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Abstract—In this paper, we define noiseless privacy, as a non-
stochastic rival to differential privacy, requiring that the outputs
of a mechanism (i.e., function composition of a privacy-preserving
mapping and a query) can attain only a few values while varying
the data of an individual (the logarithm of the number of the
distinct values is bounded by the privacy budget). Therefore, the
output of the mechanism is not fully informative of the data of
the individuals in the dataset. We prove several guarantees for
noiselessly-private mechanisms. The information content of the
output about the data of an individual, even if an adversary
knows all the other entries of the private dataset, is bounded
by the privacy budget. The zero-error capacity of memory-less
channels using noiselessly private mechanisms for transmission
is upper bounded by the privacy budget. The performance of
a non-stochastic hypothesis-testing adversary is bounded again
by the privacy budget. Finally, assuming that an adversary has
access to a stochastic prior on the dataset, we prove that the
estimation error of the adversary for individual entries of the
dataset is lower bounded by a decreasing function of the privacy
budget. In this case, we also show that the maximal information
leakage is bounded by the privacy budget. In addition to privacy
guarantees, we prove that noiselessly-private mechanisms admit
composition theorem and post-processing does not weaken their
privacy guarantees. We prove that quantization operators can
ensure noiseless privacy if the number of quantization levels is
appropriately selected based on the sensitivity of the query and
the privacy budget. Finally, we illustrate the privacy merits of
noiseless privacy using multiple datasets in energy and transport.

Index Terms—data privacy; noiseless privacy; non-stochastic
information theory; hypothesis testing.

I. INTRODUCTION

Big data revolution, equipped with novel tools for data

collection, analysis, and reporting, has significant promises for

answering societal challenges. These promises however come

at the cost of erosion of privacy. Therefore, there is a need for

rigorous protection of the privacy of individuals.

Natural candidates for privacy protection, such as differen-

tial privacy [1], [2] and information-theoretic privacy [3], [4],

require randomized policies for privacy protection. The defi-

nition of differential privacy assumes the use of randomized

functions as well as the probability of outputs, and conven-

tional information-theoretic tools, such as mutual information

and entropy, rely on random variables.

Heuristic-based privacy-preserving methods, such as k-

anonymity [5], [6] and ℓ-diversity [7], are however determinis-

tic in nature. They employ deterministic mechanisms, such as

suppression and generalization, and do not assume stochastic

properties about the datasets. Popularity of these methods is

evident from the availability of toolboxes for implementation1.

Although providing powerful guarantees, randomized or

stochastic privacy-preserving policies sometimes cause prob-

lems, such as un-truthfulness [8], that are undesirable in

practice [9]. This is touted as a reason behind slow adoption

of differential privacy within financial and health sectors [8].

For instance, randomized policies, stemming from differential

privacy in financial auditing, complicate fraud detection [10],

[11]. Randomized policies can also generate unreasonable and

unrealistic outputs that might mislead investors or market

operators, e.g., by reporting noisy outputs that point to lack

of liquidity in a financial sector while that was not the

case. For instance, the slow-decaying nature of the Laplace

noise means impossible reports (e.g., negative median income)

can occur with a non-negative probability [12]. Randomized

privacy-preserving policies have also encountered difficulties

in medical, health, or social sciences [13], [14]. Furthermore,

the Laplace mechanism, a common approach to ensuring

differential privacy, is shown to cause undesirable properties,

e.g., the optimal estimation in the presence of Laplace noise is

computationally expensive [15]. These motivate the develop-

ment of non-stochastic privacy metrics and privacy-preserving

policies in a rigorous manner.

Although it has been proved that noiseless policies cannot

provide the strong guarantees of randomized policies, e.g.,

it has been proved that differential privacy cannot be deliv-

ered without noise [2], the popularity of noiseless privacy-

preserving policies justifies investigating metrics for analysis

and comparison. This must be done irrespective of their

inherent philosophical weaknesses in comparison to stochastic

policies because they belong to a different category.

In this paper, we define the new notion of noiseless privacy.

Noiseless privacy implies that the outputs of a mechanism

can only attain a few distinct values while varying the data of

an individual. Therefore, the output of the mechanism is not

very informative about the data of the individuals in a dataset.

We prove the following guarantees for the noiselessly-private

mechanisms:

• The information content of the output about the data

of each individual, even if an adversary knows all the

other entries of the private dataset, is bounded from above

by the privacy budget (a constant similar to the privacy

1https://arx.deidentifier.org/overview/related-software/
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budget in differential privacy capturing the amount of

the leaked information). As non-stochastic notions of

information, we use non-stochastic information leakage

in [16] and the maximin information [17]. These are

established measures of information in the non-stochastic

information theory literature [16]–[19].

• Zero-error capacity of memory-less channels using

noiselessly-private mechanisms for data transmission is

upper bounded by the privacy budget. Zero-error capacity

is the non-stochastic equivalent of normal capacity, also

coined by Shannon while investigating non-stochastic

communication channels and worst-case behaviours [20].

• The performance of an adversary performing non-

stochastic hypothesis tests [21] on the data of an indi-

vidual, while knowing all the other entries of the private

dataset, is bounded again by the privacy budget.

• Assuming that an adversary has access to a stochastic

prior about the dataset, we prove that the error of an

adversary for estimating the data each individual is lower

bounded by a decreasing function of the privacy budget.

Therefore, by reducing the privacy budget, the estimation

error of the adversary worsens. In this case, we also

show that the maximal information leakage (in the sense

of [65]) is upper bounded by the privacy budget. Hence,

by reducing the privacy budget, we can also reduce the

maximal information leakage.

In addition to these privacy guarantees, we prove the following

important properties:

• Noiselessly-private mechanisms admit composition theo-

rem, i.e., the privacy budgets of the mechanisms add up

when reporting on multiple queries on the same private

dataset.

• Post-processing of noiselessly-private mechanisms does

not weaken their privacy guarantees, i.e., the privacy

budget can only be increased by post-processing.

We also prove that quantization operators can ensure noiseless

privacy. We provide a recipe for determining the number of

quantization levels based on the sensitivity of the query and

the privacy budget. Finally, we illustrate the privacy merits

of noiseless privacy using multiple datasets in energy and

transport.

A. Related Studies

Anonymization: Anonymization is widely used within

public and private sectors for releasing sensitive datasets2

for public competitions and analysis. Although popularly

adopted, anonymization is often insufficient for privacy preser-

vation [22]–[24] and hence, systematic methods with provable

guarantees are required.

