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Using continuum based simulations we show that a rich variety of skyrmion liquid crystal states can be realized in the presence
of a periodic obstacle array. As a function of the number of skyrmions per obstacle we find hexagonal, square, dimer, trimer
and quadrimer ordering, where the n-mer structures are a realization of a molecular crystal state of skyrmions. As a function of
external field and obstacle radius we show that there are transitions between the different crystalline states as well as mixed and
disordered structures. We discuss how these states are related to commensurate effects seen in other systems, such as vortices in
type-II superconductors and colloids interacting with two dimensional substrates.

1 Introduction

Numerous hard and soft matter systems can be effectively
modeled as an assembly of interacting particles coupled to
a two dimensional (2D) periodic substrate. These include
atoms and molecules on surfaces1,2, vortices in type-II su-
perconductors3,4 or Bose-Eisenstein condensates5,6 interact-
ing with periodic pinning arrays, and charged7–11 or magnetic
colloids12,13 on optical traps or structured surfaces. Such sys-
tems exhibit a variety of commensuration effects in the form
of crystalline or superlattice states when the number of parti-
cles is an integer multiple of the number of substrate minima.
One example is the colloidal molecular crystal states found in
colloids on 2D arrays, where the colloids form localized clus-
ters with synchronized orientational degrees of freedom7–10.
In some cases plastic crystals7,8 can form in which the num-
ber of particles per trap is fixed but there is no orientational
ordering of the clusters.

Other particle-like objects are skyrmions, which arise when
the collective behavior of underlying microscopic degrees of
freedom leads to the formation of larger scale structures. For
chiral magnetic systems, the underlying degrees of freedom
are the spins14–16, while for chiral liquid crystal systems, they
are the molecular director orientations17–20. There has been
growing interest in skyrmions and merons in liquid crystals
due to the identification of new methods to create and control
such systems18,21–24. There is also work examining how liq-
uid crystal (LC) skyrmions can be manipulated externally25,
made to interact with barriers or pinning sites26,27, or caused
to form isolated or collective moving states26,28.
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Since LC skyrmions can form lattices and interact with re-
pulsive barriers, it is interesting to examine what types of LC
skyrmion states could be realized when the LC is coupled a
periodic substrate, and compare this behavior to the types of
ordering found in other systems of particles coupled to ordered
substrates. Duzgun and Nisoli29 recently proposed that LC
skyrmions interacting repulsively within a square or triangu-
lar array of obstacles can exhibit frustration effects similar to
those found in artificial spin ice systems30,31. In this work
we extend these ideas to examine the types of non-frustrated
commensurate LC skyrmion lattices that can arise when the
skyrmions are coupled to a square lattice of obstacles of the
type that could be created by patterned external fields or sur-
face anchoring26,27,29. We find that a rich variety of crystalline
states can be stabilized, including a square lattice at a one to
one matching, a dimer lattice for two skyrmions per obsta-
cle, and staggered trimer and quadrimer orderings at three and
four to one matching. These n-mer states are similar to the
colloidal molecular crystal states observed on periodic sub-
strates7–10; however, the skyrmions exhibit shape distortions
that do not occur in the colloidal system.

We show that different structures can be accessed for fixed
skyrmion number when the size of the obstacles is changed or
the external field is varied. For the case of one to one match-
ing, we observe a transition from a square to triangular lattice
along with intermediate states in which the skyrmions form a
mixed structure due to their ability to adopt different sizes in
a single sample. There can also be pattern switching between
different states when the size of all or a portion of the radii of
the obstacles is varied or when an external field is changed,
suggesting that LC skyrmions on patterned substrates could
exhibit rapid large scale structural transitions that could be
useful for applications.
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2 Numerical Methods

