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We examine driven skyrmion dynamics in systems with inhomogeneous pinning where a strip of
strong pinning coexists with a region containing no pinning. For driving parallel to the strip, we find
that the initial skyrmion motion is confined to the unpinned region and the skyrmion Hall angle is
zero. At larger drives, a transition occurs to a phase in which motion also appears within the pinned
region, creating a shear band in the skyrmion velocity, while the skyrmion Hall angle is still zero. As
the drive increases further, the flow becomes disordered and the skyrmion Hall angle increases with
drive until saturating at the highest drives when the system transitions into a moving crystal phase.
The different dynamic phases are associated with velocity and density gradients across the pinning
boundaries. We map out the dynamic phases as a function of pinning strength, skyrmion density,
and Magnus force strength, and correlate the phase boundaries with features in the velocity-force
curves and changes in the local and global ordering of the skyrmion structure. For large Magnus
forces, the shear banding instability is replaced by large scale intermittent flow in the pinned region
accompanied by simultaneous motion perpendicular to the direction of the drive, which appears as
oscillations in the transport curves. We also examine the case of a drive applied perpendicular to the
strip, where we find a jamming effect in which the skyrmion flow is blocked by skyrmion-skyrmion
interactions until the drive is large enough to induce plastic flow.

I. INTRODUCTION

Skyrmions in magnetic systems were discovered in
MnSi in 20091, and since that time skyrmions have
been found in an increasing variety of systems, includ-
ing materials in which the skyrmions are stable at room
temperature2–6. In samples with weak quenched disor-
der, the skyrmions form a triangular lattice and can be
set into motion with an applied current7–11. When dis-
order is present, there is a finite depinning threshold for
skyrmion motion and there can be different types of flow
such as plastic or ordered as well as transitions between
different types of moving phases3,4,6,7,9,11–16. The onset
of motion and the dynamic phase transitions are corre-
lated with changes in the skyrmion velocity-force curves,
the skyrmion flow patterns, the structure factor, and the
velocity noise spectra17.

Although skyrmions have many similarities to other
systems that are known to exhibit depinning, such as vor-
tices in type-II superconductors or colloidal particles on
rough landscapes18, they also have the unique feature of a
strong non-dissipative Magnus force which creates veloc-
ity components that are perpendicular to the forces pro-
duced by the drive, pinning, and interaction with other
skyrmions. The ratio of the Magnus force to the dissi-
pation can range from a few percent to up to a factor of
10 or more3,9,19. One consequence of the Magnus force
is that under a drive, skyrmions display a strong gyro-
scopic motion that produces a finite Hall angle known
as the skyrmion Hall angle3,13–15,20–22. The gyroscopic
motion generates spiraling skyrmion orbits in confining
potentials or pinning sites23–25 which have been proposed
to be one reason why the pinning of skyrmions is often
weak, since a skyrmion can spiral around pinning sites

rather than becoming trapped3,7,9. There are, however,
other cases in which the effect of pinning on skyrmions
can be strong4,14,15.

The skyrmion Hall angle is constant in the absence of
pinning or disorder, but in the presence of disorder it de-
velops a dependence on drive or velocity, starting at a
value of zero just at the depinning threshold and grad-
ually increasing with increasing skyrmion velocity until
saturating at high drives to a value close to that found
in the clean limit13–15,26–31. Particle based13,24,26,32,33

and continuum based15,24,27,30 simulations show that the
drive dependence of the skyrmion Hall angle is a result
of the skyrmion-pin interactions. In regimes of collective
skyrmion motion in the presence of quenched disorder,
the flow above depinning can be elastic when the pinning
is weak, with all skyrmions maintaining the same neigh-
bors as they move8,9,13,32, or it can be plastic13,15,26,34,35,
with a combination of pinned and moving skyrmions.
In some cases, the skyrmions exhibit intermittent or
avalanche-like flow, in which sudden bursts of motion
are interspersed among intervals in which no motion
occurs36,37.

In systems that exhibit depinning, such as supercon-
ducting vortices38,39, colloidal assemblies40,41, electron
crystals42,43, or charge density waves44, the disorder is
often homogeneous on long length scales, so that on aver-
age, the same depinning threshold occurs throughout the
sample and there is a single well defined depinning drive.
It is also possible for samples to contain strongly inhomo-
geneous pinning, where strong pinning in some portions
of the sample coexists with other regions in which the
pinning is absent or weak. This type of pinning can arise
naturally if the system has large scale inhomogeneities, or
it can be created artificially using lithographic techniques
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by writing a pinning array into only selected portions of
the sample while other portions of the sample remain pin-
free. In colloidal systems with inhomogeneous pinning, it
was shown that flow occurs in the unpinned regions and
that shear banding effects arise when a portion of the col-
loids in the unpinned region are either pinned or moving
more slowly due to interactions with neighboring pinned
colloids, creating a velocity gradient45,46. Other stud-
ies of colloidal systems containing a strip of pinned col-
loids revealed that the system effectively freezes from the
pinned strip outward into the bulk47. In superconducting
systems, coexisting regions of strong pinning and weak
pinning were created by patterned irradiation in order
to study shearing effects in the vortex lattice when flow
initiates in the unpinned regions and strong velocity gra-
dients appear48–52. It is also possible to create spatially
inhomogeneous pinning by creating large scale thickness
modulations53–56, diluting periodic pinning arrays57,58,
or by selecting a sample with strong edge pinning but
weak bulk pinning59. Another way to introduce inhomo-
geneous depinning thresholds is by creating a gradient in
the number or size of the pinning sites; in this case, the
dynamics depend on whether the system is driven par-
allel or perpendicular to the gradient60–64. Other stud-
ies showed that inhomogeneous pinning can lead to a
number of interesting dynamical effects such as negative
mobility65 and ratchet motion66,67. In charge density
wave systems with inhomogeneous pinning, depinning
first occurs in the weak pinning region, creating a shear-
ing effect in the more strongly pinned region68. In sys-
tems with spatially inhomogeneous pinning, application
of a drive tends to create velocity gradients which lead
to the formation of dislocations, the emergence of liq-
uid phases, or the coexistence of liquid and solid phases.
Many of these phases are similar to those found in sys-
tems with homogeneous pinning or no pinning when the
driving is inhomogeneous, such as in Corbino geometries
for superconducting vortices, where different phases ap-
pear such as a solid flow in which the vortex lattice ro-
tates as a rigid body, as well as a shear banded state at
higher drives69–75.

In the studies performed with inhomogeneous pinning
up until now, the dynamics has been exclusively over-
damped, so it is not known when happens when there is
a finite Magnus force. Since the Magnus force mixes the
velocity components from external drives, one would ex-
pect rather different results to appear compared to what
is found in the overdamped systems. Another interesting
effect is that shear banding could arise for driving ei-
ther parallel or perpendicular to the inhomogeneous pin-
ning regions due to the Magnus force. There have been
some studies of skyrmions under inhomogeneous drives in
the absence of pinning which produced evidence for rigid
flow, disordered flow, and shear banding effects76–78.

Here we examine skyrmion dynamics in a system where
the external drive is uniform but the pinning is inhomo-
geneous, with a region of strong pinning in the form of a
strip coexisting with a region where there is no pinning.

When the drive is parallel to the strip, we find that the
skyrmions first move in the unpinned region and that
the skyrmion Hall effect is suppressed. As the drive is
increased, flow occurs in both regions with a velocity gra-
dient in the pinned region, but the skyrmion Hall angle is
still zero. At higher drives, a shear-induced disordered or
liquid phase appears due to a proliferation of topological
defects in the skyrmion lattice, and the skyrmion Hall
angle becomes finite, while at very high drives, the flow
becomes uniform, the skyrmions form a moving liquid or
moving crystal state, and the skyrmion Hall angle reaches
a saturation value. For a drive applied perpendicular to
the strip, when the Magnus force is large we find that
skyrmions from the unpinned region enter the pinned re-
gion in avalanches, creating a density gradient analogous
to the Bean state found in type-II superconductors79,80.
Here the skyrmions accumulate along the edge of the
pinned region and form a jammed state in which the
repulsive interactions from the skyrmions in the pinned
region block the flow of the skyrmions in the unpinned
region. In previous work on skyrmion motion in inhomo-
geneous pinning, we considered only the case of skyrmion
flow in the unpinned region81. Here we expand on this to
study the entire range of dynamics and the interplay of
motion in both the unpinned and pinned regions as well
as driving in different directions. Although we focus on
skyrmions, our results should be applicable to other types
of systems with a Magnus force or gyroscopic coupling in
the presence of inhomogeneous disorder. Examples of
such systems include colloidal rotators82, magnetically
driven colloids83–85, vortices in superfluids86,87, and chi-
ral active matter states88–90.