Multi-Party Computation and Encryption: We may use

secure multi-party computation, for instance based on ho-

momorphic encryption, to compute aggregate statistics or

machine learning models [25]–[31]. Secure multi-party com-

putation and homomorphic encryption introduce massive com-

2See https://data.gov.au and https://www.kaggle.com for examples.

putation and communication overheads. They also do not fully

eliminate the risk of privacy breaches, e.g., risks associated

with dis-aggregation attacks still remain if these algorithms

are not pared with other privacy-preserving techniques.

Differential Privacy: Differential privacy offers provable

privacy guarantees [2], [32]–[37]. This method uses random-

ization to provide plausible deniability for the data of an

individual by ensuring that the statistics of privacy-preserving

outputs do not change significantly by varying the data of

individual. Additive Laplace and Gaussian noise with scales

proportional to the sensitivity of the submitted query with

respect to the individual entries of the dataset are proved to

guarantee differential privacy [2]. By definition, differential

privacy requires randomization.

Information-Theoretic Privacy: Information-theoretic

privacy, a rival to differential privacy, dates back to

studying secrecy [38] and its generalizations [3], [4], [39],

[40]. Information-theoretic guarantees have been also used to

measure the quantity of leaked private information when using

differential privacy [41], [42]. In information-theoretic privacy,

entropy, mutual information, Kulback-Leiber divergence, and

Fisher information have been repeatedly used as measures

of privacy [43]–[49]. Information theory, starting with

Shannon [50], assumes that data source and communication

channels are random, and is powerful in modelling and

analysing communication systems. However, traditional

notions in information theory, such as mutual information,

are not useful for analysing non-stochastic/noiseless settings

and deterministic privacy-preserving policies.

Deterministic Privacy-Preserving Policies: Noiseless

privacy-preserving policies are often heuristic-based making

them vulnerable to attacks, e.g., k-anonymity is vulnerable

to homogeneity attack [7]. This is because we do not pos-

sess sensible measures/definitions for privacy that extend to

noiseless privacy-preserving policies on deterministic datasets.

Therefore, we cannot prove, in any sense, privacy guaran-

tees of noiseless privacy-preserving (even if weak or limited

in scope or practice). The popularity of noiseless privacy-

preserving policies justifies investigating metrics for analysis

and comparison. In this paper, we propose a rival to differential

privacy that is noiseless. We use non-stochastic information

theory, non-stochastic hypothesis testing, stochastic estima-

tion theory to investigate the merits of this definition. Non-

stochastic information theory dates back to early studies of

information transmission [17], [51]–[54]. It has been recently

used in engineering [55]–[57]. Most recently, non-stochastic

information theory was used in [16] for investigating deter-

ministic privacy-preserving policies. Interestingly, in [16], it

was easily proved that k-anonymity is not privacy-preserving

using non-stochastic information theory, a fact that was only

observed using adversarial attacks in [7].

B. Paper Organization

The rest of the paper is organized as follows. Background

material on non-stochastic information theory and hypothesis

testing are presented in Section II. Noiseless privacy is defined

https://data.gov.au
https://www.kaggle.com


in Section III. In this section, guarantees and properties of

noiseless privacy are also presented. A method for ensuring

noiseless privacy is presented in Section IV. Experimental

results are presented in Section V. Finally, the paper is

concluded in Section VI.

II. UNCERTAIN VARIABLES, HYPOTHESIS TESTING, AND

NON-STOCHASTIC INFORMATION THEORY

We start by reviewing necessary concepts from non-

stochastic information theory, particularly, uncertain variables,

non-stochastic information leakage, and hypothesis testing.

A. Uncertain Variables

Let Ω be an uncertainty set/space whose elements, i.e.,

ω ∈ Ω, model/capture the source of uncertainty. An un-

certain variable X is defined as a mapping on Ω. For any

uncertain variable X : Ω → X, X(ω) is the realization

of uncertain variable X (corresponding to the realization of

uncertainty ω ∈ Ω). Marginal range of uncertain variable

X is JXK := {X(ω) : ω ∈ Ω} ⊆ X. Joint range of

uncertain variables X : Ω → X and Y : Ω → Y is

defined as JX,Y K := {(X(ω), Y (ω)) : ω ∈ Ω} ⊆ X × Y.
Conditional range of uncertain variable X , conditioned on

the realizations of uncertain variable Y belonging to the set

Y , i.e., Y (ω) ∈ Y ⊆ JY K, is given by JX |YK := {X(ω) :
∃ω ∈ Ω such that Y (ω) ∈ Y} ⊆ JXK. If Y is a singleton,

i.e., Y = {y}, we use JX |yK instead of JX |{y}K = JX |YK.

The definition of uncertain variables and their properties are

similar to those of random variables with the exception of not

requiring a measure on Ω. Finally, if the marginal range JXK
is uncountably infinite for an uncertain variable X , we refer to

X as a continuous uncertain variable, similar to a continuous

random variable. If the marginal range JXK is countable for an

uncertain variable X , we call X a discrete uncertain variable.

B. Non-Stochastic Information Theory

Non-stochastic entropy of discrete uncertain variable X is

H0(X) := log2(|JXK|) ∈ R ∪ {±∞}. (1)

This is commonly referred to as the Hartley entropy [17],

[51]. For continuous uncertain variable X , the non-stochastic

(differential) entropy is given by

h0(X) := loge(µ(|JXK|)) ∈ R ∪ {±∞}, (2)

where µ(·) is the Lebesgue measure. This is sometimes

referred to as Rényi differential 0-entropy [17]. The authors

of [17], [58] define the non-stochastic conditional entropy of

uncertain variable X , conditioned on uncertain variable Y , as

H0(X |Y ) := max
y∈JY K

log2(|JX |yK|), (3)

for discrete uncertain variables X and Y . Similarly, for con-

tinuous uncertain variables X and Y , we get

h0(X |Y ) := ess sup
y∈JY K

loge(µ(JX |yK)). (4)

Now, we can define non-stochastic information between un-

certain variables X and Y as the difference of the entropy of

X with and without access to realizations of Y . Hence, for

discrete uncertain variables, non-stochastic information can be

defined as

I0(X ;Y ) :=H0(X)−H0(X |Y )

= min
y∈JY K

log2

(

|JXK|

|JX |yK|

)

. (5)

For continuous uncertain variables, non-stochastic information

can be similarly defined as I0(X ;Y ) := h0(X) − h0(X |Y ).
It is clear that the non-stochastic information is in fact not

symmetric, i.e., I0(X ;Y ) 6= I0(Y ;X) in general.

