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Abstract—Solar power becomes one of the most promising 

renewable energy sources over the years leading up. 

Nevertheless, the weather is causing periodicity and volatility to 

photovoltaic (PV) energy production. Thus, Forecasting the PV 

power is crucial for maintaining sustainability and reliably to 

grid-connected systems. Anticipating the energy harnessed with 

prediction models is required to prevent the grid from any 

damage coming from every slight disturbance. In this direction, 

various architectures were suggested to predict the ambiguous 

behavior of meteorological data. Within this vein. Genetic 

algorithm (GA) presents a robust solution for nonlinear 

problems. The success of GA presents a source of motivation to 

scientists and engineers to develop a variety of sub-models that 

imitate the same Darwinian type-survival of the fittest strategy 

approach from GA propriety. However, during the training 

process, the later face an issue with missing the optimal solutions 

due to the existence of a local minimum.  

 Following that regard, this paper provides an accurate PV 

power forecasting one month of PV power using a hybrid model 

combining symbolic regressor via Genetic programming and 

artificial neural network. The features inputs used in the process 

are only the solar irradiation and the historical solar power data. 

The application of the said model on an Australian PV plant of 

200 kW offers a low mean absolute error equal to 3.30 and 

outperforms the state of art models. 

 Index Terms—Hybrid model, Genetic Algorithm, weighted 

features, PV power, Symbolic regressor, feature importance, 

forecasting. 

I. INTRODUCTION 

n the few recent years, the world has witnessed exponential 

attention towards alternative energy sources. According to 

National Renewable Energy Laboratory (NREL), the PV  

stations have recorded a total of 509 GW-DC during the last 

months of 2018 with a rise of 102 GW-Dc from the previous 

year[1]. This motivation for making this transition policy 

comes as a consequence of the increasing rate of air pollution 

and the lack of traditional sources in the incoming next 

years[2]. Moreover, abundant solar energy has many 

applications such as thermal and electric generation[3][4]. 

Photovoltaic panels are widely used to harness the maximum 

energy from the sun to transform it into electricity. However, 

PV generators are sensitive to weather conditions[5]–[7]. 

Certainly, climate parameters are continuously changing 

during the day. While at night, no PV energy is produced due 

to the lack of solar irradiance. From that standpoint, 

forecasting comes to determine the next PV power during 

many time steps ahead[7]–[9]. Precise forecasts are vital for 

preventing PV plants from a serious problem occurring in 

sudden damages[10]. This issue diminishes the penetration of 

grid-connected PV systems into a public utility.  

    Forecasting models provide a safe unit commitment and 

fast protective dispatches to the grid utility[11]. The latter are 

classed into three categories pending on the forecasting 

horizon. They are short, medium- and long-term 

prediction[12], [13]. Time series prediction is done through 

an extensive analysis of the weather patterns such as the 

temperature and the irradiation[14]. The forecasting process 

is typically done through numerical weather prediction 

(NWP)[15]. Generally, Markov models are used due to the 

fact that the actual predicted power is not affected by the 

previous prediction[16]. A variety of models are introduced 

using domain knowledge for the estimation of the future 

generated power[17]–[21]. On the other side, physical models 

are able to estimate the current PV power but with a lower 

precision[22], [23]. The stochastical behavior of the 

metrological data is predicted using statistical models such as 

Autoregressive–moving-average (ARMA) and 

Autoregressive–moving-average with exogenous inputs 

(ARMAX) to determine indirectly the PV power[24]. 

Moreover, Vagropoulos et al. evaluate Seasonal 

Autoregressive integrated moving average (SARIMA),  

SARIMA with exogenous inputs (SARIMAX) and Modified 

SARIMA for Short-Term PV Generation Forecasting[24].  

