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Abstract—Accurately and efficiently estimating system per-
formance under uncertainty is paramount in power system
planning and operation. Monte Carlo simulation is often used
for this purpose, but convergence may be slow, especially when
detailed models are used. Previously published methods to
speed up computations may severely constrain model complex-
ity, limiting their real-world effectiveness. This paper uses the
recently proposed Multilevel Monte Carlo (MLMC) framework,
which combines outputs from a hierarchy of simulators to
boost computational efficiency without sacrificing accuracy. It
explains which requirements the MLMC framework imposes on
the model hierarchy, and how these naturally occur in power
system adequacy assessment problems. Two adequacy assessment
examples are studied in detail: a composite system and a system
with heterogeneous storage units. An intuitive speed metric is
introduced for easy comparison of simulation setups. Depending
on the problem and metric of interest, large speedups can be
obtained.

Index Terms—adequacy assessment, computational efficiency,
Monte Carlo methods, storage dispatch, time-sequential simula-
tion

I. INTRODUCTION

Operational and planning problems in the power system

domain often involve the assessment of (sub-)system perfor-

mance across a range of probabilistically modelled scenarios.

For all but the simplest power system models, this cannot

be done analytically, and Monte Carlo (MC) simulations are

used instead. MC simulations are a powerful general purpose

computation method with a long tradition in power system

applications [1], but convergence to the correct answer may be

slow. A number of different variance reduction methods exist

to speed up convergence of Monte Carlo estimates, e.g. [1],

[2]. One of these, importance sampling, has recently grown in

popularity for power system applications, especially in combi-

nation with automatic tuning of model bias parameters using

the cross-entropy approach [3], [4]. However, implementing

importance sampling typically requires deep insight into the

model, and limits the design freedom, e.g. for simulations

involving complex decision making or sequential actions.

This research was supported by the SMART-SAFE project, funded through
the HubNet (Extension) programme (EPSRC EP/N030028/1).

The Multilevel Monte Carlo (MLMC) method was intro-

duced in the context of computational finance to speed up av-

eraging over sample paths, without compromising model detail

or accuracy [5]. Initial applications involved the combination

of multi-resolution models (geometric sequences), but other

applications have subsequently evolved. A good overview of

the method and its applications is given in [5]. The MLMC

approach has recently been used in a reliability context to

speed up the estimation of the average mission time of large

systems in [6]. In [7], electrical distribution system risk metrics

were estimated using MLMC, using a multi-scale approach to

simulate component failures and repairs.

This paper considers how the MLMC framework [5] can be

used to accelerate risk calculations, in particular in applications

relating to system adequacy assessment of complex systems.

The contributions of this work are as follows.

1) A concise overview of the MLMC approach to the

estimation of risks is given. It is shown how the struc-

ture required for MLMC simulation naturally occurs

in adequacy assessment problems, and can often be

implemented with minimal changes to the constituent

models. Two examples of common model patterns are

given.

2) An intuitive speed metric is introduced that allows

for fair comparison between Monte Carlo simulation

approaches, and across risk measures.

3) Two case studies are presented, each representing one

of the common model patterns. The MLMC approach

results in large speedups, in one case speeding up

simulations by a factor 2000 compared to conventional

Monte Carlo sampling. The sensitivity of computational

speed to the model stack is investigated.

II. METHODOLOGY

A. Mathematical problem statement

Power system performance indicators often take the form

of risk measures q that are expressed as the expectation1 of a

1The framework of estimating expectation values is less limiting than it
may seem. For example, if one is interested in estimating the distribution of
X in addition to the expectation E [X], one can define a series of quantities
X(v) := IX≤v, so that E

[

X(v)

]

= FX(v).

http://arxiv.org/abs/1910.13013v2


performance indicator X (a random variable), i.e. q = E [X ].
Formally, the random variable X may be seen as a function

X : Ω → R that associates a numerical outcome with every

system state ω ∈ Ω in a sample space Ω. The probabilistic

behaviour of the system, and therefore of X , is defined by

associating probabilities (sets of) states.

In the context of system adequacy assessment, the proba-

bilistic behaviour of a power system is typically specified using

a bottom up model that defines demand levels, component

status, generator output levels, etc. This model generates both

the sample space Ω (the set of all possible combinations

of component states) and the associated probabilities. The

function X deterministically evaluates any specific state ω ∈ Ω
and computes a numerical performance measure for that state.

