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Abstract— Unmanned aerial vehicles (UAVs) suffer from
sensor drifts in GPS denied environments, which can lead to
potentially dangerous situations. To avoid intolerable sensor
drifts in the presence of GPS spoofing attacks, we propose a
safety constrained control framework summarized in Fig. 1
that adapts the UAV at a path re-planning level to support
resilient state estimation against GPS spoofing attacks. The
attack detector is used to detect GPS spoofing attacks based
on the resilient state estimation and provides a switching
criterion between the robust control mode and emergency
control mode. To quantify the safety margin, we introduce the
escape time which is defined as a safe time under which the
state estimation error remains within a tolerable error with
designated confidence. An attacker location tracker (ALT) is
developed to track the location of the attacker and estimate the
output power of the spoofing device by the unscented Kalman
filter (UKF) with sliding window outputs. Using the estimates
from ALT, an escape controller (ESC) is designed based on the
constrained model predictive controller (MPC) such that the
UAV escapes from the effective range of the spoofing device
within the escape time.

I. INTRODUCTION

UAVs have been used across the world for commercial,
civilian, as well as educational applications over the decades.
The mechanical simplicity and agile maneuverability appeal
to many applications, such as cargo transportation [1], aerial
photography [2], and agricultural farming [3]. The most
widely used sensor for UAVs is the global positioning system
(GPS), which offers accurate and reliable state measure-
ments. However, GPS receivers are vulnerable to various
types of attacks, such as blocking, jamming, and spoofing [4].
The Vulnerability Assessment Team at Los Alamos National
Laboratory has demonstrated that the civilian GPS spoofing
attacks can be easily implemented by using GPS simula-
tor [5]. Furthermore, GPS is more vulnerable when its signal
strength is weak. Due to various applications of UAVs, the
operating environment becomes diverse as well, where GPS
signals are weak or even denied due to other structures such
as skyscrapers, elevated highways, bridges, and mountains.

Literature review. One of the GPS spoofing attack detec-
tion techniques is to analyze raw antenna signals or utilize
multi-antenna receiver systems. The GPS spoofing attack can
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Fig. 1: A safety constrained control framework consisting
of an attack detector, a resilient state estimator, a robust
controller, an ALT and an ESC.

be detected by checking whether the default radiation pattern
is changed in [6]. A multi-antenna receiver system was used
to detect GPS spoofing attacks by monitoring the angle-of-
arrival of the spoofing attempts in [7]. As an extension of this
work, the GPS spoofing mitigation has also been investigated
where an array of antennas is utilized to obtain genuine
GPS signals by spatial filtering [8]–[10]. However, those
solutions require modifications of the hardware or the low-
level computing modules and assume that an attacker can
only use single-antenna spoofing systems. Furthermore, the
attacker can spoof the GPS receivers without being detected
if multi-antenna spoofing devices are available [11].

In CPS security literature, GPS spoofing attacks have been
described as a malicious signal injection to the genuine
sensor output [12]. Attack detection against malicious signal
injection has been widely studied over the last few years.
The attack detection problem has been formulated as an
`0/`∞ optimization problem, which is NP-hard in [13],
[14]. The fundamental limitations of structural detectability,
as well as graph-theoretical detectability for linear time
invariant systems have been studied in [15], where distributed
attack detection has also been studied. The attack detection
problem has been formulated as an attack-resilient estimation
problem of constrained state and unknown input in [16]. A
switching mode resilient detection and estimation framework
for GPS spoofing attacks has been studied in [17]. Attack
detection using multiple GPS signals by checking cross-
correlation was introduced in [18]. In [19], the maximum
deviations of the state were identified due to the sensor
attacks while remaining stealthy due to the detection. A
secure control framework for networked control systems was
designed in [20] to analyze the resource-limited adversaries.
We notice that existing emergency control architectures focus
on switching control from a high-performance controller
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to a robust high-assurance controller in the presence of
attacks [21]. These architectures can efficiently handle a class
of attacks, but cannot address the fundamental problem due
to limited sensor availability in the presence of cyber-attacks.