   For the performance investigation of artificial intelligent 

hybrid models on PV power prediction, Ayoub Fentis et al. 

investigated a bench of non-linear auto-regressive models 

namely feed-forward (FFNN) and least squares support vector 

regression (LSSVR) and compared them to the non-linear 

autoregressive models with exogenous inputs NARX[24].    In 

addition,  

   Genetic algorithm (GA) as one of the efficient methods 

proves its capabilities in forecasting through different 

applications. Firstly introduced by Holland in the 1970s[25], 

[26], GA imitates the biological evolution by multiple 

replications of its units[27]. The process mechanism is made 

by individual selection, mutations, and crossover[27]. This 

architecture provides the primary insights for developing 

many powerful models such as machine learning (ML), deep 

learning (DL), and intelligent search[27]. ML models as a part 

of GA provide an accurate result[27]. Muhammad Naveed 

Akhter et al. profoundly reviewed Artificial Neural Network 

(ANN), Support Vector Machine (SVM) and Extreme 

Learning Machine (ELM) techniques for smart grid 

systems[24]. At this stage, the insight of increasing the 

accuracy while using deep ML models with multiple layers is 
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the key motivation for deploying these architectures in PV 

power prediction. Kejun Wang et al. compare deep learning 

models namely Long Short Term Memory(LSTM) and 

Convolutional Neural Network(CNN) and a hybrid model 

combining the aforesaid algorithms in photovoltaic power 

prediction[24]. The criteria for choosing the suitable model 

depends on its complexity, forecasted horizon and accuracy 

rate. Ensemble models and hybrid architectures are frequently 

used to ameliorate one or more aforementioned proprieties. 

From that standpoint, Yuxin Wen et al. proposed a hybrid 

model from Wavelet Transform (WT), Radial Basis Function 

Neural Network (RBFNN) and Particle Swarm Optimization 

(PSO) to enhance the effectiveness of the predictor [28]. 

While Yordanos Semero et al. combine GA, PSO and 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) with the 

goal of reducing the error value[29]. Following that regard, 

the contributions of this paper are resumed in three folds: 

1. Firstly, the is a survey on Symbolic Regression model, 

a Multilayer Perceptron(MLP) algorithm, as well as 

genetic programming.  

2. Then, feature engineering and domain knowledge 

design are deploying through a serious feature analysis.    

3. The next part will introduce the proposed hybrid 

algorithm from SR and MLP with a case study on the 

PV energy.  

4. The proposed model is analyzed and compared to 

individual models. A fair assessment is provided via 

numeric scores performance and graphic results that 

illustrate the behavior of the hybrid model.   

II. SYMBOLIC REGRESSION 

    Contrarily to the majority of machine learning models that 

propose a predefined function with prior assumptions for the 

fitness process, Symbolic regression (SR) build the 

mathematical expression that suitably fits the proposed 

database during the training stage[24]. The fitness of the 

symbolic regression is pending on simplicity and accuracy. 

SR suggests genetic programming (GP). i.e. Thus, the latter is 

considered as an evolutionary algorithm. The representation 

of SR is in the shape of trees. Fig. 1 presents a general idea of 

how the symbolic function is built through SR. 

  The internal nodes present the beginning of a mathematical 

operation ended by a leaf.  The methodology is investigating 

the dataset parameter patterns with a variety of mathematical 

operations with analytic functions and state variables in the 

training stage. From a hierarchical form, the inputs are fed to 

the system and some fitness functions are constructed in the 

first iteration. By a random alteration named mutation and 

swapping parts (crossover), the application of the latter 

generates an error value. Then, gene duplication is done to 

produce the descendants' offsprings. The latter replaces the 

first generation to give birth to a final symbolic function. The 

aim is generating a novel individuals only from stronger genes 

respecting the Darwinian type-survival of the fittest 

strategy[30]. Mutations are done randomly with the aim of 

reducing the rooted mean square value (RMSE). When the 

error is reaching the minimum threshold, the symbolic 

function is fixed and the training part is finished to pass to the 

evaluation process. Obviously, only supervised problems are 

well-performing with SR since the database is the primary 

responsibility for shaping the symbolic function of the 

algorithm. The strength of the aforementioned model is 

coming from its propriety to let the dataset itself choose the 

best function that matches the lower RMSE. The crucial 

parameters of SR the population size, generation, stopping 

criteria and the mutation point. 

