.01.
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However, it is also possible for some of the engines to operate at their minimum

power settings. For instance, when the engine sequence E3 is used, the time

history of the switching functions indicates that all of the engine operate at their

maximum and minimum power settings. In particular, the minimum power

settings of both engines are activated during the final time duration as is shown

in Figure 11.

Obviously, we can not have an engine operating at its maximum and min-

imum power settings simultaneously. Recall that it is the combined effects of

the switching function and the engaged operation mode that determines the

actual operation of an engine. This is identical to the analysis presented for

the zero-thrust arc in Figure 5, where the switching function was not the sole

indicator of operation.

Engine IDs 4 and 5 correspond to Next TT10 and NEXT TT11 engines that

have a large separation between their power settings compared to the other

engines, which is one of the reasons that minimum power modes appear in

solutions associated with this particular engine cluster.

While restricting the admissible control to minimum or maximum power set-

ting is not guaranteed to be the optimal strategy (for these throttleable engines),

it may be viewed as a first effort to solve such challenging problems. In fact,

we can add or remove the number of power settings of each engine at our will

(from its current two options, Pen ∈ {Pmin, Pmax} to beyond two) so long as the

number of total operation modes do not grow to beyond some computational

limit (since we are using a single-shooting scheme). It is also possible to set the

value for the upper and lower power limits if we are interested to perform any

particular type of analysis. For instance, if we set Pmin = 4.0 KWatts instead of

its original value, Pmin = 0.302 KWatts, the final mass of the engine sequence

E = {3, 5} becomes mf = 2031.43 kg, which is 2.04 kg (0.1%) greater than the

value reported in Table 7.

There are likely better strategies, but the proposed strategy and results of

this study are still relevant and of importance, establish a beginning framework

to impose a larger set of admissible control modes for multi-engine clusters. In
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tribute to the solution for cluster sequence E8 = {2, 3, 4, 5} case 1.

particular, it serves as a first effort to solve such problems in the indirect opti-

mization methods. The results can be used to gain insights about the structure

of the control, which is helpful for formulating and solving the actual optimal

control problem.

Our future work is focused on alternative/improved approaches for finding

solutions that are closer to “optimal” for the case that multiple engines can

be individually throttled. We should mention, however, that with respect to

the selected discrete modes of operation of engines, the solutions are at least

approximate local extremals since with sufficiently small ρb and ρc, they satisfy

the first-order necessary conditions of optimality.

8. Conclusion

In this work, the problem of designing spacecraft trajectories that exploit the

indirect method of optimal control and is capable of handling multiple discrete

operating modes is studied. In particular, trajectory optimization problems
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are considered for spacecraft with a cluster of engines for which the number of

operating engines and the power at which each engine operates are not known

a priori.

Application of the Composite Smooth Control (CSC) framework is presented

that enables reducing the problem to a two-point boundary-value problem and

facilitates the numerical solution of this problem. A two-parameter family of

smoothly switching mode accommodates the case of multiple identical or dis-

crete engine design, such that a very close neighbor of the Pontryagin necessary

conditions, and the associated boundary conditions, can be efficiently deter-

mined. In the case of a spacecraft with a cluster of engines, a pre-processing

step was proposed to define distinct modes of operation and then apply the CSC

framework to determine the number and operating power of the engines. This

framework is evidently the first practical method for applying indirect optimal

control approach to multi-mode systems of this level of complexity, with realis-

tic polynomial engine performance curves, and when a single-shooting scheme

is used.

The results indicate that the proposed framework performs well for solving

problems in which the spacecraft is equipped with clusters consisting of 4, 6

or 10 engines. Application of the method is also demonstrated for an extreme

hypothetical case of a cluster of 20 engines with up to 164 different operating

power levels. The framework is further applied to engine clusters with different

or the same type of engines. We investigated clusters with 2, 3 or 4 different

types of engines. The results indicate that the proposed smoothing method is

capable of handling discrete set of power modes as high as 164. The results also

indicate that the majority of the thrusting occurs during perihelion passages

of the intermediate quasi-elliptical orbits, where the power from solar arrays

is maximum. However, based on the available power, multiple modes of oper-

ation are engaged that may consist of different settings for each engine. The

complex engine operation settings is revealed autonomously through the CSC

framework.
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[25] E. Trélat, Optimal control and applications to aerospace: some results and

challenges, Journal of Optimization Theory and Applications 154 (3) (2012)

713–758.

