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Abstract—The high variability of weather parameters is 

making photovoltaic energy generation intermittent 

and narrowly controllable. Threatened by sudden 

discontinuity between the load and the grid, energy 

management for smart grid systems highly require an 

accurate PV power forecasting model. In this regard, 

Nonlinear autoregressive exogenous (NARX) is one of 

the few potential models that handle time series analysis 

for long-horizon prediction. This later is efficient and 

high-performing. However, this model often suffers 

from the vanishing gradient problem which limits its 

performances. Thus, this paper discus NARX algorithm 

for long-range dependencies. However, despite its 

capabilities, it has been detected that this model has 

some issues coming especially from the vanishing 

gradient. For the aim of covering these weaknesses, this 

study suggests a hybrid technique combining long 

short-term memory (LSTM) with NARX networks 

under the umbrella of Evolution of recurrent systems 

with optimal linear output (EVOLINO). For the sake of 

illustration, this new approach is applied to PV power 

forecasting for one year in Australia. The proposed 

model enhances accuracy. This made the proposed 

algorithm outperform various benchmarked models. 

    Index Terms—Energy management, Long-term 

prediction, LSTM, photovoltaic power, NARX, smart 

grid. 

I. INTRODUCTION 

lean energy transition toward renewable sources  (RS) 

is becoming a necessity in the twenty-one century. 

This goal has been cited in France summit agreement. 

Obviously, RS ensures sustainable development and 

overcome the nature devastation issues. Within this vein, 

solar energy from photovoltaic plants is leading this 

transition. However, it has been noticed that RS has a major 

drawback in terms of stability and power quality. 

Photovoltaic panels are continuously disturbed by weather 

conditions such as clouds, wind speed, and temperature.  

Also, it must be mentioned that the key element for energy 

generation which is the irradiation is unavailable during the 

night hours. 

   Thus, PV power forecasting models are proposed to 

estimate the power generated from solar energy and then 

ensure unit commitment and budget planning. Therefore, 

time series forecasting (TSF) is becoming a dynamic 

research area supported by the exponential rise of big data 

led by the exponential growth of the internet. The latter 

consequence gives birth to new accurate techniques [1].In 

this respect, TSF interprets the behavior of some variables 

that continuously change over time to reconstitute a clear 

vision about future values [2]. i.e. understanding the past to 

estimate the future. TSF is frequently used in econometrics, 

statistical analysis [3], finance [4], weather forecasting [5], 

[6] and many other uncountable applications. In this 

context, forecasting the photovoltaic power is mainly 

predicted through two methods: PV power is predicted via 

numerical weather prediction (NWP) using mathematical 

modeling from the natural phenomenon or satellite 

observations. The data assimilation technique analyses the 

patterns of satellite information and the actual climate 

conditions[7][8][9]. The data acquisition from the first type 

of forecasting uses indirect measures i.e. it indicates how 

much the weather changes the environment[10]. This leads 

to the second type of power forecasting which is interpreted 

in this paper. This type consists of using direct 

measurement from ecological elements in the process[11]. 

The prediction analyses weather database to determine the 

next photovoltaic power. It had been approved that the 

second approach is more precise[12]. Moreover, it gets 

more attention due to the development of advanced 

algorithms to get higher accuracy for a longer time horizon. 

This leads us to three categories for forecasting horizons. 

Short term prediction includes an hourly prediction for 

sudden dispatching. Medium domain forecasting is a daily 

estimation of the photovoltaic output for maintenance 

planning. The last type is long term prediction that lasts for 

years. The usage of the aforementioned type involves 

budget planning and project investment[13],[14][15].  

   Among all these classes, forecasting methods were 

proposed to analyze time-series data. performant models 

can predict solar power with less computational computing, 

less features input parameters and for longer time 

dependencies. Time series models for supervised learning 

includes statistical approaches, ensemble methods and 

artificial neural networks (ANN)[16]. A recurrent neural 

network as one of deep ANN is used to forecast PV power 

for short period of time. It has been detected that the 

vanishing gradient limits the time horizon[17]. In the same 

direction NARX networks suffer from the same problem.    