    Although the cited features of SR, the main disadvantage 

of the latter is the large search space with an infinite 

generation that presents an accurate result. The searching 

process is time-consuming with a variety of local minimums. 

Thus, the model risk of being tricked with a faulty suboptimal 

solution. 

III. DEEP MULTI-LAYER PERCEPTRON 

    Multi-layer perceptron is a deep feedforward artificial 

neural network containing essentially an input, hidden and 

output layers. In MLP, the information has the propriety of a 

unidirectional propagation. According to Minsky and 

Papert[29], every perceptron is activated through a non-linear 

activation function e.g. Sigmoid, Rectified Linear Unit 

(ReLU), hyperbolic tangent function (tanh) and Normalized 

exponential function (Softmax)[31]. The equations of the 

nonlinear activation functions are given in Eq.1-4.  

1
Sigmoid( )

1 exp( )
x

x
=

+ −
 

( 1) 

tanh( ) 2σ(2 ) 1x x= −  
( 2) 

 
 if 0

ReLu(x) max 0,
0 if  < 0 

x x
x

x


= = 


 

( 3) 

1

Softmax( )
j

k

x

j K
x

k

e
x

e
=

=


 ( 4) 

   Each connection has a specific weight that indicates its 

importance. While every neuron has a characteristic value 

named bias. During the propagation process, each input 𝑥𝑖 is 

multiplied by its connection weight 𝑤 and summed with the 

bias value 𝑏 presented in Eq. 5. 

 
Fig. 1.  Binary Genetic Tree Programing representation of the 

function 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥 + π +0.5𝑦) 
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*y w x b= +  
( 5) 

   The nonlinear activation function is applied to the residual, 

Then, the latter value is spread to the next layer. The same 

process is repeated until having the final yield from the output 

layer. Eq. 7 will explain more the mathematical function. 
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   With 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 the output of the system and φ(. ): 𝑅 → 𝑅 is 

the nonlinear activation function. The structure of the MLP is 

illustrated in Fig. 2 where the nodes are connected to each 

other via weighted linkers. 

    The last step in the training process is backpropagation. At 

this stage, the weights and the bias are tuned according to the 

loss function. This parameter presents the difference between 

the actual and the predicted values. The gradient-based 

optimization algorithm in every iteration identifies the 

learning rate of the system and leads to minimize the error to 

converge to a lower value. Since the number of hidden layers 

and neurons is high, MLP presents the primary form of deep 

learning. This model has addressed many supervised 

problems from different applications involving Natural 

language processing (NLP), regression and classification 

programs. The existence of multiple layers for a large number 

of neurons is making the architecture more efficient and 

outperform the benchmarked algorithm despite its simplicity.          

The use of the MLP for one-day prediction of PV power via 

forecasting the solar irradiance gives an accuracy of 99% 

[24]. This model is able to handle nonlinear problems with 

high effectiveness. Nevertheless, the latter suffers from 

redundancy in high dimensions and the sensitivity to the 

inputs scaling. Hyperparameters tuning including the number 

of neurons and layers, the activation function type and the 

initial bias and weights is an essential step for straightening 

the model architecture and guarantying a faster convergence 

to the desired target. 

