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Abstract

Despite significant progress on stability analysis of conventional multiagent networked systems with weakly
coupled state-network dynamics, most of the existing results have shortcomings in addressing multiagent systems
with highly coupled state-network dynamics. Motivated by numerous applications of such dynamics, in our
previous work [1], we initiated a new direction for stability analysis of such systems that uses a sequential
optimization framework. Building upon that, in this paper, we extend our results by providing another angle on
multiagent network dynamics from a duality perspective, which allows us to view the network structure as dual
variables of a constrained nonlinear program. Leveraging that idea, we show that the evolution of the coupled
state-network multiagent dynamics can be viewed as iterates of a primal-dual algorithm for a static constrained
optimization/saddle-point problem. This view bridges the Lyapunov stability of state-dependent network dynamics
and frequently used optimization techniques such as block coordinated descent, mirror descent, the Newton
method, and the subgradient method. As a result, we develop a systematic framework for analyzing the Lyapunov
stability of state-dependent network dynamics using techniques from nonlinear optimization. Finally, we support
our theoretical results through numerical simulations from social science.

Index Terms

Lyapunov stability; multiagent systems; state-dependent network dynamics; saddle-point dynamics; block
coordinate descent; Newton method; nonlinear optimization.

I. INTRODUCTION

Many of the current challenges in science and engineering are related to complex networks, and
distributed multiagent network systems are currently the focal point of many new applications. Such
applications relate to the growing popularity of social networks, the analysis of large network data
sets, and the problems that arise from interactions among agents in complex political, economic, and
biological systems. These challenges may involve modeling of the interactions of agents in complex
networks, the establishment of stability in the agents’ interaction dynamics, and the design of efficient
algorithms to obtain or approximate the equilibrium points. We can offer many motivating examples of
relationships in political, social, and engineering applications that are governed by complex networks of
heterogeneous agents. Agents may be strategic, or the networks can be dynamic in the sense that they
can vary over time, depending on the agents’ states or decisions. The following are a few examples.
– Network security: A basic task in network security is that of providing a mechanism for securing
the operation of a set of networked heterogeneous agents (e.g., service providers, computers, or data
centers) despite external malicious attacks (Figure 1). One way of doing that is to incentivize the agents
to invest in their security (e.g., by installing antivirus software) [2]. However, since the agents are
interconnected, the compromise of one agent may affect its neighbors, and such a failure can cascade
over the entire network. As a result, the decision made by each agent on how much to invest in its
security level will indirectly affect all the others, and hence the connectivity structure of the network.
Thus we face a highly dynamic network of heterogeneous agents in which the agents’ states/decisions
and the network structure are highly influenced by each other.
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Fig. 1. Compromise of an agent changes
the network structure and hence the security
decisions of all other agents.

Fig. 2. Aircraft must keep a certain for-
mation while the communication network
among them is subject to change.

Fig. 3. The social network affects opinions,
and that in turn creates new friendships and
hence a new social network.

– Formation control: A goal in formation control is to design a distributed protocol such that a set of
agents (e.g., the aircraft in Figure 2) collectively form a specific structure and eventually accomplish a
task [3]. Agents may have different communication capabilities and can communicate only with those
in their local neighborhoods. Consequently, depending on the agents’ states (e.g., remaining power or
relative positions), the communication network they share is subject to change. As a result, the agents’
states and the communication network are highly coupled and dynamically evolve based on each other.
– Social networks: In social networks, there are often apparent affinities among people based on
heterogeneous political or cultural beliefs that define an interaction network among them. However,
on specific issues, alliances form among people from different groups. Almost every congressional vote
provides an example of this phenomenon, wherein some representatives break away from their respective
parties to vote with the other party [4] (Figure 3).
– Stability of smart grids: In the emerging smart grid, a significant amount of energy stems from
renewable sources, electric vehicles, and storage units, many of which may be owned by consumers
rather than utility companies. That phenomenon is turning every grid component into a prosumer: a
joint producer and consumer of energy. Prosumers (agents) in the smart grid strategically interact with
each other subject to power network constraints. In particular, depending on their states (e.g., energy
consumption/production decisions), they may decide to buy/sell energy to different agents. Thus, a
significant challenge is that of providing decentralized algorithms to stabilize the demand and response
given that the structure of the agents’ interactions is a function of their own and their neighbors’
states/decisions.

Motivated by the above, and many other real applications such as robotics [5], [6], genomic [7],
robustification [8], and consensus seeking [9], [10], our objective in this paper is to provide a systematic
approach for analyzing the stability and convergence of agents interacting over a rich dynamic network
that may evolve or vary based on agents’ states. To that end, we provide new connections between
analysis of multiagent network systems and developed techniques in the mature field of nonlinear
programming. Utilizing such connections, we show how Lyapunov stability of seemingly complex
multiagent network dynamics can be analyzed using iterative optimization algorithms for finding a
minimum or saddle-point of nonlinear functions.

A. Related Work
A general multiagent network problem involves a set of [n] = {1, 2, . . . , n} agents (social individuals,

grid prosumers, unmanned vehicles, etc.) At each time instance k = 0, 1, 2, . . ., there is an underlying
network Gk = ([n], Ek) that determines the communication network shared by the agents. Here, Ek
denotes the set of edges of the network at time k; the edges can be undirected or directed. The state of
agent i ∈ [n] at time k is given by a vector xki and evolves based on i’s interaction with its neighbors.



In particular, the overall state of the system at time k + 1, denoted by xk+1, can be obtained by
using a general update rule xk+1 = fk(x

k,Gk), k = 0, 1, 2, . . ., where fk(·) can be a general time-
varying function, depending on the problem setup, and captures the interaction laws among the agents.
Therefore, the main goal here is to understand whether the generated sequence of states {xk}∞k=0 will
converge (stabilize) to any equilibrium. That has been the subject of much research effort, including
work in distributed control and computation [11]. Unfortunately, despite enormous efforts in the area,
the stability problem for such dynamics in its full generality is still far from being solved. However,
partial solutions to the problem under certain simplifying assumptions are known. For instance, there
has been a rich body of literature on the analysis of multiagent network systems, mainly from the static
point of view, in which a set of agents iteratively interact over a fixed network to achieve a certain goal,
such as consensus or optimization of an objective function. The classical models of DeGroot [12] and
Friedkin-Johnsen [13] in the social sciences are two special types of such systems [11], [14]. Below is
a sample result in this area [15], [16]:

Theorem 1: Given a fixed and undirected connected network G = ([n], E), at any time k = 0, 1, . . ., let
every agent i take the average of its own state and those of its neighbors, i.e., xk+1

i =
∑

j∈Ni∪{i} aijx
k
j ,∀i ∈

[n], where aij > 0 are positive constant weights such that
∑n

j=1 aij = 1,∀i. Then the generated averaging
dynamics are Lyapunov stable and converge to an equilibrium point.

By comparing Theorem 1 with the aforementioned general dynamics, one can identify several simpli-
fying assumptions that have been made in most of the existing results on multiagent network systems.
1) The underlying networks are fixed as Gk = G,∀k. 2) The underlying networks are connected and
undirected. 3) The underlying networks Gk do not depend on the agents’ states xk. Therefore, a large
body of literature has been developed to establish the stability of the above general dynamics under
less restrictive assumptions. The results in the static case can often be generalized to time-varying
networks through the assumption of a certain “independency” between the network process and the
state dynamics. For instance, one of the commonly used assumptions is that the network dynamics are
governed by an exogenous process that is uncoupled from the state dynamics [17]–[23]. Here is an
extension from [24]:

Theorem 2: Consider a sequence of time-varying directed graphs Gk = ([n], Ek) with the weight
of edge (i, j) at time k being aij(k). Assume that the sequence of graphs is B-strongly connected,
meaning that for any k ≥ 0, the graph G = ([n],∪k+B

s=k Ek) is strongly connected. Moreover, given a
positive constant α ∈ (0, 1), assume aij(k) ∈ [α, 1]∪{0},∀i, j, k, and aii(k) ≥ α,

∑
j aij(k) = 1,∀i, k.

Then the averaging dynamics xk+1
i =

∑
j∈Ni aij(k)xkj , i ∈ [n], will converge to a consensus point.

While Theorem 2 relaxes the static communication network to time-varying networks, it still has
shortcomings in addressing many realistic multiagent systems. For instance, the network connectivity
must be preserved over any time window of length B, and it is hard to check whether that is hap-
pening (especially if the networks are generated endogenously based on the agents’ states). Second,
the assumptions on the weight matrices are somewhat restrictive as, in real situations, the weights can
approach 0 and then increase again to 1. Besides, the theorem uses an implicit assumption on the
symmetry of the networks by imposing strong connectivity. Finally, in realistic situations, the evolution
of the network itself depends on the evolution of agents’ states. In contrast, in the above theorem, the
network dynamics are driven by an exogenous process that is independent of how the states evolve. A
generalization of Theorem 2 is to allow weak coupling between the state and network dynamics, with
certain network connectivity/symmetry assumptions [15], [25], [26]. We refer to [27], [28] for other
extensions of such results that use a backward product of stochastic matrices. We mention here that our
work is also related to dynamic clustering, for which the goal is to provide a theoretical justification
for cluster synchronization in multiagent systems by using saddle-point dynamics [29], [30]. However,
the network structure in that application is fixed and captured by a set of linear constraints. In contrast,
in our work, the network dynamically evolves as a complex function of the state variables.



While the existing results can address a large class of multiagent network systems, there are still
many examples that do not fit into any of the categories mentioned above or for which the application
of the above techniques provides poor results on the behavior of the agents. Our work is fundamentally
different from the earlier literature and offers a new perspective for the averaging dynamics by capturing
the internal co-evolution of state and network dynamics. Thus, in this paper, we depart from conventional
methods for stability analysis of multiagent dynamics, such as Markov chains or products of stochastic
matrices. Our approach allows us to relax some of the common assumptions, such as global knowledge
on the network connectivity throughout the dynamics. We believe that this new approach, together with
the current results on the multiagent averaging dynamics, can be used to analyze a broader class of
complex state-dependent network dynamics.

B. Contributions and Organization
Inspired by the above shortcomings and building upon our previous work [1], in this paper, we provide

a principled framework from an optimization perspective to study the Lyapunov stability of multiagent
state-dependent network dynamics. We show that despite the challenges due to state-network coupling, it
is still possible to capture the co-evolution of network and state dynamics for a broad class of multiagent
systems, even under an asymmetric or nonlinear environment. More precisely, we show that often the
network structure among the agents can be viewed as dual variables of a constrained optimization
problem, where the existence of an edge is related to the tightness of the corresponding constraint.
As a result, we can view multiagent network dynamics as an iterative primal-dual algorithm for a
static constrained optimization problem where the primal updates correspond to state updates of the
dynamics, and the dual updates correspond to the network evolution. The KKT optimality conditions
also guide the coupling between the network and state dynamics. This approach allows us to view the
constrained Lagrangian of the underlying static problem as a Lyapunov or “semi-Lyapunov” function for
the multiagent dynamics. Therefore, we obtain a principled way to establish the stability of multiagent
network dynamics in terms of the asymptotic convergence of an iterative optimization algorithm. That
means that a variety of iterative optimization methods can be used to study the stability of multiagent
state-dependent network dynamics.