We model an assembly of N LC skyrmions interacting with
a square array of Nobs obstacles using continuum based sim-
ulations20,29. We consider the traceless tensor Q related to
the scalar order parameter S that quantifies the orientational
order of the chiral nematic liquid crystal state, which gives
rise to solutions that support skyrmions when the chiral liquid
crystal host is confined between two substrates with normal
surface anchoring. The free energy density has the form

f = (a/2)Tr(Q2)+(b/3)Tr(Q3)+(c/4)[(Tr(Q2)]2

+(L/2)(∂γ Qαβ )(∂γ Qαβ )− (4π/p)Lεαβγ Qαρ ∂γ Q
βρ

− [K(δ (z)+δ (z−Nz))+E2
∆ε]Qzz

(1)

Here the first three terms control the nematic to isotropic tran-
sition, the next two terms describe the elastic energies with
respect to a gradient in Q, favoring a twist with cholesteric
pitch p, and the last term is due to the homeotropic surface
anchoring at the boundaries where K is the coupling strength.
The electric field in the z-direction is E and ∆ε is the dielectric
anisotropy The states are evolved by simulating the following
overdamped equation:

∂Q(r, t)
∂ t

=−Γ
δF

δQ(r, t)
, (2)

where Γ is the mobility constant and F =
∫

f (x,y,z)dxdydz.
We denote the field alignment strength as α = E2∆ε . A
z−invariant structure can be achieved when vertical alignment
of molecules is produced solely by the background electric
field (i.e., by choosing a very small K ≈ 0 and appropriate
value of α). In this work we consider such a z−invariant
case and model the system as a 3D director (Q−tensor) con-
figuration lying on a 2D surface. The obstacles are modeled
as repulsive barriers of radius r which are realized by apply-
ing an additional electric field within the barrier region that
is much stronger than the background field. The same effect
can be achieved by means of strong surface anchoring local-
ized within the barriers, which enters the free energy equation
identically. We use the electric field because it permits dy-
namic control of the barrier size, shape, and strength. We first
let the system relax, swell the skyrmion size, and then bring
the skyrmions to a fixed size, which allows for a dynamical
annealing effect. Experimentally this would be achieved vary-
ing the external field. For the periodic obstacle array we find
that a single swell cycle is adequate; however, for more com-
plex geometries or a random array, a repeated swell cycle can
be applied. We focus on a system size of 4× 4 barriers for
filling ratios of skyrmions to obstacles of 1 : 1 up to 4 : 1. For
specific cases we have also considered larger arrays of up to
20×20 which show the same ground states32.

Fig. 1 The liquid crystal skyrmions (blue rings) and obstacle
locations (black circles) obtained from a continuum based
simulation of a chiral liquid crystal state. In each case α = 0.3. The
colors represent the orientation of the director field. (a) The 1:1
matching at an obstacle radius of r = 15 showing a square skyrmion
lattice. (b) The 2:1 state at r = 10 with an alternating dimer ordering
as indicated by the white dashed lines. (c) The 3:1 state at r = 15
where there is trimer ordering with a small shift at every other
plaquette. (d) The 4:1 state showing a quadrimer ordering at r = 10.
Here the size of the square cells is L = 60.
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3 Results

In Fig. 1(a) we show the location of the barriers of spacing
L = 60 and the skyrmions at r = 15. Here there is a 1:1
matching of the number of skyrmions to the number of ob-
stacles. The skyrmions form a square lattice located in the
center of the interstitial regions between the obstacles. Fig-
ure 1(b) shows the case of two skyrmions per obstacle with
r = 10, where the system forms a dimer lattice as indicated by
the dashed lines connecting pairs of skyrmions. The dimers
have an additional long range orientational ordering, and each
dimer is alternately vertical or horizontal. In Fig. 1(c), at the
3 : 1 matching with r = 15, the skyrmions form an ordered
trimer state as indicated by the lines. The trimers exhibit an
additional small canting from one plaquette to the next. At
4 : 1 with r = 10 in Fig. 1(d), the skyrmions form a quadrimer
state which is the same for each plaquette. These states are
similar to the N-mer orderings found in colloidal molecular
crystal systems for colloids interacting with square or trian-
gular substrates7–10. In particular, the dimer state has been
described as an anti-ferromagnetic Ising model on a square
lattice9, where the orientation of the dimer corresponds to the
two possible orientations of an effective spin. A similar dimer
state was also predicted for vortices in a Bose-Einstein con-
densate on a square lattice at the second matching filling5. The
trimer ordering in the colloidal system7 differs from that for
the skyrmions in Fig. 1(c). The colloidal trimers have stripe or
columnar orientational ordering due to the longer range mul-
tipolar charge interaction between trimers, whereas the LC
skyrmion trimers experience only short range repulsion and
have only weak orientational ordering along the horizontal di-
rection. The LC skyrmion state has the same ordering as the
colloidal state at the fourth filling for the square lattice7. We
call the states in Fig. 1(b,c,d) LC skyrmion molecular crystals
since the N-mers have both positional and orientational order.