IV. GENETIC PROGRAMMING 

    Genetic programming (GP) and genetic algorithm are very 

similar in a manner that identifying the difference between 

them is quite tricky. Genetic programming firstly introduced 

by  J. R. Koza[32] presents its architecture in a set of tree 

structures. The nodes are the operation functions that 

constricts the final function. While the form of GA is different 

in a linear structure with a number of sub-branches. From that 

standpoint, genetic programming is having better flexibility 

with less invalid states. The hierarchical form prevents the 

used operators from the precedence. GP is a sort of supervised 

computer guidance to find solutions for high-level 

complicated problems with the vital need for machine 

intelligence[33]. Expert systems (ES) defined by Feigenbaum 

as a hyper-intelligent computers require such a strong 

architecture in decision making[34]. The expertise of human 

reasoning is cloned via GP through heuristic rules to solve 

narrow domains. In this paper, SR is simply a GA developed 

by evolutionary algorithms. GP is used in nonlinear problems 

that require a better domain understanding and extensive 

machine intelligence such as electronic circuits. These 

problems involve interpretation, prediction, diagnosis; 

planning, monitoring, debugging and control.  GA works with 

the aid of a bench of commands namely automatically defined 

recursions (ADR), automatically defined loops (ADL), 

automatically defined functions (ADF) and automatically 

defined iterations (ADI)[33].  

V. PROBLEM FORMULATION 

    PV project planners and investors face a serious issue when 

studying the feasibility of their projects. Since the weather is 

intrinsically volatile. The solar power generation seems to be 

hard to expect. The fears from the intermittent nature diminish 

the expansion for a wilder rate. Researchers try to cover this 

weakness through different techniques. Solar trackers follow 

the sun during the day. Thus, the energy is relatively 

maintained at a level. The non-linearity of the PV power 

parameters is a participant in this behavior. This is due to the 

fact that the PV power is taking into account meteorological 

data which are not necessarily proportional to each other. Eq 

.8 explains more the relationship between the weather 

parameters.  

( ( )
( )
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PV pv p d sh
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   With 𝑃𝑝𝑣 is the power, 𝑇 is the cell temperature, 𝐺 is the 

irradiation, 𝑇𝑟𝑒𝑓 , 𝐺𝑟𝑒𝑓 , 𝐼𝑑 𝐾𝑖, 𝐼𝑠𝑐 , 𝑉𝑝𝑣 and 𝑁𝑝 are the referent 

temperature, referent irradiance, diode current, short circuit 

current/temperature coefficient, the shunt current, PV voltage 

and number of parallel cells respectively. The PV power is a 

 
Fig. 2.  Feed forward neural network architecture 

 

 
Fig. 3.  PV power generated in one day in function of the irradiation and 

the temperature 
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summation with nonlinear parameters In a continuous 

variation during the day as shown in Fig.3. for a single module 

with the Australian weather. Thus, the power output should 

be anticipated to make a clear strategy on the manner of 

extracting the maximum benefits of the infinite solar energy. 

This paper provides an efficient method with one month as a 

solution for that matter. 

VI. PROPOSED MODEL 

   The proposed model is a combination of GA via SR and a 

deep Feedforward model. The aim is building an ensemble of 

subtrees with heterogeneous units. The mutation is done 

through finding the local minimum between these two models 

which take into consideration the residual of their offsprings. 

During the simulation of the PV power with GA undividially, 

it has been noticed that the majority of the predicted points 

are above the real values. The key insight for developing these 

blending models comes from decreasing the error with a 

model in which the predicted values are underestimated. The 

dataset had a severe feature selection. So, the predictor is 

relying on lesser features in medium-term prediction for one 

month. Then, the solar irradiation and the previous PV power 

are fed simultaneously to the SR and the MLP. The output of 

the two systems is averaged to generate the final result. The 

proprieties of the tow algorithms are merged to build a strong 

predictor. Unlike ensemble models that combine homogenous 

models, the suggested estimator combines two heterogeneous 

tree structures in which the first uses mathematical operators 

and the second uses multiple neurons. The last layer uses a 

single operator to get the final output. By this method, transfer 

learning is preventing the system from noise and losses.  

   The dataset passes to a feature engineering process to 

eliminate the missing and faulty values coming either from a 

sensor damage or record errors. Then, Deep Multilayer 

Perceptron and Symbolic Regressor are trained individually. 