In Section II, we first provide our problem formulation, which involves modeling of a large class
of state-dependent network dynamics. In Section III, we apply a sequential optimization framework
based on the block coordinate descent method to establish Lyapunov stability for a large class of
state-dependent network dynamics. We consider that method under both symmetric and asymmetric
network structures and use the change of variables to generate other types of state-dependent network
dynamics. In Section IV, we use a saddle-point model to extend our results to a case in which there is
a conflict between the network structure and the state evolution. In Section V, we consider continuous-
time dynamics for which the edge emergence between agents is no longer a binary event, but rather a
continuous weight process. In Section VI, we provide numerical results, and we conclude the paper by
identifying some future directions of research in Section VII.

C. Notation
For a positive integer n ∈ Z+ we set [n] := {1, 2, . . . , n}. We use bold symbols for vectors. Given
a vector v ∈ Rn we use vT to denote its transpose, ‖v‖2 = vTv to denote its Euclidean norm, and
‖v‖1 =

∑n
i=1 |vi| to denote its l1-norm. We let diag(v) be a diagonal matrix with vector v as its diagonal

elements and zero elsewhere. Given a positive-definite matrix Q, we let ‖v‖2
Q = vTQv. We use C to

denote the class of real-valued differentiable functions with a finite global minimum. Similarly, we let
C2 be the class of twice differentiable functions with a finite global minimum. Given a strictly convex
function Ψ ∈ C, we use DΨ(x,y) = Ψ(x)−Ψ(y)−∇Ψ(y)T (x−y) to denote the Bregman divergence
with respect to Ψ. Finally, f : Rn → R is called L-Lipschitz continuous if there exists L > 0 such that
|f(x)− f(y)| ≤ L‖x− y‖,∀x,y ∈ Rn.



II. PROBLEM FORMULATION

Let us consider a multiagent network system consisting of [n] agents. At any given time k = 0, 1, 2, . . .,
we use xki ∈ R to denote the state of agent i, and xk = (xk1, . . . , x

k
n)T to denote the state of the entire

system at that time.1 Moreover, we assume that each agent i ∈ [n] has n − 1 measurement functions
gij(xi, xj) : R2 → R, one for every other agent j ∈ [n]\{i}. For most of this paper, we assume that the
measurement functions gij are twice differentiable and belong to C2. Given any state x, we assume that
the set of neighbors of an agent i ∈ [n] is determined by the logic constraints gij(xi, xj) ≤ 0, j ∈ [n]\{i}.
In other words, for a given state x, agent i is influenced by agent j (or j is a neighbor of i) if and only
if gij(xi, xj) ≤ 0. In particular, we use Ni(x) := {j : gij(xi, xj) ≤ 0} to denote the set of neighbors of
agent i at a state x. At any time instance k, each agent i ∈ [n] interacts with its neighbors and updates
its state at the next time step to

xki = φi
(
xk, Ni(x

k)
)
, i ∈ [n], (1)

where φi(·) is an agent-specific update rule, which is a function of the states of agent i’s neighbors.
Note that the above discrete-time dynamics contain a broad class of state-dependent network dynamics
for which the network at time k is given by Gk = ([n], {(i, j) : j ∈ Ni(x

k)}). It is evident that the
network structure at time k depends on the agents’ states at that time, and the state at the next time
step k + 1 is a function of the network structure at the current time k.

Definition 1: The measurement functions gij(·) are called symmetric if for all i 6= j we have
gij(xi, xj) = gji(xj, xi). Note that for symmetric measurement functions, the communication network
Gk at any time k is an undirected graph.

One of our main objectives in this paper is to provide a general class of update rules φi(·) such that
the state-dependent network dynamics (1) converge to some equilibrium point or are Lyapunov stable
in the following sense:

Definition 2: A function V : Rn → R is called a Lyapunov function for the discrete time dynamical
system zk+1 = hk(z

k), k = 0, 1, 2, . . ., if it is decreasing along the trajectories of the dynamics, i.e.,
V (zk+1) < V (zk),∀k. We refer to a dynamical system that admits a Lyapunov function as Lyapunov
stable.

Remark 1: While a Lyapunov function V (·) is typically defined to be a nonnegative function with
V (0) = 0, as we shall see, all the Lyapunov functions in this paper are bounded below by some global
constant M . Therefore, if those functions are shifted by a constant |M |, it is ensured that V (·) + |M | is
nonnegative and strictly decreasing along the trajectory of the dynamics. Moreover, we do not require
V (0) = 0, as the origin is not necessarily an equilibrium point of the dynamics.

To illustrate the generality of the above model, let us consider the well-known homogeneous Hegselmann-
Krause (HK) model from social science [4]. In the homogeneous HK model, there is a set of [n] agents,
and it is assumed that at each time instance k = 0, 1, 2, . . ., the opinion (state) of agent i ∈ [n] can be
represented by a scalar xki ∈ R. Each agent i updates its state at time k + 1 by taking the arithmetic
average of its state and those of others that are in its ε-neighborhood at time k, i.e.,

xk+1
i =

xki +
∑

j∈Ni(xk) x
k
j

1 + |Ni(xk)|
, i ∈ [n].

Here ε > 0 is a constant parameter, and Ni(x
k) = {j ∈ [n] \ {i} : |xki − xkj | ≤ ε} denotes the set

of neighbors of agent i at time k. In fact, it is known that such dynamics are Lyapunov stable and
converge to an equilibrium point [4], [31]. It is easy to see that homogeneous HK dynamics are a very
special case of the state-dependent network dynamics (1) for which the symmetric measurements are
gij(xi, xj) =

(xi−xj)2

2
− ε2

2
, and the update rule is given by φi

(
x, Ni(x)

)
=

xi+
∑
j∈Ni(x) xj

1+|Ni(x)| .

1For simplicity of presentation, we assume that agents’ states are scalar real numbers. However, most of the results can be naturally
extended to the case in which agents’ states are vectors in Rd.



III. LYAPUNOV STABILITY USING BLOCK COORDINATE DESCENT

A popular approach to solving optimization problems is the so-called block coordinate descent (BCD)
method, which is also known as the Gauss-Seidel method. At each iteration of this method, the objective
function is minimized with respect to a single block of variables while the rest of the blocks are
held fixed. More specifically, consider this optimization problem: min{F (y1, . . . ,yn), yi ∈ Yi,∀i},
where Yi ⊆ Rmi is a closed convex set, and F :

∏n
i=1 Yi → R is a continuous function. At iteration

t = 0, 1, . . . of the BCD method, the block variable yi is updated through solving of the subproblem yti =
arg minzi∈Yi F (yt1, . . . ,y

t
i−1, zi,y

t
i+1, . . . ,y

t
n), i ∈ [n]. Since, in practice, finding the exact minimum in

each iteration might be difficult, one can consider an inexact BCD method, whereby a smooth regularizer
is added to the objective function or is approximated by a simpler convex function. In either case, and
under some mild assumptions, it can be shown that the inexact BCD method will converge to a stationary
point of the objective function F (·).

Now let us consider the following constrained nonlinear program:

min f(x) :=
n∑
i=1

fi(xi)

s.t. gij(xi, xj) ≤ 0, ∀i 6= j,

x ∈ Rn,

where fi ∈ C2,∀i ∈ [n] and gij ∈ C2,∀i 6= j are differentiable measurement functions between the two
members of each pair of agents. In other words, each agent i ∈ [n] has a private function fi(xi), and
the agents collectively want to choose their states to minimize the global objective function f(x) :=∑n

i=1 fi(xi) while they all remain connected. If we dualize the constraints by using dual variables
λij ≥ 0, and form the Lagrangian function, we have,

L(x,λ) = f(x) +
∑
i 6=j

λijgij(xi, xj),

which is a function consisting of two block variables, namely a state block variable x := (x1, . . . , xn) ∈
Rn, and a nonnegative network block variable λ := (λij, i 6= j). Now let us minimize the Lagrangian
function by using the BCD method subject to the box constraints λij ∈ [0, 1],∀i, j. As L(x,λ) is a linear
function of λ, if we fix the state block variable and minimize L(x,λ) with respect to λ ∈ [0, 1]n(n−1),
we get λij = 1 if gij(xi, xj) ≤ 0 (i.e., there is a directed edge from agent i to agent j), and λij = 0
if gij(xi, xj) > 0 (i.e., no such an edge exists). Thus, fixing the state variable and minimizing the
Lagrangian with respect to λ ∈ [0, 1]n(n−1), the dual variables precisely capture the network structure
among the agents for that state.

Motivated by many applications of distributed averaging over networks, such as for consensus [15],
opinion dynamics [4], [12], distributed optimization [18], [19], and formation control [3], in this paper,
we provide several classes of distributed averaging dynamics over complex state-dependent networks.
As we shall see, these dynamics can not only recover several types of well-known linear averaging
dynamics from the physical and social sciences, but also be extended to nonlinear averaging dynamics
over state-dependent network topologies. The following theorem provides our first class of nonlinear
averaging dynamics whose specification to quadratic measurements can recover several linear averaging
dynamics.

Theorem 3: Let fi(xi) ∈ C2 and gij(xi, xj) ∈ C2 be symmetric functions with | ∂
2gij

∂xi∂xj
| ≤ m, |∂2fi

∂x2
i
| ≤



m,∀i, j.2 Then the state-dependent network dynamics

xk+1
i = xki −

∂
∂xi
fi(x

k
i ) +

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j )

2m(|Ni(xk)|+ 1)
, i ∈ [n] (2)

admit a Lyapunov function V (x) :=
∑

i fi(xi)+
1
2

∑
i,j min{gij(xi, xj), 0} such that V (xk+1) ≤ V (xk)−

m‖xk−xk+1‖2. If, in addition, gij(·) are convex and fi(·) are strictly convex functions, then the dynamics
(2) will converge to an equilibrium point.

Proof: Let us consider the following Lagrangian function

L(x,λ) =
n∑
i=1

fi(xi) +
1

2

∑
i 6=j

λijgij(xi, xj),

and consider the BCD method applied to this function when λ ∈ [0, 1]n(n−1) and x ∈ Rn. If the state
variable is fixed to xk, and we set λk := argminλ∈[0,1]n(n−1) L(xk,λ), it is easy to see that λk precisely
captures the network structure among the agents at the current state xk. Next, let us fix the network
variable to λk, and consider

Lk(x) := L(x,λk) =
n∑
i=1

fi(xi) +
1

2

∑
i 6=j

λkijgij(xi, xj)

=
n∑
i=1

fi(xi) +
1

2

∑
i

∑
j∈Ni(xk)

gij(xi, xj).