Contribution. The current paper addresses safety prob-
lems induced by limited sensor availability due to GPS
spoofing attacks. We formulate the sensor drift problem as
an increasing variance of state estimation to quantify the
sensor drift and introduce escape time under which the state
estimation error remains within a tolerable error with high
confidence. We develop a novel safety constrained control
framework that adapts the UAV at a path re-planning level
to support resilient state estimation against GPS spoofing
attacks. In the presence of the GPS spoofing attack, the
attacker location tracker (ALT) tracks the attacker’s location
and estimates the output power of the spoofing device by
UKF with sliding window outputs. The estimates are then
used in the escape controller (ESC) that drives the UAVs
away from the effective range of the spoofing device within
the escape time to avoid intolerable sensor drift.

II. PRELIMINARIES

A. Notation

We use the subscript k of xk to denote the time index; Rn+
denotes the set of positive elements in the n-dimensional
Euclidean space; Rn×m denotes the set of all n × m real
matrices; A> A−1 and tr(A) denote the transpose, inverse
and trace of matrix A, respectively; I denotes the identity
matrix with an appropriate dimension; ‖ · ‖ denotes the
standard Euclidean norm;× is used to denote matrix multipli-
cation when the multiplied terms are in different lines; E[ · ]
denotes the expectation operator; P[ · ] denotes the probability
operator. For a matrix S, S > 0 and S ≥ 0 indicate that S
is positive definite and positive semi-definite, respectively.

B. System Model

Consider the discrete-time dynamic system model:

xk = Axk−1 +Buk−1 + wk−1 (1a)

yGk = CGxk + dk + vGk (1b)

yIk = CI(xk − xk−1) + vIk (1c)

ySk =

{
CS ηk

d(xa
k,xk)2

+ vSk , under the attack

ηS + vSk , otherwise ,
(1d)

where xk ∈ Rn is the state, and A, B, CG, CI and CS

are proper sized matrices. There are three types of outputs
available. Output yGk ∈ RmG is the GPS measurement
which may be corrupted by unknown GPS spoofing signal
dk ∈ RmG . The signal dk is injected by the attacker when
the UAV is in the effective range of the spoofing device.
Output yIk ∈ RmI is the IMU measurement which returns a
noisy measurement of the state difference. Output ySk ∈ RmS

represents the GPS signal strength.
The defender is unaware of xak and ηk, where xak ∈ Rn is

the unknown attacker location, and ηk ∈ RmS is the nominal
power of the spoofing device. If GPS is under the attack, ySk

is an inverse function of the distance between the attacker and
UAV. The function d(a, b) measures the distance between a
and b. If the UAV receives genuine GPS signals, this output
represents the genuine GPS signal strength ηS . We assume
that the attacker can inject any signal dk into yGk .

The noise signals wk, vGk , vIk, and vSk are assumed to be in-
dependent and identically distributed Gaussian random vari-
ables with zero means and covariances E[wkw

>
k ] = Σw ≥

0, E[vGk (vGk )>] = ΣG > 0, E[vIk(vIk)>] = ΣI > 0, and
E[vSk (vSk )>] = ΣS > 0, respectively.

Remark 2.1: The sensor measurement yIk represents any
relative sensor measurement, such as velocity measurement
by a camera. In this paper, we use IMU for the illustration.

Remark 2.2: The signal strength output ySk in (1d) is
derived by the GPS signal attenuation due to free-space
path loss. Friis transmission equation is given by: Pr =
PtGtGr

λ2

(4πr)2 , where Pt and Pr are the transmit power and
the receive power; Gt and Gr are the transmit and receive
antenna gains; r is the distance between two antennas; λ is
the wavelength [22]. We write Gr( λ4π )2 as the output matrix
CS ; GtPt as the nominal power of the spoofing device ηk;
and r as the distance d(xak, xk).

C. Problem Statement

Given the system (1) with sensor measurements (1b)-(1d),
the defender aims to detect the GPS spoofing attack, achieve
resilient state estimation when considering the limited sensor
availability, and complete the global mission securely.