The output of these tow predictors will be averaged via the 

voting technique. Fig. 4 present a detailed description for 

building the predictor. Note that the proposed predictor is 

assumed to reach the nearest forecast to the ground truth. 

Support vector machine (SVM) and K-nearest neighbors 

(KNN) used the same mechanism during the prediction. We 

adopt that the proposed method can protect the symbolic 

regressor from falling into a local minimum. With extending 

the trees to involve MLP and symbolic functions, the 

prediction reliability will be enhanced. since the predictors do 

not have the same proprieties, the fusion can make the latter 

complementary. By reassembling them together, the final 

predictor has better robustness. Taking as example Random 

forest proposed by Kam [35], the combination between an 

ensemble of Trees contribute a supplement strength to the 

system. The next algorithm describes more the proposed 

architecture.  

VII. CASE STUDY 

A. Feature engineering 

   The aim of writing this paper resume in having a precise 

forecasts of the PV energy during one month. To achieve this 

goal, a complete database containing historical records of 

weather parameters is required. The Australian KASC, Alice 

Springs site has complete data for two successive years of 

2018-2019[36]. The latter contains the temperature, the 

relative humidity(%), the horizontal and diffuse 

irradiation(W/m²), the wind proprieties in terms of speed(m/s) 

and direction (°) as well as the measured PV power(kW). This 

dataset includes nearly all parameters that can affect the PV 

plants with a time step equal to 5 minutes. The training set is 

Algorithm1 : Hybrid model 

❖ Input: 

 1. Data acquisition 𝑋𝑖 = {𝑋𝑖 , . . , 𝑋𝑛} =
{IR; T; RH; WS; 𝑃𝑉𝑝𝑜𝑤𝑒𝑟} 

 2. Feature selection 𝑋𝑖 = {𝐼𝑅𝑖 , 𝑃𝑉𝑝𝑜𝑤𝑒𝑟} 

❖ Output: 

 1. Data splitting to 80% for training 
{𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑟𝑎𝑖𝑛} , 20% for testing{𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡}. 

2. Hyper parameter optimization 

3. Train Symbolic regressor (Model 1) 

4.  Use 𝑥𝑡𝑒𝑠𝑡   to predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑1 with Model 1. 

5. Train MLP regressor (Model 2) 

6. Use 𝑥𝑡𝑒𝑠𝑡 to predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑2 with Model 2. 

7. Hybrid model mixture 

      𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑣𝑟𝑒𝑎𝑔𝑒(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑1; 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑2) 

8. Assess the model with Cross Validation, scores 

metrics and simulation graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Proposed model schema 
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fixed from the first of January 2017 till 31 December 2018. 

The testing will be focused on the month of January. Features 

collection shrink the database size to  speed the training 

process and enhance the accuracy rate. Tow efficient feature 

selection methods are applied, namely Elastic Net and 

Extreme Boosting. These techniques are frequently used in 

attribute selection. The combination of these techniques helps 

in getting more reliable results since the mechanism of 

measuring the parameter magnitude is different. Fig.5 

illustrates the variable selection results. 

   From Fig. 5, it has been noticed that the horizontal 

irradiation and the previous PV power have significant 

importance more than any other input. Extreme booting 

shows that the radiation as a crucial indicator of the current 

PV power. While Elastic Net method had given the previous 

PV power more importance. Note that the previous 

photovoltaic power presents the historical value from the 

same date, the same minute for the previous year. Fig. 6 and 

7 illustrate the behavior of the aforementioned parameters for 

two entire years.  

From features selection, a serious study of the causes of these 

results is made. This investigation is vital since Eq. 8 presents 

the temperature as a direct factor that enhances or reduces the 

PV model performances. While analyzing the relationship of 

the pattern between the PV power in one side and the chosen 

parameters from the attribute methods on the other side, It has 

been released that these input parameters are having the same 

shape as the final output. This appears clearly in figure 8 and 

Fig 9. Thus, in this study, the selected parameters are assumed 

sufficient for PV power forecasting. Note that all the 

predictors in this study will use this database for prediction. 