Ideally, we want to set the state at the next time step xk+1 to a global minimizer of Lk(x). However,
since it might be difficult to solve the minimization problem minx∈Rn Lk(x), we use an inexact BCD
method, with which a quadratic upper approximation of Lk(x) is minimized. More precisely, consider
the quadratic approximation of Lk(x) at the current point xk:

Lk(x) ' L(xk) + (x− xk)T∇Lk(xk) +
1

2
(x− xk)T∇2Lk(x

k)(x− xk), (3)

where ∇Lk(xk) is the gradient of Lk(x) at xk, whose ith component is given by

[∇Lk(xk)]i =
∂

∂xi
fi(xi) +

∑
j∈Ni(xk)

∂

∂xi
gij(x

k
i , x

k
j ).

Moreover, ∇2Lk(x
k) is the Hessian of Lk(x) at xk, with the Hessian matrix function

[∇2Lk(x)]ij =


∂2

∂x2
i
fi(xi) +

∑
j∈Ni(xk)

∂2gij(xi,xj)

∂x2
i

if j = i
∂2gij(xi,xj)

∂xi∂xj
if j ∈ Ni(x

k)

0 if j /∈ Ni(x
k).

Now, if we assume | ∂
2gij

∂xi∂xj
| ≤ m, |∂2fi

∂x2
i
| ≤ m,∀i, j, and use the Gershgorin Circle Theorem, one can see

that for any x, the Hessian ∇2Lk(x) is dominated by the diagonal matrix Qk := 2m · diag(|N1(xk)|+
1, . . . , |Nn(xk)|+ 1). Via the Tailor expansion, for every x ∈ Rn there exists an ζx ∈ Rn such that,

Lk(x) = L(xk) + (x− xk)T∇Lk(xk) +
1

2
(x− xk)T∇2Lk(ζx)(x− xk)

≤ L(xk) + (x− xk)T∇Lk(xk) +
1

2
(x− xk)TQk(x− xk) := uk(x).

2For instance, any m-smooth function possesses this property.



Therefore, uk(x) is a quadratic upper approximation for Lk(x) for any x. Let

xk+1 = argmin
x∈Rn

uk(x) = xk −Q−1
k ∇Lk(x

k). (4)

We can write,

Lk(x
k+1) ≤ uk(x

k+1) ≤ uk(x
k) = Lk(x

k).

That shows that the state-dependent network dynamics,

xk+1
i = xki −

∂
∂xi
fi(x

k
i ) +

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j )

2m(|Ni(xk)|+ 1)
,

are Lyapunov stable (i.e., L(·) decreases regardless of the state or network updates), and the function

V (x) := min
λ∈[0,1]n(n−1)

L(x,λ) =
∑
i

fi(xi) +
1

2

∑
i,j

min{gij(x), 0}

serves as a Lyapunov function. Moreover, the drift of this Lyapunov is bounded by

V (xk)− V (xk+1) = L(xk,λk)− L(xk+1,λk+1) ≥ L(xk,λk)− L(xk+1,λk)

= Lk(x
k)− Lk(xk+1) = uk(x

k)− Lk(xk+1)

≥ uk(x
k)− uk(xk+1) =

1

2
(∇Lk(xk))TQ−1

k ∇Lk(x
k)

=
1

2
‖Q−1

k ∇Lk(x
k)‖2

Qk
=

1

2
‖xk − xk+1‖2

Qk
≥ m‖xk − xk+1‖2,

where the last equality follows from (4), and the last inequality holds as all the diagonal entries of Qk

are greater than 2m. Therefore, V (xk+1) ≤ V (xk)−m‖xk − xk+1‖2. Since V (·) is lower bounded by
a finite value, we get limk→∞ ‖xk+1 − xk‖ = 0. That, in view of (4) and the fact that diagonal entries
of Q−1

k are lower bounded by 1
2mn

, implies limk→∞∇Lk(xk) = 0.
Next, to show the convergence of the dynamics (2) in the case of convex measurements gij(·) and

strictly convex functions fi(·), we note that for any k, Lk(x) belongs to the following finite family of
strictly convex functions

H :=
{∑

i

fi(xi) +
1

2

∑
i,j

λijgij(xi, xj) : λij ∈ {0, 1},∀i, j
}
,

which contains at most O(2n
2
) functions. The reason is that Lk(x) = L(x,λk), where λk is the solution

of the linear program minλ∈[0,1]n(n−1) L(xk,λ), and must be an extreme point of [0, 1]n(n−1). Now, given
any h(x) ∈ H, let h1 < h2 < . . ., be all the indicies k for which Lk(x) = h(x). Then we can partition
the sequence {xk} into at most |H| subsequences {{xh`}`≥1, h ∈ H}. Since limk→∞∇Lk(xk) = 0, that
means that for any subsequence {xh`} we have, lim`→∞∇h(xh`) = lim`→∞∇Lh`(x

h`) = 0. As h(·) is
a strictly convex function with a finite global minimum, the subsequence {xh`}`≥1 must converge to the
unique minimizer of h(·), denoted by xh. Since there are a finite number of such subsequences, for any
ε > 0, there exists Kε such that ‖xh`−xh‖ < ε,∀h ∈ H, ` > Kε. Let X = {xh = argminh(x) : h ∈ H}
be the finite set of minimizers of all the functions in H, and choose ε := 1

3
minxp 6=xq∈X ‖xp−xq‖. Then

for ` > Kε, each subsequence {xh`}`≥1 lies in an ε-neighborhood of its limit point xh, and, moreover,
there is no jump of the iterates between two distinct ε-neighborhoods (Otherwise, ‖xk+1−xk‖ > ε

3
for

some k, contradicting the fact that limk→∞ ‖xk+1 − xk‖ = 0.) Thus, for ` > Kε, all the subsequences
{{xh`}`≥1, h ∈ H} must lie in the same ε-neighborhood, and hence the sequence {xk} converges to a
limit point x∗ ∈ X .



Example 1: Let gij(xi, xj) =
(xi−xj)2

2
− ε2

2
, i 6= j be symmetric quadratic measurements and fi(xi) =

0,∀i ∈ [n]. Clearly, these functions satisfy the statement of Theorem 3 with m = 1. By applying
Theorem 3 directly to these functions, we obtain

xk+1
i = xki −

∑
j∈Ni(xk)(x

k
i − xkj )

2(|Ni(xk)|+ 1)
=
|Ni|+ 2

2(|Ni|+ 1)
xki +

1

2

∑
j∈Ni(xk) x

k
j

|Ni(xk)|+ 1
, i ∈ [n],

which has been shown to be Lyapunov stable. However, the above dynamics are not exactly the
homogeneous HK dynamics, but rather a “lazy” version of them wherein each agent puts a higher
weight of (nearly) 1

2
on its own state. The reason for losing a factor of 1

2
for the general (nonquadratic)

measurements is that the quadratic upper approximation in (3) may not be exact, and the cost of such
approximation is reflected by an extra factor of 1

2
in the underlying nonlinear dynamics (2). However,

if the measurement functions are quadratic (as in the HK model), the quadratic approximation in (3)
becomes exact, and one can skip the approximation step in (4) by directly computing the gradient and
Hessian matrices in a closed form to show that Lk(xk+1) ≤ Lk(x

k). More precisely, for quadratic
measurements we have

Lk(x) = L(xk) + (x− xk)T∇Lk(xk) +
1

2
(x− xk)T∇2Lk(x

k)(x− xk),

with a closed-form gradient ∇Lk(xk) = (Dk−Ak)xk and Hessian ∇2Lk(x
k) = Dk +Ak, where Ak is

the adjacency matrix of the communication network at state xk and Dk = diag(|N1(xk)|, . . . , |Nn(xk)|).
If we take Qk = diag(|N1(xk)|+ 1, . . . , |Nn(xk)|+ 1) (i.e., without an extra factor of 2) and note that
xk − xk+1 = Q−1

k ∇Lk(xk), we get

Lk(x
k+1)− Lk(xk) = (xk+1−xk)T∇Lk(xk) +

1

2
(xk+1−xk)T (Dk + Ak)(x

k+1−xk)

=
1

2
(xk+1−xk)T

[
Dk + Ak − 2Qk

]
(xk+1−xk) ≤ −‖xk+1 − xk‖2,

where the last inequality holds because Dk+Ak−2Qk = −2I−(Dk−Ak) ≤ −2I . Therefore, Lyapunov
stability of the homogeneous HK dynamics

xk+1 = xk −Q−1
k ∇Lk(x

k) = Q−1
k (I + Ak)x

k

can be viewed as a special case of Theorem 3 for specific quadratic measurements with an associated
Lyapunov function V (x) =

∑
i,j min{ (xi−xj)2

2
− ε2

2
, 0}.

Example 2: Let G = ([n], E) be a fixed undirected graph with a positive weight aij = aji > 0 on
each edge {i, j} ∈ E . (We set aij = aji = 0 if {i, j} /∈ E .) Assume that

∑
j∈Ni∪{i} aij = 1,∀i, where

Ni denotes the fixed set of neighbors of agent i. Now let us define fi(xi) = 0, ∀i ∈ [n]. Moreover, let
K > 0 be a very large constant. Consider the following symmetric measurements:

gij(xi, xj) =

{
aij
2

(xi − xj)2 −K, if {i, j} ∈ E
1 if {i, j} /∈ E .

Clearly, these functions satisfy the statement of Theorem 3. As K is chosen to be a very large number,
regardless of the state xk of the dynamics (to be defined soon), we always have Ni(x

k) = {j :
gij(x

k
i , x

k
j ) ≤ 0} = Ni. If we leverage the quadratic structure of the measurement functions, and use the

exact approach as in Example 1, we obtain ∇Lk(xk) = (I −D − A)xk and ∇2Lk(x
k) = I −D + A,

where A = (aij) is the weighted adjacency matrix of the graph G (with zero diagonal entries), and
D = diag(a11, . . . , ann) is the diagonal matrix of self-degrees. Therefore, Qk := I is a diagonal matrix



dominating the Hessian matrix (as I − D + A ≤ I by the Gershgorin Theorem and since aii =
1−

∑
j∈Ni aij,∀i). Thus, the dynamics

xk+1 = xk −Q−1
k ∇Lk(x

k) = xk − (I −D − A)xk = (D + A)xk

are Lyapunov stable with a Lyapunov function

V (x) =
1

2

∑
i,j

min{gij(xi, xj), 0} = −|E|K +
1

2

∑
{i,j}∈E

aij(xi − xj)2.

That is exactly the well-known Laplacian Lyapunov function for the conventional averaging dynamics
xk+1 = (D+A)xk, which is shifted by a constant −|E|K. Hence, we recover the result of Theorem 1.

