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Abstract—Wireless sensor networks (WSNs) are the founda-
tion of the Internet of Things (IoT), and in the era of the
fifth generation of wireless communication networks, they are
envisioned to be truly ubiquitous, reliable, scalable, and energy
efficient. To this end, topology control is an important mechanism
to realize self-organized WSNs that are capable of adapting
to the dynamics of the environment. Topology optimization is
combinatorial in nature, and generally is NP-hard to solve. Most
existing algorithms leverage heuristic rules to reduce the number
of search candidates so as to obtain a suboptimal solution in a
certain sense. In this paper, we propose a deep reinforcement
learning-based topology optimization algorithm, a unified search
framework, for self-organized energy-efficient WSNs. Specifi-
cally, the proposed algorithm uses a deep neural network to guide
a Monte Carlo tree search to roll out simulations, and the results
from the tree search reinforce the learning of the neural network.
In addition, the proposed algorithm is an anytime algorithm
that keeps improving the solution with an increasing amount of
computing resources. Various simulations show that the proposed
algorithm achieves better performance as compared to heuristic
solutions, and is capable of adapting to environment and network
changes without restarting the algorithm from scratch.

I. INTRODUCTION

The Internet of Things (IoT) has emerged as a new com-

munication paradigm where a huge number of heterogeneous

physical sensing devices are seamlessly interconnected to au-

tonomously collect information without human aid. Being the

foundation of IoT, wireless sensor networks (WSNs) collect

sensing data and forward the data to the core network for

further processing. With the advent of the fifth generation (5G)

of wireless communication networks, WSNs are envisioned

to be truly ubiquitous, reliable, scalable, and energy-efficient

[1]. To this end, a framework of Self-Organized Things was

first introduced in [2], where the sensors undergo automatic

configurations to maintain connectivity and coverage, reduce

energy consumption, and prolong network lifetime.

In a typical WSN, wireless sensors continuously monitor

the environment and periodically generate small amounts of

data. The data needs to be forwarded to another sensor for

data aggregation or directly transmitted to the gateway. Since

the sensors are generally battery-powered, energy efficiency

is a prominent need to prolong the lifetime of the network,
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Fig. 1. Two possible topologies of a WSN, rooted at the gateway.

especially for low-power wide-area networks [3]. The major

part of the energy stored in a sensor is consumed during

data transmission, and the energy consumption increases

exponentially with the transmission distance [4]. Therefore,

a multi-hop tree topology for aggregating sensor data at a

gateway, at which the tree is rooted, has the advantage of

reducing the per-sensor energy consumption, especially for

sensors at the edge of the WSN, by decreasing transmission

distances. In addition, tree topologies eliminate the cost of

maintaining a routing table at each sensor, when compared to

mesh topologies.

Figure 1 shows two possible topologies of a WSN rooted

at a gateway. Finding the optimal topology in terms of energy

efficiency in a WSN is combinatorial in nature and NP-

hard to solve [5]. The exhaustive search is not practical

because the number of connected devices in an IoT system

today is usually very large and achieving the optimal network

configuration via exhaustive search is exponentially complex

due to the tremendously large search space of all possible

topology configurations. Most of the existing work in the

literature leverage properties of a specific network model to

heuristically reduce the number of potential search candidates.

However, with the growing heterogeneity of WSNs in the 5G

era, a unified topology optimization framework is desirable

so as to seamlessly utilize various IoT technologies and adapt

to the dynamics of the environment.

In this paper, inspired by the success of deep learn-

ing achieving human-level proficiency in many challenging

domains, we propose a deep reinforcement learning-based

http://arxiv.org/abs/1910.14199v1


topology control (DRL-TC) algorithm as a generic approach

to optimize the network topology for energy-efficient WSNs

in the face of heterogeneity and uncertainties in the net-

works, without relying on any domain knowledge beyond

the topology rules. To be specific, the proposed DRL-TC

employs the framework of deep reinforcement learning (DRL)

with a Monte Carlo tree search (MCTS) to sequentially

construct the network according to pre-defined topology rules.