III. SAFETY CONSTRAINED CONTROL FRAMEWORK

To address the problem described in Section II-C, we pro-
pose a safety constrained control framework in Fig. 1, which
consists of an attack detector, a resilient state estimator, a
robust controller, an attacker location tracker (ALT), and an
escape controller (ESC). The proposed safety constrained
control framework drives the UAV to the outside of the
effective range of the spoofing device. The following explains
each module in the proposed framework as shown in Fig. 1.
Robust Control Mode. The robust controller is a complex
controller that operates the UAV to the destination in the
presence of noise, but without the presence of attacks. Any
robust control technique can be implemented to this module.
Emergency Control Mode. ALT is designed for tracking the
location of the attacker and estimating the output power of
the spoofing device by applying UKF with sliding window
outputs. ESC is an MPC-based controller that drives the UAV
out of the effective range of the spoofing device based on
the estimation of the attacker location obtained by ALT.
Attack-resilient Monitor & Decision Logic. The resilient
state estimator is developed based on the Kalman-filter like
state estimator. The attack detector is designed by the χ2-
based anomaly detection algorithm. Based on the previous
estimation from the resilient state estimator, the Boolean
output (dotted-dashed line in Fig. 1) of the attack detector
determines (i) whether the GPS measurement should be
used for the state estimation; and (ii) the switching rule



between two control modes: the robust control mode and
the emergency control mode.

ALT and ESC adapt the UAV at a path re-planning level
for safe operation. In what follows, each subsection describes
the details of the corresponding component.

A. Resilient State Estimator

The defender implements an estimator and χ2 detector
to estimate the state and detect the GPS spoofing attack.
The following Kalman-filter like state estimator is used to
estimate the current state:

x̂k = Ax̂k−1 +Buk−1 +KG
k (yGk − CG(Ax̂k−1 +Buk−1))

+KI
k(yIk − CI(Ax̂k−1 +Buk−1 − x̂k−1)) (2)

Pk = (A−KkCA+KkDC)Pk−1(A−KkCA+KkDC)>

+ (I −KkC)Σw(I −KkC)> +KkΣyK
>
k , (3)

where x̂k is the state estimate and Pk is the state estimation
error covariance at time k, and Kk :=

[
KG
k KI

k

]
, C :=[

CG

CI

]
, Σy :=

[
ΣG 0
0 ΣI

]
and D :=

[
0 0
0 I

]
. The

optimal gain Kk, given by

Kk = (APk−1(CA−DC)> + ΣwC
>) (4)

×
(
(CA−DC)Pk−1(CA−DC)> + CΣwC

> + Σy
)−1

,

is the solution of the optimization problem minKk
tr (Pk).

In [17], it has been shown that the covariance in (3)
is bounded when the GPS signal is available. If the GPS
is denied, and only the relative sensor yIk is available, the
covariance is strictly increasing and unbounded in time. That
is, the sensor drift problem can be formulated as instability
of the covariance matrix.

B. Attack Detector

We conduct the χ2 test to detect the GPS spoofing attacks:

H0 : dk = 0; H1 : dk 6= 0, (5)

using CUSUM (CUmulative SUM) algorithm, which is
widely used in attack detection research [23]–[25].

Since dk = yGk − CGxk − vGk , given the previous state
estimate x̂k−1, we estimate the attack vector by comparing
the sensor output and the output prediction:

d̂k = yGk − CG(Ax̂k−1 +Buk−1). (6)

Note that the current estimate x̂k should not be used for the
prediction, because it is correlated with the current output;
i.e., E[x̂k(yGk )>] 6= 0. Due to the Gaussian noises wk and vk
injected to the linear system in (1), the states follow Gaussian
distribution since any finite linear combination of Gaussian
distributions is also Gaussian. Similarly, d̂k is Gaussian as
well, and thus the use of χ2 test (5) is justified. In particular,
the χ2 test compares the normalized attack vector estimate
d̂>k (P dk )−1d̂k with χ2

df (α):

Accept H0, if d̂>k (P dk )−1d̂k ≤ χ2
df (α)

Accept H1, if d̂>k (P dk )−1d̂k > χ2
df (α),

(7)

where P dk := E[(dk − d̂k)(dk − d̂k)>] = CG(APk−1A
> +

Σw)(CG)> + ΣG, and χ2
df (α) is the threshold found in

the Chi-square table. In χ2
df (α), df denotes the degree of

freedom, and α denotes the statistical significance level.
To reduce the effect of noise, we use the test (7) in

a cumulative form. The proposed χ2 CUSUM detector is
characterized by the detector state Sk ∈ R+:

Sk = δSk−1 + (d̂k)>(P dk )−1d̂k, S0 = 0, (8)

where 0 < δ < 1 is the pre-determined forgetting factor. At
each time k, the CUSUM detector (8) is used to update the
detector state Sk and detect the attack.