To overcome these issues, LSTM cells are proposed for 

RNN model to capt the important information for a longer 

time. In this regard, hybrid models were widely used in 

forecasting and were a source of inspiration for researchers 

to combine different predictors. This fusion presents a 

robust model that can outperform individual methods[18]–

[20]. From that perspective, this paper proposes a hybrid 

method form NARX and LSTM-RNN. 
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   Within this framework, the contributions of this paper are 

resumed in three folds:  

1. The first part investigates NARX network architecture.  

2. The second part proposes a hybrid method for non-

stationary time series prediction composed of LSTM 

cells and NARX networks. The fusion between these 

two approaches strengthens the predictor accuracy.  

3. The evaluation of the new approach is done through 

real datasets targeting the PV power forecasting in 

medium/long-term dependencies. 

II. FORECASTING MODELS OVERVIEW 

   Forecasting algorithms analyze time-series patterns. 

These methods conclude various univariate and 

multivariate time series (UTS) [21]-[22]. From the basic 

methods such as exponential smoothing, Moving 

average(MA), autoregressive (AR) to the fusion between 

them[23]-[24]-[25]. Taken as examples, autoregressive 

moving average (ARMA) model and autoregressive 

integrated moving average (ARIMA) analyses a stationary 

time-series database to extracts statistical information from 

them[26]. These models are well known in the very short 

term forecasting due to their ability to extract the output 

power with an acceptable level of accuracy[27]. 

Alternatively, the inputs aren’t always stationary so this 

method is less accurate due to the high variability of the 

weather parameters. AR (𝑝), MA (𝑞), ARMA (𝑝, 𝑞) and 

ARIMA (𝑝, 𝑞) equations are written in Eq. (1)-(4). 
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With: 

𝑝 Autoregressive model order 

𝑞 Moving average model order 

∅ Autoregressive parameter 

θ Moving average parameter 

μ Mean value 

𝑘 Initial value 

𝑌𝑡−𝑘 Observed value at time 𝑡 − 𝑘 

𝜖𝑡−𝑘 Forecast error at time 𝑡 − 𝑘 

 

   However, these methods are unable to follow nonlinear 

TS dependencies. Therefore, Nonlinear autoregressive 

(NAR) and Nonlinear autoregressive with exogenous 

inputs (NARX) is proposed. The contribution of these latter 

is their ability to deal efficiently with dynamic features 

[28], [29]. 

   Moving to machine learning technics presented by the 

famous artificial neural network (ANN) model which 

provides accurate results. Given the non-linearity of the 

meteorological data, ANN is self-adaptive, highly efficient 

and proven its performance with weather parameters 

forecasting [30]. Cognitive scientists led by John Hopfield 

suggest recurrent neural networks (RNN). This model is 

known as one of the most powerful algorithms for its 

robustness in learning from past values. Deep learning is 

also involved in TS prediction used with the big data 

availability. However, ANN suffers from long 

computational time in the training phase. Moreover, this 

method requires a complete database for the training which 

has a major impact on output accuracy [31]. 

   On the other side, hybrid models are a combination of two 

or more prediction models. This enhances accuracy since 

the feature of each model will be transferred. In the 

literature, Nima Amjady et al. introduced various hybrid 

methods for load, and power forecasting based on statistical 

and NN algorithms with the aim of an efficient energy 

management system [32],[33]. H. Nazaripouya et al. 

created a TS model of Solar Power Forecasting using 

Hybrid Wavelet-ARMA-NARX[19], Huaizhi Wang et al. 

in 2017 proposed a new hybrid method for deterministic 

PV power forecasting based on wavelet transform (WT) 

and deep convolutional neural network (DCNN)[34], 

Yordanos Kassa Semero et al. suggests using a GA-PSO-

ANFIS approach in PV power forecasting based feature 

selection strategy[35] Fang Liu et al. proposed Takagi–

Sugeno fuzzy model-based approach In PV power short-

range prediction in 2017.[36] and  Ji Wu and Chee Keong 

Chan proposed a novel hybrid model composed of ARMA 

and TDNN for hourly solar radiation[19]. 