II. SIMULATION

We consider a two-dimensional system of size L × L
with periodic boundary conditions in the x and y-
directions where the skyrmions are modeled as particles
with skyrmion-skyrmion and skyrmion-pinning interac-
tions based a modified Theile equation13,26,91–93. Half of
the sample is pin-free, and the other half of the sample
contains a square array of pinning sites, as illustrated
in Fig. 1. The pinning sites are modeled as finite range
parabolic traps with lattice constant a, pinning radius
rp, and maximum strength Fp. The sample contains
Np pinning sites and N skyrmions, and we focus on the
case of N/Np = 2.0, so that under equilibrium condi-
tions the skyrmion density is uniform, with half of the
skyrmions in the pinned region and half of the skyrmions
in the unpinned region. We define the matching density
nφ = 2Np/L

2 to be the density at which the number of
skyrmions would match the number of pinning sites if the
entire sample were filled with the same density of pinning
as the pinned region. Throughout this work we consider
nφ = 0.4.

The dynamics of skyrmion i is governed by the follow-
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FIG. 1. Image of the system showing skyrmion positions (blue
dots) and pinning site locations (open red circles). There are
half as many skyrmions as pinning sites and only the lower
half of the sample contains pinning. The drive can be applied
along either the x or the y direction.

ing equation of motion:

αdvi + αmẑ × vi = Fssi + FDi . (1)

Here the repulsive skyrmion-skyrmion force is Fi =∑N
j=1K1(rij)r̂ij , where rij = |ri−rj |, r̂ij = (ri−rj)/rij ,

and the modified Bessel function K1(r) falls off exponen-
tially for large r. A uniform driving force FD = FDα̂ is
applied to all skyrmions in either the x-direction (α = x),
parallel to the pinning strip, or in the y-direction (α = y),
perpendicular to the pinning strip. The skyrmion veloc-
ity is v, and the damping term αd aligns the velocity in
the direction of the net applied forces. The Magnus term,
with coefficient αm, creates velocities that are perpendic-
ular to the net external forces. When the Magnus term
is finite, in the absence of pinning the skyrmions move at
an angle with respect to the driving force given by the
intrinsic skyrmion Hall angle θintsk = tan−1(αm/αd).

The initial skyrmion positions are obtained through
simulated annealing, after which we apply a drive which
we increase in increments of δFD with a fixed number
of simulation time steps spent at each value of FD. For
each value of the drive, we measure the average velocity

both parallel, 〈V||〉 = N−1
∑N
i vi · x̂, and perpendicular,

〈V⊥〉 = N−1
∑N
i vi · ŷ, to the pinning strip. The mea-

sured skyrmion Hall angle is θsk = tan−1(〈V⊥〉/〈V||〉).
For the studies reported here we typically use increments
of δFD = 0.00025 and we wait 2000 simulation time steps
between force increments. The velocity-force character-
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FIG. 2. (a) 〈V||〉 (blue solid line) and 〈V⊥〉 (red line) vs
FD for a sample with x direction driving at Fp = 0.75 and
αm/αd = 1.0. Vertical dashed lines indicate the four dynam-
ical phases: I, longitudinal flow in the x direction in only the
pin-free channel; IIsb, the shear banding phase; IIIpl, plastic
flow; ML, a moving liquid; and MC, a moving crystal. (b)
The corresponding skyrmion Hall angle θsk vs FD showing
that θsk increases from zero in phase IIIpl and reaches a satu-
ration value in the ML and MC phases. (c) The corresponding
fraction of six-fold coordinated skyrmions P6 vs FD, showing
changes across each of the four dynamic phase transitions.

istics and average measured quantities do not change for
smaller force increments or longer waiting times.

III. SHEARING DYNAMICS FOR PARALLEL
DRIVING

We first consider the case where the skyrmions are
driven in the x direction, parallel to the pinning stripe.
In Fig. 2(a) we plot 〈V||〉 and 〈V⊥〉 versus FD for a sam-
ple with Fp = 0.75 and αm/αd = 1.0. In the absence
of pinning, the skyrmions form a triangular lattice that
moves at an angle of 45◦ with respect to the x-axis, as
indicated by the dashed blue line. Figure 2(b) shows the
corresponding measured skyrmion Hall angle θsk versus
FD. As indicated in Fig. 2(a), we identify five dynamic
phases. In phase I, 〈V||〉 is finite and 〈V⊥〉 = 0.0, and
the skyrmions flow only in the unpinned portions of the
sample in the direction of the drive. This motion is illus-
trated in Fig. 3(a), where the skyrmions flow elastically
inside the pin-free region and the skyrmion Hall angle is
zero. As the drive increases, the system enters the shear
banding phase IIsb where the flow is still only along the
x-direction but skyrmions move both in the unpinned re-
gion and in the pinned region, as shown in Fig. 3(b). In



4

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 3. Skyrmion locations (blue dots), pinning site loca-
tions (open circles), and skyrmion trajectories (green lines)
during a fixed time interval for the system in Fig. 2 with x
direction driving at Fp = 0.75 and αm/αd = 1.0. (a) Phase
I at FD = 0.1, where the flow is only in the unpinned re-
gion. (b) Phase IIsb at FD = 0.2, where there is flow in both
the unpinned and pinned regions but the skyrmion Hall an-
gle is zero. (c) Phase IIIpl at FD = 0.5 where the skyrmion
Hall angle is finite. (d) The pinning sites and skyrmion loca-
tions without trajectories in the moving crystal phase MC at
FD = 1.5.
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FIG. 4. A blowup of the 〈V||〉 (blue solid line) and 〈V⊥〉
(red line) vs FD curves from Fig. 2(a) highlighting the I-IIsb
transition at FD = 0.16. The blue dashed line is the velocity
〈V||〉 in the pin-free limit.

phase IIsb, the skyrmions in the unpinned region begin to
accumulate along one edge of the pinned region due to the
Magnus force, which acts along the y direction perpen-
dicular to the pin-free region. For FD > 0.28, in phase
IIIpl or the plastic flow state there is now flow in both
the x and y directions and skyrmions can move across the
entire pinned strip. Within the pinned region there is a
combination of pinned and moving skyrmions which cre-
ates the disordered motion illustrated in Fig. 3(c). The
skyrmion Hall angle θsk increases from zero in phase IIIpl
and it begins to saturate once FD/Fp & 1.0. When
0.75 < FD < 1.18, all the skyrmions are moving since
FD > Fp; however, the flow is still disordered, and the
system is in the moving liquid phase ML. For FD > 1.18,
there is a transition to a moving crystal (MC) phase of
the type shown in Fig. 3(d). Within the ML phase, the
increase of θsk with increasing FD is less rapid compared
to phase IIIpl, while within the MC phase, θsk is constant
at the clean limit value of θsk ≈ 45◦, and fluctuations in
〈V||〉 and 〈V⊥〉 are strongly reduced. The vertical lines in
Fig. 2 indicate the transitions between the five different
phases. To better highlight the I-IIsb transition, in Fig. 4
we show a blowup of 〈V||〉 and 〈V⊥〉 versus FD, where the
blue dashed line indicates the expected value of 〈V||〉 in
a pin-free system. Across the I-IIsb transition, there is
a change in the slope of 〈V||〉 as a function of FD when
skyrmions in the pin free region start to accumulate along
the edge of the pinned region and the skyrmions in the
pinned region begin to move in the x-direction.