A deep neural network (DNN) is trained to predict the energy

consumption of a partially-built topology and guides the

MCTS to roll out the remaining steps in more promising areas

in the search space. In return, the search results from the

MCTS reinforce the learning of the DNN to obtain a more

accurate prediction in the next iteration. Our contributions are

as follows:

• We propose a novel and generic DRL-TC algorithm to

determine a near-optimal topology for WSNs in terms

of energy efficiency without relying on specific domain

knowledge beyond topology rules.

• The proposed algorithm is a statistical anytime algo-

rithm1 that is capable of adapting to the dynamics of

the environment (including possible unexpected network

changes) and re-configures the network accordingly.

• Various simulation results show that the proposed DRL-

TC outperforms other heuristic approaches to a large

extent.

II. RELATED WORK

Different from cellular networks, the networks of IoT

devices generate small amounts of data and are expected to be

operational over long time periods with limited battery pow-

ers. Hence, instead of maximizing the network throughput, a

prominent objective of an IoT-WSN is to minimize energy

consumption in order to maximize the network lifetime,

subject to the constraints of coverage and reliability [3].

In the literature, LEACH in [6] and its many variants belong

to the class of distributed and cluster-based algorithms where

a local cluster of sensors elects a cluster head at a time

to aggregate the data and forwards the aggregated data to

the gateway. LEACH periodically rotates the role of cluster

head depending on the residual energy of the sensors in each

cluster. It has the advantages of scalability and ease of im-

plementation, but requires the sensors constantly exchanging

information with each other, which introduce an extra amount

of energy consumption at each sensor. Similarly, the authors

in [7] proposed a joint clustering and routing algorithm for

sensor data collection. The authors in [8] considered the case

of non-uniform traffic distribution for load balancing and

energy efficiency.

On the other hand, centralized algorithms relieve the burden

of end sensor computations, but generally have high com-

puting complexity. In order to reduce this complexity while

maximizing a WSN’s lifetime, the authors in [9] proposed

1An anytime algorithm continuously returns valid solutions before it ends.
It can also resume at anytime without restarting from scratch.
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Symbol Meaning

v0 gateway
vi sensor node

C(vi) child nodes of vi
δ(U) set of edges pointing out of U
Rvi data generated at node vi
gvi data aggregated at node vi
a(·) aggregating function
ǫPvi energy dissipation per bit of processing
ǫTx

vi
energy dissipation per bit of transmission

ρ power amplification constant
dvi,vj Euclidean distance betwwen vi and vj
Evi total energy of sensor vi
evi energy consumption per round

xvi,vj binary indicating variable of the edge (vi, vj)

Fig. 2. Notations used in the network model.

a load balancing approach which randomly switches some

sensors from their original paths to other paths with a lower

load. The authors in [10] proposed a tree-based algorithm with

a set of heuristic rules to construct a tree topology in multi-

hop WSNs. In [11], the authors reduced the search space of

tree topologies by dividing the network into on-demand data

collection zones and routes.

With the fast development of the theory and practice of deep

learning, deep reinforcement learning (DRL) has become a

powerful paradigm in many areas of wireless communications,

such as network optimization, resource allocation, and radio

control [12]. Integrating DRL with MCTS, AlphaGo Zero

from Google demonstrated exceedingly superhuman profi-

ciency in playing the game of Go [13]. DRL-MCTS is a

very powerful framework for solving the problems where

sequential decisions are required to achieve a final outcome,

which usually results in an NP-hard problem.

The study of DRL-MCTS in the context of wireless com-

munications is very limited. In this paper, we employ DRL-

MCTS for the topology optimization in WSNs and propose

a deep reinforcement learning-based topology control (DRL-

TC) algorithm to sequentially construct the topology of a

WSN with the objective of minimizing the energy consump-

tion at each sensor.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the uplink of a WSN consisting of IoT devices

that collect raw data and forward the collected data to the

core network. As shown in Fig. 2, the WSN has a single

gateway v0, and N − 1 sensors {v1, v2, . . . , vN−1}. Denoting

V = {v0, v1, . . . , vN−1} as the set of all vertices, and E as the

set of directed edges, we model the WSN as an arborescence2

where every sensor has a unique path to the gateway v0.