The risk measure q = E [X ] is then the (probability weighted)

average of the function X over all states.

For even moderately complex systems, it is not possible

to compute the quantity of interest q = E [X ] analytically,

nor can it be computed by enumeration of all states in

Ω. In such cases, it is common to resort to Monte Carlo

simulation, in which power system states ω(i), i = 1, 2, . . .
are generated using the probabilistic bottom-up model and

analysed to provide relevant outcomes X(ω(i)). It should be

noted that at any time, multiple outcomes X(a), X(b), . . . (e.g.

number of outages, energy not supplied) can be measured

simultaneously, at little to no extra cost. In the mathematical

analysis that follows, only a single risk measure q = E [X ] is

discussed, but the methods can trivially be applied in parallel.

B. Conventional Monte Carlo

A brief summary of conventional Monte Carlo simulation

is given in this section, as a point of reference for following

sections. In conventional Monte Carlo simulation, the quantity

q = E [X ] is approximated by the Monte Carlo estimator

Q̂MC ≡ 1

n

n∑

i=1

X(i), (1)

where {X(1), . . . , X(n)} represents a random sample2 from

X , with each X(i) independent and identically distributed to

X . Note that we distinguish the random variable X(i) that

represents the i-th random draw from X , and its realisation

x(i) in a particular experiment or simulation run. The MC

estimate for a simulation run is thus given by

q ≈ q̂ =
1

n

n∑

i=1

x(i). (2)

We proceed to use the generic expression (1) to reason about

the convergence of the result. The error ∆QMC obtained in

this approximation is

∆QMC = Q̂MC − q. (3)

2We use the statistics convention that a sample is a set of sampled values,
rather than the computational science convention where each x(i) is a sample.

The MC estimator Q̂MC is unbiased, and, as a result of the

central limit theorem, for a sufficiently large sample size n,

∆QMC is normally distributed, so that

∆QMC ∼ N
(

0, σ2
Q̂MC

)

. (4)

The variance of Q̂MC follows from the MC estimator (1):

σ2
Q̂MC

=
σ2
X

n
. (5)

As a result, the standard error σQ̂MC
equals σX/

√
n, indicat-

ing the typical O(n−1/2) convergence of MC simulations.

To quantify the computational efficiency of an MC simula-

tion, we denote by τ the average time required to generate a

single realisation x(i). The time spent to generate a sample of

size n is then

tMC = nτ. (6)

Using this relation, the variance (5) can be expressed as

σ2
Q̂MC

(tMC) =
σ2
Xτ

tMC
. (7)

C. Multilevel Monte Carlo

For multilevel Monte Carlo (MLMC), we assume to have

at our disposal a hierarchy of models M1, . . . ,ML that gen-

erate random outputs X1, . . . , XL, the expectations of which

approximate E [X ] with increasing accuracy. Specifically, we

consider the case where the top level model ML is the

model of interest, i.e. q = E [XL]. The lower level models

M0, . . . ,ML−1 are approximations of the top level model

that are faster to evaluate but have a bias, i.e. E [Xl<L] 6=
E [XL].

The material in this section is generic, and can be found

using slightly different notation in e.g. [5]. The basis for the

MLMC method is the trivial identity that is the telescopic sum:

q = E [XL]

= E [X0] + E [X1 −X0] + . . .+ E [XL −XL−1]

= r0 + r1 + . . .+ rL. (8)

The quantity of interest q is thus decomposed into a crude

estimate r0 plus iterative refinements r1, . . . , rL. In MLMC,

each of these terms is independently estimated using (1). This

results in the MLMC estimator

Q̂ML ≡
L∑

l=0

r̂l =

L∑

l=0

1

nl

nl∑

i=1

Y
(i)
l (9a)

with

Y
(i)
l = X

(l,i)
l −X

(l,i)
l−1 (9b)

X−1 ≡ 0. (9c)

To clarify notation, for each level l we distinguish the level

outcomes X
(k,i)
l , the level pairs (X

(l,i)
l , X

(l,i)
l−1 ) and the level

contribution r̂l = (1/nl)
∑nl

i=1 Y
(i)
l . An additional superscipt

has been added to the level outcome X
(k,i)
l to denote the

level k of the pair it is associated with, because outcomes



for level l may be generated differently depending on whether

they are paired with outcomes at level l−1 or l+1, as long as

this does not affect the model bias. That is, we require only

E
[

X
(l,i)
l

]

= E
[

X
(l+1,i)
l

]

= E [Xl]. All sampled outcomes

are assumed to be mutually independent, except for those in

a level pair (X
(l,i)
l , X

(l,i)
l−1 ), which are jointly sampled from a

common distribution.