Another method for characterizing the different phases
is to measure the fraction P6 of six-fold coordinated
skyrmions. We generate a Voronoi construction from the
skyrmion positions to identify the coordination number

zi of each skyrmion, and then obtain P6 = N−1
∑N
i δ(6−

zi). In Fig. 2(c), P6 versus FD has a signature at all four
phase transitions. In phase I, the ordering is mostly trian-
gular due to the arrangement of the skyrmions in the pin-
free region, as shown in Fig. 1, and P6 also picks up some
finite weight in the pinned region due to small distortions
that can produce short additional sides in the Voronoi
polygons. When the system enters the IIsb phase, there
is a drop in P6 due to the formation of dislocations that
glide along the x-direction. There is another sharp drop
in P6 at the onset of the strongly disordered IIIpl, where
topological defects proliferate. In the ML phase, there is
more topological order and P6 increases to P6 ≈ 0.825,
but a number of dislocations are still present in the sam-
ple. Upon entering the MC phase, P6 ≈ 0.95 since the
skyrmions exhibit crystalline order.

The dynamic phases are also associated with changes
in the structure factor S(q). In Fig. 5(a) we plot S(q) for
the system from Fig. 2 in phase I at FD = 0.1, where we
find a combination of both square and triangular peaks
which reflects the square ordering of the skyrmions in the
pinned portion of the sample and the triangular order-
ing of the skyrmions in the unpinned region. In phase
IIsb at FD = 0.2 in Fig. 5(b), the ordering is more smec-
tic with enhanced peaks along certain directions due to
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FIG. 5. The structure factor S(q) for the system in Fig. 2
with x direction driving at Fp = 0.75 and αm/αd = 1.0. (a)
Phase I; (b) Phase IIsb; (c) Phase IIIpl; (d) ML phase; (e)
MC phase. (f) The same system at Fp = 1.0 has a moving
square lattice phase described in Section IV.
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FIG. 6. The velocities spatially averaged over the x direction
as a function of y for the system in Fig. 2 with x direction
driving at Fp = 0.75 and αm/αd = 1.0. (a) 〈V||〉 and (b) 〈V⊥〉
in phase I at FD = 0.04. (c) 〈V||〉 and (d) 〈V⊥〉 in phase IIsb at
FD = 0.25. The vertical dashed lines indicate the separation
between the pinned region (y ≤ 18) and the pin-free region
(y > 18).

the sliding of the skyrmions along the pinning rows. For
FD = 0.5 in phase IIIpl, Fig. 5(c) shows that a square or-
dering has emerged due to the pinned skyrmions, along
with a smooth background produced by the liquid struc-
ture of the other skyrmions. In Fig. 5(d) at FD = 1.0
in the ML phase, a ring structure appears along with
six-fold peaks, indicating that there is some short range
translational order imposed on the liquid structure. In
the MC phase at FD = 1.5 in Fig. 5(e), the vortices have
triangular ordering and there are six clear peaks. When
the pinning strength is raised to Fp = 1.0 in the same
system, Fig. 5(f) indicates that there is a moving square
lattice, which we discuss in Section IV.
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FIG. 7. The velocities spatially averaged over the x direction
as a function of y for the system in Fig. 2 with x direction
driving at Fp = 0.75 and αm/αd = 1.0. (a) 〈V||〉 and (b)
〈V⊥〉 in phase IIIpl at FD = 0.5. (c) 〈V||〉 and (d) 〈V⊥〉 in the
MC phase at FD = 1.5. The vertical dashed lines indicate
the separation between the pinned region (y ≤ 18) and the
pin-free region (y > 18).

The spatial distribution of the velocities has distinct
structures in the different phases. In Fig. 6(a,b) we plot
〈V||〉 and 〈V⊥〉 averaged over the x direction as a function
of y in phase I at FD = 0.04 for the system in Fig. 2.
The vertical dashed line indicates the edge of the pinned
region at y = 18. We find 〈V||〉 ≈ 0.04 in the unpinned
region and 〈V||〉 = 0 in the pinned region, while 〈V⊥〉
is zero in both the pinned and unpinned regions. As FD
increases, the skyrmion density in the unpinned region at
the largest values of y decreases since the skyrmion lattice
is being compressed along the y-direction. In Fig. 6(c,d)
we show the x direction average values of 〈V||〉 and 〈V⊥〉
versus y in phase IIsb at FD = 0.25, where the parallel
velocity is finite in the pinned region and the skyrmion
density is close to zero for y > 35. There are several
peaks in Vx in the pinned region that decrease in height
as y decreases, indicating that the motion in the pinned
region is largest close to the edge of the pinning that is
exposed to the largest density of moving skyrmions in the
pin-free channel. Throughout phase IIsb, 〈V⊥〉 = 0.

In Fig. 7(a,b) we plot the x direction average values of
〈V||〉 and 〈V⊥〉 versus y in phase IIIpl at FD = 0.5. The
velocity is finite both parallel and perpendicular to the
drive, and the values of both 〈V||〉 and 〈V⊥〉 are low-
est in the pinned region. A peak in 〈V||〉 appears in
the unpinned region near the edge of the pinning due
to a combination of an increase in the skyrmion den-
sity with a speed up or acceleration effect in which the
skyrmions in the pinned region exert a force on the un-
pinned skyrmions that is perpendicular to the drive. This
force is rotated into the driving direction by the Mag-
nus term, contributing an extra velocity component to
the skyrmions in the unpinned region. A similar accel-
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FIG. 8. (a) 〈V||〉 (blue) and 〈V⊥〉 (red) vs FD for the system in
Fig. 2 with x direction driving at Fp = 0.75 and αm/αd = 0.
We find phase I and a moving smectic (MS) phase as illus-
trated in Fig. 9. (b) The corresponding fraction of six-fold co-
ordinated skyrmions P6 vs FD showing that in the MS phase
there is a jump up to P6 = 0.95.

eration or speed up effect was observed for skyrmions
interacting with planar defects in the form of periodic
quasi-one-dimensional potentials94. Figure 6(c,d) shows
the x-averaged values of 〈V||〉 and 〈V⊥〉 versus y in the
MC phase at FD = 1.5. Here the velocities in both direc-
tions are nearly independent of y since the effect of the
pinning is greatly reduced.

A. Dynamic Phases at Small Magnus Forces

We next consider the effect of varying the relative
strength of the Magnus force. We observe three regimes
of behavior consisting of the low Magnus force regime for
0 ≤ αm/αd ≤ 0.5, the intermediate Magnus force regime
for 0.5 < αm/αd < 7.0, and the high Magnus force regime
for αm/αm ≥ 7.0. Each regime has distinctive dynamics.

The low Magnus force regime is relevant not only for
skyrmion systems but also for certain superconducting
vortex systems95. In Fig. 8(a) we plot 〈V||〉 and 〈V⊥〉
versus FD for the system in Fig. 2 with Fp = 0.75 and
αm/αm = 0. We find two dynamic phases. In phase I,
flow occurs only in the unpinned region, while at higher
drives we observe a moving smectic (MS) phase in which
all of the skyrmions are flowing in both the pinned and
unpinned regions. In both phases, 〈V⊥〉 = 0. We note
that there can be some shear banding flows near the I-MS
transition, which produce the nonlinear behavior in 〈V||〉
near FD/Fp = 1.0. This phenomenon has been discussed
previously in more detail for the overdamped regime64.
Figure 8(b) shows the the corresponding P6 versus FD
where we observe a jump from P6 = 0.85 in phase I to

-32/L -16/L 16/L 32/L
kx(a) (b)

-32/L

-16/L

16/L

32/L

k y

FIG. 9. The Voronoi construction for the skyrmion locations
for the system in Fig. 8 with x direction driving at Fp = 0.75
and αm/αd = 0 at FD = 1.0 in the MS phase. The coordi-
nation number of individual skyrmions is 5 (red), 6 (black),
7 (blue), or outside the range of 5 to 7 (green). Fivefold
and sevenfold coordinated defects form pairs that have their
Burgers vector aligned with the driving direction. (b) The
corresponding structure factor S(k) indicates the presence of
smectic order.