With slight adaptation, Kolmogorov had previously defined

‘combinatorial’ conditional entropy using log(|JX |yK|) and the

information gain as |JXK|/|JX |yK| in [52]. The combinatorial

conditional entropy and the information gain are only defined

for a fixed realization Y (ω) = y while (5) is based on the

worst-case scenario.

In [16], it was observed that, in the context of information-

theoretic privacy, the non-stochastic information (5) is not a

good measure of information leakage and therefore, the non-

stochastic information leakage was proposed as

L0(X ;Y ) := max
y∈JY K

log2

(

|JXK|

|JX |yK|

)

, (6)

for discrete uncertain variables. Similarly, for continuous un-

certain variables, the non-stochastic information leakage was

defined as

L0(X ;Y ) := ess sup
y∈JY K

loge

(

µ(JXK)

µ(JX |yK)

)

. (7)

In general, the non-stochastic information I0 and non-

stochastic information leakage L0 are not equal, i.e,

I0(X ;Y ) 6= L0(Y ;X). In fact, from the definition, it is

easy to see that I0(X ;Y ) ≤ L0(X ;Y ). Further, L0(X ;Y )
is not symmetric. We propose the symmetrized non-stochastic

information leakage as

Ls
0(X ;Y ) := min(L0(X ;Y ), L0(Y ;X)). (8)

Note that, by construction, Ls
0(X ;Y ) = Ls

0(Y ;X).
a) Maximin Information: In [17], the maximin informa-

tion was introduced as a symmetric measure of information

and its relationship with zero-error capacity was explored. To

present the definition of the maximin information, we need to

introduce the notion of overlap partitions:

• x, x′ ∈ JXK are JX |Y K-overlap connected, or in short

x ! x′, if there exists a finite sequence of conditional

ranges {JX |yiK}
n
i=1 such that x ∈ JX |y1K, x′ ∈ JX |ynK,

and JX |yiK ∩ JX |yi+1K 6= ∅ for all i = 1, . . . , n− 1;

• A ⊆ JXK is JX |Y K-overlap connected if all x, x′ ∈ A
are JX |Y K-overlap connected;

• A,B ⊆ JXK are JX |Y K-overlap isolated if there does not

exist x ∈ A, x′ ∈ B such that x, x′ are JX |Y K-overlap

connected;



• An JX |Y K-overlap partition is a partition of JXK such

that each member set is JX |Y K-overlap connected and

all two member sets are JX |Y K-overlap isolated.

Symmetry, i.e., x ! x′ implies that x′ ! x, and

transitivity, i.e., x! x′ and x′ ! x′′ implies that x! x′′,
guarantee that a unique JX |Y K-overlap partition always ex-

ists [17]. The unique JX |Y K-overlap partition is shown by

JX |Y K⋆ in what follows. The maximin information is

I⋆(X ;Y ) := log2(|JX |Y K⋆|). (9)

In [17], it was proved that |JX |Y K⋆| = |JY |XK⋆| and thus

I⋆(X ;Y ) = I⋆(Y ;X). We now prove an important result

regarding the relationship between non-stochastic information

leakage and maximin information.

Proposition 1. For discrete uncertain variable Y , I⋆(X ;Y ) ≤
Ls
0(X ;Y ).

Proof. See Appendix A.

An uncertain time series X is a sequence of uncertain

variables X [k] : Ω → X for all k ∈ N. Alternatively, we

can think of uncertain time series X as a mapping from

the sample space Ω to the set of discrete-time functions

X
∞ := {∀x : N → X}.

Now, we can define a memory-less uncertain communi-

cation channel. A memory-less uncertain channel maps any

uncertain time series X to uncertain time series Y such that

JY [k], . . . , Y [1]|X [k](ω) = x[k], . . . , X [1](ω) = x[1]K

= JY [k]|X [k](ω) = x[k]K × · · · × JY [1]|X [1](ω) = x[1]K,

for all (x[k], . . . , x[1]) ∈ JX [k], . . . , X [1]K and all k ∈ N. A

code of length k is a finite set F ⊆ X
k with each codeword

f ∈ F denoting a distinct message. Define

X (y[k], . . . , y[1])

:= JX [k], . . . , X [1]|Y [k](ω) = y[k], . . . , Y [1](ω) = y[1]K.

The zero-error capacity is

C0 := lim
k→∞

sup
F ⊆ X

k :
|F ∩ X (y[k], . . . , y[1])| ≤ 1,

∀(y[k], . . . , y[1]) ∈ Y
k

log2(|F|)

k
. (10)

In what follows, we only consider sequence of discrete

uncertain variables Y [k]. Now, we are ready to relate the

symmetrized non-stochastic information leakage to zero-error

capacity of memory-less uncertain channels.

Proposition 2. Any memory-less uncertain channel satisfies

C0 ≤ supJX[k]K⊆X L
s
0(X [k];Y [k]).

Proof. See Appendix B.

C. Non-Stochastic Hypothesis Testing

Consider uncertain variable X denoting the original uncer-

tain variable. An adversary is interested in testing the validity

of a hypothesis for the realizations of X . The adversary does

not have access to realizations of this uncertain variable as

p0

p1
JX |p0KJX

|p 1
K

Ω

JXK JHK

JY |JX|p0KK \ JY |JX|p1KK

JY |JX|p1KK \ JY |JX|p0KK

JY |JX|p1KK ∩ JY |JX|p0KK

JY K

Fig. 1: Relationship between uncertain variables in non-

stochastic hypothesis testing based on uncertain measure-

ments. If the realization of uncertain measurement Y belongs

to JY |p0K ∩ JY |p1K, there is not enough evidence to accept

or reject the null hypothesis p0 or the alternative hypothesis

p1. However, if the realization of uncertain measurement Y
belongs to (JY |p0K \ JY |p1K) ((JY |p1K \ JY |h2K)), we can

confidently accept (reject) the null hypothesis p0 and reject

(accept) the alternative hypothesis p1.

otherwise hypothesis testing is trivial. Instead, it has access

to an uncertain measurement of this variable denoted by Y .