B. Training and simulation results 

   Symbolic regressor and MLP, as well as the mixture 

between them, are interpreted in this section. The data is pre-

processed with the elimination of the missing and anomalous 

data. This step is crucial for better learning. Then, the resulted 

data is rescaled between 0 and 1. This unification gives a 

better understanding of the feature’s behavior especially for 

MLP model. The modeling and the training part are done 

through Python programming language. The hyperparameters 

are selected for each model through a Randomized Search 

method. Thus, MLP has 500 hidden layers with 3000 

 
Fig. 6.  Irradiation variance(w/m²) 

 

 

 
Fig. 5.  Nonlinear correlation coefficient of attributes with the PV power 

 

 
Fig. 9.  PV power and horizontal radiation correlation during January 

2018-2019 

 

 
Fig. 8.  Actual and previous PV power during correlation during January 

2018-2019  

 

 
Fig. 7.  Previous PV power(kw) 
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iterations, while SR has 3000 population size and 15 

generations and The evaluation process is done through 3 

categories: simulation graphs, Cross-Validation, and score 

metrics. The selected error metrics include rooted mean 

square error (RMSE), mean absolute error (MAE) as well as 

the coefficient of determination (R). Eq. (8)-(10) presents the 

mathematical equations of these score parameters. 

    The experimental results are taken from real-time series 

data. January 2019 is the testing month. The simulation is 

presented for one month and one day in Fig. 10 and 11 

respectively.  

   Regarding Fig 10, the predicted value from the proposed 

model is highly accurate with a slight error value. The green 

shape presenting the forecasted PV power is identical to the 

real PV power in the majority of points. Moreover, the 

training time took 11 minutes which is considerably low. The 

suggested algorithm is well-performing with time series data 

and for a period of time that reaches one month. Cross-

validation is applied to the to proposed model in Fig.12. 

  Cross-validation is an efficient method for ML model 

evaluation. It consists of splitting the rows in the training 

process from a k-folds of subdatasets. From figure 12 The 

proposed model with the green color is cross validated and 

compared to the real values. The maximum error measured is 

30 kW. This presents a 13% of the PV power. Which is 

considerably high. While in the majority of the forecasts is 

low. This rate is variying over the timesteps. For investigating 

the enhancement rate of the proposed model from SR and 

MLP individually, Fig 12 is plotted. Furthermore, Fig 13 

presents a zoomed shape to the model behavior compared to 

the single models. 

From Fig 12 and 13, it has been considerably remarked that 

the proposed method is outperforming SR and artificial neural 

network predictors separately. The transfer learning via the 

voted method has ameliorated the prediction accuracy in 

terms of the corresponding points between the ground truth 

and the real values. The hybrid tree combines tow sub-

branches with an averaging interconnected leaf point. By 

using only, the irradiation and the previous PV power, the 

model generate a precise estimation. The suggested predictor 

prevents the system from overfitting and maintains a great 

efficiency during all the forecasted horizon. Table 1 presents 

the numerical score values of each predictor. Moreover, Fig. 

14 and 15 show a comparative error result. 
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Fig. 13.  PV power forecasted in one day (kw) 

 

 

 
Fig. 12.  Model comparison for PV power forecasting 

 

 
Fig .10.  Previous PV power(kw) 

 

 

TABLE. 1.  Score errors comparison 

Error 
Symbolic 

regressor 
MLP 

Hybrid 

method 

RMSE 7.21 6.48 5.58 

MAE 4.92 3.81 3.30 

R² 98.85% 99.07% 99.31% 

 

 
Fig. 11.  Cross-Validation of the proposed method illustration 
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C. Interperation 

   The proposed model was verified through Fig 13 and 14. 