The MLMC estimator is unbiased and asymptotically nor-

mally distributed, by virtue of the constituent MC estimators

of the level contributions. Its variance follows from (9a) and

the mutual independence of sampled values:

σ2
Q̂ML

=

L∑

l=0

σ2
Yl

nl
, (10)

σ2
Yl

= σ2
Xl−1

+ σ2
Xl

− 2 · Cov(X(l)
l−1, X

(l)
l ). (11)

Here, the superscipt (l) on the simulation outputs is main-

tained, because the covariance term depends on the joint

sampling process of the pairs (X
(l,i)
l , X

(l,i)
l−1 ). Clearly, the

variance is minimised if the sample pairs are highly correlated.

For a given set of models M0, . . . ,ML, the challenge is to

optimally choose the samples sizes nl. Defining the average

time to generate a single value y
(i)
l as τl, the total time taken

to produce an MLMC estimate is given by

tML =

L∑

l=0

nlτl. (12)

The optimal sample counts nl can now be determined by

minimising the variance (10) with respect to n1:L while

keeping tML constant. Using (12) to substitute n0 and setting

dσ2
Q̂ML

/dnl = 0 for l = 1, . . . , L results in optimal sample

counts (ignoring their discrete nature)

n∗
l =

tML
∑L

l′=0 σYl′

√
τl′

× σYl√
τl
, (13)

With this optimal choice of nl, the computational effort spent

on each level pair l is proportional to σYl

√
τl (see (12)),

and the total variance (10) can be expressed as a function

of computational time as

σ∗2
Q̂ML

(tML) =
1

tML

(
L∑

l=0

σYl

√
τl

)2

. (14)

D. Measuring simulation speed

By comparing the expressions for the variance of the con-

ventional and multilevel MC approaches, we can investigate

the potential speedup resulting from the MLMC approach.

Let us consider the times t̃MC and t̃ML required to converge

to a given variance ṽ = σ2
Q̂MC

(t̃MC) = σ∗2
Q̂ML

(t̃ML). Then,

combining (5) and (14) results in the expression

speedup =
t̃MC

t̃ML

=

(

σX
√
τ

∑L
l=0 σYl

√
τl

)2

. (15)

In practice, the variance of the lowest level is similar to that of

the direct MC simulator, σY0
≈ σX , and the cost of evaluating

the highest level pair is at least that of a direct evaluation of the

highest level, i.e. τL ≥ τ . Considerable speedups are possible

if σYl

√
τ l ≪ σX

√
τ for all l. Intuitively, this occurs when each

simplified model Ml−1 is much faster than the next level Ml,

but returns very similar results for the majority of samples.

Examples where this occurs naturally in the context of power

system adequacy assessment will be discussed in Sections IV

and V.

In order to compare the compuational efficiency of var-

ious implementations, we require an operational definition

of ‘computational speed’. Monte Carlo simulations are often

run with the goal to estimate the quantity q with a certain

relative accuracy, expressed using the coefficient of variation

cq = σQ/q. We note that both (7) and (14) can be brought

into the form

1

c2q
︸︷︷︸

computational
‘distance’

= zq

︸︷︷︸

speed

× t

︸︷︷︸

time

. (16)

This implicitly defines the computation speed zq as

zq :=
q2

tσ2
Q̂
(t)

. (17)

This definition may be compared with the ‘figure of merit’

used in [8]. The inclusion of the quantity q2 in (17) has

a number of advantages, provided that q 6= 0. First, the

speed has dimensions 1/time, independent of the measure q.

Second, speeds corresponding to different metrics are directly

comparable. For example, when zLOLE < zEENS, this indicates

that the LOLE estimator is the limiting factor in achieving

convergence to a given coefficient of variation. And finally, the

speed metric and the implied computational distance are easily

interpretable in terms of simulation outcomes. For example,

in order to achieve a coefficient of variation of 1% (i.e. a

‘distance’ 10,000) using a speed of 10 s−1, a simulation run

of 1000 s is required.