We next consider the effect of changing the background
field and the obstacle radius for the 1 : 1 filling. For vor-
tices and other particle based systems on a square array at the
first matching filling, there can be a transition from a square
lattice at strong coupling where the substrate dominates the
behavior to a triangular lattice at weak coupling where the
particle-particle interaction dominates the behavior33,34. For
hard disks at a 1 : 1 matching on a square lattice, there can be
a transition to a hexagonal lattice and even a rhombic phase as
a function of substrate strength and disk size35. In Fig. 2(a)
we show the phase diagram as a function of the obstacle ra-
dius r versus background field α for the 1 : 1 filling, where
we observe five phases. For large fields α > 0.35, skyrmions
do not appear and the system has a uniform background. For
large defect radius r > 5.0, there is an extended region in
which the system forms a commensurate square lattice, as il-
lustrated in Fig. 2(b). The square lattice extends over the range

Fig. 2 (a) The phase diagram as a function of obstacle size r vs the
background field α for the system in Fig. 1(a) at a 1:1 matching of
LC skyrmions to obstacles. Blue triangles: square lattice states,
shown in panel (b); red squares: hexagonal lattices, shown in panel
(c); green squares: mixed state, shown in panel (d); black triangles:
disordered or irregular states, shown in panel (e). For fields greater
than α = 0.35, skyrmions do not form, while for 6.0 < r < 16.0
there is only a square lattice state.

6.0 < r < 16.0, but we focus on the regime r < 7.0 since this
is where additional phases occur. When r is small but α is
large, the skyrmions have more room to distort, allowing them
to form a hexagonal lattice as shown in Fig. 2(c). There is a
window at r = 3 where, for small α , the skyrmions can more
easily change shape to create a mixed state as illustrated in
Fig. 2(d). In this case, half of the skyrmions become elon-
gated and the overall pattern has a superlattice ordering. At
small obstacle radius and small field we find a disordered state
with skyrmions in a mixture of sizes, as shown in Fig. 2(e).
For other fillings, a similar phase diagram can be constructed,
where obstacles of large size produce N-mer states, while dis-
ordered or hexagonal lattices generally form for smaller r.

The fact that different patterns can arise as a function of
obstacle size suggests that various types of pattern switching
could be achieved by suddenly changing the sizes of all or a
portion of the obstacles. An example of how this could be
achieved for fixed skyrmion number is shown in Fig. 3, where
half of the obstacles have radius r1 and the other half have
radius r2. Here the background field is fixed at α = 0.2. When
r1 and r2 are both large, the system forms a square lattice as
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Fig. 3 The different possible states for LC skyrmions on a square
lattice at a 1:1 filling where the obstacles have two different radii, r1
and r2. When r1 and r2 are both large, the system forms a square
lattice (upper left). When r1 and r2 are both small, hexagonal
ordering emerges (lower right). For r1 � r2 or r2 � r1 (lower left
and upper right), a dimer lattice emerges. The arrows indicate the
different routes that could be taken to get from one state to another.

shown in the upper right panel. If r1 and r2 are both small, a
hexagonal lattice appears as illustrated in the lower left panel,
while for the cases of r1 much smaller than r2 or r2 much
smaller than r1, the system forms the dimer lattice indicated
in the upper left and lower right corners. The arrows indicate
the possible routes along which the different patterns could be
switched. This suggests that LC skyrmions interacting with
ordered structures can undergo large scale switching behaviors
that could be useful for creating devices.