The attack detector will i) update the estimated state x̂k
and the error covariance Pk in (3) with KG

k = 0 and ii)
switch the control mode to emergency control mode, if

Sk >

∞∑
i=0

δiχ2
df (α) =

χ2
df (α)

1− δ
. (9)

If Sk <
χ2
df (α)

1−δ , then it returns to the robust control mode.
Remark 3.1: As shown in Fig. 2, the resilient state es-

timation uses the GPS measurement and the IMU measure-
ment to estimate the state by (2) for the detection purpose
as in (6). When the GPS attack is detected, only the IMU
measurement is used to estimate the state for the control
purpose as in (2) and (3) with KG

k = 0.

Fig. 2: Resilient state estimator. GPS and IMU measurements
are used in the estimator one (Est. 1). Estimator two (Est. 2)
only uses the IMU measurement. Est. 1 is used to estimate
the state by (2) for the detection as in (6). When GPS is
free of attacks, Est. 1 is also used to estimate the state for
the control since the GPS measurement is trustful. In the
presence of the GPS attack, Est. 2 is used for the control.

C. Attacker Location Estimation (ALT)

We formulate the simultaneous estimation of the attacker
location xak and unknown parameter ηk as a target tracking
problem of the attacker state xak := [(xak)>, ηk]>.

Estimating the attacker state xak encounters two major
problems: i) the output equation ySk in (1d) is highly non-
linear, and ii) a single measurement of the signal strength
suffers from the infinite number of solutions.

To address the first issue, we use the unscented Kalman
filter (UKF) [26], [27], which has been developed to deal
with highly nonlinear systems and provides a better estima-
tion than the extended Kalman filter. Motivated by the fact
that locating the epicenter of an earthquake can be done with
at least three measurements from different seismic stations,



we resolve the second issue by using sliding window outputs.
To be specific, we estimate xak+1 using UKF with M -sized
sliding window outputs:

xak+1 = xak + wa
k; ySk = [ySk , y

S
k−1, · · · , ySk−M+1]>.

The signal strength measurements from (1d) can be written
as ySk = f(xak) + vSk , where f(xak) := CS ηk

d(xa
k,xk)2

.
The state estimation by using UKF with sliding window

outputs can track the location of the moving attacker, while
nonlinear regression algorithms may fail to track it.

For completeness of the paper, the UKF with sliding
window outputs algorithm is summarized in Algorithm 1 in
Appendix with a brief derivation.

D. Escape Controller (ESC)

In the presence of the GPS spoofing attack, the variance
Pk in (3) of the state estimation errors is strictly increasing
and unbounded in time (Thm. 4.2 [17]). The goal of ESC
is to drive the UAV outside of the effective range of the
spoofing device within the escape time so that the state
estimation error remains within the tolerable region with a
predetermined probability. The escape time is defined in [17]
as the following:

Definition 3.1: The escape time kesc ≥ 0 is the time
difference between the time of attack ka and the first time
instance when the estimation error ‖xk − x̂k‖ is within the
tolerable error distance ζ ∈ Rn+ with the significance α, i.e.

kesc = arg min
k≥ka

k − ka

s.t. ζ>P−1k ζ < χ2
df (α), (10)

where Pk is the error covariance of xk− x̂k, df is the degree
of freedom of the state.

The escape time provides a new criterion for optimal
trajectory regeneration with increasing uncertainties. In par-
ticular, ESC is designed to drive the UAV outside of the
effective range of the spoofing device within the escape time.