I.NARX NEURAL NETWORK 

   In the literature, a Nonlinear autoregressive network with 

exogenous inputs (NARX) is a part of discrete-time 

Nonlinear systems. This hybrid design involves the genetic 

algorithm (GA)-based optimization technique in the 

optimal brain strategy by determining the optimal networks 

and involving the external inputs. This sophisticated 

architecture made him more effective than traditional 

regression models such as AR, MA, ARIMA. In the energy 

management field, this algorithm is often used owing to its 

great abilities in time series dependencies analysis for 

prediction purposes. The equation of the NARX is defined 

as follows in equation (5). Figure (1) presents the 

configuration of this model. 

Where:  

𝒖(𝒏) Input of the model at discrete time step n 

𝒚(𝒏) model output at discrete time step n 

𝒅𝒖 ≥ 1 Input memory order 

𝒅𝒚 ≥ 1 Output memory order 

   In the standard NARX network, we have a two-layer 

feedforward network, with a sigmoid transfer function in 

the hidden layer and a linear transfer function in the output 

layer. This network has a specific feature by involving a 

tapped delay lines to store previous values of the x(t) and 

y(t) sequences. Note that the output of the NARX network, 

y(t), is fed back to the input of the network (through  

y(n+1)=f[y(n),...,y(n-d 1);u(n),u(n 1),..., u(n d 1)y u+ − − +  (5) 
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 Fig. 1. NARX recurrent neural network architecture 

delays). This opens a window on two different modes for 

training this powerful class of dynamic models:   

   Series-Parallel (SP) Mode: which takes the feedback 

delayed information from the real values given in the 

database used for the supervised training: 

   Parallel (P) mode: where the estimated outputs are set for 

the output’s regressor: 

   However, for better accuracy and effective training 

firstly, we use the NARX-SP feedback on open-loop then 

we switch to the parallel feedback in the evaluation part 

with a closed-loop.  

   Given from articles cited, the simulations prove that 

NARX networks give better accuracy in discovering the 

behavior of the time series output than conventional 

outputs[37]. These features are obtained from the fact that 

input vectors are inserted through two tapped-delay lines 

from the input-output signals. This is clearly mentioned 

from equation (1) -(3) from the parameter 𝑑 𝑑x and 𝑑𝑦 a 

stocking the information to reconstruct the states of the 

neural network. Furthermore, these delays present a jump-

ahead connection in the time-unfolded network to provide 

the ability to the gradient descent back propagates in a 

shorter path and decrease the network vanishing issue in 

long-term prediction. 

   Unfortunately, when applying the NARX model in time 

series dependencies, the output memory will be eliminated 

and thus, the computational resources of these models will 

be significantly reduced. 

   As mentioned in the introduction, the particular topic of 

this paper is the issue of nonlinear time series prediction 

with the NARX network. In this type of application, the 

output-memory order is usually set 𝑑𝑦=0, thus reducing 

the NARX network to the TDNN architecture presented in 

Eq.7: 

Furthermore, the vanilla recurrent neural network class 

suffers from the vanishing gradient problem i.e. the neural 

network after a specific input number stops learning and 

negatively affects the prediction accuracy. This problem 

comes when the gradient descent shrinks in long-range 

dependencies. 

II.LONG SHORT TERM MEMORY 

   LSTM cells introduced by S. Hochreiter & J. 

Schmidhuber[36] belong to recurrent neural networks 

architecture targeting the vanishing gradient problem. 

Since 2006 The aforementioned technique become widely 

used in various areas such as speech recognition, 

handwriting[38]-[39], weather forecasting[40]. However, 

the idea is quite simple, these cells by forgetting the noisy 

information that misleads prediction techniques and keeps 

only the important information to be forwarded to the 

hidden layers. This process is established by three gates. 