In Fig. 4 we plot the ratio of the distance between
skyrmions, as indicated in the rectangular box in the inset,
of side a and side b versus r2/r1 for the system in Fig. 3,
where we fix r1 = 15 and vary r2. We show results for ex-
ternal field values of α = 0.16 to α = 0.32. When a/b = 1.0,
we find a square lattice, while for a/b = 0.5, a dimer lattice
appears. Upon increasing α , the transition to the square lattice
shifts to higher ratios of r2/r1; however, at α = 0.32 the sys-
tem remains in the square lattice for all values of r1/r2 since
the skyrmions are so small that they no longer interact with
one another and show little distortion from their initial posi-
tions. This indicates that not only can the skyrmion pattern

Fig. 4 The ratio of the sides a/b (shown in the inset) vs r2/r1 for
samples from Fig. 3 with 1 : 1 matching at r1 = 15. When
a/b = 1.0, the system forms a square lattice, while for a/b ≈ 0.5, an
ordered dimer lattice appears. For varied α or changing obstacle
size, transitions occur between the two states.

be switched, but also the geometric ratio of the pattern can be
controlled as function of the electric field.

4 Discussion

Our results should be general for even higher fillings N, lead-
ing to higher order N-mer states. For finite thermal fluctua-
tions, the different states could show additional effects such
as a transition from a molecular crystal state to a plastic crys-
tal state in which the N-mers are randomly rotating, similar
to what has been observed in colloidal molecular crystal sys-
tems7–10. Beyond commensurate states, there should also be
a number of incommensurate states at non-integer matchings,
which could form partially disordered states or rational com-
mensurate states when the ratio of skyrmions to obstacles is
rational. In particle based systems, incommensurate states
form kinks or antikinks36–38. In the LC skyrmion system,
however, due to the ability of the skyrmions to change size,
the kinks can shrink or expand in order to reduce the energy
cost of the defect, so that LC skyrmions could be much more
robust to disordering due to incommensurations. These re-
sults could also be extended to other obstacle lattice geome-
tries such as triangular lattices, mixed lattices, quasiperiodic
lattices, or random arrays.

In commensurate-incommensurate systems, a variety of dy-
namics can arise36,37 when the system is driven. Driving of
LC systems has already been demonstrated28, so the dynam-
ics of the skyrmions could be explored for driving over a peri-
odic substrate. Finally, similar states could arise for magnetic
skyrmions coupled to a periodic obstacle array, and there are
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already proposals on how to create such substrates for mag-
netic skyrmions on an anti-dot lattice39.

5 Summary

We have used continuum based simulations to examine the or-
dering of liquid crystal skyrmions interacting with a square
obstacle array which could be created using anchoring or with
fields. As a function of filling, we find that a variety of
crystalline states can be stabilized, including a square lattice,
an alternating dimer lattice, a trimer state, and a quadrimer
state. We refer to the dimer and higher order N-mer states as
skyrmion LC molecular crystal states in analogy to colloidal
molecular crystals. For the commensurate 1 : 1 filling, we
map out the phase diagram as a function of barrier size and
field and show that five different phases arise: no skyrmions,
a square lattice, a hexagonal lattice, a disordered state, and a
mixed phase. The mixed phase consists of a superlattice of
skyrmions of different sizes. We also show that the system
can exhibit pattern switching between dimer, hexagonal and
square lattices as a function of the ratio of the obstacle size to
the external field. We discuss future directions such as incom-
mensurate states, other obstacle lattice geometries, and driv-
ing. Liquid crystal skyrmions represent another system that
can be used to realize commensurate states for an assembly of
particle-like objects coupled to a periodic substrate.
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