In the course of a simulation run, (17) can be used to

estimate the computational speed, replacing q and σQ by

their empirical estimates. The speed zq for MC and MLMC

estimation follow from (5) and (10) as

zq,MC =
q̂2MC

tMC σ̂2
X/n

, (18)

σ̂2
X =

∑n
i=1(x

(i) − 1
n

∑n
j=1 x

(j))2

n− 1
, (19)

and

zq,ML =
q̂2ML

tML

∑

l σ̂
2
Yl
/nl

, (20)

σ̂2
Yl

=

∑nl

i=1(y
(i)
l − 1

nl

∑nl

j=1 y
(j)
l )2

nl − 1
. (21)



III. CONSIDERATIONS FOR IMPLEMENTATION

A. Joint sample spaces

The core of the MLMC algorithm is the joint generation of

sample pairs (X
(l,i)
l , X

(l,i)
l−1 ), used in (9b), in such a way that

they are maximally correlated. The random variables Xl and

Xl−1 have sample spaces Ωl and Ωl−1, respectively, which

must be combined into a joint sample space Ω′
l. We highlight

two common model patterns that naturally achieve this.

1) Pattern 1: component subsets: One common occurrence

in system adequacy studies is that the lower level model Ml−1

omits components that are present in the higher level model

Ml. As a result, the sample space Ωl can be written as a

Cartesian product

Ωl = Ωl−1 ×Al, (22)

where Al is the sample space of components present in Ml

but not in Ml−1. We may then identify Ω′
l and Ωl. In practical

terms this means that samples can be generated at the higher

level l and unused elements are discarded for the simpler

models Ml−1. An example of this design pattern is explored

in Section IV.

2) Pattern 2: identical randomness: It is also easy to

conceive of scenarios where Ml and Ml−1 have identical

sample spaces, so that

Ω′
l = Ωl = Ωl−1. (23)

This occurs when both models are driven by the same set

of random inputs, but the higher level model performs more

complex processing. An example of this model pattern is given

in Section V.

B. Direct evaluation of expectations

Occasionally, the base model M0 is sufficiently simple to

permit direct computation of r0 = E [X0], either analytically

or using a numerical approximation procedure. In those cases,

the long run efficiency is enhanced by evaluating r0 directly

instead of using its MC estimate. The standard deviation σY0
is

then equal to 0, or a value commensurate with the accuracy of

the numerical approximation of r0. Although direct evaluation

of the lowest level is nearly always preferred, there may

be cases where the evaluation of E [X0] is a comparatively

time-consuming operation and the optimal trade-off is more

complex. In the examples that follow in Sections IV and

V, direct evaluation is always possible, and results in faster

convergence of the overall MLMC estimator.

The use of an analytical result at the lowest level also

highlights a connection between the MLMC method and the

control variate approach [5]. The control variate similarly

makes use of a simplified model for which an explicit solution

can be calculated. It can therefore be considered as a special

case of a bilevel MLMC procedure where the value E [X0] is

known and the output X0 is scaled for optimal convergence.

The control variate approach was used in [2] to speed up

composite system adequacy assessment - a problem that is

also addressed in Section IV.

C. Implementation

Simulations were implemented in Python 3.7 and were run

on an Intel i5-7360U CPU under macOS 10.14.6. A generic

multilevel sampler was developed with specialisations for

particular simulation studies. No effort was made to optimise

the execution speed of individual models, because the aim of

this paper is not to maximise execution speed per se, but to

investigate the relative speed between sampling strategies. The

code used to generate the results in this paper is available [9].

All MLMC simulations started with an exploratory run in

which a sample with fixed size n(0) is taken at each level set

Yl, in order to determine initial estimates of the evaluation cost

τ̂l and variance σ̂2
Yl

. This initial run is followed by a sequence

of follow-up runs, each parameterised by a target run time t∗.

Given t∗, optimal sample sizes at each level were determined

using (13) and the most up to date estimates of evaluation

times τ̂l and variances σ̂2
Yl

. For all results in this paper, 10

runs with an estimated run time of 60 seconds (each) were

used, for a total run time of approximately 600 seconds.