Example 3: In the proof of Theorem 3, we restricted our attention to quadratic upper approximations.
However, motivated by the mirror descent algorithm from convex optimization [32], we can use any
smooth convex mirror map Ψ : Rn → R to construct an upper approximation for Lk(x) at the point
xk. By doing so, we obtain alternative state-dependent network dynamics whose Lyapunov stability and
convergence can be established via an approach similar to that in Theorem 3. More precisely, Let Ψ ∈ C
be a strictly convex function with ∇2Ψ(x) ≥ 2mnI . Then, uk(x) := L(xk) + (x − xk)T∇Lk(xk) +
DΨ(x,xk) serves as a convex upper approximation for Lk(x); hence, if we update the state at the next
time step to xk+1 = argminx∈Rn uk(x), or equivalently to the solution of

∇Ψ(xk+1) = ∇Ψ(xk)−∇Lk(xk), (5)

that will guarantee a decrease in the Lyapunov V (x)=
∑

i fi(xi) + 1
2

∑
i,j min{gij(x), 0}. For instance,

if we choose the mirror map to be the negative entropy function, i.e., Ψ(x) :=
∑n

i=1 xi lnxi, and use
(5), we obtain the following Lyapunov stable multiplicative dynamics:

xk+1
i = xki · exp

(
− ∂f(xi)

∂xi
−
∑

j∈Ni(xk)

∂gij(x
k
i , x

k
j )

∂xi

)
.

A. Asymmetric State-Dependent Network Dynamics
Asymmetric (directed) interconnections among agents often introduce a significant challenge in the

analysis of multiagent network dynamics. Unfortunately, the gradient operator is “symmetric,” meaning
that fixing the network variable in the BCD method and updating the state variable in the negative
direction of the gradient will always generate a symmetric class of averaging dynamics. However, one
way to tackle that issue using sequential optimization is to introduce an independent copy of the state
variable while making sure that the two copies remain close to each other. In other words, we capture
the asymmetry between the agents by introducing an extra block variable into the BCD method and
adding a penalty term (possibly asymmetric) to the objective function. That ensures that the two copies
of the state variables remain close to each other. Here, the choice of the penalty function can be very
problem-specific, resulting in different asymmetric state-dependent network dynamics. However, one
natural choice for the penalty function is the Bregman divergence between the two copies of the state
variables, as shown in the following theorem.

Theorem 4: Let fi(xi) ∈ C2 and gij(xi, xj) ∈ C2 be L-Lipschitz continuous functions such that
| ∂

2gij
∂xi∂xj

| ≤ m, |∂2fi
∂x2
i
| ≤ m,∀i, j. If ‖y − x‖1 ≤ 1

nL
Df (y,x),∀x,y, where f(x) =

∑n
i=1 fi(xi), then the

dynamics

xk+1
i = xki −

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j )

m(|Ni(xk)|+ 1)
, i ∈ [n], (6)

are Lyapunov stable with a Lyapunov function V (x) =
∑

i,j min{gij(xi, xj), 0}.



Proof: Let ci(x,λi) :=
∑

j 6=i λijgij(xi, xj) denote the cost of agent i with respect to its neighbors,
and let y be an independent copy of the state variable x. Consider the following function with three
independent block variables λ ∈ [0, 1]n(n−1),x,y ∈ Rn:

L(y,x,λ) :=
n∑
i=1

ci(yi,x−i,λi) +Df (y,x) =
n∑
i=1

∑
j 6=i

λijgij(yi, xj) +Df (y,x),

where Df (y,x) := f(y)− f(x)− (y−x)T∇f(x). Note that here we no longer require the symmetry
assumption, so that in general, gij(xi, xj) 6= gji(xj, xi). The reason for introducing the Bregman distance
Df (y,x) into the objective function is that it would be ideal if the two copies of the state variables
coincide. But instead of adding the hard constraint y = x into our optimization problem, we relax this
constraint by adding a soft penalty term to the objective function. Now, let us apply the BCD method
to the following minimization:

min
λ∈[0,1]n(n−1)

min
x∈Rn

min
y∈Rn
{

n∑
i=1

∑
j 6=i

λijgij(yi, xj) +Df (x,y)}. (7)

First, assume that both state variables are fixed to y = x = xk. Then, if we minimize the objective
function (7) with respect to λ ∈ [0, 1]n(n−1), we precisely capture the asymmetric network structure λk

associated with the state xk. (I.e., λkij = 1 if and only if gij(xki , x
k
j ) ≤ 0.) Next, let us fix λ = λk and

x = xk, and consider minimizing (7) with respect to the y variable. However, to obtain a closed form
for the optimal solution, instead of solving the minimization exactly, we minimize its quadratic upper
approximation at the current state xk, given by

zk(y) := L(xk,xk,λk) + (y − xk)T∇yL(xk,xk,λk) +
1

2
(y − xk)TPk(y − xk),

where Pk is a diagonal matrix whose ith diagonal entry is m(|Ni(x
k)|+ 1). To see why L(y,xk,λk) ≤

zk(y),∀y, we note that

[∇yL(y,xk,λk)]i =
∑

j∈Ni(xk)

∂

∂yi
gij(yi, x

k
j ) + (

∂

∂yi
fi(yi)−

∂

∂xi
fi(x

k
i )),

which implies that ∇2L(y,xk,λk) is a diagonal matrix whose diagonal entries are

[∇2L(y,xk,λk)]ii =
∂2

∂y2
i

fi(yi) +
∑

j∈Ni(xk)

∂gij(yi, x
k
j )

∂2yi
.

As |∂
2fi(yi)

∂y2
i
| ≤ m and |∂gij(yi,x

k
j )

∂y2
i
| ≤ m, for all i ∈ [n], the Hessian matrix is dominated by Pk, and

the result follows from the Tailor expansion. Thus, the optimal solution to miny∈Rn zk(y) is given by
xk−P−1

k ∇yL(xk,xk,λk), which is precisely the next state of the dynamics (6). Therefore, if the block
variable y is updated to xk+1, while the other variables are fixed to λ = λk,x = xk, that will decrease
the objective function because

L(xk+1,xk,λk) ≤ zk(x
k+1) = min

y∈Rn
zk(y) ≤ zk(x

k) = L(xk,xk,λk).

Finally, let us fix y = xk+1,λ = λk (which are the solutions to their corresponding sub-optimizations),
and consider minx∈Rn L(xk+1,x,λk). In particular, if we show that L(xk+1,xk+1,λk) ≤ L(xk+1,xk,λk),
that will complete the BCD loop and imply that L(y,x,λ) is decreasing along the trajectory of the



asymmetric dynamics (6). Here, the role of the penalty term in the objective function comes into play.
More precisely, using the Lipschitz continuity and the fact that Df (x

k+1,xk+1) = 0, we can write,

L(xk+1,xk+1,λk)− L(xk+1,xk,λk) = −Df (x
k+1,xk)

+
n∑
i=1

∑
j∈Ni(xk)

(
gij(x

k+1
i , xk+1

j )− gij(xk+1
i , xkj )

)
≤ −Df (x

k+1,xk) +
∑
i,j

|gij(xk+1
i , xk+1

j )− gij(xk+1
i , xkj )|

≤ −Df (x
k+1,xk) + nL

∑
j

|xk+1
j − xkj |

= −Df (x
k+1,xk) + nL‖xk+1 − xk‖1 < 0,

where the last inequality follows from the assumption on the choice of the Bregman map f(·). There-
fore, V (x) := minλ∈[0,1]n(n−1) L(x,x,λ) =

∑
i,j min{gij(xi, xj), 0} is a decreasing function along the

trajectories of the asymmetric dynamics (6).

B. BCD Method with Change of Variables
In this section, we show how a suitable change of block variables in the BCD method can generate

new state-dependent network dynamics, whose Lyapunov stability can be established using the same
approach as before. The change of variable can be applied to either the state or the network variable.
However, in this section, we focus on a more compelling case, in which the change of variable is applied
on the network variable; we only illustrate the idea of a change of variable for the state through the
following simple example.

Example 4: Let us recall the homogeneous HK model in which the state of agent i at the next time

step is updated to xk+1
i =

xki +
∑
j∈Ni(xk)

xkj

1+|Ni(xk)| , i ∈ [n], where the neighborhood set of agent i is given by
Ni(x

k) = {j ∈ [n] \ {i} : |xki − xkj | ≤ ε}. As the dynamics are invariant with respect to translation of
the states, without loss of generality, we may assume that xki > 1,∀i, k. Now let us define a new state
variable by setting yi := ln(xi), i ∈ [n]. If we apply the HK dynamics on those new logarithmic states,

we obtain yk+1
i =

yki +
∑
j∈Ni(yk)

ykj

1+|Ni(yk)| , with Ni(y
k) = {j ∈ [n] \ {i} : |yki − ykj | ≤ ε}, which are Lyapunov

stable and converge to an equilibrium. If we rewrite the dynamics in terms of x variables, we obtain a
new class of state-dependent geometric averaging dynamics xk+1

i = (
∏

j∈N̄i(xk) x
k
j )

1

|N̄i(xk)| , with a new

definition of a neighborhood set N̄i(x
k) = {j ∈ [n] : e−ε ≤ xki

xkj
≤ eε}, that are also Lyapunov stable

and converge.
Next, we turn our attention to the case of changing the network variables. So far, the dual variable

λij in the Lagrangian function L(x,λ) has been used to capture the existence of an edge from agent i
to agent j. In particular, we saw that restricting λij to the unit interval [0, 1] and minimizing L(x,λ) for
the network variable in the BCD method would automatically force λij to take binary values in {1, 0}
(and hence capture the switching behavior of an edge formation between i and j). In particular, if we fix
the state block variable in L(x,λ) =

∑
i,j λijgij(xi, xj) and minimize it with respect to λ ∈ [0, 1]n(n−1),

that will give us the network structure for that state, i.e., λ∗ij = 1 − sgn(gij(xi, xj)), where sgn(·) is
the sign function. This relation will give us a complicated characterization of λ∗ij that is a combination
of the sign function and the measurement function. An alternative way to recover the same network
structure would start by transforming the original network variables from λij to fij(λij) := 1−sgn(λij),
which would cause the transformed Lagrangian function to become L̂(x,λ) =

∑
i,j fij(λij)gij(xi, xj).

If we then apply the BCD method to L̂(x,λ) by fixing the state variable and optimizing L̂(x,λ) with



respect to the unconstrained network variable λij ∈ R, we obtain a simpler optimal network variable
λ̂ij = gij(xi, xj). Note that

L̂(x, λ̂) = min
λ∈Rn(n−1)

L̂(x,λ) = min
λ∈[0,1]n(n−1)

L(x,λ) = L(x,λ∗).

Such a transformation of the network variables has three advantages: i) it removes the box constraints on
the network variables which cause switching and absorbs them into the structure of the transformation
function; ii) the optimal network variable in the BCD method has a simpler form after the change
of variable; and iii) by choosing different transfer functions, one can obtain different types of state-
dependent network dynamics. The following theorem provides a sample result using the idea of a change
of network variables.