In each round of data collection, the sensor vi, i ∈
{1, 2, . . . , N − 1}, needs to forward

gvi = Rvi + a
(

∑

vj∈C(i)Rvj

)

(1)

bits of data to its parent sensor, where vi generates Rvi bits

of its own data and aggregate the data
∑

vj
Rvj from its

2An arborescence is a directed, rooted tree T = (V, E) that spans (when
viewed as an undirected graph) the graph.
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Fig. 3. The MDP of constructing an arborescence in a WSN with 7 sensors
starting at step 4 and completed after two steps.

child sensors vj ∈ C(i), and a(·) is an aggregating function.

We adopt the energy consumption model in [4], where the

topology-relevant energy consumption at sensor vi largely

consists of data processing (including data receiving) and

transmitting energy consumption. This is modeled as

evi =
(

ǫP
vi
+ ǫTx

vi

)

gvi , (2)

where ǫP
vi

and ǫTx
vi

is the energy dissipation per bit for data

processing and transmission at sensor vi, respectively. The

energy dissipation per bit for data transmission depends on

the distance to the parent sensor, and is further modeled as

ǫTx
vi

= ρd2vi,vj , (3)

where dvi,vj is the Euclidean distance between vi and its

parent sensor (or the gateway) vj , and ρ is a constant of

power amplification in the link budget, considering the effects

of shadowing and fading.

B. Problem Formulation

The proposed energy-efficient topology optimization frame-

work follows the general setting below:

1) The data size Rvi generated by sensor vi is a random

number drawn from a certain distribution that is un-

known to the DRL-TC algorithm.

2) The aggregating function a(·) can be any deterministic

function. For the purpose of demonstration, we use

summation in this paper.

3) The designed topology control algorithm should be

readily applicable to other network objectives, such as

minimizing the overall network energy consumption or

maximizing the network throughput.

Denote the total battery energy stored at sensor vi as Evi ,

and let Ev0 = ∞ since the gateway v0 is assumed to be

connected to an unlimited main power supply. We define the

lifetime of the WSN as the minimum battery lifetime of all

sensors in terms of the total rounds of transmission. This

lifetime maximization of the WSN can be formulated as

maximize
{xij}

min
vi∈V

⌊

Evi

evi

⌋

(4a)

subject to
∑

(vi,vj)∈δ(U)

xvi,vj ≥ 1, ∀U ⊆ V \{v0}, (4b)

∑

(vi,vj)∈δ(vi)

xvi,vj = 1, ∀vi ∈ V \{v0}, (4c)

xvi,vj ∈ {0, 1} , ∀vi, vj ∈ V, (4d)
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Fig. 4. The architecture of the DNN in the proposed DRL-TC, which

approximates the optimal policy π̂∗(s) and the optimal value function V̂ ∗(s).

where δ(S) is the set of edges {(u, v) : u ∈ S, v /∈ S}, and

xvi,vj = 1 if vi is a child of vj and 0 otherwise. The constraint

(4b) ensures that all sensors are connected, and the constraint

(4c) ensures that each sensor can only transmit to one parent

node at a time. The optimization problem in (4) is NP-hard

since it is a generalization of the NP-hard problem in [5].

To approximate the complexity of the problem, we remark

that if the topology is viewed as an undirected spanning tree,

the number of all possible spanning trees in this network

is NN−2 by the Cayley’s formula [14]. Although heuristic

rules can reduce the number search candidates, enumerating

all potential solutions is still infeasible for a reasonable value

of N . We propose an anytime DRL-TC algorithm that focuses

on more promising areas in the search space given limited

computing resources, and approaches the optimal solution

with an increasing amount of computational power.