LSTM gates equations are given below: 

With: 

𝑖𝑡 Represents the Input gate 

𝑓𝑡 Represents the forget gate 

𝑜𝑡 Represents the output gate 

𝜎 Represents the sigmoid function 

𝑤𝑖  Wight for the representative gate (x) neurons 

ℎ𝑡−1 Input at current timestamp 

𝑏𝑥 Biases for the respective gates (x) 

III.PROPOSED ARCHITECTURE 

   The proposed model is a combination of tow efficient 

models. The ensemble model merges the properties of 

individual predictors to create a stronger predictor. The  

main feature that adds to the hybrid model from NARX 

network is these embedded memories that provide jump-

ahead connections in the time-unfolded network. 

Associated with LSTM memories. These jump-ahead 

connections provide shorter paths for propagating gradient 

information, thus reducing the sensitivity of the network to 

long-term dependencies. 

   We hypothesize that additional tapped time delays from 

NARX with deep learning LSTM-RNN will improve the 

accuracy and help to prevent the overfitting from long term 

dependencies that can be achieved in other classes of 

recurrent neural network architectures by increasing the 

orders of embedded memory. It should be pointed out that 

our embedded memory simply consists of simple tapped 

delayed values to various neurons and not more 

sophisticated embedded memory structures.  

   The proposed framework for long-term prediction is 

decomposed from tow steps: NARX network receives the 

weather information to primarily predict the PV power. 

The latter is added to the original database to pass to LSTM 

–RNN. The output of the aforementioned model presents 

the final result. The reason of choosing NARX networks is 

due to its success on problems including the latching 

problem and nonlinear system identification in one side 

and decreasing the vanishing gradient by including LSTM 

memories, we explored the ability of other recurrent neural 

networks associated on LSTM memory to solve problems 

       
 
 
 

 
 
 
 

 
 
 
 

    

       

        

    

      

 
  

 
  

 
  

 
  

 

 
 
 
 

         
 

    

    
 

  

   

   

 
 
 
 

1( 1) f  [ y ( );u(n)]=f[y( ),..., ( );u(n),...,u(n d 1)]sp y yy n n n y n d ++ = − − +  ( 5) 

1( 1) f  [ y ( );u(n)]=f[ ( ),..., ( );u(n),...,u(n d 1)]p y yy n n y n y n d ++ = − − +  ( 6) 

y(n+1)=f[u(n),u(n-1),u(n-1),...,u(n-d 1)]u +  
( 7) 

 1(w , )t i t t ii h x b−= +  ( 8) 

 1(w , )t f t t ff h x b−= +  ( 9) 

 1(w , )t o t t oo h x b−= +  ( 10) 
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that involve long-term dependencies. The model ensemble 

is shown in Figure 2. 

 
Fig. 2. NARX-LSTM recurrent neural network proposed architecture 

   Adding to LSTM-RNN architecture, a general class of 

regression model with time delay has been given prime 

importance in this study. it has been pointed out that a 

neural network could be stabilized or destabilized by 

certain stochastic inputs. Hence, it is significant to consider 

stochastic effects on the stability property of the delayed 

neural networks.   

   NARX-LSTM recurrent neural network associates two 

modules types: (1) NARX recurrent network that receives 

the sequence of external inputs as well as the recurrent 

output layer state. (2) LSTM cells that receive additional 

information with the original features in order to make a 

classification depending on their impact on the 

performance scores and then maps the internal activation 

function to set the outputs. Eq. 1 and 2 presents the 

proposed model.  

   Where 𝑦’ is the primary output of NARX model, and 𝑌 is 

the final PV power,  𝑢𝑖  are the weather features and 𝑛 is 

the number of inputs.The latters include the irradiance, the 

wind direction, the temperature and the relative humidity. 

While g and f are the characteristic functions of NARX and 

LSTM  respectively. The data processing is presented in 

Figure 3.  