Given the estimates of UAV state x̂k and attacker state x̂ak
with their covariances, the problem can be formulated as a
finite horizon constrained MPC problem:

Program 3.1:

min
u

ka+N∑
i=ka

ˆ̃x>i+1Qi ˆ̃xi+1 + u>i Riui

s.t. x̂i+1 = Ax̂i +Bui

d(x̂aka+kesc , x̂ka+kesc)− reffect > 0 (11)
h(x̂i, ui) ≤ 0 (12)
for i = ka, ka + 1, · · · , ka +N,

where N ≥ kesc is the prediction horizon, ˆ̃xi is defined as the
difference between the state estimation and the goal state at
time index i, i.e., ˆ̃xi := x̂i−xgoali , Qi and Ri are symmetric
positive definite weight matrices, and x̂ai is the estimate of
the attacker location. Value reffect is the upper bound of the
effective range of the spoofing device. The constraint (11)
implies that ESC should drive the UAV outside of the
effective range of the spoofing device. Inequality (12) is any

nonlinear constraint on the state estimation x̂i (e.g., velocity)
and the control input ui (e.g., acceleration).

Remark 3.2: The upper bound of the effective range
reffect can be assumed to be known. Due to hardware con-
straints, the output power/nominal strength of the spoofing
device ηk is bounded, and ηk also can be estimated by ALT
in Section III-C. The output power determines the effective
range of the spoofing device, and reffect can be found by
reffect = argmaxr g(r), where g(r) := CS ηkr2 > ηS .

There are two key challenges in Program 3.1. First,
the states and the attacker location are unknown and their
estimates x̂i and x̂ai are subject to stochastic noise. Moreover,
we cannot guarantee that constraint (11) is always feasible;
i.e., Program 3.1 may not have a solution. Addressing the
above two challenges, we introduce two programs for ESC
in Section III-D.1 and III-D.2.

1) ESC with Tube: Since the constraint (11) is the safety
critical constraint, we can reformulate it as a conservative
constraint such that ESC should drive the UAV outside of
the effective range of the spoofing device with probability γ
by the single individual chance constraint (ICC):

P[d(xaka+kesc), xka+kesc ]− reffect > 0) > γ. (13)

Then Program 3.1 becomes a new stochastic MPC with ICC.
The chance constraints can be handled by constraint back-

offs, which originate in linear MPC with additive stochastic
noise [28]. However, we consider nonlinear constraints in
Program 3.1, which makes the backoff intractable to com-
pute. In [29], the tube is constructed based on sublevel
sets of the incremental Lyapunov function by an online
predicted tube size and then it is used to ensure robust
constraint satisfaction by tightening the nonlinear state and
input constraints. In [30], this is extended to allow for
ICCs and stochastic uncertainty. Similar to [29], [30], the
stochastic MPC with ICC can be formulated as:

Program 3.2:

min
u

ka+N∑
i=ka

ˆ̃x>i+1Qi ˆ̃xi+1 + u>i Riui

s.t. x̂i+1 = Ax̂i +Bui

d(x̂aka+kesc , x̂ka+kesc)− reffect > s(Pka+kesc , P
a
k , γ)

(14)
h(x̂i, ui) ≤ 0 (15)
for i = ka, ka + 1, · · · , ka +N,

where Pka+kesc is the UAV state covariance at escape time,
and P ak is the attacker state covariance. Function s(·) is the
probabilistic tube size that can be seen as a margin to fulfill
the second constraint in (11).

In order to provide the theoretical guarantees on the
capability of Program 3.2 and the equivalence between the
stochasic MPC with ICC and Program 3.2, we use the results
from [29], [30]. Since the newly formulated MPC with
ICC (13) is the standard nonlinear stochastic MPC problem,
Assumptions in [30] can be verified.

Theorem 3.1: Under the Assumptions 1-4, 6 and 9
in [30], if Program 3.2 is feasible at t = ka, then it



is recursively feasible; the constraints (12) and (13) are
satisfied and the origin is practically asymptotically stable
for the resulting closed loop system. The impact of the hard
constraint (14) is equivalent to the nonlinear ICCs (13).
Proof: See proofs of Thm. 1 in [29] and Thm. 8 & 10 in [30].
�

From Theorem 3.1, we can conclude that as long as
Program 3.2 is feasible at the time of attack ka, we can
guarantee that the UAV can escape within the escape time
in probability. However, Program 3.2 may not be feasible in
some cases. To address this issue, we introduce a program
with a soft constraint in the subsequent section.