This is captured by that Y (ω) = gY (X(ω)) for a mapping

gY : JXK → JY K. Recalling that uncertain variables are

mappings from the uncertainty set, it must be that Y = gY ◦X ,

where ◦ denotes composition of mappings. Similarly, we

may define the hypothesis as an uncertain variable H with

binary range JHK = {p0, p1}, where p0 denotes the null

hypothesis and p1 denotes the alternative hypothesis. We

assume that there exists a mapping gH : JXK → JHK such

that H = gH ◦X ; the hypothesis is constructed based on the

uncertain variable X as H(ω) = gH(X(ω)). This setup and

the relationship between all uncertain variables is summarized

in Figure 1.

A test is a function T : JY K → JHK = {p0, p1}. If

T (Y ) = p1, the test rejects the null hypothesis in favour of the

alternative hypothesis; however, if T (Y ) = p0, the test accepts

the null hypothesis (and rejects the alternative hypothesis). The

set of all tests is given by C(JHK, JY K) which captures the set

of all functions from JY K to JHK. Following [21], we say that

a test T ∈ C(JHK, JY K) is correct at a particular realization

of uncertain variable Y , Y (ω) = y ∈ JY K, if JH |JX |yKK =
{T (y)}. The set of all outputs at which test T is correct is

equal to ℵ(T ) := {y ∈ JY K : JH |JX |yKK = {T (y)}}. Based

on this definition of correctness, we can define a performance

measure for tests [21]. If Y is a continuous uncertain variable,

the performance is

P(T ) := loge(µ(ℵ(T ))). (11)

Similarly, if Y is a discrete uncertain variable, the performance



is equal to

P(T ) := log2(|ℵ(T )|). (12)

In the following result, ∆ denotes the symmetric difference

operator on the sets, i.e., A∆B = (A \ B) ∪ (B \ A).

Proposition 3 ([21]). The performance of any test T ∈
C(JHK, JY K) is bounded by P(T ) ≤ loge(µ(JY |p0K∆JY |p1K))
if Y is a continuous uncertain variable, and by P(T ) ≤
log2(|JY |p0K∆JY |p1K|) if Y is a discrete uncertain variable.

Note that, for any realization of uncertain variable Y in the

set JY |p0K∩JY |p1K, there is not enough evidence to accept or

reject either the null hypothesis or the alternative hypothesis.

This is because these realizations can be caused by realizations

of X that are consistent with the null hypothesis p0 or realiza-

tions of X that are consistent with the alternative hypothesis

p1. On the other hand, if the realization of the measurement

Y is in the set (JY |p0K \ JY |p1K) ∪ (JY |p1K \ JY |h2K) =
JY |p0K∆JY |p1K, we can confidently reject or accept the null

hypothesis or the alternative hypothesis. Proposition 3 can be

thought of as a non-stochastic equivalent of the Chernoff-

Stein Lemma; see, e.g., [59, Ch. 11] for randomized hypothesis

testing. The size of the set JY |p0K∆JY |p1K essentially captures

the difference between the ranges JY |p0K and JY |p1K re-

sembling the Kullback–Leibler divergence in a non-stochastic

framework.

III. NOISELESS PRIVACY:

DEFINITION, GUARANTEES, AND PROPERTIES

We model a private dataset by a realization of a vector-

valued uncertain variable X : Ω → R
n with n denoting the

number of individuals whose data is in the dataset. The dataset

is therefore in the form of

X(ω) =











X1(ω)
X2(ω)

...

Xn(ω)











,

where Xi(ω) ∈ R is the data of the i-th individual. Evidently,

each Xi : Ω → R, 1 ≤ i ≤ n, is itself an uncertain variable.

A data curator, in possession of the realization of uncertain

variable X , i.e., the private dataset X(ω), must return a

response to a query f : JXK → R
q for some q ∈ N. The

curator employs a mechanism M : Rq → R
q to generate a

a privacy-preserving response. Throughout this paper, M ◦ f
is referred to as the mechanism of the curator. This is the

same language used in the privacy literature albeit without

the presence of the randomness [1], [60]. Therefore, the

curator provides the response Y (ω) = M ◦ f(X(ω)). By

definition, Y = M ◦ f ◦ X is an uncertain variable. In the

remainder of this paper, we use the notation x−i to denote

(x1, . . . , xi−1, xi+1, . . . , xn) for vectors and X−i to denote

(X1, . . . , Xi−1, Xi+1, . . . , Xn) for uncertain variables alike.

In this notation, −i refers essentially refers to the set of all

individuals except the i-th one.

Definition 1 (Noiseless Privacy). A mechanism M ◦ f is

ǫ-noiselessly private, for ǫ > 0, if

|JY |X−i(ω) = x−iK| ≤ 2ǫ, ∀x−i ∈ JX−iK, ∀i. (13)

Note that this definition is akin to a noiseless differential

privacy. This is because, instead of bounding the information

leakage as in information-theoretic privacy [16], the output

realizations are restricted if one individual entry of the dataset

changes. Note that, when the data of i-th individual changes,

the output can take all the values within the set JY |X−i(ω) =
x−iK. If this set is not informative, i.e., it does not contain

many elements, reverse engineering the data of i-th individual

changes with knowledge of X(ω) even in the presence of side-

channel information is a difficult task. In what follows, we

use non-stochastic information theory to establish the extend

of the privacy guarantees from noiseless privacy. Similar to

differential privacy, we can also define a local version of

noiseless privacy.

Definition 2 (Local Noiseless Privacy). Assume that fi :
(xi)

n
i=1 7→ xi for each i. A mechanism M is ǫ-locally

noiselessly private if M ◦ fi is ǫ-noiselessly private for

all i.

A. Guarantee: Non-Stochastic Information Leakage

We define a function ψi,v−i
: JXK → JXiK×{v−i} replacing

the value of Xj(ω) or the realization of Xj , for all 1 ≤ j ≤
except for j = i, with given constants vj , i.e., ψi,v−j

(X(ω)) =
(v1, . . . , vi−1, Xi(ω), vi+1, . . . , vn). Let Ψi = {ψi,v−j

| v−j ∈
JX−iK} be the set of all such functions for i ∈ {1, . . . , n}.

The uncertain variable ψi,v−i
◦ X becomes unrelated (in the

sense of [17]) to X−i for all ψi,v−i
∈ Ψi.