 

 

 

   To get a better understanding of the latter model 

implementation, a proceeding summary is presented 

through a complete flow in Algorithm 1 

IV.CASE STUDY AND SIMULATION RESULTS 

A. Feature engineering 

   In this study, two years of historical data were analyzed 

to target PV power. The inputs are ambient temperature, 

wind speed, irradiation, and relative humidity. The 

database used for the training sets is from 04/01/2016 to 

04/01//2018. The forecasting outputs are for a full year 

from 04/01/2018 to 04/01/2019 It should be pointed out 

that the database is cleaned from missing values and 

smoothed from inreal measures. The step time is for 5 

minutes. The training features for tow years are plotted in 

Figure 4. 

𝑦’ = 𝑔(∑ 𝑢𝑖

𝑛

𝑖=1

) ( 11) 

𝑌(𝑡) = 𝑓(𝑦’, ∑ 𝑢𝑖

𝑛

𝑖=1

) ( 12) 

Algorithm1: NARX-LSTM 

❖ Input: 

 1. Data acquisition 𝑋𝑖 = {𝑋𝑖 , . . , 𝑋𝑛} =
{IR; T; RH; WS} 

❖ Output: 

 1. Data splitting to 80% for training, 20% for 

testing 

2. Train NARX model 

3. Predict the PV power with NARX network 

4. Add the PV power predicted to the Database 

 i.e 𝑋𝑖
𝑛𝑒𝑤 = {IR; T; RH; WS; Power} 

5. Train LSTM model with 𝑋𝑖
𝑛𝑒𝑤 

6. Validate the model with 20% of testing 

 
(b) 

                                 

 
(a) 

Fig. 3.  Proposed algorithm 
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   The inputs parameters have a direct relation to the 

predicted output. However, this relationship is not equally 

repartitioned. Various models have been proposed to 

measure the diversity of feature importance. The 

methodology is to permit one parameter and estimate the 

increase of forecasting error in each case. In this study, the 

domain knowledge is investigated using Elastic Net via 

ranking the features according to their relative coefficient 

magnitude. This method combines Lasso and Ridge 

models. Figure 4 presents the relative importance of each 

input parameter basing on the relative coefficient 

magnitude. 

 
Fig 5. Relative importance for feature inputs with ELASTIC NET. 

   According to Elastic Net tool, the irradiation has a major 

part in the prediction accuracy followed by the relative 

humidity.  

   The evaluation of the proposed model is done through 

three parts: Cross-Validation, scores metrics comparison, 

and real/forecast plots. Splitting the data into prediction and 

testing is essential to assess the fitness of the model. The K 

fold Cross Validation split the training data into 10 folds. 

10 used for the training and the latest part is used for testing. 

By using this approach, each fold is involved in the 

assessment at some point. Due to the large dataset used in 

the training, this step is a time consuming, However, it 

gives high reliability for the model testing with fixed scores 

metrics.    The score evaluation functions used in this model 

are the rooted mean square error function, the mean 

absolute error as well as the mean percentage error 

function. The equations of the said error functions are 

written as following in 13, 14. Table  1 present the result of 

10-folds Cross-Validation.   

   From Table 1, It can be mentioned that RMSE=11.2 

which refers to high accuracy. A MAE= 5.67 confirms the 

high accuracy of the proposed model. This latter is 

computed after an automatic tuning using Randomized 

Search module. The input parameters are normalized in 

order to increase the convergence speed and the 

performance of the model. Thus, the minimum-maximum 

scalar with a magnitude range of [0, 1] is applied to features 

values.  

   As a sequence of inputs, the features are introduced in the 

recurrent neural network. The batch size, the number of 

epochs and the learning rate are fixed through 

hyperparameter optimization tools. The inputs are the 

weather parameters such as irradiance, temperature, wind 

speed, and relative humidity. We used three LSTM layers. 