P6 = 0.95 in the MS phase. The value of P6 is less than
1.0 due to pinning-induced dislocations in the skyrmion
lattice. These dislocations cause the skyrmions in the
pinned portion of the sample to move a bit more slowly
than the skyrmions in the unpinned region, producing
a net slip between the two spatial regions. In Fig. 9(a)
we plot the Voronoi construction for the instantaneous
skyrmion positions in the MS phase at FD = 1.0. Here,
fivefold and sevenfold coordinated defects form pairs with
their Burgers vector aligned in the direction of the drive.
In the corresponding S(k), shown in Fig. 9(b), there is
strong smectic ordering, but six peaks are still present
due to the partial triangular ordering of the moving lat-
tice.

For finite but small αm/αd, we still find phase I and the
MS phase; however, at higher drives, an additional transi-
tion occurs when the skyrmion lattice decouples from the
pinning, ceases to be locked in the driving direction, and
exhibits a finite skyrmion Hall angle. In Fig. 10(a,b,c) we
plot 〈V||〉, 〈V⊥〉, and P6, respectively, versus FD for the
same system in Fig. 8 but at αm/αd = 0.0125, where the
skyrmions have an intrinsic Hall angle of θintsk = 0.7125◦.
The vertical lines distinguish the different dynamical
phases. We find extended regions of phase I and the
MS phase, in which 〈V⊥〉 = 0. For 5.9 < FD < 8.5, the
system becomes disordered, as indicated by the drop in
P6 to P6 ≈ 0.75, and the system forms a moving liquid.
Here 〈V⊥〉 becomes finite as the system begins to show
a finite skyrmion Hall angle. For FD > 8.5, P6 jumps
up to P6 = 0.985 when the system enters a moving crys-
tal phase. In the MC phase the topological ordering is
higher than in the MS since the skyrmion lattice is no
longer locked to the square pinning array. The MS-MC
transition is accompanied by a change in the slope of
〈V⊥〉.

In Fig. 11(a) we show the skyrmion locations, pinning
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FIG. 10. (a) 〈V||〉, (b) 〈V⊥〉, and (c) P6 vs FD for the sample
in Fig. 2 with x direction driving at Fp = 0.75 and αm/αd =
0.0125. The vertical lines distinguish the different dynamic
phases. I: longitudinal flow in only the pin-free channel; MS:
moving smectic; ML: moving liquid; MC: moving crystal. A
drop in P6 marks the window of disordered moving liquid
between the moving smectic (MS) and moving crystal (MC)
phases.

site locations, and skyrmion trajectories in the MS phase
for the system in Fig. 10 at FD = 2.5. The image in
Fig. 11(b) of only the skyrmion locations in the same
state indicates that the skyrmion lattice is aligned with
the x axis, parallel to the driving direction. As FD in-
creases in the MS phase, the skyrmions in the pin free
region become compressed and row reductions occur, pro-
ducing the drops in P6 in the MS phase at 3.0 < FD < 5.9
in Fig. 10(c). At FD = 7.0 in the ML phase, illustrated
in Fig. 11(c), the skyrmions in the pinned region tend
to remain aligned with the x axis while the rest of the
skyrmions have adopted a rotated configuration. The
formation of a strongly driven moving liquid state oc-
curs due to the competition between the pinning, which
tends to lock the skyrmion motion along the x axis, and
the Magnus force, which favors skyrmion motion at an
angle of 7◦ with respect to the x axis. At the MS-ML
transition, the dislocations that were gliding in the MS
phase generate a temporary proliferation of additional
topological defects that dynamically anneal away as FD
increases and the skyrmions enter the MC phase, illus-
trated in Fig. 11(d) at FD = 7.5.

In general, increasing the drive reduces the dynami-
cal effect of the pinning, as found in other systems that
exhibit depinning18, and eventually the effective pinning
strength becomes weak enough that the skyrmions can
start jumping in the direction transverse to the drive.
The guiding of particles along a symmetry direction of

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 11. Skyrmion locations (blue dots) and pinning site
locations (open circles) for the system in Fig. 10 with x direc-
tion driving at Fp = 0.75 and αm/αd = 0.0125. (a) The MS
phase at FD = 2.5, with skyrmion trajectories during a fixed
time interval drawn as green lines. (b) The same as panel (a)
with only the skyrmion locations shown, indicating that the
skyrmion lattice is aligned in the x-direction, parallel to the
drive. (c) The ML phase at FD = 7.0. (d) The MC phase at
FD = 7.5.

a periodic pinning array has been well studied in over-
damped systems, where the particles tend to lock to sym-
metry directions of the pinning lattice even when these
directions are not aligned with the direction of the exter-
nal drive18,96,97. This effect has also been studied for in-
dividual skyrmions moving in periodic pinning arrays us-
ing both a particle-based model98 and continuum-based
simulations99. For skyrmion assemblies, the locking ef-
fect is generally weaker, but it can be observed for driv-
ing over square pinning arrays along 0◦ and 45◦ from the
major symmetry axis of the lattice. The MS-ML and
ML-MC transitions shift to higher values of FD with de-
creasing αm/αd, and at αm/αd = 0, the system remains
locked in the MS phase for all drives above depinning.

In Fig. 12(a) we plot 〈V||〉 and −〈V⊥〉 versus FD for the
same system in Fig. 10 at a higher value of αm/αd = 0.25,
which corresponds to θintsk = 14◦. The corresponding P6

versus FD in Fig. 12(b) shows a transition from phase
I to the plastic flow phase IIIpl followed by a transition
directly into the moving crystal phase, with no MS phase.

We construct a dynamic phase regime as a function of
FD versus αm/αd in Fig. 13(a) for the low Magnus force
systems in Figs. 10 to 12. The MS phase only occurs
when αm/αd < 0.1. In Fig. 13(b) we replot the phase
diagram on a log-log scale. The dashed line is a fit to
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FIG. 12. (a) 〈V||〉 (blue) and −〈V⊥〉 (red) vs FD for the system
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0.25. Here we have multiplied 〈V⊥〉 by −1 for clarity. (b)
The corresponding P6 vs FD showing the absence of the MS
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FIG. 13. The dynamic phase diagram as a function of FD vs
αm/αd for the low Magnus force regime. Phase I: olive green;
moving smectic (MS) phase: teal; moving liquid (ML) phase:
brown; plastic flow phase IIIpl: pink; shear band phase IIsb:
red; and the moving crystal (MC) phase: light blue. The
MS phase occurs only when αm/αd < 0.1. (b) The same
data on a log-log scale. The dashed orange line is a fit to
FD ∝ 1/(αm/αd), showing that the drives at which the MS-
ML and ML-MC phase transitions occur diverge as αm/αd

decreases.

FD ∝ 1/(αm/αd) indicating that the drives at which the
MS-ML and ML-MC transitions occur diverges as the
relative strength of the Magnus force decreases. An in-
teresting aspect of this result is that it suggests that in
a system such as superconducting vortices with a small
but finite Magnus force, there could be a transition from
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FIG. 14. (a) 〈V||〉 (blue) and −〈V⊥〉/6 (red) vs FD for a sys-
tem with x direction driving at Fp = 0.75 and αm/αd = 6.0.
For clarity, we have multiplied 〈V⊥〉 by −1 and divided it by
the value of αm/αd in order to normalize 〈V⊥〉 to the value of
〈V||〉 at high drives. (b) The corresponding velocity deviations
δV|| (blue) and δV⊥ (red) vs FD. (c) The corresponding P6

vs FD, where we find an extended window of moving liquid
(ML) phase. IIIpl: plastic flow phase; MC: moving crystal
phase.

a moving smectic to a moving crystal state at a finite but
large drive.