2) ESC with Potential Function: The hard constraint (14)
can be replaced by the repulsive potential function [31] as a
high penalty in the cost function which is active only after
the escape time ka + kesc. The repulsive potential function
Urep(D) is defined as the following:

Urep(D) :=

{
1
2β
(

1
D −

1
reffect

)2
if D ≤ reffect

0 if D > reffect

,

which can be constructed based on the distance between
the location of the attacker and the location of UAV, D :=
d(x̂aka+kesc , x̂ka+kesc). The scaling parameter β is a large
constant, which represents a penalty when the constraint
has not been fulfilled. Utilizing the soft constraint, we
reformulate the MPC problem as follows:

Program 3.3:

min
u

ka+N∑
i=ka

ˆ̃x>i+1Qi ˆ̃xi+1 + u>i Riui +

ka+N∑
i=ka+kesc

Urep(Di)

s.t. x̂i+1 = Ax̂i +Bui

h(x̂i, ui) ≤ 0

for i = ka, ka + 1, · · · , ka +N.
Remark 3.3: Comparing to the use of the repulsive

potential function Urep in the collision avoidance litera-
ture [32]–[34], the proposed application of the repulsive
potential function in Program 3.3 has two differences. First
of all, the repulsive potential function is known before the
collision happens in collision avoidance literature, while we
can only get the repulsive potential function Urep after the
collision happens, i.e., only after the UAV has entered the
effective range of the spoofing device. Second, the repulsive
potential function Urep is only counted in the cost function
in Program 3.3 after the escape time.

IV. SIMULATION

In the simulations, the UAV is moving from the start
position with the coordinates at (0, 0) to the target position
(300, 300) by using feedback control1, based on the state
estimate from (2). When the GPS attack happens, the state
estimate will be no longer trustful. After GPS measurement
is turned off, the only available relative state measurement
causes the sensor drift problem [17]. The UAV will switch

1We implemented a proportional-derivative (PD) like tracking controller,
which is widely used for double integrator systems.

the control mode from the robust control mode to the
emergency control mode when the attack is detected, using
ESC to escape away from the attacker within the escape
time. We solve the problem with ESC with Potential Function
described in Program 3.3. The online computation is done
using Julia, and ESC is implemented by using JuMP [35]
package with Ipopt solver.

A. UAV Model

We use a double integrator UAV dynamics under the
GPS spoofing attack as in [36]. The discrete time state
vector xk considers planar position and velocity at time
step k, i.e. xk = [rxk , r

y
k , v

x
k , v

y
k ]>, where rxk , r

y
k denote x, y

position coordinates, and vxk , v
y
k denote velocity coordinates.

We consider the acceleration of UAV as the control input
uk = [uxk, u

y
k]>. We assume that the state constraint and

control input constraint are given as
√

(vxk)2 + (vyk)2 ≤
5 and

√
(uxk)2 + (uyk)2 ≤ 2. With sampling time at 0.1

seconds, the double integrator model is discretized into the
following matrices:

A =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

 , B =


0 0
0 0

0.1 0
0 0.1

 ,
and the outputs yGk , yIk and ySk are the position measurements
from GPS, the velocity measurements from IMU, and GPS
signal strength measurements respectively, with the output

matrices: CG =

[
1 0 0 0
0 1 0 0

]
, CI =

[
0 0 1 0
0 0 0 1

]
and

CS =
[
1
]
. The covariance matrices of the sensing and

disturbance noises are chosen as Σw = 0.1I , ΣG = I ,
ΣI = 0.01I and ΣS = I .

B. GPS Spoofing Attack and Attack Signal Estimation

The GPS attack happens when the UAV is in the effective
range of the spoofing device. In this attack scenario, the
attack signal is d = [10, 10]>. The location of the attacker
and the nominal power of the spoofing device are xak =
[100, 100]> and ηk = 200, which are both unknown to the
UAV. The estimation obtained by (6) is shown in Fig. 3.

Fig. 3: Attack signal estimation. The UAV stays in the
effective range of the spoofing device from time step 231
to 356.