[26] R. Bertrand, R. Epenoy, New smoothing techniques for solving bang–bang

optimal control problemsnumerical results and statistical interpretation,

Optimal Control Applications and Methods 23 (4) (2002) 171–197.

42



[27] F. Jiang, H. Baoyin, J. Li, Practical techniques for low-thrust trajectory

optimization with homotopic approach, Journal of Guidance, Control, and

Dynamics 35 (1) (2012) 245–258.

[28] G. Tang, F. Jiang, J. Li, Low-thrust trajectory optimization of asteroid

sample return mission with multiple revolutions and moon gravity assists,

Science China Physics, Mechanics & Astronomy 58 (11) (2015) 114501.

[29] E. Taheri, I. Kolmanovsky, E. Atkins, Enhanced smoothing technique for

indirect optimization of minimum-fuel low-thrust trajectories, Journal of

Guidance, Control, and Dynamics 39 (11) (2016) 2500–2511.

[30] J. L. Junkins, E. Taheri, Exploration of alternative state vector choices

for low-thrust trajectory optimization, Journal of Guidance, Control, and

Dynamics 42 (1) (2018) 47–64.

[31] C. Sauer Jr, Solar electric performance for medlite and delta class planetary

missions, Tech Report: 20060041724, Jet Propulsion Lab., California Inst.

of Tech.; Pasadena, CA, United States.

[32] R. Nah, S. Vadali, E. Braden, Fuel-optimal, low-thrust, three-dimensional

earth-mars trajectories, Journal of Guidance, Control, and Dynamics 24 (6)

(2001) 1100–1107.

[33] L. Casalino, G. Colasurdo, Optimization of variable-specific-impulse inter-

planetary trajectories, Journal of Guidance, Control, and Dynamics 27 (4)

(2004) 678–684.

[34] I. M. Ross, A roadmap for optimal control: the right way to commute,

Annals of the New York Academy of Sciences 1065 (1) (2005) 210–231.

[35] G. Mengali, A. A. Quarta, Fuel-optimal, power-limited rendezvous with

variable thruster efficiency, Journal of Guidance, Control, and Dynamics

28 (6) (2005) 1194–1199.

43



[36] V. Petukhov, Method of continuation for optimization of interplanetary

low-thrust trajectories, Cosmic Research 50 (3) (2012) 249–261.

[37] D. Y. Oh, D. Landau, Simple semi-analytic model for optimized inter-

planetary low-thrust trajectories using solar electric propulsion, Journal of

Spacecraft and Rockets 50 (3) (2013) 609–619.

[38] C. A. Kluever, Efficient computation of optimal interplanetary trajectories

using solar electric propulsion, Journal of Guidance, Control, and Dynamics

38 (5) (2014) 821–830.

[39] P. Zhang, J. Li, S. Gong, Fuel-optimal trajectory design using solar electric

propulsion under power constraints and performance degradation, Science

China Physics, Mechanics & Astronomy 57 (6) (2014) 1090–1097.

[40] F. E. Laipert, J. M. Longuski, Automated missed-thrust propellant mar-

gin analysis for low-thrust trajectories, Journal of Spacecraft and Rockets

52 (4) (2015) 1135–1143.

[41] A. A. Quarta, G. Mengali, Minimum-time space missions with solar electric

propulsion, Aerospace Science and Technology 15 (5) (2011) 381–392.

[42] Z. Chi, H. Li, F. Jiang, J. Li, Power-limited low-thrust trajectory opti-

mization with operation point detection, Astrophysics and Space Science

363 (6) (2018) 122.

[43] D. H. Ellison, B. A. Conway, J. A. Englander, M. T. Ozimek, Application

and analysis of bounded-impulse trajectory models with analytic gradients,

Journal of Guidance, Control, and Dynamics 41 (8) (2018) 1–15.

[44] A. Shirazi, J. Ceberio, J. A. Lozano, Spacecraft trajectory optimization:

A review of models, objectives, approaches and solutions, Progress in

Aerospace Sciences 102 (2018) 76–98.

[45] J. Sims, S. Flanagan, Preliminary design of low-thrust interplanetary mis-

sions, American Astronautical Society/AIAA Astrodynamics Specialists

Conference, AAS Paper 99-338, 16-19 Aug, 1999.