B. Intermediate and High Magnus Force

In the intermediate Magnus force regime of 0.5 <
αm/αd < 7.0, we find the same five phases I, IIsb, IIIpl,
ML, and MC described above, with an expansion of the
ML phase since the driving force at which the ML-MC
transition occurs increases with increasing Magnus force.
We plot 〈V||〉 and 〈V⊥〉 versus FD in Fig. 14(a) for a
system with αm/αd = 6.0. For clarity, we have normal-
ized 〈V⊥〉 to the value of 〈V||〉 at high drives by divid-
ing 〈V⊥〉 by αm/αd and multiplying it by −1. We can
also characterize the dynamic phases by measuring the
skyrmion velocity deviations in the x and y-directions as

in previous work100,101, δV|| =
√

[
∑N
i (vi||)

2 − 〈V||〉2]/N

and δV⊥ =
√

[
∑N
i (vi⊥)2 − 〈V⊥〉2]/N . The plot of δV||

and δV⊥ versus FD in Fig. 14(b) indicates that the ve-
locity deviations are largest in the plastic flow phase, and
diminish to a constant value in the moving crystal phase.
In Fig. 14(c) we show P6 versus FD for the same system.
When FD/Fp > 1.0, we find an extensive region of ML
phase in which P6 has a higher value than in the plastic
flow phase but a lower value than in the moving crystal
phase.
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FIG. 15. Skyrmion locations (blue dots), pinning site loca-
tions (open circles), and skyrmion trajectories (green lines)
during a fixed time interval for a system with x direction
driving at Fp = 0.75 and αm/α = 2.5, where the shear band-
ing phase is replaced with the avalanche phase IIa. Moving
skyrmions from the unpinned region enter the pinned region
in the form of avalanches at (a) FD = 0.1, (b) FD = 0.2, and
(c) FD = 0.3. (d) The plastic flow phase IIIpl at FD = 0.5.

The shear banding phase IIsb disappears when
αm/αd > 2.0, and it is replaced by phase IIa in which
skyrmions enter the pinned region via avalanches but
where there is almost no flow parallel to the drive. In
Fig. 15 we illustrate a system with αm/αd = 2.5 at
FD = 0.1, 0.2, 0.3, and 0.5. The motion in the pinned re-
gion at FD = 0.1 and 0.2 in Fig. 15(a,b) is at almost 90◦

to the drive, while for FD = 0.3 in Fig. 15(c) there is some
motion at a lower angle. This effect is similar to what oc-
curs in the Bean state found in superconductors, where
vortices enter from the edge of the sample, creating a
gradient in the vortex density79,80. In the skyrmion case,
even though the skyrmion density builds up at the edge
of the pinned region, the strong Magnus force suppresses
motion in the x direction, parallel to the drive. Even-
tually when FD is large enough, skyrmions can travel
all the way across the pinned region and the system en-
ters the plastic flow phase IIIpl as shown in Fig. 15(d)
at FD = 0.5. In this work we do not characterize the
statistics of the avalanches in phase IIa; however, pre-
vious work on skyrmion avalanches for density gradient
driven skyrmions analyzed the avalanches in terms of a
critical phenomenon100, and since we have a similar den-
sity gradient in our system, we expect that the avalanche
statistics should be similar.

For αm/αd > 7.0 we observe a new phenomenon in
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FIG. 16. 〈V||〉 (blue) and 〈V⊥〉 (red) vs FD in a sample with x
direction driving at Fp = 0.75 and αm/αd = 10. Above phase
IIa, there is a region of large oscillations in the intermittent
phase Iin, where large scale phase separated flow occurs as
shown in Fig. 17.

which a portion of the plastic flow phase develops strong
intermittency, with skyrmion flow occurring in large scale
phase separated moving channels in the pinned region.
These channels change in shape and size as a function
of time, producing strong oscillations in the velocity. In
Fig. 16 we plot 〈V||〉 and 〈V⊥〉 versus FD for a sample with
αm/αd = 10. Here, after the initial phase IIa, in phase Iin
there are strong oscillations in the velocity both parallel
and perpendicular to the drive which decrease in ampli-
tude until the sample enters phase IIIpl at FD = 0.42. In
Fig. 17 we highlight the skyrmion motion in phase Iin. At
FD = 0.12, Fig. 17(a) shows that a channel has formed
along which the skyrmions enter the pinned region at
nearly 90◦ to the driving direction. Several instances of
spiraling motion of individual skyrmions appear, which
are indicative of the large value of the Magnus force. In
Fig. 17(b) the same system at FD = 0.25 contains a phase
separated flow confined to a single river moving at −90◦

to the driving direction through the pinned region. At
FD = 0.3185 and 0.325 in Figs. 17(c,d), the large scale
rivers change position as function of both time and drive,
and the large spike in 〈V||〉 in Fig. 16 corresponds to two
or three flowing rivers, while the minimum corresponds to
one flowing river. As FD increases, more of these rivers
begin to flow, and when the system enters phase IIIpl,
the flow is disordered but uniform. Phase segregation dy-
namics has been observed previously in the particle based
model when both αm/αd and the pinning strength are
large100. Continuum based simulations also show that
dynamical segregation effects can occur when the pin-
ning strength is sufficiently large34. When the drive is
large enough, the effect of the pinning is reduced and the
dynamical behavior becomes more uniform. We observe
the intermittent phase Iin for αm/αd as high as 30, which
is the largest value we considered. In general, the phase
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FIG. 17. Skyrmion locations (blue dots), pinning site loca-
tions (open circles), and skyrmion trajectories (green lines)
during a fixed time interval for the system in Fig. 16 with
x direction driving at Fp = 0.75 and αm/αd = 10 in phase
Iin. (a) FD = 0.12, (b) FD = 0.25, (c) FD = 0.3185 and (d)
FD = 0.325.

separated dynamics or intermittency occurs only when
FD/Fp < 1.0. The segregation occurs since when the
Magnus force is large, skyrmions that are close together
tend to spiral around one another rather than moving
apart. In regions where the skyrmion density is largest,
the pinning effectiveness is reduced, leading to additional
flow in the same location.

In Fig. 18 we highlight the dynamic phase diagram as
a function of FD versus αm/αd for the intermediate and
high Magnus force regimes of 0.5 ≤ αm/αd ≤ 10. Here
the shear banding phase IIsb occurs for 0.5 < αm/αd ≤
1.9, but is replaced by phase IIa for αm/αd > 1.9. When
αm/αd > 7.0, a window of phase Iin appears between
phases IIa and IIIpl. The driving force at which the ML-
MC transition occurs increases with increasing αm/αd
when αm/αd > 3. The increase in the width of the
ML phase as αm/αd increases occurs since higher val-
ues of αm produce more motion associated with the non-
dissipative Magnus force, which creates spiraling motion
of the skyrmions when they interact with the pinning
sites.

In Fig. 19 we show the evolution of the skyrmion Hall
angle θsk versus FD for varied αm/αd ranging from 0.125
to 10. In each case, θsk starts at zero when FD = 0 and
increases with increasing FD in the plastic flow phase.
There is a smaller increase in θsk with increasing FD in
the ML phase, and θsk reaches a saturation value in the
MC phase. Another interesting effect is that θsk changes
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FIG. 18. The dynamic phase diagram as a function of FD

vs αm/αd in samples with x direction driving at Fp = 0.75,
showing phases I (olive green), IIsb (red), IIIpl (pink), IIa
(light purple), Iin (violet), ML (brown), and MC (blue). Here
phase IIa appears when αm/αd > 1.9 and phase Iin appears
when αm/αd ≥ 7.0.
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FIG. 19. The evolution of θsk vs FD for samples with x
direction driving at Fp = 0.75 and αm/αd = 10, 7, 5, 2.5,
1.75, 1.25, 1.0, 0.75, 0.7, 0.5, 0.375, 0.25, 0.175, and 0.125,
from top to bottom.

discontinuously when θsk < 15◦.

IV. VARIED PINNING STRENGTH

We next consider the effect of varying the pinning
strength Fp while holding the ratio of the Magnus force
to the damping term fixed at αm/αd = 1.0. The behavior
can be divided into three regimes depending on whether
the pinning is weak, intermediate, or strong.