This definition allows us to measure the amount of the

information that the curator’s mechanism leaks about the data

of the i-the individual Xi(ω). For a given ψi,v−i
∈ Ψi, let us

define Y = M◦f◦ψi,v−i
◦X . Now, the information between Y

and Xi captures how much more information can an adversary

extract from Y knowing the data of all the individuals except

the i-the individual. This is because, here, we let the adversary

to select any possible ψi,v−i
.

Theorem 1 (Non-Stochastic Information vs Noiseless

Privacy). Assume X is a discrete uncertain variable,

Y = M ◦ f ◦ ψi,v−i
◦ X , and M ◦ f is ǫ-noiselessly

private. For any ψi,v−i
∈ Ψi,

0 ≤ I⋆(Xi;Y ) ≤ Ls
0(Xi;Y ) ≤ L0(Y ;Xi) ≤ ǫ. (14)

Proof. See Appendix C.

Theorem 1 shows that, by reducing ǫ, we can reduce the

amount of the leaked information about each individual. This

makes sense. Consider the case where ǫ = +∞. In this case,

the curator can report the output of the query f(ψi,v−i
◦X(ω))

completely (i.e., M can be chosen to be equal identity) and



the adversary, knowing v−i, can compute the data of the data

of the i-th individual Xi(ω) (at least if the adversary select the

query to be linear with non-zero weight for the i-th individual).

On the other hand, if ǫ = 0, the output becomes a constant

that is independent of Xi(ω) and thus the adversary learns

nothing new about the data of the i-th individual Xi(ω).

B. Guarantee: Zero-Error Capacity

Let us consider a memory-less noiselessly-private communi-

cation channel. This can be seen as a non-stochastic equivalent

of differentially-private communication channels in [61].

Let M◦f be a ǫ-noiselessly private for some ǫ > 0. For any

given sequence of mappings {ψt
i,v−i

}t∈N with ψt
i,v−i

∈ Ψi,

a memory-less ǫ-noiselessly-private channel maps any uncer-

tain time series X = (X [k], . . . , X [1]) to uncertain time

series Y = (Y [k], . . . , Y [1]) such that Y [ℓ](ω) = M ◦ f ◦
ψℓ
i,v−i

(X(ω)) for all 1 ≤ ℓ ≤ k and k ∈ N.

This setup can be seen as a case in which the curator

is reporting on a stream of data from the individuals. We

can assume that an extremely strong adversary can set the

realizations of the data of all individuals except the i-th
individual. The capacity of the channel captures the amount

of information that passes through a ǫ-noiselessly private

mechanism over time.

Theorem 2 (Zero-Error Capacity vs Noiseless Privacy).

Assume, for all k, X [k] is a discrete uncertain variable,

Y [k] = M ◦ f ◦ψℓ
i,v−i

◦X [k], and M ◦ f is ǫ-noiselessly

private. For any ψi,v−i
∈ Ψi, the zero-error capacity of

memory-less ǫ-noiselessly-private channel is bounded by

C0 ≤ ǫ. (15)

Proof. The rest of the proof follows from Proposition 2 and

Theorem 1.

C. Guarantee: Non-Stochastic Hypothesis Testing

In this part, our analysis is motivated by the definition of

semantic security or indistinguishability under chosen plaintext

attack [62]. Assume that an adversary selects i ∈ {1, . . . , n},

xi, x
′
i ∈ JXiK, and provides this information to the curator. The

curator uses uncertain variable Xi : Ω → JX iK := {xi, x
′
i}

to constructs uncertain variable X = (X−i, Xi). Fix ψi,v−i
∈

Ψi. The curator then generates a realization X(ω), computes

Y (ω) = M ◦ f ◦ ψi,v−i
(X(ω)), and provides Y (ω) to the

adversary. The adversary tests whether the realization of the

data of individual i is equal to xi or x′i knowing that it is bound

to be one of those values and knowing that the value of the

data of all the other individuals is fixed to v−i. We define the

hypothesis uncertain variable H using gH : X(ω) 7→ H(ω) as

H(ω) = gH(X(ω)) =

{

p0, Xi(ω) = xi,

p1, Xi(ω) = x′i.

The following theorem bounds the performance of the adver-

sary for performing its hypothesis test.

Theorem 3 (Hypothesis Testing vs Noiselss Privacy).

Assume Y = M◦f ◦ψi,v−i
◦X̄ and M◦f is ǫ-noiselessly

private. Then, for any test T and any ψi,v−i
∈ Ψi, the

performance of the adversary is bounded by

P(T ) ≤ ǫ. (16)

Proof. See Appendix D.

Bounding the performance of a hypothesis-testing adversary

is in essence close to identifiability [63], [64] for which privacy

preservation relates to the potential of an adversary identifying

the private data of individuals based on the received outputs.

D. Guarantee: Performance of Adversaries with Stochastic

Priors

In this subsection, we briefly assume that the dataset is ran-

domly distributed according to the probability density function

p, i.e., for any Lebesgue-measurable set X ⊆ JXK, P{X ∈
X} =

∫

x∈JXK
ξ(x)µ(x). We also consider an adversary that

knows the realizations of all the entries of the dataset except

the entry of the i-th individual. It constructs an estimate of

the missing entry Xi using an estimator X̂i(X−i,M ◦ f(X))
using its prior information X−i and the response M ◦ f(X).

Theorem 4 (Stochastic Prior vs Noiselss Privacy). As-

sume that ρ = infx∈JXK ξ(x) > 0, M ◦ f is ǫ-noiselessly

private, and f−1 ◦ M
−1(y) is a connected set for any

y ∈ JY K. For any p ∈ N,

E{(Xi − X̂i(X−i,M ◦ f(X)))p|X−i}

≥

(

ρµ(JXiK)
p+1

22p+2

)

2−ǫ(p+1). (17)

Proof. See Appendix E.

The lower bound on the adversary’s estimation performance

in Theorem 4 is an decreasing function of ǫ. Therefore, as

expected and in-line with the earlier results, by decreasing ǫ,
we can reduce the adversary’s ability to infringe on the privacy

of any individual in the dataset even if the adversary knows

the data of all the other individuals.