Table 1 records an accuracy equal to 5.58 in terms of RMSE 

and 3.30 in terms of MAE. The coefficient of determination 

is 99.31. These values lead that the enhanced SR is 

outperforming the separated models. The training data and the 

testing data are fed to the systems equally. Note that the 

hyperparameters are conserved for all the training process and 

the testing part. It should be mentioned that the system has a 

better efficiency more than the models separated. It should be 

mentioned that the final output is coming for averaging the 

individual predictors' results. More research on the variation 

of the contribution rate of each predictor for the aim of getting 

an optimum result is required and needs more investigation. 

Nevertheless, the proposed predictor still an efficient tool for 

maintaining the grid-connected PV system safe from any 

sudden disturbance.   

VIII. CONCLUSIONS AND OUTLOOK 

   This study suggests a hybrid method for forecasting the 

photovoltaic power according to Alice springs DCSK PV 

plants in Australia. The proposed method is a fusion of 

Symbolic Regression and a Multi-Layer Perceptron. The 

forecast horizon is one month using only two features 

specifically the horizontal irradiation and the historical 

annually photovoltaic power (for the same day and the same 

minute) for two years. The transfer learning via voting 

approach leads to an accurate forecast over one month. The 

RMSE is 5.58 while the MAE is equal to 3.30. Thus, it 

outperforms the benchmarked separate models with an 

enhancement of 22%RMSE and 13%MAE according to SR 

and MLP respectively. For each forecasted timestep, the 

proposed mixture creates an optimum by averaging the 

model’s outputs.  

   Moreover, the efficiency of the proposed model was 

demonstrated through Cross-Validation and simulation 

figures. The graphs show a perfect match between the two 

trees architectures. This is shown clearly in Fig. 15 where the 

hybrid model estimation is generated with less error value. 

The advantage of using the aforementioned ensemble 

approach is its simplicity in implementation with The rapidity 

during the training stage. The suggested multimodal allows 

the MLP of using a lesser number of layers and neurons with 

maintaining the accuracy at its maximum. On the other side, 

in SR, the number of iterations is reduced. The said 

parameters are normally a time-consuming. Parallel 

computing has considerably decreased the computational cost 

to take only 11 minutes for two years of historical database 

with a timestep of 5 minutes in a LENOVO Ideapad 720S-

15IKB i7 with 8 Cpu with Python 3.7 version. The 

elimination of minor important inputs from a feature selection 

process using Elastic Net and Extreme boosting has improved 

scientifically the training speed of the blending algorithm. 

Therefore, the latter is high performing in online forecasting 

with real-time implementation.  

   To sum up, the proposed hybrid model is highly 

recommended in PV power forecasting for one month since it 

has demonstrated its effectiveness through different tests. The 

reliability of this approach is counting on tow predictors 

which remarkably enhances the accuracy. The robustness of 

the blending model prevents the SR form converging to the 

local minimum with a complementary aid form the artificial 

neural network branch. Although the dataset was shrunk to 

include just tow features, the model is still suitable for 

medium-term forecasting while if the additional data was 

taken also in consideration, the accuracy will mostly have a 

higher value. 

   The proposed method will contribute to the grid utility in 

terms of unit commitment and economic dispatch. In addition, 

the application of the aforementioned multimodal on a real 

PV plant is still required to validate the proprieties on online 

training. Voting technique via machine learning models is the 

key success of the proposed approach. However, if the SR 

doesn’t inversely follow the MLP, the error will dramatically 

increase. For that reason, the development of an indicator 

which indicates the sign and guides the mixture to an accurate 

forecast is needed to prevent the hybrid predictor from any 

mislead. 

   The future work of these study includes a serious 

investigation on the proportional contribution of each model 

to the domain knowledge with an online tuning targeting the 

minimum error with extending the prediction horizon up to 

several months. 

 
Fig. 13.  MAE and RMSE Error comparison 

 

 

 
Fig. 14.  Error difference 
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