The weak pinning regime appears when Fp < 0.05.
Here the motion is elastic and each skyrmion keeps its
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FIG. 20. A system with x direction driving at αm/αd = 1.0
and Fp = 0.01, where an elastic depinning transition in which
the skyrmions keep their same neighbors separates the pinned
phase P from the MC phase. (a) 〈V||〉 (blue) and 〈V⊥〉 (red)
vs FD. (b) The corresponding P6 vs FD.
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FIG. 21. Dynamic phase diagram as a function of FD vs Fp in
the weak pinning regime for samples with x direction driving
and αm/αd = 1.0, showing the pinned phase (yellow), moving
crystal MC (light blue), plastic flow IIIpl (pink), and phase I
(olive green).

same neighbors for all values of FD. At low drives we find
a pinned phase P in which the skyrmions in the pinned
region are able to prevent the skyrmions in the unpinned
region from moving due to the skyrmion-skyrmion inter-
action forces. As the drive increases, an elastic depinning
transition occurs into a moving lattice phase with a fi-
nite skyrmion Hall angle, as shown in Fig. 20(a) where
we plot 〈V||〉 and 〈V⊥〉 versus FD. Figure 20(b) shows
the corresponding P6 versus FD curve, which changes
only slightly at the depinning transition from the coex-
isting pinned squares and hexagonal lattice into a moving
lattice. When the pinning is even weaker, there is a tran-
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FIG. 22. Velocity deviations δV|| (blue) and δV⊥ (red) vs
FD for samples with x direction driving and αm/αd = 1.0
showing a transition from a triangular moving crystal MC to
a square moving crystal MCsq. (a) Fp = 0.8. (b) Fp = 1.0.

sition in the pinned state from a pinned square lattice to
a floating triangular lattice, and the depinning threshold
drops even further. For Fp > 0.03, we observe a separate
depinning transition of the skyrmions in the unpinned
region which move at zero Hall angle, follows by a plas-
tic flow region and a moving crystal regime. In Fig. 21
we show the dynamic phase diagram in the weak pinning
regime as a function of FD versus Fp where we highlight
the pinned phase P, moving crystal MC, phase I motion,
and the plastic flow state IIIpl.

In the intermediate pinning regime 0.05 < Fp < 3.5,
we observe phases I and IIIpl as well as the MC state.
At αm/αd = 1.0, the intrinsic skyrmion Hall angle is
θintsk = 45◦, which corresponds to a locking direction of
the square pinning array in the pinned portion of the
sample. For Fp < 0.85, the elastic energy associated
with the triangular skyrmion lattice in the MC state is
large enough that the skyrmion motion does not lock
with the pinning lattice; however, as the pinning strength
increases, we find a regime in which the pinning can in-
duce a directional locking, as indicated by the formation
of a square moving skyrmion lattice of the type shown in
Fig. 5(f). In Fig. 22(a) we plot δV|| and δV⊥ versus FD
for a sample with Fp = 0.8, highlighting the formation
of the triangular MC phase followed by a transition to
the square moving crystal phase MCsq. Within the MC
phase, occasional small rotations of the triangular lattice
occur which produce the jumps in in δV⊥. At Fp = 1.0,
the δV|| and δV⊥ versus FD curves in Fig. 22(b) indi-
cate that the transition to the MCsq state has shifted
to lower drives. For smaller values of Fp, the MC phase
disappears and there is a transition directly from a ML
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FIG. 23. θsk vs FD showing the evolution of the skyrmion
Hall angle across the ML-MC-MCsq transitions for the system
in Fig. 21 with x direction driving and αm/αd = 1.0. (a)
Fp = 0.8. (b) Fp = 1.0.

phase to the MCsq phase.
In Fig. 23(a,b) we show a blowup of the skyrmion Hall

angle θsk versus FD across the ML-MC-MCsq transitions
for the system in Fig. 22 at Fp = 0.8 and Fp = 1.0, re-
spectively. Here, θsk is lower in the MC phase than in
the MCsq phase. At Fp = 0.8 in Fig. 23(a), the onset
of the MC phase coincides with a flattening of θsk, but
as FD increases, several jumps in θsk occur due to large
scale rotations of the moving lattice, and finally in the
MCsq state the jumps in θsk disappear. The angle of
motion in the MCsq is slightly smaller than 45◦ due to
a weak guiding effect of the skyrmions along the bound-
aries separating the pinned and unpinned regions of the
sample.

In Fig. 24 we construct a dynamic phase diagram as
a function of FD versus Fp for the intermediate pinning
regime, highlighting phases I, IIsb, IIIpl, ML, MC, and
MCsq. We note that there is still a pinned phase P
at small FD; however, on the scale of the figure this
phase cannot be seen. The MC-MCsq transition shifts
to higher values of FD as the pinning strength is low-
ered. We have also examined varied αm/αd for different
pinning strengths and find similar phases to those shown
in Fig. 24; however, the MCsq phase appears only when
αm/αd is near 1.0. An intermittent phase Iin appears for
low values of αm/αd when Fp is large.

As Fp increases, we find wider windows of FD in which
θsk is small and gradually increasing. When Fp > 3.0,
we start to observe the trapping of multiple skyrmions in
individual pinning sites, which causes the appearance of
intervals of FD in which 〈V||〉 decreases with increasing
FD. This phenomenon is known as negative differen-
tial conductivity since d〈V||〉/dFD < 0, as illustrated in
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FIG. 24. Dynamic phase diagram as a function of FD vs Fp

for the intermediate pinning regime in samples with x direc-
tion driving and αm/αd = 1.0 showing phases I (olive green),
IIsb (red), IIIpl (pink), ML (brown), MC (light blue), and
MCsq (dark blue).
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FIG. 25. (a) 〈V||〉 (blue) and 〈V⊥〉 (red) vs FD for a sample
with x direction driving, αm/αd = 1.0, and Fp = 4.5 showing
regions in which d〈V||〉/dFD < 0.0, also known as negative dif-
ferential mobility, due to the trapping of multiple skyrmions
by individual pinning sites. (b) The corresponding θsk vs FD

where multiple regimes appear. (c) 〈V||〉 and 〈V⊥〉 vs FD for a
sample with x direction driving, αm/αd = 4.0, and Fp = 4.5.
(d) The corresponding θsk vs FD.

Fig. 25(a) where we plot 〈V||〉 and 〈V⊥〉 versus FD for a
system with Fp = 4.5 and αm/αd = 1.0. Figure 26 shows
the skyrmion positions in this sample at FD = 1.0, just
after the drop in 〈V||〉, where multiple skyrmions can be
trapped at individual pinning sites and where there is an
increase in the skyrmion density along the boundary of
the pinned region. In earlier work where the number of
skyrmions was much smaller than the number of pinning
sites, we also observed negative mobility that arises when
the skyrmions in the unpinned region are forced into the
pinned region and become immobile81. A similar phe-
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x

y

FIG. 26. Skyrmion locations (blue dots) and pinning site
locations (open circles) for the system in Fig. 25(a) with x
direction driving at αm/αd = 1.0 and Fp = 4.5 for FD = 1.0,
just after the drop down in 〈V||〉, showing multiple skyrmion
trapping by individual pinning sites.

nomenon can occur at higher skyrmion densities when
multiple skyrmions are trapped by each pinning site. We
also find signatures of multiple regimes in θsk, as shown
in Fig. 25(b). The 〈V||〉, 〈V⊥〉, and θsk versus FD curves
for a system with αm/αd = 4.0 appear in Fig. 25(c,d),
highlighting the persistence of the negative differential
mobility effect even for large intrinsic skyrmion Hall an-
gles.