E. Guarantee: Stochastic Maximal Leakage

In this section, we can recreate the stochastic framework

for information leakage in [65] by again endowing all the

uncertain variables with a measure. This way, we can define

the maximal stochastic leakage from X to Y as

Lc(X → Y ) = sup
U−X−Y−Û

log

(

P{U = Û}

maxu∈JUK PU (u)

)

where the supremum is taken over all random variables U, Û
taking values in the same finite arbitrary alphabets. Here, U −



X − Y − Û states that these variables from a Markov chain

in the introduced order. It was shown in [65] that

Lc(X → Y ) = log





∑

y∈JY K

max
x∈JXK:PX(x)>0

PY |X(y|x)





= I∞(X ;Y ).

Theorem 5 (Maximal Leakage vs Noiseless Privacy).

Assume Y = M◦f ◦ψi,v−i
◦X and M◦f is ǫ-noiselessly

private. Then, Lc(Xi → Y ) ≤ ǫ.

Proof: Note that supPY |X
Lc(X → Y ) ≤ H0(Y ) because

of [65, Lemma 1 & Example 6]. Furthermore, |JM◦f ◦ψi,v−i
◦

XK| = |JY |X−i(ω) = v−iK| ≤ 2ǫ.

Evidently, the amount of the leaked information is upper

bounded by the privacy budget. Hence, by reducing the

privacy budget, we can minimize the amount of the leaked

information.

F. Property: Composition of Noiselessly-Private Mechanisms

Composition of differentially-private mechanisms [2], [66],

[67] is an important result showing that the privacy budgets

add up when reporting on multiple queries on the same private

dataset. In what follows, we show that the same also applies

to noiseless privacy.

Theorem 6 (Composition of Noiselessly-Private Mech-

anisms). Let M1 and M2 be such that M1 ◦ f and

M2 ◦ f are ǫ1-noiseless private and ǫ2-noiseless private,

respectively. Then, (M1,M2) ◦ f is (ǫ1 + ǫ2)-noiseless

private.

Proof. See Appendix F.

G. Property: Post-Processing of Noiselessly-Private Mecha-

nisms

Finally, an important property of differentially-private

mechanisms and information-theoretic privacy is that the pri-

vacy guarantees do not weaken by post-processing privacy-

preserving outputs [2]. In what follows, this also holds for

noiselessly-private mechanisms as well.

Theorem 7 (Post-Processing of Noiselessly-Private

Mechanisms). Let M be such that M ◦ f is ǫ-noiseless

private. Then, g ◦ M ◦ f is also ǫ-noiseless private for

any mapping g.

Proof. See Appendix G.

IV. NOISELESS PRIVACY: SATISFACTION

We can ensure noiseless privacy using non-stochastic ap-

proaches, such as binning or quantization. To do so, first, we

define linear quantizers.

Adversary Curator

select i0 and i1
i0 and i1

j ← {0, 1}

select i2, . . . , in
y, t

y = M ◦ f(xij ,t, xi2,t, . . . , xin,t)

estimate j
ĵ

return j = ĵ

Fig. 2: The timing of a game used for evaluating the ability of

an adversary in guessing if the data of a particular individual

belongs to a publicly-released noiselessly-private aggregate

statistics.

Definition 3 (Linear Quantizer). A q-level quantizer Q :
[xmin, xmax] → {b1, . . . , bq} is a piecewise constant function

defined as

Q(x) =































b1, x ∈ [x1, x2),

b2, x ∈ [x2, x3),
...

...

bq−1, x ∈ [xq−1, xq),

bq, x ∈ [xq, xq+1],

where (bi)
q
i=1 are distinct symbols and x1 ≤ x2 ≤ · · · ≤

xq are real numbers such that x1 = xmin, xq+1 = xmax,

xi+1 − xi = (xmax − xmin)/q for all 1 ≤ i ≤ q.

We can show that linear quantizers can achieve noiseless

privacy for any query on private datasets. This is proved in

the next theorem.

Theorem 8. Let Jf(X)|XK ⊆ [ymin, ymax]. Define sen-

sitivity of query f as

S(f) := sup
x−i∈JX−iK

µ(f(JXiK × {x−i}))

= sup
x−i∈JX−iK

sup
x
i
,x′

i
∈JXiK

|f(x′i, x−i)− f(xi, x−i)|.

The mechanism M ◦ f is ǫ-noiseless private if M is a

q-level quantizer with

q ≤
2ǫ(ymax − ymin)

Sf
.

Proof. See Appendix H.

V. EXPERIMENTS

A. Energy Data: Reporting Aggregate

For this part, we use a publicly available dataset from the

Ausgrid3 containing half-hour smart meter measurements for

300 randomly-selected homes with rooftop solar systems over

the period from 1 July 2010 to 30 June 2013. In this paper,

we use the data over July 2012 to June 2013.

3https://www.ausgrid.com.au/Industry/Innovation-and-research/Data-to-share/Solar-home-electricity-data

https://www.ausgrid.com.au/Industry/Innovation-and-research/Data-to-share/Solar-home-electricity-data


Let xi,t denote the consumption of house i at day t. We

consider reporting aggregate statistics

yt = f((xi,t)
n
i=1) =

1

n
(x1,t + · · ·+ xn,t), ∀t.

Here, f denotes the query. We particularly use the mechanism

in Theorem 8 to report noiselessly-private outputs. In this

experiment, we test the ability of an adversary for inferring if

a particular household has contributed to the aggregate or not

as in [68]. We use a game, as in [68], [69], to evaluate the

ability of the adversary. The setup of the game is summarized

in Figure 2. At first, the adversary can select two households

i0, i1. The curator select one of those households uniformly at

random ij . It also selects an additional n−1 households. Then

it reports the privacy-preserving aggregate outputs. Based on

the reported output, the adversary guesses the participating

household iĵ . The adversary’s success or advantage is then

defined as

Adv := 2|P{j = ĵ} − 1/2|.

Small Adv means that the adversary is as successful as

randomly guessing and large Adv implies that the adversary

is successful in recognizing the household participating in the

aggregate.

Similar to [68], we use three adversary policies. The first

one is based on correlation. In this case, the adversary selects

j ∈ {0, 1} based on the correlation between (xij ,t)t and

(yt)t. The second policy is based on mean square error. In

this case, the adversary selects j ∈ {0, 1} by minimizing the

square error ‖(xij ,t)t − (yt)t‖2. Finally, the last policy uses

the relative peaks of each load profile (xi0,t)t, (xi1,t)t, and

(yt)t. In this case, the adversary selects j ∈ {0, 1} based on

the most common peaks between (xi0,t)t and (yt)t, or (xi1,t)t
and (yt)t.