44



[46] G. Whiffen, Mystic: Implementation of the static dynamic optimal control

algorithm for high-fidelity, low-thrust trajectory design, in: AIAA/AAS

Astrodynamics Specialist Conference and Exhibit, 2006, p. 6741.

[47] J. A. Englander, B. A. Conway, T. Williams, Automated mission planning

via evolutionary algorithms, Journal of Guidance, Control, and Dynamics

35 (6) (2012) 1878–1887.

[48] J. Williams, J. S. Senent, C. Ocampo, R. Mathur, E. C. Davis, Overview

and software architecture of the copernicus trajectory design and optimiza-

tion system, 4th International Conference on Astrodynamics Tools and

Techniques; May 03, 2010 - May 06, 2010; Madrid; Spain.

[49] E. Taheri, J. Junkins, I. Kolmanovsky, A. Girard, A novel approach for

optimal trajectory design of spacecraft with multiple modes of operation,

part 1, Acta Astronautica.

[50] H. Saranathan, M. J. Grant, Relaxed autonomously switched hybrid system

approach to indirect multiphase aerospace trajectory optimization, Journal

of Spacecraft and Rockets 55 (3) (2017) 611–621.

[51] E. Taheri, J. L. Junkins, Generic smoothing for optimal bang-off-bang

spacecraft maneuvers, Journal of Guidance, Control, and Dynamics 41 (11)

(2018) 2470–2475.

[52] C. Koppel, D. Estublier, The smart-1 electric propulsion subsystem, in:

39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

2003, p. 4545.

[53] G. Mengali, A. A. Quarta, Tradeoff performance of hybrid low-thrust

propulsion system, Journal of Spacecraft and Rockets 44 (6) (2007) 1263–

1270.

[54] R. Hofer, High-specific impulse operation of the bpt-4000 hall thruster for

nasa science missions, in: 46th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference & Exhibit, 2010, p. 6623.

45



[55] M. Walker, A set of modified equinoctial orbit elements, Celestial Mechan-

ics and Dynamical Astronomy 38 (4) (1986) 391–392.

[56] E. Taheri, J. L. Junkins, How many impulses redux, The Journal of the

Astronautical Sciences, (accepted), also the Keynote paper at the AAS

John L. Junkins Astrodynamics Symposium, Proceedings in press.

[57] E. Taheri, J. Junkins, A unified approach to optimization of low-thrust

and impulsive orbit maneuvers, in: The 2018 AAS/AIAA Astrodynamics

Specialist Conference, Snowbird, Utah, 2018, AAS-18-399.

[58] R. Jones, C. Sauer, Advanced solar electric propulsion (asep) for planetary

missions, Technical Report: 19850034263, Jet Propulsion Lab., California

Inst. of Tech.; Pasadena, CA, United States, 1984.

[59] K. Mall, M. J. Grant, Epsilon-trig regularization method for bang-bang op-

timal control problems, Journal of Optimization Theory and Applications

174 (2) (2017) 500–517.

[60] M. Saghamanesh, H. Baoyin, A robust homotopic approach for continuous

variable low-thrust trajectory optimization, Advances in Space Research

62 (11) (2018) 3095–3113.

46


	1 Introduction
	2 Power System and Perturbation Modeling
	2.1 Solar Arrays and Spacecraft Sub-system Power Models
	2.2 Practical Engine Models
	2.3 Equations of Motion

	3 Propulsion System with Multiple SEP Engines
	4 Formulation of Fuel-Optimal Boundary-Value Problem
	5 Operation Logic for Spacecraft with Multiple SEP Engines
	6 Same-Type Engine Clusters
	6.1 Operation Modes For Same-Type Engine Clusters
	6.2 Implementation Details for Same-Type Engine Clusters
	6.3 Numerical Continuation Procedure
	6.4 Numerical Results for Earth-to-Comet 67P Problem: Same-Type Engine Cluster
	6.5 Same-Type Engine Clusters With Large Number of Engines

	7 Mixed/Different-Type Engine Clusters
	7.1 Implementation Details for Mixed-Type Engine Clusters
	7.2 Numerical Results for Earth-to-Comet 67P Problem: Different-Type Engine Clusters

	8 Conclusion
	9 Acknowledgment