V. DRIVING PERPENDICULAR TO THE
PINNING STRIP

We next consider the effect of applying a drive along
the y direction, perpendicular to the pinning strip. In
an overdamped system, such a drive would push the par-
ticles into the pinned region, while for skyrmions, the
Magnus force will also generate motion of the particles
parallel to the pin-free channel. In general, we observe
a jamming behavior in which the skyrmions are pushed
into the pinned region but there is no steady state mo-
tion in either direction so that 〈V||〉 = 〈V⊥〉 = 0. In
Fig. 27(a) we plot 〈V⊥〉 and 〈V||〉 versus FD for a sam-
ple with Fp = 0.75 and αm/αd = 1.0 with y direction
driving. As always, the parallel velocity is measured in
the x direction, parallel to the orientation of the pin-
ning strip, so here 〈V⊥〉 shows motion in the direction
of the applied drive. We find a jammed phase J with
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FIG. 27. Driving in the y direction, perpendicular to the
pinning strip, for the system in Fig. 2 with Fp = 0.75 and
αm/αd = 1.0. The vertical dashed lines denote transitions
among a jammed phase J, a moving plastic flow phase IIIpl,
a ML, and a MCsq phase. (a) 〈V||〉 (blue) and 〈V⊥〉 (red) vs
FD. (b) δV|| (blue) and δV⊥ (red) versus FD. (c) P6 vs FD.
Velocities are always measured parallel or perpendicular to
the direction of the pinning strip.

〈V||〉 = 〈V⊥〉 = 0 for FD > 0.16. The jammed phase J
is distinct from the pinned phase P described earlier. In
phase P, pinning results from the finite shear modulus
of the skyrmion lattice, while in phase J, pinning arises
due to the finite compression modulus of the skyrmion
lattice. Since the compression modulus is much larger
than the shear modulus, the jammed phase appears over
a much larger range of external drives compared to the
pinned phase. Within the jammed phase, temporary re-
arrangements or avalanches occur under increasing FD as
the skyrmions adjust their positions to accommodate the
drive, as shown in Fig. 28(a) at FD = 0.06. In Fig 27(b)
we plot δV|| and δV⊥ versus FD. Both quantities become
finite in phase IIIpl when the skyrmions are first able to
travel all the way across the pinned region, as illustrated
in Fig. 28(b) at FD = 0.25. In Fig. 27(c), the P6 versus
FD curve has a drop across the J-IIIpl transition. As FD
is further increased, the flow becomes more disordered.
For 0.75 < FD < 1.1, all the skyrmions are moving and
the system forms a ML phase as shown in Fig. 28(c) at
FD = 1.0. There is an increase in P6 up to P6 = 0.8
in the ML phase, and we find strong fluctuations in the
velocity deviations δV|| and δV⊥ for 0.75 < FD < 1.1.
Above FD = 1.1, the system enters a moving square crys-
tal phase MCsq, illustrated in Fig. 28(d). The ML-MCsq
transition is visible as a shift in P6 and a reduction of the
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FIG. 28. Skyrmion locations (blue dots), pinning site loca-
tions (open circles), and skyrmion trajectories (green lines)
during a fixed time interval for the system in Fig. 27 with y
direction driving, Fp = 0.75, and αm/αd = 1.0. (a) Transient
rearrangements in the jammed phase J at FD = 0.06. (b)
Phase IIIpl at FD = 0.25, where the skyrmions can cross the
entire system. (c) The ML phase at FD = 1.0, showing the
skyrmion locations only. (d) The moving square lattice MCsq

phase at FD = 1.5 showing the skyrmion locations only.

fluctuations in δV|| and δV⊥.
We find different regimes of behavior for driving in the

perpendicular direction depending on whether αm/αd is
small or large. In Fig. 29(a) we plot 〈V||〉 and 〈V⊥〉 for a
system with αm/αd = 0.0125, where we have normalized
〈V||〉 by dividing it by αm/αd. Figures 29(b,c) show the
corresponding δV||, δV⊥, and P6 versus FD curves. In this
case, we find a jammed phase J and a plastic flow phase
IIIpl in addition to a new phase which we call a partially
locked (PL) state. Here, the motion of the skyrmions
within the pinned region is completely locked in the y-
direction, parallel to the drive, but the skyrmions in the
unpinned region move at an angle to the drive. The IIIpl-
PL phase transition is associated with an increase in P6

and a drop in 〈V||〉. In phase IIIpl, skyrmions are moving
in both the x and y directions; however, in the PL phase,
skyrmions in the pinned region move only in the y direc-
tion, causing the value of 〈V||〉 to drop. In Fig. 30(a) we
show the Voronoi constriction for the skyrmion locations
in the PL phase at FD = 1.0. Within the pinned region,
the skyrmion lattice is aligned with the y-direction, while
in the unpinned region, it is aligned at an angle to the
y direction. Near FD = 2.0 in Fig. 29, there is a transi-
tion to a MC phase in which the skyrmion motion is no
longer locked to the y direction, as indicated by a jump
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FIG. 29. (a) 80〈V||〉 (blue) and 〈V⊥〉 (red) vs FD for the
system with y direction driving at αm/αd = 0.0125 and Fp =
0.75. For clarity, we have divided 〈V||〉 by the value of αm/αd

in order to normalize 〈V||〉 to the value of 〈V⊥〉 at high drives.
(b) The corresponding δV|| (blue) and δV⊥ (red) vs FD. (c)
The corresponding P6 vs FD. We observe a jammed phase
(J), plastic flow phase (IIIpl), partially locked phase (PL),
and a moving crystal phase (MC).
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FIG. 30. The Voronoi construction for the skyrmion lo-
cations for the system in Fig. 29 with y direction driving,
Fp = 0.75, and αm/αd = 0.0125. The red dashed line in-
dicates the edge of the pinned region. (a) The PL phase at
FD = 1.0, where there is change in the orientation of the crys-
tal across the boundaries separating the unpinned and pinned
regions. (b) The MC phase at FD = 2.5.

up in 〈V||〉 and a cusp in δV|| and δV⊥. There is also a
small dip in P6 near the PL-MC transition. Figure 30(b)
shows the Voronoi construction of the skyrmion locations
in the MC phase at FD = 2.5, where the entire skyrmion
lattice is aligned in the same direction. The PL phase
is produced by the locking of the skyrmion motion along
the symmetry direction of the pinning lattice, but when
αm/αd is large enough, the partially locked phase is re-
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FIG. 31. Dynamic phase diagram as a function of FD vs
αm/αd for driving in the y direction for a system with Fp =
0.75. Partially locked phase (PL), dark green; jammed phase
(J), tan; plastic flow (IIIpl), pink; intermittent (Iin), violet;
moving liquid (ML), brown; moving crystal (MC), light blue.
At αm/αd = 1.0 there is a moving square lattice (MCsq), dark
blue dashed line.

placed by the moving crystal phase.
In Fig. 31 we construct a dynamic phase diagram as

a function of FD versus αm/αd for driving in the y di-
rection. The PL phase appears when αm/αd < 0.4 and
diverges in width as αm/αd goes to zero. At low drives,
the jammed phase J occurs for all αm/αd, and is followed
at higher drives by an intermittent avalanche phase Iin
when αm/αd ≥ 5.0. The Iin phase is similar to that
found for driving in the x direction but its onset is at
somewhat lower values of αm/αd. We find the plastic
phase IIIpl for all values of αm/αd, and the ML phase
increases in extent with increasing Magnus force, similar
to the behavior of the ML phase in the system with x
direction driving. At αm/αd = 1.0, there is a transition
from the ML into a moving square lattice rather than to
a moving crystal phase. It is possible that for αm/αd
near 1.0, there could be a regime in which the moving
square lattice transitions into the moving crystal phase,
with the value of FD at which the transition occurs di-
verging at αm/αd = 1.0. For fixed αm/αd and increasing
Fp, we observe a similar evolution of the phases as in the
system with x direction driving, including a transition to
elastic depinning for small Fp.