Figure 3 illustrates the advantage of the adversary Adv
when using the correlation-based policy (left), the mean square

error policy (center), and the peak-based policy (right). As

ǫ grows larger, the adversary’s advantage tends toward the

non-private case in [68]. Clearly, even for moderate ǫ when

considering small groups, the adversary’s advantage is very

small. This is not the case for non-private outputs as observed

in [68]. For instance, for small groups and moderate privacy

budgets, such as n = 4 and ǫ = 2 or n = 8 and ǫ = 3,

the adversary’s advantage is negligible (almost zero). This

shows that combining noiseless privacy with aggregation is

an excellent tool for providing privacy to individuals.

B. Energy Data: Reporting Single Consumption

Non-intrusive load monitoring provides tools for extract-

ing appliance-specific energy consumption statistics from the

smart meter readings of a household and and is one of privacy

concerns behind releasing energy data [70], [71]. In this

section, we use Theorem 8 to report high-frequency energy

consumption of a household in a privacy-preserving manner

using local noiseless privacy. We then proceed to see the effect

of privacy budget on an adversary performing non-intrusive

load monitoring.

We use the low frequency data from the first house in the

REDD database4 database [72], which contains the consump-

tion of various appliances in the house every 3-4 seconds. This

data in conjunction with the consumption of the entire house

is used for training and verification of a non-intrusive load

monitoring algorithm. The consumption of the entire house is

measured every second. The data is for the period of April

23–May 21, 2011. The part of the data prior to April 30th is

used for training and the rest for validation purposes. We select

the top 5 appliances in energy consumption for disaggregation

purposes, namely, fridge, microwave, socket (in the kitchen),

light, and dish washer. For non-intrusive load monitoring, we

have used the NILMTK5 toolbox in Python [73]. We have

used a frequently utilized combinatorial optimization method

for non-intrusive load monitoring. We report the success of

the non-intrusive load monitoring using the f -score.

Figure 4 shows the f-score of the non-intrusive load mon-

itoring algorithm based on combinatorial optimization versus

the privacy budget. As we can see the f -score gets rapidly

bad as ǫ decrease. This means an adversary would not be able

to identify the appliances that are used within the household

reliably. This illustrates the power of local noiseless privacy

in reporting energy consumption of households for analysis

while protecting the privacy of the households.

C. Transport Data: Reporting Individual Source-Destinations

Finally, we use New York City Taxi Cab trips6 for 2014.

We use the first million trips and focus on trips that begin

and end within the New York City in Figure 5. Here, we

consider reporting the start-end point of the taxi rides in a

locally noiselessly private manner. In this subsection, we again

use Theorem 8 to report start-end points of taxi rides in the

New York City in a privacy-preserving manner using local

noiseless privacy. In this case, for each ǫ, we split the latitude

and the longitude into 2ǫ/2 boxes. Therefore, the privacy of the

total privacy budget for the reported outputs is 2ǫ, following

Theorem 6.

Figure 6 illustrates the portion of unique start-end points of

taxi rides versus the privacy budget. As we can see, the portion

of unique start-end points is negligible for small ǫ. This means

an adversary would not be able to attribute a specific taxi ride

to an individual, thus protecting the privacy of contributing

individuals.

VI. DISCUSSIONS AND FUTURE WORK

In this paper, we defined noiseless privacy, as a non-

stochastic rival to differential privacy, requiring that the

outputs of the mechanism to attain very few values while

varying the data of an individual remains. We proved that

noiseless-private mechanisms admit composition theorem and

post-processing does not weaken their privacy guarantees.

We proved that quantization operators can ensure noiseless

privacy. We finally illustrated the privacy merits of noiseless

4http://redd.csail.mit.edu/
5https://github.com/nilmtk/nilmtk
6https://www.kaggle.com/kentonnlp/2014-new-york-city-taxi-trips

http://redd.csail.mit.edu/
https://github.com/nilmtk/nilmtk
https://www.kaggle.com/kentonnlp/2014-new-york-city-taxi-trips
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Fig. 5: Map of New York City: latitude in [40.92◦, 40.49◦]

and longitude in [-74.27◦,-73.68◦]
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privacy and local noiseless privacy using multiple datasets in

energy and transport.
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APPENDIX A

PROOF OF PROPOSITION 1

First, we prove that I⋆(X ;Y ) ≤ L0(X ;Y ). Let I⋆(X ;Y ) =
m. Then, JX |Y K⋆ = {P1, . . . , P2m}. Each Pi is non-empty.

Therefore, there exists at least one x such that x ∈ Pi. Note

that x must also belong to JX |yK for any y ∈ JY |xK. We prove

that JX |yK ⊆ Pi. Assume that this not the case. Therefore,

there exist an element of x′ ∈ JX |yK, distinct from x, that

belongs to another Pj , j 6= i, because {P1, . . . , P2m} covers

JXK. We know that Pi and Pj are JX |Y K-overlap isolated

by the definition of partition JX |Y K⋆. On the other hand, we

evidently have x ! x′ (by the definition of JX |Y K-overlap

connectedness). This is a contradiction and thus JX |yK must

be a subset of Pi. This results in |JX |yK| ≤ |Pi| and hence

min
y∈JY K

|JX |yK| ≤ Pi, ∀i ∈ {1, . . . , 2m}. (18)

On the other hand,
⋃2m

i=1 Pi = JXK because {P1, . . . , P2m} is

a partition for JXK. Because of the non-overlapping nature of

the sets {P1, . . . , P2m}, we get

2m
∑

i=1

|Pi| = |JXK|. (19)

Combining (18) and (19) results in 2m miny∈JY K |JX |yK| ≤
|JXK|. This implies that I⋆(X ;Y ) ≤ L0(X ;Y ). Similarly, we

can show that I⋆(Y ;X) ≤ L0(Y ;X). By symmetry of the

maximin information [17], i.e., I⋆(X ;Y ) = I⋆(Y ;X), we get

that I⋆(X ;Y ) ≤ L0(X ;Y ) and I⋆(X ;Y ) ≤ L0(Y ;X). This

concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

Let ℵ(y[k], . . . , y[1]) denote the statement Y [k](ω) =
y[k], . . . , Y [1](ω) = y[1]. Note that

2L0(X[k],...,X[1];Y [k],...,Y [1])

= max
(y[i])k

i=1
∈JY Kk

|JX [k], . . . , X [1]K|

|JX [k], . . . , X [1]|ℵ(y[k], . . . , y[1])K|

=
|JX [k], . . . , X [1]K|

min(y[i])k
i=1

∈JY Kk |JXk, . . . , X1|ℵ(y[k], . . . , y[1])K|

=

∏k
ℓ=1 |JX [ℓ]K|

∏k
ℓ=1 miny[ℓ]∈JY K |JX [ℓ]|Y [ℓ](ω) = y[ℓ]K|

=

k
∏

ℓ=1

|JX [ℓ]K|

miny[ℓ]∈JY K |JX [ℓ]|Y [ℓ](ω) = y[ℓ]K|

=
k
∏

ℓ=1

L0(X [ℓ];Y [ℓ])

= (L0(X [ℓ];Y [ℓ]))k.