One practical concern with determining optimal sample

sizes using (13) is that the values of σ2
Yl

are estimated using

relatively small data sets. In power system risk assessment,

the simulation outputs Xl often involve measurements of rare

events, so that there is a high probability that Y
(i)
l = 0, and

therefore σ̂2
Yl

≪ σ2
Yl

(or even σ̂2
Yl

= 0). If the estimated value

is used naively in (13), this leads to undersampling of Yl,

thereby exacerbating the problem because fewer samples are

generated that can correct the estimate of σ2
Yl

. To mitigate this

risk, the variance estimators were adjusted as follows. First, a

conservative estimate for the variance of X was obtained as

σ̃2
X = max

l
(σ̂2

Xl
). (24)

Next, we assumed for the lowest level estimator that σ̃2
Y0

≈
σ̃2
X , and that the ratio Yl+1/Yl of variances of subsequent

level contributions is lower-bounded by a factor α. Therefore,

updated variance estimates are computed as

σ̃2
Yl

= max(σ̂2
Yl
, αlσ̃2

X), (25)

for those pairs l where E [Yl] is estimated by sampling. For

the simulations, the value of α was heuristically set to 0.1.

Finally, in simulations, multiple risk measures q(a), q(b), . . .
were estimated in parallel. In determining optimal sample

sizes, one of these was selected as the ‘target measure’ to

optimise for, so that its mean and variance estimates were

inserted in (13) to determine the optimal allocation of sample

counts nl.

IV. COMPOSITE SYSTEM ADEQUACY ASSESSMENT

The first case study is a system adequacy assessment of the

single area IEEE Reliability Test System (RTS) [10]. A two-

level MLMC approach is used, where the upper level, i.e. the

study of interest, is a hierarchical level 2 (HL2) study [1]: a

composite system adequacy assessment that takes into account

transmission line outages and constraints. The lower level

HL1 is a single node assessment that omits the transmission



system. This is in accordance with the subset model pattern

in Section III-A1.

A. Models

1) Model M1 - Composite system adequacy assessment

(HL2): The RTS model defines outage probabilities of gen-

erators and transmission lines, which were modelled as inde-

pendent two state Markov models. Maintenance and transient

outages were not considered. Load levels were sampled by

uniformly selecting an hour from the annual demand trace and

assigning loads to each node in proportion to the maximum

nodal demands.

Therefore, at the upper level (l = 1), a sampled system

state ω
(i)
1 consists of: (i) the nodal demand d

(i)
n for n ∈ N ,

the set of nodes; (ii) the generator status γ
(i)
j ∈ {0, 1} for

j ∈ G, with G =
⋃

n∈N Gn, where Gn is the set of generators

in node n; (iii) the line status λ
(i)
k ∈ {0, 1} for k ∈ L, the

set of transmission lines. Let generator and line flow limits be

given by gmax
j and fmax

k . Then, the amount of curtailment C2

is computed by the linear program

C2(ω
(i)
1 ) = min

c1:|N|,g1:|G|

∑

n∈N

cn, (26)

subject to

0 ≤cn ≤ d(i)n , ∀n ∈ N
0 ≤gj ≤ γ

(i)
j gmax

j , ∀j ∈ G
−fmax

k ≤
∑

n∈N

M
(i)
kn [
∑

j∈Gn

gj + cn − d(i)n ] ≤ fmax
k , ∀k ∈ L

0 =
∑

n∈N

[
∑

j∈Gn

gj + cn − d(i)n ],

where the matrix M (i) = D(i)A(ATD(i)A+1/|N |)−1 relates

bus injections and line flows. The directed line-node incidence

matrix A has elements +1 for outgoing lines and −1 for

incoming lines; the diagonal matrix D(i) has elements D
(i)
kk =

λ
(i)
k /xk, where xk is the reactance of line k. The element-wise

constant 1/|N | ensures invertibility, eliminating the need for

a designated slack bus. In cases where line outages resulted in

multiple islands, problem (26) was formulated and solved for

each island independently and the curtailments were summed

to obtain the total system curtailment. Linear optimisation

was performed using scipy.optimize.linprog, with

the revised simplex method.

2) Model M0 - Generation adequacy assessment (HL1):

For HL1 assessment, a single-node generation adequacy anal-

ysis is performed, without transmission line constraints and

outages. The lower level system state ω
(i)
0 can thus be obtained

from ω
(i)
1 by omitting the line status variables. For this HL1

study, the curtailment is calculated as

C1(ω
(i)
0 ) = max



0,
∑

n∈N



d(i)n −
∑

j∈Gn

γ
(i)
j gmax

j







 . (27)