Theorem 5: Let gij(xi, xj) ∈ C2 be symmetric functions such that | ∂
2gij

∂xi∂xj
| ≤ m,∀i, j. Moreover,

let fij(λ) ∈ C be symmetric and nonnegative decreasing functions. Then the state-dependent network
dynamics

xk+1
i = xki −

∑
j fij

(
gij(x

k
i , x

k
j )
)
∂
∂xi
gij(x

k
i , x

k
j )

2m
∑

j fij
(
gij(xki , x

k
j )
) , i ∈ [n] (8)

admit a Lyapunov function V (x)=
∑

i 6=j
∫ gij(xi,xj)

0
fij(λ)dλ. Moreover, for each k there exists a positive-

definite matrix Qk such that V (xk)− V (xk+1) ≥ ‖xk − xk+1‖2
Qk

, and limk→∞ ‖xk − xk+1‖Qk = 0.
Proof: Let us consider the BCD method applied to the transformed Lagrangian

L̂(x,λ) :=
∑
i 6=j

(
fij(λij)gij(xi, xj)− hij(λij)

)
,

with x ∈ Rn and λ ∈ Rn(n−1), for some real-valued functions hij(λij) to be determined later. If for
any fixed state x, the function L̂(x,λ) has a unique minimum with respect to λ ∈ Rn(n−1), we can
apply the BCD method and be assured that the function will decrease because of the network updates.
Now let us first fix the state variable to xk. Assuming that the functions fij, hij are differentiable, to
find argminλ∈Rn(n−1) L̂(xk,λ), we set

∂

∂λij
L̂(xk,λ) = f ′ij(λij)gij(x

k
i , x

k
j )− h′ij(λij) = 0, (9)

which implies
h′ij(λij)

f ′ij(λij)
= gij(x

k
i , x

k
j ). Therefore, if we define h′ij(λ) := λf ′ij(λ), or, equivalently, hij(λ) :=∫ λ

0
sf ′ij(s)ds, equation (9) has a unique solution λ∗ij = gij(x

k
i , x

k
j ). To show that this solution is the

minimizer of L̂(xk,λ), we note that

∂

∂λij
L̂(xk,λ) = f ′ij(λij)

(
gij(x

k
i , x

k
j )− λij

)
.

Since fij(·) is a decreasing function, f ′ij(λij) < 0. Thus, for λij ≤ gij(x
k
i , x

k
j ), the function L̂(xk,λ) is

decreasing with respect to λij , and for λij ≥ gij(x
k
i , x

k
j ), it is increasing. (Note that L̂(xk,λ) is splittable

over its λ-components, so we can analyze each of its summands separately.) Thus, given a fixed state
xk, the unique global minimum of L̂(xk,λ) is obtained at λ = λ∗, where λ∗ij = gij(x

k
i , x

k
j ).

The rest of the proof follows along the same analysis used in Theorem 3, and we only sketch it here.
Let us fix the network variable to λ∗, and consider minx∈Rn L̂(x,λ∗). To find a minimizer we use an



inexact method by using a quadratic upper approximation of L̂(x,λ∗) at xk. The ith component of the
gradient of L̂(x,λ∗) at xk is given by

[∇xL̂(xk,λ∗)]i =
∑
j

(
fij(λ

∗
ij)

∂

∂xi
gij(x

k
i , x

k
j ) + fji(λ

∗
ji)

∂

∂xi
gji(x

k
j , x

k
i )
)

= 2
∑
j

fij(λ
∗
ij)

∂

∂xi
gij(x

k
i , x

k
j )

= 2
∑
j

fij(gij(x
k
i , x

k
j ))

∂

∂xi
gij(x

k
i , x

k
j ),

where the second equality is by the symmetry of fij, gij . The Hessian matrix equals

[∇2L̂(x,λ∗)]ij =

{
2
∑

j fij(gij(x
k
i , x

k
j ))

∂2gij(xi,xj)

∂x2
i

if j = i

2fij(gij(x
k
i , x

k
j ))

∂2gij(xi,xj)

∂xi∂xj
if j 6= i,

which is dominated by a diagonal matrix Qk whose ith diagonal entry is given by [Qk]ii = 2 +
4m
∑

j fij(gij(x
k
i , x

k
j )). Thus, the optimal solution to the quadratic upper approximation of L̂(x,λ∗) at

the point x = xk is given by xk −Q−1
k ∇xL̂(xk,λ∗), which in view of (8) equals to xk+1. As a result,

L̂(xk+1,λ∗) < L̂(xk,λ∗), and

V (x) = min
λ∈Rn(n−1)

L̂(x,λ) =
∑
i 6=j

(
fij(gij(xi, xj))gij(xi, xj)−

∫ gij(xi,xj)

0

λf ′ij(λ)dλ
)

=
∑
i 6=j

∫ gij(xi,xj)

0

fij(λ)dλ

serves as a Lyapunov function for the dynamics (8), and the last equality is obtained using integration
by parts. Now, as in Theorem 3, we can bound the drift of this Lyapunov function at time k as

V (xk)− V (xk+1) ≥ L̂(xk,λ∗)− L̂(xk+1,λ∗)

≥ 1

2
(∇xL̂(xk,λ∗))TQ−1

k ∇xL̂(xk,λ∗)

=
1

2
‖Q−1

k ∇xL̂(xk,λ∗)‖2
Qk

=
1

2
‖xk − xk+1‖2

Qk
.

Finally, V (·) is a nonnegative function due to the nonnegativity of fij(·). Therefore, if we sum the
above relations for k = 1, 2, . . ., we get

∑∞
k=1 ‖xk − xk+1‖2

Qk
≤ V (x0) < ∞. This implies that

limk→∞ ‖xk − xk+1‖Qk = 0.
Remark 2: In fact, the differentiability of the transfer functions fij in the above theorem can be

further relaxed to any nonnegative decreasing symmetric functions fij . In particular, Theorem 5 is a
heterogeneous extension of [33, Corollary 1] (see also [34]) when fij(λ) = f(

√
λ),∀i, j and gij(xi, xj) =

(xi − xj)2.

IV. STABILITY USING DISCRETE-TIME SADDLE-POINT DYNAMICS

In the previous section, we considered the stability of state-dependent network dynamics when the
network structure and agents’ states are aligned with each other. More precisely, in the application of
the BCD method on the Lagrangian function L(x,λ), we considered a double minimization problem



minx minλ L(x,λ), which essentially means that the network coordinator (viewed as a network player)
breaks/adds the links in favor of the agents’ states (viewed as a state player). In essence, that means
that there is no conflict between the network and state players, as they are both minimizing the same
Lagrangian function. But what if the network and state players have conflicting objectives? In that case,
we have a 2-player zero-sum game between the network and the state with the payoff function L(x,λ),
so that the network player aims to maximize the payoff function while the state player aims to minimize
it, i.e., minx maxλ L(x,λ).

To model such conflicting behavior, we assume that each agent i ∈ [n] holds n−1 convex measurement
functions gij(xi, xj), j ∈ [n] \ {i}. In this section, we restrict our attention to symmetric measurement
functions; however, for asymmetric measurement functions, results similar to those in Theorem 4 can
be obtained. For a given state x, two agents i and j become each other’s neighbors if gij(xi, xj) ≥ 0.
(Note that the logic constraint is now the reverse of what it was in the previous section.) Intuitively, an
edge is formed between two agents i and j if and only if their states are far from each other. Now let
us consider the following convex program:

min f(x) :=
n∑
i=1

fi(xi)

s.t.
1

2
gij(xi, xj) ≤ 0, ∀i 6= j,

x ∈ Rn, (10)

where fi(xi), i ∈ [n] are agents’ private convex functions.3 To solve this problem, one can form
the Lagrangian function L(x,λ) = f(x) + 1

2

∑
i,j λijgij(xi, xj), and solve the following saddle-point

problem: minx∈Rn maxλ≥0 L(x,λ).4

By using KKT optimality conditions, we know that if the constraint gij(xi, xj) ≤ 0 is satisfied but not
tight (i.e., gij(xi, xj) < 0), then the corresponding optimal dual variable must be zero, i.e., λij = 0. If
the dual variables are viewed as network variables, that means that there is no edge between the agents
i and j, and that is consistent with the logical condition of not having an edge between i and j. On the
other hand, if the constraint gij(xi, xj) ≤ 0 is not satisfied (i.e., gij(xi, xj) > 0), then one must set the
corresponding dual variable to λij =∞ to maximize maxλ≥0 L(x,λ). However, if the dual variables are
upper-bounded by 1, to achieve the maximum value in maxλ∈[0,1]n(n−1) L(x,λ), we must set λij to its
upper bound, i.e., λij = 1. That is again consistent with the logical condition of having an edge between
i and j. These facts together suggest that the network switches that may occur during the update process
of state-dependent network dynamics are merely the KKT optimality conditions that guide the iterates
to the optimal solution of (10), assuming that there is a budget constraint on the dual variables. In other
words, if the dual variables could have been freely chosen from [0,∞), then the iterates of the dynamics
would converge to the optimal solution of (10). However, the budget constraints on the dual variables
do not allow us to penalize the violated constraints arbitrarily large and force them to be feasible.
Therefore, the solutions that are obtained from state-network updates may not necessarily generate a
feasible solution to (10). Nevertheless, this approach allows us to view the state-network dynamics as an
iterative primal-dual algorithm guided by KKT optimality conditions for solving a saddle-point problem
with box constraints on the dual variables. Alternatively, the state-dependent network dynamics can
be viewed as Nash dynamics in a zero-sum game between a network player and a state player, with
budget constraints on the action set of the network player. In the following, we use these observations
to develop Lyapunov stable and convergent state-dependent network dynamics via static saddle-point
problems.

3Here, each constraint is scaled by 1
2

without causing changes to the feasible set.
4To do so, one must find a solution (x̄, λ̄) such that L(x̄,λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), ∀x,∀λ ≥ 0.



Theorem 6: Let gij(xi, xj) ∈ C be a symmetric convex function and fi(xi) ∈ C be a convex function.
Assume that agent i ∈ [n] updates its state as

xk+1
i = xki − αk

( ∂

∂xi
fi(x

k
i ) +

∑
j∈Ni(xk)

∂

∂xi
gij(x

k
i , x

k
j )
)
, (11)

where Ni(x
k) = {j : gij(x

k
i , x

k
j ) > 0} denotes the set of neighbors of agent i at time k. Then, for any

positive sequence αk = γk[
∑

i

(∂fi(xki )

∂xi
+
∑

j∈Ni(xk)

∂gij(x
k
i ,x

k
j )

∂xi

)2
]−

1
2 , with limk γk = 0 and

∑
k γk = ∞,

the dynamics (11) converge to an equilibrium x∗. Moreover, for sufficiently small αk, V (x) = ‖x−x∗‖2

serves as a Lyapunov function.
Proof: Let us consider the Lagrangian function

L(x,λ) = f(x) +
1

2

∑
i,j

λijgij(xi, xj),

where f(x) =
∑n

i=1 fi(xi), and suppose that we want to solve the following saddle-point problem with
box constraints on the dual variables:

min
x∈Rn

max
λ∈[0,1]n(n−1)

L(x,λ) = min
x∈Rn

max
λ∈[0,1]n(n−1)

{f(x) +
1

2

∑
i,j

λijgij(xi, xj)}

= min
x∈Rn

{
f(x) +

1

2

∑
i,j

max{gij(xi, xj), 0}
}
.