And the activation function used is sigmoid function and 

the last layer uses a smooth approximation to the arg 

maximum function Softmax as an activation function.  The 

proposed model is a NARX - LSTM recurrent neural 

network model. The ability of LSTM memory cells to save 

important information as preventing the vanilla networks 

model makes the model gratefully fitting the PV power 

outputs. Moreover, the NARX networks made the hybrid 

model efficient in time series PV power forecasting for 

longer range prediction.  

   The weather data of 2016- 2017-2018 are used in the 

training and the testing sets. In this experiment, tow years 

are used for the training and one year is used for testing 

( )
1

1 n

i i

i

MAE y y
n =

= −  ( 13) 

( )
2

1

1 n

i i

i

RMSE y y
n =

 
= − 

 
  ( 14) 

1

100% n
i i

i i

y y
MAPE

n y=

−
=   ( 15) 

 
(c) 

(d) 

Fig. 4. Variation of weather parameters in one year: (a)Air temperature(°C) 

(b)Wind direction (°C )(c) Relative humidity(%) (d)Solar radiation(W/m²) 

 

 

 Table. 1. Predicted vs. Actual PV power in one year 

 RMSE MAE 

CV with 10 folds 11.2 5.67 
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purposes. The rich database for a small-time step of 5 

minutes made the analysis more exhaustive. The large 

database is fed in the system due to the high variability of 

the input parameters from one year to another.  

With the aim of assessing the performance of the new 

model, the NARX-LSTM is simulated for one year, then 

decreasing the time steps to one month and one day to show 

clearly the behavior of the proposed model in Figures 6-7 

and 8. 

   Figure 6,7,8 present the shapes of the PV power from the 

actual/predicted values. The estimated power follows the 

real one in an impressive way. From the mixed points in 

blue which envisione the sole of NARX-LSTM with the red 

points of the real values, the error rate is low. It can be 

concluded that the proposed method is notably efficient 

with long term dependencies. This result comes from 

figures 7 and 8 that illustrate the effectiveness of NARX 

networks in decreasing the error rate from the concatenated 

ensemble model. The loss functions and the mean squared 

error in the training phase are shown in Figures 9 and 10.  

 
Fig 10. Loss function visualization during the training step 

The error values from the loss function and the MAE are 

decreasing significantly from 0.06 from the first step to 

0.02 in the ending step for the loss function and for 0.009 

to 0.003 in for MAE score. It should be mentioned that 

these values are scaled between [0,1].  The scores metrics 

including RMSE, MAE, and MAPE are envisioned from 

Table 2. The lower they are, the higher the accuracy the 

model performing. 
Table 1. Performance metrics from 04/01/2018 to 04/01/2019. 

   The model is simulated for 46 minutes with 30 epochs.  

This is considered time-consuming However the results are 

worthy. In terms of accuracy,  the proposed model provides 

a good precision the RMSE calculated is  10.51 while the 

MAE is 4.72. These results present a performance in 

handling time for series forecasting.  

   Furthermore, For a better assessment, a fair comparison 

is made with the benchmarked models. The forecasting 

techniques include Extra Trees regressor, LSTM-RNN and 

K Nearest Neighbors (KNN) [41],[42]. We choose the 

original LSTM-RNN to see the contribution made in terms 

of accuracy for the proposed model. Moreover, Extra tree 

regressor named also Extremely randomized trees presents 

a branch from Boostrap aggregation(Bagging). The latter 

uses an ensemble model to build from weak learners a 

Score function RMSE MAE MAPE 

Value 10.51 4.72  0.269% 

 
Fig 9. MAE function visualization during the training step 

 

 
Fig. 7. Predicted vs. Actual PV power in one month. 

 

 

 

Fig. 8. Predicted vs. Actual PV power in one month. 

 

 

 
 Fig. 6. Predicted vs. Actual PV power in one year 
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robust predictor.  The said method yielded state-of-the-
art results with high variant features. The last model 

interpreted is KNN. This aforementioned method uses 𝑘 

samples to the unknown labels and calculates their average. 

KNN is frequently used in statistics and revolutionary 

computing for the high efficiency it provides. 