IV. THE PROPOSED DEEP REINFORCEMENT

LEARNING-BASED TOPOLOGY CONTROL ALGORITHM

A. Formation of Arborescence as a Markov Decision Process

To apply reinforcement learning to the problem formulated

in the previous section, we start by constructing a valid

arborescence rooted at the gateway v0. In each step, we

select a sensor that has not been connected and connect it

to a sensor or to the gateway on the tree, until all sensors

are connected. This procedure can be described by a fully

observable finite-horizon Markov decision process (MDP) of

a 4-tuple {S,A, T ,R}, as shown in Fig. 3. At each step

t ∈ [0, N ], the state of the system st ∈ S is the current

adjacency matrix st =
[

xvi,vj

]

vi,vj∈V
of the network. The

action at ∈ A is the choice of the next sensor that will connect

to the tree, or equivalently xvi,vj = 1 where sensor vi is to

be connected to sensor (or the gateway) vj on the tree. The

system then evolves to the next state st+1, with a deterministic

transition matrix T (s, a) in this case. The reward at step t is

undetermined until the terminal state sN (i.e., all sensors are

connected to the tree) is reached. Then, the objective value of

(4), the lifetime of the WSN rN ∈ R = R
+, is propagated

back, as the reward for every action along the state trajectory.

B. Approximating Policy and Value Functions Using a DNN

A stochastic policy π(s) defines a distribution of the

valid actions at a state. Under this policy, the system

generates a trajectory of states and actions h(st) =
{st, at, . . . , sN−1, aN−1, sN}, from state st until the terminal
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Fig. 5. The procedure of the MCTS: The MCTS is expanded by the prediction
from the DNN (π(s), V π(s)) = fΘ(s), and collects training datasets in
more promising search areas in return.

state sN . The value function V π(s) is defined as the expected

reward of all possible trajectories, starting from state s as

V π(s) , Eh

[

N
∑

τ=t

rτ |st = s

]

. (5)

We use a DNN fΘ(s), parameterized by Θ, to approximate

the optimal value function V ∗(s) = maxπ V
π(s) together

with the optimal policy π∗(s). As shown in Fig. 4, the input

to the DNN is a training dataset {(s, π(s), V π(s))}. In order

to significantly increase the representational capacity of the

DNN while maintaining the feasibility of training of this

multiple-layer neural network, we adopt eight deep ResNet

blocks proposed in [15] on top of each other. Each ResNet

consists of one convolutional layer 256 convolutional filters

each with a 3×3 kernel, followed by batch normalization and

ReLU activation. The DNN is then split into two branches of

convolutional layers followed by a dense layer with softmax

and ReLU activation for the policy and the value function,

respectively. The policy and value of each state predicted by

the DNN (π(s), V π(s)) = fΘ(s) contain a priori information

that guides the MCTS to search the states with high rewards

and collect training datasets for the DNN in return.

Once the DNN (V π(s), π(s)) = fΘ(s) is trained, in order

to obtain an arborescence topology of the WSN, we start at

the root state s0 = 000, and then sequentially choose an action

at ∼ π(st) from the policy predicted by the DNN and update

the state st+1 = T (st, at) until the full tree is reached. We

remark that this topology construction is a stochastic process

and will converge to a solution once the DNN is trained with

a sufficient number of iterations.

C. Collecting Training Datasets by Using MCTS

The DNN requires a training dataset of states, policies, and

values so as to fit the DNN as a function approximator. A

naive approach is to enumerate and collect all states and their

values as the training dataset. However, this approach will

overfit the DNN and become infeasible when the state space

is large. Instead of using heuristic rules to reduce the number

of search candidates, we use MCTS [16] to efficiently collect

training datasets in more promising areas of the search space.

The procedure of the MCTS subroutine in DRL-TC is

illustrated in Fig. 5. Each node on the search tree represents

a 5-tuple data (s, a,M(s, a), π(s), Qπ(s, a)), where s is the

state of the WSN, a is the action at the state, M(s, a) is

Algorithm 1: MCTS(s) subroutine of the proposed DRL-TC algorithm

Input: DNN fΘ(s); visiting counts M(s, a); a priori policy π(s); state-
action values Qπ(s, a);

Output: Visiting counts M

exit conditions of recursion

1: if s is the terminal state then

2: return r
3: end if

expand to a new search leaf

4: if s has not been visited then

5: π(s), V (s)← fΘ(s);
6: get all valid actions for state s;
7: re-normalize π(s) for all valid actions;
8: M(s)← 1;
9: return V (s)