If we define Φ(x) := f(x) + 1
2

∑
i,j max{gij(xi, xj), 0} and note that for any i, j, max{gij(xi, xj), 0}

is a convex function, we can easily see that Φ(x) is a convex function of x. Therefore, if a subgradient
algorithm is applied to the unconstrained convex problem minx∈Rn Φ(x) with an appropriate choice of
step sizes αk, k = 1, 2, . . ., the generated sequence will converge to a minimizer of Φ(x) denoted by
x∗. More precisely, let us use gk to denote the subgradient of Φ(x) at xk. Then, it is known that the
discrete time dynamics

xk+1 = xk − αkgk, (12)

with diminishing step length αk = γk
‖gk‖ with limk γk = 0 and

∑
k γk = ∞, will converge to x∗ [35].

Now, let J = {(r, s) : grs(x
k
r , x

k
s) > 0} and J̄ = {(r, s) : grs(x

k
r , x

k
s) ≤ 0}. Then, for every (r, s) ∈ J ,

the function max{grs(xr, xs), 0} has a unique subgradient at xk, which is ∇grs(xkr , xks). Moreover, for
every (r, s) ∈ J̄ , the minimum of the convex function max{grs(xr, xs), 0} equals 0 and is achieved
at xk. Thus, 0 is a subgradient of max{grs(xr, xs), 0} at xk for every (i, j) ∈ J̄ . Through use of
the additivity rule of the subgradient, we conclude that gk = ∇f(x) + 1

2

∑
(r,s)∈J ∇grs(xkr , xks) is a

subgradient for Φ(·) at xk. In particular, the ith component of gk is given by

gki =
∂

∂xi
f(xk) +

1

2

∑
j

(
1{gij(xki ,xkj )>0}

∂gij(x
k
i , x

k
j )

∂xi
+ 1{gji(xkj ,xki )>0}

∂gji(x
k
j , x

k
i )

∂xi

)
=

∂

∂xi
fi(x

k
i ) +

∑
j

(
1{gij(xki ,xkj )>0} ·

∂gij(x
k
i , x

k
j )

∂xi

)
=

∂

∂xi
fi(x

k
i ) +

∑
j∈Ni(xk)

∂gij(x
k
i , x

k
j )

∂xi
, (13)

where 1{·} is the indicator function. In the above relations, the second equality holds by symmetry of
the functions gij(xi, xj) = gji(xj, xi), and the last equality is due to the definition of an edge emergence
between two nodes i and j. By substituting (13) into (12), we obtain the desired dynamics (11).



Finally, we can use the definition of the subgradient to write

‖xk+1 − x∗‖2 = ‖xk − x∗ − αkgk‖2

= ‖xk − x∗‖2 + (αk)2‖gk‖2 − 2αk(gk)T (xk − x∗)
≤ ‖xk − x∗‖2 + (αk)2‖gk‖2 − 2αk(Φ(xk)− Φ(x∗)).

Therefore, for any αk ∈ [0, 2(Φ(xk)−Φ(x∗))
‖gk‖2 ], we have ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2.

Remark 3: Let X be the set of minimizers of minx∈Rn Φ(x), which is a nonempty closed convex
set. Moreover, let d(x, X) = ‖x − ΠX [x]‖ be the minimum distance of the point x from the set X ,
where ΠX [x] is the projection of x on the set X . As for any x∗ ∈ X , ‖xk+1−x∗‖2 ≤ ‖xk −x∗‖2, by
choosing x∗ = ΠX [xk] we obtain

d(xk+1, X) = ‖xk+1−ΠX [xk+1]‖ ≤ ‖xk+1−ΠX [xk]‖ ≤ ‖xk−ΠX [xk]‖ = d(xk, X).

Thus, for a sufficiently small step size αk ∈ [0, 2(Φ(xk)−Φ(x∗))
‖gk‖2 ], the distance from the iterates (11) to the

optimal set X also serves as a Lyapunov function.
Example 5: An interesting special case of Theorem 6 is when fi(xi) = 0,∀i, and the set of constraints
{gij(xi, xj) ≤ 0, ∀i, j} is feasible. In this case the set of minimizers of Φ(x) =

∑
i,j max{gij(xi,xj)

2
, 0}

is precisely the feasible set {x ∈ Rn : gij(xi, xj) ≤ 0, ∀i, j}. In particular, the minimum value of Φ(·)
is zero which is obtained at any feasible point x∗ ∈ {x ∈ Rn : gij(xi, xj) ≤ 0,∀i, j}. Now if the norm
of the gradient of each measurement function gij is bounded above by a constant G, we can write,

2(Φ(xk)− Φ(x∗))

‖gk‖2
=

2Φ(xk)

‖gk‖2
=

∑
i

∑
j∈Ni(xk) gij(x

k
i , x

k
j )∑

i

(∑
j∈Ni(xk)

∂
∂xi
gij(xki , x

k
j )
)2

≥
∑

i

∑
j∈Ni(xk) gij(x

k
i , x

k
j )

n
∑

i,j

(
∂
∂xi
gij(xki , x

k
j )
)2 ≥

maxi,j{gij(xki , xkj )}
n2G2

. (14)

Let us define the ε-equilibrium set as the set of all the points for which each constraint gij(xi, xj) ≤ 0 is
violated by at most ε, i.e., Xε = {x ∈ Rn : gij(xi, xj) ≤ ε,∀i, j}, and consider the dynamics (11) with
the constant step size αk = ε

n2G2 . Then, if xk /∈ Xε, we have maxi,j{gij(xki , xkj )} > ε, which, in view
of (14), implies that αk ∈ [0, 2(Φ(xk)−Φ(x∗))

‖gk‖2 ]. Thus, as long as xk /∈ Xε, d(x, X) serves as a Lyapunov
function, and we can write

d(xk+1, X) ≤ d(xk, X) + (αk)2‖gk‖2 − 2αkΦ(xk)

= d(xk, X) +
ε2

n4G4
‖gk‖2 − 2ε

n2G2
Φ(xk)

≤ d(xk, X) +
ε2

n4G4
n2G2 − 2ε

n2G2
ε = d(xk, X)− ε2

n2G2
,

where in the last inequality we have used the fact that ‖gk‖2 ≤ n2G2 and Φ(xk) ≥ ε (as xk /∈ Xε). Since
d(xk, X) ≥ 0,∀k, we conclude that after at most d(x0,X)n2G2

ε2
iterations, the state-dependent network

dynamics xk+1
i = xki − ε

n2G2

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j ) will reach an ε-neighborhood of its equilibrium set

Xε.



A. Saddle-Point Dynamics with Heterogeneous Step Size
The subgradient method is not the only algorithm for minimizing a convex function, and one can

consider other algorithms that can result in different state-dependent network dynamics. The following
theorem provides another multiagent network dynamics motivated by the fact that different agents often
have different scaling parameters in their update rules. These dynamics can be viewed as the quasi-
Newton method [35] in the context of multiagent network dynamics.

Definition 3: A function V : Rn → R is called a semi-Lyapunov function for the discrete-time
dynamics zk+1 = h(zk), k = 0, 1, 2, . . ., if V (zk+1) < V (zk) for any zk ∈ Rm \ D, where D is a
measure-zero subset of Rn.

Theorem 7: Let f ∈ C be a convex function and gij ∈ C2 be a symmetric convex function whose
zeros form a measure-zero subset D. Let Φ(x)=f(x) + 1

2

∑
i,j max{gij(xi, xj), 0}, whose level set and

subgradient at point x are given by Lx = {y : Φ(y) ≤ Φ(x)} and gx, respectively. If for any x /∈ D,
there exists a positive-definite diagonal matrix Gx such that Φ(y) ≤ Φ(x)+(y−x)Tgx+1

2
‖y−x‖2

Gx , ∀y ∈
Lx, then the dynamics

xk+1
i = xki −

1

Gk
ii

( ∂

∂xi
f(xk) +

∑
j∈Ni(xk)

∂

∂xi
gij(x

k
i , x

k
j )
)
, i ∈ [n], (15)

admit the semi-Lyapunov function Φ(x). Moreover, if Gk ≤ mI,∀k, and xk ∈ D for at most finitely
many iterates k, then the dynamics (15) will converge.

Proof: Consider the convex function Φ(x) = f(x) + 1
2

∑
i,j max{gij(xi, xj), 0}, which is differen-

tiable at any point except on a measure-zero subset D := {x ∈ Rn : gij(xi, xj) = 0 for some i, j}. As
before, we know that the ith component of the gradient of Φ(x) at xk (or the subgradient, if xk ∈ D)
is given by gki = ∂

∂xi
f(xk) +

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j ). From the assumption, we know that there is a

positive-definite diagonal matrix Gk such that

uk(y) := Φ(xk) + (y − xk)Tgk +
1

2
‖y − xk‖2

Gk

forms a quadratic upper approximation for Φ(y),∀y ∈ Lxk , and uk(x
k) = Φ(xk). On the other hand,

it is easy to see that

xk+1 = xk − (Gk)−1gk = argmin
y∈Rn

uk(y).

Let us consider an arbitrary xk /∈ D. gk = ∇Φ(xk), and thus −(Gk)−1gk is a descent direction for any
positive-definite matrix (Gk)−1. Therefore, for sufficiently small δ > 0, Φ(xk − δ(Gk)−1gk) < Φ(xk),
and hence xk − δ(Gk)−1gk ∈ Lxk . Thus, the line segment {(1 − α)xk + αxk+1, α ∈ [0, 1]} intersects
Lxk in at least two different points (for α = 0 and α = δ). Now, if xk+1 /∈ Lxk , that line segment must
intersect with the boundary of Lxk at another point x̄ := ᾱxk + (1 − ᾱ)xk+1, for some ᾱ ∈ (0, 1).
(Note that the level set Lxk is a closed convex set.) If we apply the continuity of Φ(·), we conclude
that Φ(x̄) = Φ(xk), and thus

uk(x
k) = Φ(xk) = Φ(x̄) ≤ uk(x̄) ≤ ᾱuk(x

k) + (1− ᾱ)uk(x
k+1) < uk(x

k),

where the first inequality results from Φ(y) ≤ uk(y),∀y ∈ Lxk , and the second ineqaulity results from
the convexity of uk(·). This contradiction shows that xk+1 ∈ Lxk , which implies Φ(xk+1) < Φ(xk).
Therefore, Φ(·) serves as a semi-Lyapunov function for the dynamics (15). In particular, the drift of



this Lyapunov function at xk /∈ D equals

Φ(xk)− Φ(xk+1) ≥ Φ(xk)− uk(xk+1)

= Φ(xk)−
(

Φ(xk) + (xk+1 − xk)Tgk +
1

2
‖xk+1 − xk‖2

Gk

)
=

1

2
(gk)T (Gk)−1gk

=
1

2
‖gk‖2

(Gk)−1 .