   The aforementioned models are tuned and trained using 

the same inputs parameters with a hyperparameter 

Randomized Search for a fair comparison. The scores 

errors interpreted for each model are the  RMSE and MAE. 

Figure 11 presents the summary of all the models vs the 

real PV power. Consequently the error values are collected 

in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

From Figure 11, each method is indicated by its specific 

color. The cyan, grey, violet indicate LSTM, KNN, and 

extra tree regressor respectively while the red and the blue 

present the real power and NARX-LSTM outputs.  It can 

be noticed that the proposed technique is outperforming the 

cited models from the mixed points between the real values 

and the forecasted results. This result is confirmed by 

registering the lower RMSE and MAE for the proposed 

method with 6.27 watts of RMSE and 3.81 watts of MAE. 

An improvement of 15.38% is made. The PV power 

estimated from the aforementioned techniques as well as 

the proposed technique presents a high correlation between 

the actual/observed values. The model smoothly follows 

the real data. This amplifies that the said approach made it 

the most accurate compared to the aforementioned models. 

This proves that the gradient descent learning is not shrunk 

in NARX-LSTM networks. Moreover, the said model can 

follow even the sudden spikes which made obviously the 

strength of our model is its ability to capture the spikes 

generated from the sun more than any predictor. However, 

the computing time is creating a serious issue if we increase 

the number of epochs to get these values.We can say that 

the training step is the most relevant drawback for this 

model. The simulation took 2 hours 14 minutes for 50 

epochs in a LENOVO Ideapad 720S-15IKB (i7 with 8 

Cpu). Even with the use of GPU parallel processing 

provided by NVIDIA, the training is a time consuming 

compared with the benchmarked methods. This may lead 

to some lagging especially if the model is used in online 

training. Nonetheless, the proposed provides a reliable tool 

to handle the vanishing gradient for long term forecasting. 

 
(b) 

 
(c) 

 
(a) 

 
Fig.11. NARX-LSTM and real PV power plot simulation 

compared with (a) LSTM-RNN (b) Extra Tree Regressor 

(c) KNN 

 

 

Table 2. Score performance comparison after experimental 

results using Randomized Search for hyper parameter tuning 

Model RMSE(W) MAE(W) 

Extra Trees  7.98 4.49 

KNN 9.73 5.11 

LSTM RNN 7.41 4.26 

NARX-LSTM 6.27 3.81 
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V.Conclusion 

   This paper presents NARX-LSTM model in medium- 

long term photovoltaic power forecasting. The said model 

is high performing in time series prediction with an RMSE 

of 6.27. Furthermore, this model is the relevance of 

nonlinear autoregressive with exogenous inputs and LSTM 

cells. Memory cells protect the gradient from vanishing 

issue while NARX networks ensure the long-range 

prediction through its architecture. The inputs entered are 

the temperature, solar irradiance, wind speed and relative 

humidity which create a great combination with the 

necessary variance to ensure an accurate prediction from 

the stochastic climate change. The said model is tested on 

a rich database of an Australian plant and compared to a 

various group of models.  

   Regarding the various simulations, the said model 

presents a good performance in comparison with the 

common methods used in regression aims. From table 3, 

We found that this NARX-LSTM network is the most 

accurate in terms of RMSE. 

   The said model can be used in long term forecasting for 

unit commitment and budget planning in long-range with a 

high certitude. However, the extensive computational work 

made the simulation time slow comparing to the techniques 

used in the prediction so, there is a need for a high 

performing laptop to accelerate the training time especially 

if there is a need to do online supervised learning. Another 

suggestion propose an extensive feature engineering to 

optimize the database and then reduce the samples entered 

to LSTM gates. The outcome of this study comes from the 

combination of regressive and machine learning algorithms 

to the PV power forecasting. This model has the ability to 

capt the behavior of the temporal weather changes and 

transform it into PV power energy easily. In this respect, 

the combination of regressive and machine learning 

technique in time series forecasting presented by the 

proposed technique in this study opens the door for an 

accurate long term forecasting with promising results in the 

future. 
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