TABLE I
COMPOSITE SYSTEM ADEQUACY ASSESSMENT - AVAILABLE MODELS

model description zPLC [1/s] zEPNS [1/s] direct evaluation

M1 HL2 0.31 0.17 no

M0 HL1 34.3∗ 18.6∗ optional

∗: inherent estimation bias

3) Risk measures: Two common risk measures were com-

puted: the probability of load curtailment (PLC) and expected

power not supplied (EPNS). The related performance measures

Xq,l are defined in terms of the load curtailment (27) and (26)

as

XPLC,l(ω) = 1Cl(ω)>0, (28)

XEPNS,l(ω) = max(0, Cl(ω)). (29)

B. Results

Throughout, Monte Carlo estimates of risk measures are

given with the relevant number of significant digits, fol-

lowed by the estimated standard error in parentheses. Thus,

1.71(13) × 10−3 stands for an estimate of 0.00171 with a

standard error of 0.00013. For all MLMC runs, an initial

exploratory run with n(0) = 100 was used, followed by 10

runs of approximately 60 seconds. The target risk measure for

sample size optimisation was EPNS. Unless stated otherwise,

thermal line ratings were scaled to 80% of the nominal values,

to tighten network constraints.

Table I compares the speed obtained with the individual

models for the estimation of both PLC and EPNS risk mea-

sures, and whether direct evaluation of the expectation is

possible (for an effective ‘sampling speed’ of z = ∞). These

numbers were estimated at the end of 10-minute conventional

MC runs. The HL1 model is over one hundred times faster

than the HL2 model for both measures, but of course this

comes at the cost of an estimation bias.

Table II compares the results of three different estimators.

The top row is the conventional Monte Carlo estimator that

directly performs the HL2 study. The middle row represents

a two-level MLMC approach where HL2 sampling is com-

bined with HL1 sampling, immediate leading to significant

speedups of 2.5 (for PLC) and 10 (for EPNS). In the third

configuration (bottom row), further speedups are obtained by

eliminating sampling of the lower level model, and com-

puting the lower level estimates rPLC,0 = E [XPLC,0] and

rEPNS,0 = E [XEPNS,0] directly by convolution using 1 MW

discretisation steps.

An interesting observation is that, for the regular MC sam-

pler, the speed of PLC estimation (0.31 s−1) is larger than that

of EPNS estimation (0.17 s−1). However, the MLMC sampler

sees much more substantial speedups for EPNS estimation

than for PLC estimation. This is only partially caused by

the EPNS-focused sample size optimisation. The other factor

is that the discontinuous loss-of-load indicator (28) is less

amenable to successive approximation [5].



TABLE II
COMPOSITE SYSTEM ADEQUACY ASSESSMENT - COMPARISON OF APPROACHES

PLC estimation EPNS estimation

estimator models used run time [s] PLC zPLC [1/s] speedup EPNS [MW] zEPNS [1/s] speedup

MC M1 582 1.71(13) × 10−3 0.31 n/a 0.238(24) 0.17 n/a

MLMC (sampling) M1, M0 627 1.50(7) × 10−3 0.79 2.5 0.190(6) 1.73 10

MLMC (with expectation) M1, M0 601 1.48(6) × 10−3 1.04 3.3 0.186(5) 2.54 15

TABLE III
COMPOSITE SYSTEM ADEQUACY ASSESSMENT - MULTILEVEL

CONTRIBUTIONS

term PLC EPNS [MW] τl [ms] nl

r̂1 4.0(7) × 10−4 0.051(5) 5.4 93 158

r̂0 1.101(16) × 10−3 0.139(3) 0.023 4 380 194

sum 1.50(7) × 10−3 0.190(6)

Table III gives insight into the multilevel structure of

the regular MLMC estimate. For both PLC and EPNS, the

refinement term r̂1 is substantially smaller than the crude

estimate r̂0. More importantly, sampling from the HL1 model

is substantially faster (0.023 ms per evaluation) than the HL2-

HL1 difference term (5.4 ms per evaluation), due to the linear

program (26) involved in the latter. The MLMC algorithm

adapts to this cost difference by invoking the HL1 model

nearly 50 times as often.

Finally, Table IV shows the impact on convergence speed

of varying the thermal line ratings between 80% and 100% of

the nominal values. Higher line ratings cause fewer constraints,

which results in a slight reduction in speed for the regular MC

sampler. On the other hand, the MLMC sampler experiences

very large speedups as the difference between the results from

the HL1 and HL2 models becomes smaller, so that fewer

(expensive) HL2 evaluations are required. Once again, the

gains in EPNS estimation speed exceed the gains in PLC

estimation speed.