Summing the above inequality for k = 0, . . . , K − 1, we obtain

Φ(xK) +
∑

{k:xk∈D}

(Φ(xk+1)− Φ(xk)) ≤ Φ(x0)− 1

2

∑
{k:xk /∈D}

‖gk‖2
(Gk)−1 .

As this relation holds for any K, and |{k : xk ∈ D}| < ∞ by our assumption, we must have∑
{k:xk /∈D} ‖gk‖2

(Gk)−1 < ∞, and hence limk→∞ ‖gk‖2
(Gk)−1 = 0. Thus, if there exists m > 0 such

that Gk ≤ mI,∀k, we get limk→∞ ‖gk‖ = 0. Since Φ(·) is a convex function, we know that the set of
minimizers of Φ(·) is exactly the set of points that have 0 as their subgradient. Thus, {xk}∞k=0 must
converge to an equilibrium point that is a global minimum of the semi-Lyapunov function Φ(·).

A natural choice for the matrices Gk in Theorem 7 is the Hessian matrix ∇2Φ(xk), which is used
in the Newton method for minimizing a smooth convex function. However, in practice, it is often
easier to work with a sparse modification of ∇2Φ(xk) given by a diagonal matrix containing only the
diagonal entries of ∇2Φ(xk). In particular, to assure positive definiteness, an identity matrix is added
to such a diagonal matrix to form the quasi-Newton update rule. Using such a quasi-Newton method
for minimizing Φ(·), one obtains the following state-dependent network dynamics:

xk+1
i = xki − tk

∂
∂xi
f(xk) +

∑
j∈Ni(xk)

∂
∂xi
gij(x

k
i , x

k
j )

1 + ∂2

∂x2
i
f(xk) +

∑
j∈Ni(xk)

∂2

∂x2
i
gij(xki , x

k
j )
, (16)

where tk is an appropriately chosen step size obtained using a line search or diminishing rule. In fact, it
is known that for a sufficiently small neighborhood of the minimizers of Φ(·), the Newton method with
step size tk = 1 will converge quadratically fast to the set of optimal points [35]. Therefore, we obtain
a simple explanation for the convergence properties and equilibrium points of seemingly complex state-
dependent network dynamics (16) by using the well-known quasi-Newton method. In particular, this
view provides a rigorous explanation of why the trajectories of the state-dependent network dynamics of
the form (16) (such as the HK model) converge exponentially fast as they get close to their equilibrium
points.

Example 6: Let us consider a special case in which f = 0 and gij(xi, xj) = 1
2
(xi − xj)

2 − ε2ij
2

,
where εij = εji > 0. Two agents i and j become each other’s neighbors if their distance from each
other is larger than εij . Therefore, we obtain the complement of the original HK model. Here, Φ(x)=
1
2

∑
ij max{1

2
(xi − xj)2 − ε2ij

2
, 0}, and thus for xk /∈ D := {x : |xi − xj| = εij, for some i, j}, we have

∇iΦ(xk) =
∑

j∈Ni(xk)

(xki − xkj ) = |Ni(x
k)|xki −

∑
j∈Ni(xk)

xkj ,

∇2
ijΦ(xk) =


|Ni(x

k)| if i = j

−1 if j ∈ Ni(x
k)

0 else.



In other words, the Hessian matrix at xk is equal to the Laplacian of the connectivity network at state
xk. As a result, the quasi-Newton dynamics (16) for minimizing the piecewise quadratic function Φ(x)
become

xk+1
i = xki − tk

|Ni(x
k)|xki −

∑
j∈Ni(xk)x

k
j

|Ni(xk)|+ 1
.

In particular, for a sufficiently small choice of step size tk, the function Φ(x) serves as a semi-Lyaponov
function. Note that for unit step size tk = 1, the above dynamics can be explicitly written as

xk+1
i =

∑
j∈Ni(xk)∪{i} x

k
j

|Ni(xk)|+ 1
, i ∈ [n]. (17)

As a result, the dynamics of the complement HK model can be viewed as iterates of a quasi-Newton
method with a unit step size to minimize Φ(x). Of course, for tk = 1, there is no reason why Φ(x) should
serve as a Lyapunov function, unless the initial point of the dynamics is sufficiently close to a minimizer
of Φ(·) (in which case the exponentially fast convergence of the quasi-Newton method with tk = 1 is
guaranteed). Nevertheless, the function Φ(x) is still very useful, as it globally guides the dynamics based
on quasi-Newton iterates. In particular, the set of minimizers of Φ(x) characterize the equilibrium points
of (17).5 This is because if limk x

k = x∗, we must have x∗ = limk x
k+1 = x∗ − limk(G

k)−1∇Φ(xk),
where here (Gk)−1 = diag( 1

|N1(xk)|+1
, . . . , 1

|Nn(xk)|+1
). This implies that limk→∞G

−1
k ∇Φ(xk) = 0. As

the entries of G−1
k are uniformly bounded below by 1

n+1
, we must have limk→∞∇Φ(xk) = 0, and the

result follows from the convexity of Φ(·).

V. CONTINUOUS-TIME CONSTRAINED SADDLE-POINT DYNAMICS

In this section, we extend our discrete-time saddle-point dynamics to their continuous-time counter-
parts and show how they can be leveraged to establish Lyapunov stability of state-dependent network
dynamics. Here, because of the continuity of the time index t ∈ [0,∞), an edge connectivity between
a pair of agents (i, j) is no longer a binary event λij ∈ {0, 1}, but rather a continuous weight function
of time λij(t) ∈ [0, 1]. Thus, λij(t) can be viewed as a connectivity strength between agents i and j at
time t such that the maximum influence that the two agents can have on each other is 1 (i.e., they are
fully connected) and the minimum influence is 0 (i.e., they are fully disconnected).

Motivated by the method of change of variables for discrete time dynamics in Section III-B, we
state our results for continuous-time dynamics in a more general form wherein the agents’ states are
transformed from xi to pi(xi), and the network variables are transformed from λij to qij(λij). Here, we
assume that pi(·), qij(·) are continuous and nondecreasing functions such that pi(0) = qij(0) = 0,∀i, j.
In particular, we let the Lagrangian function have a more general form of L(p(x), q(λ)), as long as its
partial derivatives exist, and be convex with respect to its first argument p(x) = (p1(x1), . . . , pn(xn))T

and concave with respect to its second argument q(λ) =
(
qij(λij), i 6= j

)T .
Remark 4: A special case of the above setting occurs when pi(xi) = xi, qij(λij) = λij are identity

functions, and L(x,λ) =
∑

i fi(xi) +
∑

i 6=j λijgij(xi, xj),λ ≥ 0,x ∈ Rn. It is clear that for the convex
measurement functions gij, fi, the standard Lagrangian function L(x,λ) is convex with respect to x,
and concave (i.e., linear) with respect to λ.

To introduce a general class of continuous-time, state-dependent network dynamics, let us consider
the following static constrained saddle-point problem:

min
x∈Rn

max
λ∈[0,1]n(n−1)

L(p(x), q(λ)). (18)

5In fact, using a sorted vector Lyapunov function V (x) = sort({|xi − xj |, i 6= j}), one can show that the dynamics (17) do converge
as V (x) decreases lexicographically after each iteration.



To solve the above static saddle-point problem using continuous-time dynamics, we use the idea of a
gradient flow, which was initially introduced in the seminal work of Arrow, Hurwicz, and Uzawa [36]
and subsequently used in devising primal-dual algorithms for solving constrained optimization problems
[37]. However, to adopt those dynamics for our more general setting (18), which has both lower- and
upper-bound constraints on the dual variable λ, we introduce the following generalized gradient flow
dynamics:

ẋ(t) = −∇p(x)L
(
p(x), q(λ)

)
λ̇(t) =

[
∇q(λ)L

(
p(x), q(λ)

)][0,1]

λ
, (19)

where ∇p(x)L(p(x), q(λ)) :=
(∂L(p(x),q(λ))

∂p1(x1)
, . . . , ∂L(p(x),q(λ))

∂pn(xn)

)T (the gradient vector ∇q(λ)L
(
p(x), q(λ)

)
is defined analogously), and [a]

[0,1]
λ denotes the projection of the network dynamics to the unit interval,

i.e.,

[a]
[0,1]
λ =


min{0, a}, if λ = 1

a if 0 < λ < 1

max{0, a} if λ = 0.

When a is a vector rather than a scalar, the above projection is taken coordinatewise. The reason for
introducing such a projection is that if for a pair of agents (i, j) we have λij(t) ∈ (0, 1), the edge variable
λij(t) has not hit the boundary points {0, 1}, and it can freely increase or decrease without violating
the box constraint λij(t) ∈ [0, 1]. However, if λij(t) = 1, then this edge variable is only allowed to
decrease, and thus λ̇ij(t) ≤ 0. Therefore, if ∂L(p(x),q(λ))

∂qij(λij)
≥ 0, we set λ̇ij(t) = 0 to block any further

increase of λij(t). Similarly, if λij(t) = 0 and ∂L(p(x),q(λ))
∂qij(λij)

≤ 0, we set λ̇ij(t) = 0 to block any further
decrease of λij(t). Therefore, (19) provides a fairly general class of continuous-time, state-dependent
network dynamics in which the strength of the edge connectivity changes dynamically as a function of
the state variables.

Remark 5: It is worth noting that in the special setting of Remark 4, the network dynamics in
(19) decompose to a simple form of λ̇ij(t) =

[
gij(xi(t), xj(t))

][0,1]

λij
,∀i, j. Thus, the more distant two

agents i and j are from each other (i.e., the larger the measurement value gij(xi, xj)), the faster the
edge connectivity between them grows and until it achieves its maximum connectivity at 1. That is
analogous to the emergence of an edge between agents i and j if gij(xi, xj) > 0 in the discrete-time
setting.

To establish the Lyapunov stability of the continuous-time state-network dynamics (19), let (x̄, λ̄) be a
saddle-point solution to (18). Note that by continuity and the convex-concave property of the Lagrangian
function, the existence of a saddle-point in (18) is always guaranteed. Let us define Pi(xi) :=

∫ xi
x̄i
pi(s)ds

and Qij(λij) :=
∫ λij
λ̄ij

qij(s)ds, where we note that by continuity and the monotonicity of pi, qij , the
functions Pi and Qij are differentiable convex functions. Now we are ready to state the main result of
this section.

Theorem 8: Let L(p(x), q(λ)) be a convex function in p(x) and a concave function in q(λ). Then,
the continuous-time state-dependent network dynamics (19) are Lyapunov stable. In particular,

V (x,λ) :=
n∑
i=1

DPi(xi, x̄i) +
∑
i 6=j

DQij(λij, λ̄ij)

serves as a Lyapunov function for the dynamics (19), where Dφ(u, v) = φ(u) − φ(v) − φ′(v)(u − v)
denotes the Bregman divergence with respect to the convex function φ(·).