C. Attack Detection

Using the estimated attack signal to calculate the detector
state Sk by (8), the attack detector is able to detect the attack
using the normalized attack vector as shown in Fig. 4. In
Fig. 4, there are abnormal high detector state values, which
imply that there is an attack. Statistic significance of the
attack is tested using the CUSUM detector described in (9)
with the significance α at 1%.

Fig. 4: Attack detection. The detector state Sk is defined
in (8) of the CUSUM detector. The threshold is calculated
by

χ2
df (α)

1−δ with α = 0.01 and δ = 0.15.

D. Attacker State Estimation

When the GPS attack is detected, the UAV first estimates
the attacker state xak by using Algorithm 1 with window
size M = 5. The estimation result is shown in Fig. 5.
The estimated location and the estimated nominal power
quickly converge to the true values. The estimates are drifting
when the UAV remains in GPS denied environment. After
obtaining an estimate of the attacker state, ESC is used to
escape away from the effective range of the spoofing device.

Fig. 5: Attacker state estimation.

E. Trajectory Generation

Program 3.3 with the prediction horizon N = kesc + 40
and the scaling parameter β = 50000 is used to generate
the estimated and true trajectories of the simulated scenario
shown in Fig. 6. As shown in Fig. 7, the state estimation
error ‖xk−x̂k‖ is increasing when the UAV is in the effective
range of the spoofing device, and the error is bounded by the
tolerable error distance ζ = 3 corresponding to kesc = 125.

Fig. 8 presents how the proposed control framework
performs in different cases where reffect ∈ {10, 30, 50, 70}.
Regardless of the size of reffect, the UAV will escape the
effective range within the escape time.

Fig. 6: Estimated and true trajectories of the simulated
scenario. The attacker is located at (100, 100) with reffect =
30, which is displayed as the light blue circle.

Fig. 7: Bounded estimation error ‖xk − x̂k‖.

F. Discussion

When the UAV is under the GPS spoofing attack, the
feasibility of Program 3.2 depends on how far the UAV is
away from the boundary of the effective range of the spoofing
device. However, Program 3.3 can still generate a solution
such that the UAV can escape with a minimum time, even
when Program 3.2 is not feasible. To simulate this scenario,
we now consider an attack strategy that the attacker starts
the attack when the UAV is near to the spoofing device. The
results are shown in Fig. 9, where Program 3.3 generates an
optimal control sequence, such that the UAV could escape
at 11 time steps after the escape time.

V. CONCLUSION

We present a secure safety constrained control framework
that adapts the UAV at a path re-planning level to support
resilient state estimation against GPS spoofing attacks. A re-
silient state estimator has been designed, and the χ2 CUSUM
algorithm is used for attack detection. In the presence of
the GPS spoofing attack, the state estimation suffers from
increasing variance due to the limited sensor availability. In
this case, using the robust controller may still keep the UAV
within the effective range of the spoofing device after the
estimation errors may not be in the tolerable region. The
large estimation error will give rise to safety problems. To
solve this safety problem, ALT is developed for tracking
the attacker location and estimating the effective range of



(a) reffect = 10 (b) reffect = 30 (c) reffect = 50 (d) reffect = 70

Fig. 8: Trajectories with different effective ranges. In (a), the UAV can pass the attacker without changing the direction or even its speed
since reffect is small enough. From (b)-(d), the UAV drives away from the effective range within the escape time and tries to get as close
to the global goal as possible.

(a) True and estimated trajectories. The spoofing device with reffect =
40 is located at the red dot and starts to spoof when the UAV is at
the black dot.

(b) Estimation error for non-feasible case. The error is bounded
within the escape time. The UAV could escape at 11 time steps after
escape time at time step 423.