TABLE IV
COMPOSITE SYSTEM ADEQUACY ASSESSMENT - THERMAL RATINGS

relative PLC estimation EPNS estimation

line rating z
MC

z
ML speedup z

MC
z
ML speedup

0.8 0.31 1.04 3.3 0.17 2.54 15

0.9 0.26 1.38 5.3 0.14 4.69 34

1.0 0.25 2.11 8.6 0.12 16.7 143

V. DISPATCH OF STORAGE

The second example concerns the assessment of system

adequacy in the presence of energy-constrained storage units

(e.g. batteries). The energy constraints couple decisions in

subsequent time slots, thus necessitating the use of time-

sequential Monte Carlo simulations. Convergence for time-

sequential simulations tends to be much slower than for snap-

shot problems, due to significant correlations in visited system

states. An additional complication is deciding an appropriate

dispatch strategy for energy storage units. A greedy EENS-

minimising discharging strategy was recently proposed in [11],

as a reasonable default dispatch strategy for adequacy studies.

A. Models

The Great Britain (GB) adequacy study from [11] is re-

produced here, with an eye on speeding up estimation of

loss of load expectation (LOLE) and expected energy not

supplied (EENS) risks using the MLMC approach. Individual

simulations are run for a sequence of 8760 hours (1 year). The

system performance in a simulated year is driven entirely by

the net generation margin trace

Mt(ω
(i)) = g

(i)
t + w

(i)
t − d

(i)
t , t ∈ {1, . . . , 8760}, (30)

where the sampled state ω(i) consists of the demand trace d
(i)
t ,

wind power trace w
(i)
t and conventional generation trace g

(i)
t .

Annual demand traces are chosen randomly from historical

GB demand measurements for 2006-2015 (net demand, [12]).

Annual wind traces are similarly sampled from a synthetic

data set for hypothetical GB wind power output for the period

1985-2014, derived from MERRA reanalysis data and an

assumed constant distribution of wind generation sites with

an installed capacity of 10 GW [13]. Conventional generation

traces are generated using an assumed diverse portfolio of

thermal units. The portfolio of 27 storage units was based on

storage units contracted in the GB 2018 T-4 capacity auction.

The reader is referred to [11] for further model details.

We consider four different storage dispatch models. The

resulting storage dispatch (with sign convention that con-

sumption is positive) is denoted by St,l(ω), and is entirely

determined by the net generation margin Mt(ω
(i)). All four

models are defined on the same sample space Ω, providing

an example of the model pattern described in Section III-A2.

However, the models differ tremendously in computational

complexity, as is clear from the descriptions below.

TABLE V
TIME-SEQUENTIAL SIMULATION WITH STORAGE - AVAILABLE MODELS

direct

model description zLOLE [1/s] zEENS [1/s] evaluation

M2 EENS-optimal 0.105 0.053 no

M1 sequential 0.83∗ 0.38∗ no

M0 average 41.9∗ 22.1∗ optional

M′
0 no storage 61.7∗ 34.8∗ optional

∗: inherent estimation bias



TABLE VI
TIME-SEQUENTIAL SIMULATION WITH STORAGE - MODEL COMPARISON

run LOLE estimation EENS estimation

estimator models used time [s] LOLE [h/y] zLOLE [1/s] speedup EENS [MWh/y] zEENS [1/s] speedup

MC M2 620 1.54(19) 0.105 n/a 2 100(400) 0.053 n/a

MLMC (3 layer with no-store) M2,M1,M′
0 636 1.59(6) 1.10 10 2 275(71) 1.61 30

MLMC (2 layer with average) M2,M0 618 1.75(5) 1.88 18 2 415(16) 38.1 719

MLMC (3 layer with average) M2,M1,M0 615 1.72(3) 6.88 66 2 397(9) 112 2 113

1) Model M2 - EENS-optimal dispatch: The storage dis-

patch St,2(ω) is computed using the EENS-minimising algo-

rithm given in [11]. It is sequential and requires complex logic

for each step.

2) Model M1 - Sequential greedy dispatch: The storage

dispatch St,1(ω) is computed using a heuristic approximation

of the EENS-minimising policy. Storage units s ∈ S are sorted

by decreasing time to go (from full) es/ps, where es and ps
are energy and discharge power ratings, respectively. Then,

a sequential greedy dispatch is performed, charging when

possible, and discharging only when required to avoid load

curtailment. Evaluating this model requires one sequential pass

per storage unit, but the simulation steps are trivial.