Therefore,

L0(X [k], . . . , X [1];Y [k], . . . , Y [1]) = kL0(X [ℓ];Y [ℓ]),

and, as a result,

L0(X [k], . . . , X [1];Y [k], . . . , Y [1])/k = L0(X [ℓ];Y [ℓ]).

Similarly, we can show that

L0(Y [k], . . . , Y [1];X [k], . . . , X [1])/k = L0(Y [ℓ];X [ℓ]).

Combining these inequalities with Proposition 1 in this paper

and Theorem 4.1 in [17] proves the result.



APPENDIX C

PROOF OF PROPOSITION 1

Note that

2L
s

0
(Xi;Y ) ≤2L0(Y ;Xi)

= sup
xi∈JXiK

|JY K|

JY |Xi(ω) = xiK

=|JY K|

=

∣

∣

∣

∣

∣

∣

⋃

x′
i
∈JXiK

JY |Xi(ω) = x′i, X−i(ω) = v−iK

∣

∣

∣

∣

∣

∣

= |JY |X−i(ω) = v−iK|

≤2ǫ,

where the second equality follows from that the realization of

Y can be uniquely determined based on the realization of Xi,

i.e., JY |Xi(ω) = xiK is a singleton. Therefore, Ls
0(Xi;Y ) ≤

L0(Y ;Xi) ≤ ǫ. The rest follows from Proposition 1.

APPENDIX D

PROOF OF THEOREM 3

Since Y is a discrete uncertain variable, for any test T ,

Theorem 3 states that the performance of the adversary is

bounded from the above by P(T ) ≤ log2(|JY |Xi(ω) =
xiK∆JY |Xi(ω) = x′iK|). Now, note that JY |Xi(ω) =
xiK∆JY |Xi(ω) = x′iK ⊆ JY |X−i(ω) = v−iK. Therefore,

|JY |Xi(ω) = xiK∆JY |Xi(ω) = x′iK| ≤ |JY |X−i(ω) =
v−iK| ≤ 2ǫ. This concludes the proof.

APPENDIX E

PROOF OF THEOREM 4

Define function g(·) such that g(Xi) = M ◦ f(X). There

must exists y ∈ JY K such that µ(g−1(y))) ≥ µ(JXiK)2
−ǫ. As

otherwise, µ(g−1(y)) < µ(JXiK)2
−ǫ for all y ∈ JY K and thus

µ(JXiK) = µ





⋃

y∈JY K

g−1(y)





=
∑

y∈JY K

µ
(

g−1(y)
)

<
∑

y∈JY K

µ(JXiK)2
−ǫ

= µ(JXiK).

This is a contradiction. Hence, we get

E{(Xi − X̂i(X−i,M ◦ f(X))p|X−i}

≥ ρ

∫

g−1(y)

(Xi − X̂i(X−i,M ◦ f(X))pdµ(Xi),

where ρ = infX∈JXK ξ(X). Since g−1(y) is a connected set,

there must exists xi, xi such that closure of the g−1(y) is equal

to [xi, xi]. Hence, we get
∫

g−1(y)

(Xi−X̂i(X−i,M ◦ f(X))pdµ(Xi)

=

∫ xi

xi

(Xi − X̂i(X−i,M ◦ f(X))pdµ(Xi)

≥

∫ xi

xi

(z − (xi + xi)/2)
pdz

≥ 2

(

xi − xi
4

)p
xi − xi

4

=
µ(g−1(y))p+1

4p+1/2

≥ µ(JXiK)
p+12−ǫ(p+1)/22p+1.

This concludes the proof.

APPENDIX F

PROOF OF THEOREM 6

Note that

J(M1,M2) ◦ f(X)|X−i(ω) = x−iK

=J(M1 ◦ f(X),M2 ◦ f(X))|X−i(ω) = x−iK

⊆JM1 ◦ f(X)|X−i(ω) = x−iK

× JM2 ◦ f(X)|X−i(ω) = x−iK,

and as a result

µ(J(M1,M2) ◦ f(X)|X−i(ω) = x−iK)

≤µ(JM1 ◦ f(X)|X−i(ω) = x−iK)

× µ(JM2 ◦ f(X)|X−i(ω) = x−iK).

Hence,

loge(µ(J(M1,M2) ◦ f(X)|X−i(ω) = x−iK))

≤ loge(µ(JM1 ◦ f(X)|X−i(ω) = x−iK)

× µ(JM2 ◦ f(X)|X−i(ω) = x−iK))

= loge(µ(JM1 ◦ f(X)|X−i(ω) = x−iK))

+ loge(µ(JM2 ◦ f(X)|X−i(ω) = x−iK)).

The proof for discrete uncertain variables follow the same

approach.

APPENDIX G

PROOF OF THEOREM 7

The proof follows from that |Jg ◦ M ◦ f(X)|X−i(ω) =
x−iK| ≤ |JM ◦ f(X)|X−i(ω) = x−iK| for any x−i.

APPENDIX H

PROOF OF THEOREM 8

For any given x−i ∈ JX−iK, due to continuity of f , we know

that f(JXiK × {x−i}) = f ◦ ψi,x−i
(JXiK) ⊆ [ymin, ymax] is

a connected set (because JXiK is connected). Therefore, if M

is a q-level quantizer, JY |X−i(ω) = x−iK = M ◦ f(JXiK ×
{x−i}) can at most contain qµ(f(JXiK × {x−i}))/(ymax −
ymin) points. Therefore, |JY |X−i(ω) = x−iK| ≤ qSf/(ymax−
ymin). This concludes the proof.
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