Fig. 9: Non-feasible Case. Attacker starts the spoofing device
when the UAV is nearby.

the spoofing device by using UKF with sliding window
outputs. Then, ESC is used to escape away from the effective
range of the spoofing device within the escape time. A UAV
simulation is given to demonstrate the results.
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putationally efficient robust model predictive control framework for
uncertain nonlinear systems,” arXiv preprint arXiv:1910.12081, 2019.
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APPENDIX

The current appendix presents the UKF algorithm state-
ment and its brief derivation for partially nonlinear systems
with sliding window outputs. Consider the system:

xk+1 = Akxk + wk

yk = f(xk) + vk,
(16)

where xk ∈ Rn is the state, the output yk ∈ Rm represents
the measurement of GPS signal strength. The noise signals
wk and vk are assumed to be independent and identically
distributed Gaussian random variables with zero means and
covariances E[wkw

>
k ] = Σw′ ≥ 0 and E[vkv

>
k ] = Σv > 0.

Algorithm 1 UKF with sliding window outputs

B Prediction
1: x̂k|k−1 = Ak−1x̂k−1;
2: Pk|k−1 = Ak−1Pk−1A

>
k−1 + Σw′ ;

B Sigma points generation
3: Xk = {x̂k|k−1 ± (

√
nPk|k−1)>i }, i ∈ {1, · · · , n};

B Measurement Update
4: for i = 1 : 2n do
5: ŷik := [ŷik, ŷ

i
k−1, · · · , ŷik−M+1]>

= [f(X ik), (A−1k−1X
i
k), · · · , f(A−M+1

k−1 X ik)]>;
6: end for
7: ȳk =

∑2n
i=0W

i
kŷ

i
k;

8: P y
k =

∑2n
i=0W

i
k(ŷik − ȳk)(ŷik − ȳk)> + Σv;

9: P xy
k =

∑2n
i=0W

i
k(X ik − x̂k|k−1)(ŷik − ȳk)>;

10: Kk = P xy
k (P y

k)−1

11: x̂k = x̂k|k−1 +Kk(yk − ȳk);
12: Pk = Pk|k−1 −KkP

y
kK
>
k

A. Algorithm Derivation

Prediction. Given the previous state estimate x̂k−1 and
system model (16), the current state can be predicted
as x̂k|k−1 = Ak−1x̂k−1. Its error covariance matrix
is Pk|k−1 := E[(xk − x̂k|k−1)(xk − x̂k|k−1)>] =
Ak−1Pk−1A

>
k−1 + Σw′ , where Pk−1 := E[(xk−1 −

x̂k−1)(xk−1 − x̂k−1)>] is the state estimation error covari-
ance matrix.
Sigma Points Generation. We define a sigma points ar-
ray Xk := {x̂k|k−1 ± (

√
nPk|k−1)>i , i = 1, · · · , n},

where
√
nPk|k−1 is the matrix square root such that√

nPk|k−1
>√

nPk|k−1 = nPk|k−1, and the matrix operator
(·)i gives the ith row of the matrix.
Measurement Update. Given the sliding window size
M , the nonlinear measurement equation f(·) is used
to transform the sigma points into predicted mea-
surement vectors ŷik := [ŷik, ŷ

i
k−1, · · · , ŷik−M+1]> =

[f(X ik), f(A−1k−1X ik), · · · , f(A−M+1
k−1 X ik)]>.

The approximated mean of the measurements is ȳk :=∑2n
i=0W

i
kŷ

i
k, where W i

k are the weighting coefficients.
By taking the measurement noise into account, the es-

timated covariance of the predicted measurements is given
by: P y

k :=
∑2n
i=0W

i
k(ŷik − ȳk)(ŷik − ȳk)> + Σv, where

Σv = diag{Σv, · · · ,Σv} is the diagonal matrix.
The cross covariance between the state prediction and pre-

dicted measurements is P xy
k =

∑2n
i=0W

i
k(X ik−x̂k|k−1)(ŷik−

ȳk)>, where X ik denotes the ith element in Xk.
The measurement yk := [yk, · · · , yk−M+1]> is used to

update the prediction x̂k|k−1 as x̂k = x̂k|k−1+Kk(yk−ȳk).
The covariance matrix of the state estimation error is

Pk = Pk|k−1 − Kk(P xy
k )> − P xy

k K
>
k + KkP

y
kK
>
k . The

gain matrix Kk is chosen by minimizing the trace norm
of Pk; i.e. minKk

tr (Pk). The solution of the program is
given by Kk = P xy

k (P y
k)−1. Note that the prediction step

does not need unscented transformation because the dynamic
system (16) is linear.
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