VI. DISCUSSION

Our results should be general for skyrmion systems
with some form of inhomogeneous pinning. Although we
specifically focus on the case of a square lattice of pinning
sites, we expect similar results to appear if the pinned
region contains randomly placed pinning sites or a trian-
gular pinning lattice. One exception to this is that the

strong guidance effects that occur for skyrmion Hall an-
gles of θintsk = 45◦ would not appear for most other pinning
geometries since these are specific to the square pinning
lattice. In this work we did not consider hysteretic ef-
fects, but it is likely that many of the phases would show
hysteresis while others would not. There is now evidence
for a variety of skyrmion systems that exhibit thermal
effects or diffusion, so it would be interesting to study
how temperature could affect the results, such as by in-
ducing creep. It may also be possible to measure the
evolution of the shear modulus with temperature. For
instance, at low drives there is a pinned phase in which
the skyrmions trapped at the pinning sites hold back the
skyrmions in the pin-free region, and this can only occur
if the skyrmion lattice has a finite shear modulus. As the
temperature increases, the shear modulus would be re-
duced before vanishing at the melting transition, which
would destroy the indirect pinning of the skyrmions in
the pin-free region, causing them to flow. Similar effects
have been studied in the context of superconducting vor-
tices driven through weak pinning channels. Although
our work involves skyrmions, many of these results could
be relevant to other systems even in the absence of a
Magnus force. Some examples include vortices or col-
loids in a system with a combination of strong and weak
pinning where the direction of the drive is not fixed but
gradually changes, which could mimic the effect of the
changing skyrmion Hall angle.

VII. SUMMARY

We have numerically examined the dynamics of
skyrmions in systems with inhomogeneous pinning. We
focus on a sample containing a strip of square pinning co-
existing with a region of no pinning. When the external
drive is parallel to the pinning strip, we find that initially,
only the skyrmions in the unpinned region flow, termed
phase I motion, and that at higher drives, a shear band-
ing phase IIsb emerges in which flow occurs in the pinned
region with a velocity gradient. Both of these phases
have a skyrmion Hall angle of zero. When the drive is
strong enough, the skyrmions enter the plastic motion or
disordered phase IIIpl in which the skyrmion Hall angle
becomes finite. At higher drives, there is a moving liq-
uid (ML) phase followed by a transition into a moving
crystal (MC). The skyrmion Hall angle increases most
rapidly with increasing drive in the plastic flow phase,
and increases more slowly in the ML phase. For phases
I, IIsb, and IIIpl, there is an accumulation of skyrmions
along the edge of the pinned region due to the Magnus
force, which pushes the skyrmions in the unpinned re-
gion toward the pinned region. As the strength of the
Magnus force increases, there is a phase in which the
skyrmions enter the pinned region under avalanche-like
transport, creating a density gradient similar to the Bean
state found in type-II superconductors. There is also
an intermittent or dynamically phase separated state in
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which the skyrmion motion through the pinned region is
confined to localized rivers that change in size and lo-
cation with increasing drive. For weak Magnus forces,
we find a smectic phase in which the skyrmion motion
is locked in the direction of the drive over an extended
range of driving forces, followed by a transition to a state
in which the skyrmion Hall angle is finite. For weak pin-
ning, the system exhibits an elastic pinning regime with
a shear jammed state at low drives followed at higher
drives by a moving crystal phase in which each skyrmion
keeps its same neighbors as it moves. When the pinning
is strong, we observe negative differential conductivity
when skyrmions in the pin-free channel are pushed into
the pinned region and become immobile, dropping the
overall mobility of the system. When the external drive
is perpendicular to the pinning strip, we find a jammed
phase at low drives in which skyrmions in the unpinned
region are unable to move into the pinned region. As the

drive increases, there is a partially locked phase, a mov-
ing liquid state, and a moving crystal phase. We show
how the transitions between these different phases pro-
duce signatures in the skyrmion mobility, coordination
numbers, velocity deviations, and global skyrmion lat-
tice structure. Beyond skyrmions, our results could also
be relevant for other systems in which Magnus forces can
arise, such as vortices in superconductors or superfluids
as well as in chiral active matter systems.
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in a chiral magnet,” Science 323, 915–919 (2009).

2 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han,
Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space ob-
servation of a two-dimensional skyrmion crystal,” Nature
(London) 465, 901–904 (2010).

3 N. Nagaosa and Y. Tokura, “Topological properties and
dynamics of magnetic skyrmions,” Nature Nanotechnol.
8, 899–911 (2013).

4 S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta,
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92 B. L. Brown, U. C. Täuber, and M. Pleimling, “Skyrmion
relaxation dynamics in the presence of quenched disor-
der,” Phys. Rev. B 100, 024410 (2019).

93 L. Xiong, B. Zheng, M. H. Jin, and N. J. Zhou, “Collec-
tive transport properties of skyrmions on the depinning
phase transition,” Phys. Rev. B 100, 064426 (2019).

94 C. Reichhardt and C. J. Olson Reichhardt, “Magnus-
induced dynamics of driven skyrmions on a quasi-one-

dimensional periodic substrate,” Phys. Rev. B 94, 094413
(2016).

95 P. Ao and D. J. Thouless, “Berry’s phase and the Magnus
force for a vortex line in a superconductor,” Phys. Rev.
Lett. 70, 2158–2161 (1993).

96 C. Reichhardt and F. Nori, “Phase locking, devil’s stair-
cases, Farey trees, and Arnold tongues in driven vortex
lattices with periodic pinning,” Phys. Rev. Lett. 82, 414–
417 (1999).

97 P. T. Korda, M. B. Taylor, and D. G. Grier, “Kineti-
cally locked-in colloidal transport in an array of optical
tweezers,” Phys. Rev. Lett. 89, 128301 (2002).

98 C. Reichhardt, D. Ray, and C. J. Olson Reichhardt,
“Quantized transport for a skyrmion moving on a two-
dimensional periodic substrate,” Phys. Rev. B 91, 104426
(2015).

99 J. Feilhauer, S. Saha, J. Tobik, M. Zelent, L. J. Hey-
derman, and M. Mruczkiewicz, “Controlled motion of
skyrmions in a magnetic antidot lattice,” arXiv e-prints ,
arXiv:1910.07388 (2019).

100 C. Reichhardt, D. Ray, and C. J. O. Reichhardt,
“Nonequilibrium phases and segregation for skyrmions on
periodic pinning arrays,” Phys. Rev. B 98, 134418 (2018).

101 C. Reichhardt and C. J. O. Reichhardt, “Nonlinear
transport, dynamic ordering, and clustering for driven
skyrmions on random pinning,” Phys. Rev. B 99, 104418
(2019).

http://dx.doi.org/10.1063/1.5086280
http://dx.doi.org/10.1103/PhysRevLett.117.232701
http://dx.doi.org/10.1073/pnas.1609572113
http://dx.doi.org/10.1073/pnas.1609572113
http://dx.doi.org/10.1063/1.5085209
http://dx.doi.org/10.1063/1.5085209
http://dx.doi.org/10.1103/PhysRevE.100.012604
http://dx.doi.org/10.1103/PhysRevE.100.012604
http://dx.doi.org/ 10.1103/PhysRevB.87.214419
http://dx.doi.org/ 10.1103/PhysRevB.87.214419
http://dx.doi.org/ 10.1103/PhysRevB.100.024410
http://dx.doi.org/ 10.1103/PhysRevB.100.064426
http://dx.doi.org/10.1103/PhysRevB.94.094413
http://dx.doi.org/10.1103/PhysRevB.94.094413
http://dx.doi.org/10.1103/PhysRevLett.70.2158
http://dx.doi.org/10.1103/PhysRevLett.70.2158
http://dx.doi.org/ 10.1103/PhysRevLett.82.414
http://dx.doi.org/ 10.1103/PhysRevLett.82.414
http://dx.doi.org/ 10.1103/PhysRevLett.89.128301
http://dx.doi.org/10.1103/PhysRevB.91.104426
http://dx.doi.org/10.1103/PhysRevB.91.104426
http://dx.doi.org/10.1103/PhysRevB.98.134418
http://dx.doi.org/10.1103/PhysRevB.99.104418
http://dx.doi.org/10.1103/PhysRevB.99.104418

	Shear Banding, Intermittency, Jamming and Dynamic Phases For Skyrmions in Inhomogeneous Pinning Arrays
	Abstract
	I Introduction
	II Simulation
	III Shearing Dynamics for Parallel Driving
	A Dynamic Phases at Small Magnus Forces
	B Intermediate and High Magnus Force

	IV Varied Pinning Strength
	V Driving Perpendicular to the Pinning Strip
	VI Discussion
	VII Summary
	 Acknowledgments
	 References