Proof: Using the definition of the Bregman divergence, for every i and j we have

ḊPi(xi, x̄i) =
∂DPi(xi, x̄i)

∂xi
ẋi = −

(
pi(xi)− pi(x̄i)

)∂L(p(x), q(λ))

∂pi(xi)
,

ḊQij(λij, λ̄ij) =
∂DQij(λij, λ̄ij)

∂λij
λ̇ij =

(
qij(λij)− qij(λ̄ij)

)[∂L(p(x), q(λ))

∂qij(λij)

][0,1]

λij
.

Now we can write

V̇ (x,λ)=−
∑
i

(
pi(xi)−pi(x̄i)

)∂L(p(x), q(λ))

∂pi(xi)
+
∑
i 6=j

(
qij(λij)−qij(λ̄ij)

)[∂L(p(x), q(λ))

∂qij(λij)

][0,1]

λij

≤−
∑
i

(
pi(xi)−pi(x̄i)

)∂L(p(x), q(λ))

∂pi(xi)
+
∑
i 6=j

(
qij(λij)−qij(λ̄ij)

)∂L(p(x), q(λ))

∂qij(λij)

=
(∂L(p(x), q(λ))

∂p(x)

)T
(p(x̄)− p(x)) +

(∂L(p(x), q(λ))

∂q(x)

)T
(q(λ̄)− q(λ))

≤ L(p(x̄), q(λ))− L(p(x), q(λ))−
(
L(p(x), q(λ̄))− L(p(x), q(λ))

)
=
[
L(p(x̄), q(λ))− L(p(x̄), q(λ̄))

]
+
[
L(p(x̄), q(λ̄))− L(p(x), q(λ̄))

]
≤ 0,

where in the above derivations the last inequality is due to the definition of the saddle-point, and the
second inequality follows from the convexity/concavity of L(·) with respect to its first/second argument.
Finally, the first inequality is obtained by considering the following three cases:
• If λij = 0, then [∂L(p(x),q(λ))

∂qij(λij)
]
[0,1]
λij

= max{0, ∂L(p(x),q(λ))
∂qij(λij)

} ≥ ∂L(p(x),q(λ))
∂qij(λij)

, and qij(λij) − qij(λ̄ij) =

qij(0)− qij(λ̄ij) ≤ 0.
• If λij ∈ (0, 1), then [∂L(p(x),q(λ))

∂qij(λij)
]
[0,1]
λij

= ∂L(p(x),q(λ))
∂qij(λij)

.

• If λij = 1, then [∂L(p(x),q(λ))
∂qij(λij)

]
[0,1]
λij

= min{0, ∂L(p(x),q(λ))
∂qij(λij)

} ≤ ∂L(p(x),q(λ))
∂qij(λij)

, and qij(λij) − qij(λ̄ij) =

qij(1)− qij(λ̄ij) ≥ 0.
Thus, in either of the above cases, we have

(qij(λij)− qij(λ̄ij))[
∂L(p(x), q(λ))

∂qij(λij)
]
[0,1]
λj
≤ (qij(λij)− qij(λ̄ij))

∂L(p(x), q(λ))

∂qij(λij)
,

and the result follows.
It is worth noting that Theorem 8 is a continuous-time counterpart of Theorem 6 in the sense that in

both theorems, the Bregman distance of the iterates to a saddle-point serves as a Lyapunov function.
However, because of the continuity of the network variables in the continuous-time model, the choice
of the step size becomes irrelevant in Theorem 8, while for the discrete-time counterpart, the step sizes
should be small enough to guarantee the convergence of the dynamics.

VI. SIMULATIONS

In this section, we describe several numerical experiments relating to social science to justify our
theoretical results. In the first experiment, we considered a class of averaging dynamics with negative
weights motivated by the presence of antagonistic relations in social groups such as Altafini’s averaging

dynamics [38]. The dynamics that we consider have the form of xk+1
i = |Ni(xk)|

|Ni(xk)|+1
xki −

∑
j∈Ni(xk)

xkj

|Ni(xk)|+1
, i ∈

[n], where Ni(x
k) = {j ∈ [n]\{i} : xki x

k
j ≤ 1}. In other words, two agents i and j are each other’s

neighbors if the product of their states is less than 1.6 On the left side of Figure 4, we depict the

6Similar results can be obtained if one replaces 1 in the definition of the agents’ neighborhood with another constant, such as 0, in
which case agents communicate only if their states have the opposite sign.
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Fig. 4. A diverging averaging dynamic with negative weights and its associated energy function.

evolution of these dynamics for k = 25 iterations and n = 1000 agents, where the agents’ initial
states are distributed uniformly at random in the interval [−1, 1]. As can be seen, the agents eventually
polarized to two groups and diverged to +∞ and −∞. On the other hand, it is easy to see that the above
dynamics can be replicated with Theorem 3 if the symmetric measurements gij(xi, xj) = xixj − 1 and
fi(xi) =

x2
i

2
are chosen. The implication is that V (x) =

∑n
i=1

x2
i

2
+
∑

i,j min{xixj − 1, 0} must decrease
along the trajectories of the dynamics, as is shown on the right side of Figure 4. However, we note that
the measurements gij(xi, xj) = xixj − 1 are neither convex nor bounded below by a global constant.
In fact, that is the main reason why the monotonically decreasing function V (x) cannot guarantee the
convergence of the dynamics. Therefore, the convexity and boundedness of measurements in Theorem
3 are necessary for the convergence of the trajectories.

In the second experiment, we considered the dynamics (17) in Example 6. Here, the symmetric
measurements are gij(xi, xj) =

(xi−xj)2

2
− 202

2
(i.e., εij = 20,∀i 6= j), and the set of neighbors of agent i

at iteration k is given by Ni(x
k) = {j : |xki − xkj | ≥ 20}. As was shown in Example 6, those dynamics

are the complement of the homogeneous HK dynamics. The left side of Figure 5 shows the results of
simulating the trajectories for k = 120 iterations and n = 1000 agents, with initial states distributed
uniformly at random in the interval [0, 100]. As can be seen, although the dynamics eventually converge
to several clusters, however, there is an oscillating pattern in the trajectories due to the conflicting
objectives of the network structure and the agents’ states. In particular, Theorem 7 suggests that the
convex function V (x) = 1

2

∑
i,j max{ (xi−xj)2

2
− 202

2
, 0} serves as a semi-Lyapunov function that almost

always decreases along the trajectories. That phenomenon is shown on the right side of Figure 5, where
V (x) always decreases with a small jump at iteration k = 3. In particular, the dynamics converge to a
minimizer of V (x).

In our last experiment, we considered heterogeneous HK dynamics with associated dynamics xk+1
i =∑

j:|xk
i
−xk

j
|≤εi

xkj

|{j:|xki−xkj |≤εi}|
, i ∈ [n], whose Lyapunov stability and convergence have remained open for more than

a decade [39], [40]. We can replicate the heterogeneous HK dynamics by considering the asymmetric
measurements gij(xi, xj) =

(xi−xj)2

2
− ε2i

2
in the statement of Theorem 4. Although we do not know

a choice of Bregman map f(x) that can satisfy the assumption of Theorem 4 with respect to such
asymmetric measurements, in Figure 6 we show that even a simple quadratic map performs quite well for
the heterogeneous HK model. More precisely, based on the quadratic Bregman map Df (x,y) = 1

2
‖x−

y‖2, where f(x) =
∑n

i=1
x2
i

2
, Theorem 4 suggests the Lyapunov candidate V (x) =

∑
i,j min{ (xi−xj)2

2
−

ε2i
2
, 0} for the heterogeneous HK dynamics. We simulated those dynamics for k = 300 iterations over a



10 20 30 40 50 60 70 80 90 100 110 120

Number of iterations

13

14

15

16

17

18

19

20

21

Lo
g
(V

(x
))

Fig. 5. Dynamics of the complement HK model and its associated semi-Lyapunov function.

set of n = 1000 agents whose initial states were distributed uniformly at random in the interval [0, 100].
In the top two graphs in Figure 6, the confidence bounds of agents εi, i ∈ [n] had been selected uniformly
at random from the interval [0, 10]. In the bottom two graphs in Figure 6, the confidence bounds had
been generated uniformly at random from the larger interval [0, 50]. In both cases, one can see that the
proposed function V (x) performed quite well and almost always decreased along the trajectories of the
heterogeneous HK. That suggests that addition of a small correction term to the proposed V (x) might
turn this function into a valid Lyapunov function for the heterogeneous HK dynamics.

VII. CONCLUSIONS

In this paper, we developed a new framework for the stability analysis of multiagent state-dependent
network dynamics. We showed that the co-evolution of the network and the state dynamics could be cast
as a primal-dual optimization algorithm for a nonlinear program in which the primal updates capture
the state dynamics, and the dual updates capture the network evolution. In particular, the constrained
Lagrangian function serves as a Lyapunov function for the state-network dynamics. We considered our
framework under two different settings: i) when the network and state dynamics are aligned, and ii)
when the network and state dynamics have conflicting objectives. In the first case, we showed that
the application of the BCD method with a change of variables could generate a variety of interesting
state-dependent network dynamics. In particular, we provided a new technique for handling asymmetry
in the network dynamics. In the second case, we reduced the stability of the state-network dynamics to
a zero-sum game between the network player and the state player. This approach allowed us to establish
the Lyapunov stability of multiagent systems by using saddle-point dynamics and, in particular, by using
the subgradient method and the quasi-Newton method. Finally, we extended our results to a continuous-
time model and provided a general class of continuous-time, state-dependent network dynamics in terms
of generalized gradient flow.

As a future direction of research, one could use augmented Lagrangian functions or apply other opti-
mization techniques to generate a broader class of stable state-dependent network dynamics. Moreover,
in our analysis, we mainly used a quadratic upper approximation to derive the state updates. Thus, a
natural extension would be to use other function approximations that include the quadratic approximation
as their particular case, or to use approximations that are suitable for specific applications.
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[21] S. R. Etesami and T. Başar, “Convergence time for unbiased quantized consensus over static and dynamic networks,” IEEE

Transactions on Automatic Control, vol. 61, no. 2, pp. 443–455, 2016.
[22] S. R. Etesami, Potential-based Analysis of Social, Communication, and Distributed Networks. Springer, 2017.
[23] M. Zhu and S. Martı́nez, “On the convergence time of asynchronous distributed quantized averaging algorithms,” IEEE Transactions

on Automatic Control, vol. 56, no. 2, pp. 386–390, 2011.
[24] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Convergence in multiagent coordination, consensus, and flocking,”

in Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005, pp. 2996–3000.
[25] J. M. Hendrickx and J. N. Tsitsiklis, “Convergence of type-symmetric and cut-balanced consensus seeking systems,” IEEE

Transactions on Automatic Control, vol. 58, no. 1, pp. 214–218, 2013.
[26] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE

Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.
[27] I. M. Sonin et al., “The decomposition-separation theorem for finite nonhomogeneous Markov chains and related problems,” in

Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz. Institute of Mathematical Statistics, 2008, pp. 1–15.
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