10: end if

calculate UCBs

11: initialize U ← ∅;
12: for all valid actions a do

13: U(s, a)← Qπ(s, a) + cπ(s, a)

√
M(s)

1+M(s,a)
;

14: end for

choose action and recursively search at the next state

15: a← argmaxa U(s, a), randomly tie-breaking;
16: s← T (s, a);
17: recursively search at the new state V (s) = MCTS(s);

update tree states

18: Qπ(s, a)← M(s,a)Qπ(s,a)+V (s)
N(s,a)+1

;

19: M(s, a)←M(s, a) + 1
20: M(s)←M(s) + 1;
21: return V (s)

the total number of visits of (s, a) on the search tree, π(s)
is a prior probability of valid actions predicted by the DNN,

and Qπ(s, a) is the state-action value, which is defined as the

expected reward starting from state s and taking the action a

Qπ(s, a) , E

[

N
∑

τ=t

rτ |st = s, at = a

]

. (6)

At each search step t < N , the action that maximizes the

upper confidence bound (UCB) [17] is selected, i.e.,

at = argmax
a

(

Qπ(s, a) + cπ(s, a)

√

M(s)

1 +M(s, a)

)

, (7)

where M(s) ,
∑

b∈A M(s, b) is the visiting count for the

state s regardless of actions, and c is a hyper-parameter that

controls the level of exploration. Intuitively, this selection

strategy initially prefers the actions with high prior probability

π, but asymptotically prefers the actions with high state-action

value Qπ. When the search reaches the termination state, i.e.,

t = N , a reward is obtained and propagated along the search

path back to the root state for all the states visited and actions

taken. The Qπ values on the path are updated by the new

average of the values on the nodes accordingly.

The details of the MCTS are described in Algorithm 1.

Each search starts at a certain state and recursively searches

the next state until a new leaf state or the terminal state

is reached. By doing multiple MCTSs at each state, an a

posteriori visiting count M(s) is collected as part of the

training dataset used to update the DNN in the next iteration.



Algorithm 2: The proposed DRL-TC algorithm

Input: Number of iterations Ni; number of episodes Ne; number of tree
searches Nm; minibatch size B; learning rate α;

Output: Network topology control DNN fΘ(s)

1: training dataset E ← ∅;
2: for i from 1 to Ni do
3: s← 000
4: for e from 1 to Ne do

5: M ← ∅
6: for m from 1 to Nm do

7: MCTS(s)
8: end for

9: normalize the visiting counts M(s) obtained from MCTS(s)
10: E ∪ {(s,M(s), V )}
11: if s is the terminal state then

12: obtain the reward r and update V by r for all s in iteration e
13: else

14: choose an action a ∼M(s)
15: s← T (s, a)
16: end if
17: end for

18: shuffle E
19: train DNN fΘ(s) with a minibatch size of B and learning rate of α
20: end for

D. Self-Configuring DRL-TC Algorithm

In short, the proposed DRL-TC alternates between the

training of the DNN and MCTS, where the DNN provides

an a priori policy that guides the MCTS, and then the MCTS

returns a posteriori visiting counts and state values that are

used to update the DNN. In this manner, with limited amount

of computing resources, the proposed DRL-TC algorithm will

focus more on promising areas to search and converges to a

solution with a high reward.

The proposed DRL-TC algorithm can also adapt to the

dynamics of the environment. For example, when suddenly

adding or removing sensors, some actions become available

or obsolete by the topology rules. In a new run of the MCTS,

the policy π returned by the DNN for the state will be re-

normalized for all valid actions. Hence, the new a priori

policy π(s) reflects the changes of the network but still

correlates with the historical data. New training datasets will

be collected by the MCTS and used to update the DNN. If

we assume that the network change is slower than the training

time which depends on the available computing resources,

the proposed DRL-TC algorithm is capable of tracking the

dynamics of the network and re-configuring the network

topology accordingly. The complete algorithm of the proposed

DRL-TC is described in Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Settings