3) Model M0 - Constant peak-shaving dispatch: The stor-

age fleet is optimistically approximated by a single storage

unit with e =
∑

s es and p =
∑

s ps. A mean daily

demand profile d̃1:24 is computed by averaging demand over

all historical days. This profile is used to compute a single

daily dispatch pattern s̃1:24 that solves to following quadratic

optimisation problem to flatten the average total demand

profile (d̃h + s̃h)h=1:24:

s̃1:24 = argmin
s1:24,e1:24

24∑

h=1

(d̃h + sh)
2, (31)

subject to

−p ≤ sh ≤ p, h = 1, . . . , 24

0 ≤ eh ≤ e, h = 1, . . . , 24

eh+1 = eh + sh × 1 hour, h = 1, . . . , 23

e1 = e24 + s24 × 1 hour.

This problem was solved using the Python quadprog pack-

age. The resulting annual storage dispatch is obtained by

repeating the 24-hour dispatch pattern:

St,0(ω) = s̃(t mod 24). (32)

Because St,0 is a deterministic load offset, risk measures for

this model can be computed by convolution.

4) Model M′
0 - No storage: This alternative lowest level

model does not use storage at all, so that St,0 = 0.

5) Risk measures: The net generation margin Mt(ω) and

storage dispatch St,l(ω) result in a curtailment trace as follows

Ct,l(ω) = max[0,−Mt(ω) + St,l(ω)], ∀t. (33)

The LOLE and EENS risk measures can be computed using

the performance measures

XLOLE,l(ω) =

8760∑

t=1

1Ct,l(ω)>0, (34)

XEENS,l(ω) =
8760∑

t=1

Ct,l(ω)× 1h. (35)

B. Results

Table V compares the speed obtained with the individual

models for the estimation of both LOLE and EENS risk

measures, and whether direct evaluation of the expectation is

possible with each model. All numbers were estimated at the

end of 10-minute conventional MC runs. Very large differences

in model speed are visible, with the detailed model M2 being

over 500 times slower than the crude model M′
0.

For MLMC simulations, an exploratory run with n(0) = 20
was used, followed by 10 runs of 60 seconds, where sample

sizes were optimised for the EENS risk measure. In all cases,

the crude estimate r0 = E [Y0] was evaluated using a convo-

lution approach. Results are shown in Table VI, comparing

the performance of three MLMC architectures with direct

MC simulation. A three-layer architecture using model M′
0

(without storage) as a bottom layer achieved speedups of 10

(LOLE) and 30 (EENS), but much better results were obtained

when the daily average dispatch model M0 was used - even

when a two-layer MLMC stack was created by omitting the

intermediate sequential greedy dispatch model.

The results show that the MLMC performance is very sen-

sitive to the choice of levels, but robust speedups are available

even for sub-optimal model choices. The best performing

architecture is further analysed in Table VII. It can be seen

that the contribution from the final refinement r̂2 is minimal,

i.e. the heuristic model is very accurate, which is key to the

observed speedup of 2113. The MLMC algorithm dynamically

TABLE VII
TIME-SEQUENTIAL SIMULATION WITH STORAGE - MULTILEVEL

CONTRIBUTIONS

term LOLE [h/y] EENS [MWh/y] τl [ms] nl

r̂2 0(0) −0.6(4) 1 670 190

r̂1 −0.42(3) −150(9) 167 1 771

r̂0 2.14 2 548 n/a n/a

sum 1.72(3) 2 397(9)



adjusted sample sizes to generate more samples evaluating

Y1 = X1−X0 than on the costly evaluation of Y2 = X2−X1.

Moreover, no samples are spent on the contribution r̂0, which

can be computed directly by convolution. As a result, the speed

zEENS is able to exceed even that of the fastest model in

Table V (for regular MC estimation).

VI. CONCLUSIONS AND FUTURE WORK

This paper has set out how the MLMC approach can

be applied to power system risk analysis, and specifically

to system adequacy assessment problems. Common model

patterns were identified that are particularly amenable to

MLMC implementation, and a computational speed measure

(17) was introduced to quantify simulation speed in a way

that is easily comparable across tools, Monte Carlo methods

and risk measures. Two case studies illustrate the potential for

speeding up estimation of risk measures, and the ability to

apply the method to complex simulations.

In future work, we will consider automatic selection of

optimal model stacks, and explore the scope for the application

of multi-index Monte Carlo schemes [14] .
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