To evaluate the performance of the proposed DRL-TC

algorithm, we consider a WSN with one gateway and nineteen

sensors randomly scattered in a circular area with a radius

of 1000m. Each sensor, with an initial energy of 1 J, uni-

formly generates sensing data between 500 and 1000 bits

in each round of transmission. We assume that all sensors

have sufficient amount of time to transmit the data in each

round. The energy dissipation per bit of processing is set

Fig. 6. Convergence and performance of the proposed DRL-TC algorithm,
compared with three heuristic approaches: star topology, random topology,
and MST topology.

to ǫP
vi

=50nJ/bit for all sensors. The power amplification

constant is set to ρ =1pJ/m2/bit.
In each iteration of the algorithm, Ne = 10 episodes of

training examples are collected from the MCTS with Nm =
100 searches at each state. The minibatch size is B = 16 and

the learning rate is α = 10−6. We use the ADAM optimizer

[18] to train the DNN. After each iteration of training, we

evaluate the performance of the algorithm by using the DNN

to construct 100 network topologies and average the results.

B. Convergence and Performance

First, we demonstrate the convergence and performance

of the proposed DRL-TC algorithm. The solid line in Fig.

6 shows the average and the standard deviation (indicated

by the shadowed region) of the network lifetime of 100
realizations returned by the DNN after each training iteration.

The algorithm converges after about 60 iterations, as indicated

by the diminishing standard deviation. Fig. 6 also compares

the performance of the proposed DRL-TC algorithm with

three heuristic approaches: star topology, where all sensors

connect to the gateway; random topology, where each sensor

randomly chooses a node to connect to; and minimum span-

ning tree (MST) topology, where the MST weighted by the

Euclidean distances between the nodes is formed. The star

topology has the shortest network lifetime due to the high

transmitting energy consumption at the edge sensors far from

the gateway. The random topology shows a longer average

network lifetime but with a large variance. The MST topology

further improves the network lifetime by reducing the overall

transmitting distance. Our proposed DRL-TC algorithm sur-

passes the performance of these heuristic approaches to a large

extent, along with a very small variance when the algorithm

converges.

Figure 7 demonstrates the capability of the proposed DRL-

TC of adapting to sudden changes of the WSN. The top plot in

Fig. 7 shows the average network lifetime after each training

iteration, while Figs. 7 A© to D© show 100 topologies given by

the DRL-TC algorithm overlaying on top of each other after



Fig. 7. The evolution of the training process. Top: The DRL-TC adapts to the interruption of the sensors 6©, 7© and 8© at the 63rd iteration and keeps
improving the average network lifetime in terms of increasing its mean value and decreasing its variance (as indicated by the shadowed region). Bottom: 100
topologies given by the DRL-TC algorithm overlaying on top of each other at the 1st, 62nd, 63rd and 100th iteration. Node 0© is the gateway.

the 1st, 62nd, 63rd, and 100th iteration. As shown in Fig.

7 A©, at the first iteration, the DRL-TC randomly explores the

search space because the DNN does not have any a priori

information about the state values. After 62 iterations, the

algorithm converges to a solution with a very high confidence,

as indicated by the clear paths between the sensors in Fig. 7 B©.

Then, just before the 63rd iteration, sensors 6©, 7© and 8©
are disabled and disconnected from the WSN, and the DRL-

TC starts to re-configure the network. The new topologies, as

shown in Figs. 7 C©, are still correlated to the historical data

as shown in 7 B©. This is another advantage of the proposed

DRL-TC algorithm in that it does not need to restart from

scratch when the network condition changes. Eventually, the

algorithm converges to another solution for the new network

with a slightly smaller network lifetime due to the fact that

the remaining sensors need to consume more energy to offload

the data which was originally routed by the removed sensors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel and unified deep rein-

forcement learning-based topology optimization algorithm for

energy-efficient deployments of WSNs. The proposed DRL-

TC algorithm is capable of adapting to the changes of the

environment and shows better performance compared to other

heuristic approaches to a large extent. The framework of DRL-

MCTS has a great potential in WSNs where online training

is possible without intervening with the network service. In

addition, with the ever-increasing computational power, we

envision the emergence of other promising applications of

DRL-MCTS for topology control in self-organized and fully

autonomous networks of IoT in the 5G era.
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