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Abstract

This paper discusses the short-maturity behavior of Asian option prices and hedging
portfolios. We consider the risk-neutral valuation and the delta value of the Asian option
having a Holder continuous payoff function in a local volatility model. The main idea of
this analysis is that the local volatility model can be approximated by a Gaussian process
at short maturity 7. By combining this approximation argument with Malliavin calculus,
we conclude that the short-maturity behaviors of Asian option prices and the delta values
are approximately expressed as those of their European counterparts with volatility

T
oa(T) := \/%/0 a?(t,80)(T — t)% dt,

where o(+,-) is the local volatility function and Sy is the initial value of the stock. In
addition, we show that the convergence rate of the approximation is determined by the
Holder exponent of the payoff function. Finally, the short-maturity asymptotics of Asian
call and put options are discussed from the viewpoint of the large deviation principle.

Keywords Asian option, short maturity, Holder continuous, local volatility model, Gaussian
process, Malliavin calculus, large deviation principle

1 Introduction

This paper focuses on an arithmetic average Asian option in continuous time having a terminal

payoff of the form
1 [T
d <? /0 Sy dt) :
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Here, the function ® : R — R is a prescribed payoff function, T is a constant that denotes the
maturity, and (S;):>¢ is an underlying price process. For conciseness, we refer to this option as
the Asian option. Because of its average property, the Asian option is less exposed to a sudden
plummet in stock prices just before maturity. In particular, for hedging purposes, the Asian
option is attractive to many traders and financial institutions. For an overview of the role of
the Asian option in the financial market, see Wilmott (2006).

Despite its popularity in the real market, the Asian option is mathematically challenging to
price and hedge in general. Even when the underlying stock price (S;);>0 follows the classical
Black—Scholes model, no simple closed-form formula for the density of the random variable
% fOT S; dt is known. In this paper, we analyze the Asian option for pricing and hedging purposes
in the short-maturity regime.

We focus on the case in which the payoff function ® is any Hélder continuous function
and the process (S;);>o follows a local volatility model. Detailed assumptions on the model
are presented in Section Pl This paper primarily deals with two features of the Asian option.
The first feature is the short-maturity behavior of the option price. The short-maturity Asian
option price is shown to be determined by the Asian volatility, which is defined by

o a(T) = \/%/0 o2(t, o) (T — 12 dt

where o(-,-) is a local volatility function. The second feature is the initial-value sensitivity of
the Asian option. This type of sensitivity is widely referred to as delta in the finance literature.
In the modern theory of finance, the delta value is used to hedge financial derivatives. This
paper shows that the delta value can be expressed in terms of the Asian volatility for small T,
as with the option price. In summary, the Asian option price P4(7) and delta value A4 (T") are
expressed as

Pu(T) = EQ[®(Sy + Sooa(T)WWTZ) + O(T7),

o | 2(So + Sooa(TVWTZ)
S()UA(T)\/T

ALT)=E Z| +0(12),

for a standard normal random variable Z and the Holder exponent + of the payoff function ®.
The asymptotic estimates established in this paper are particularly meaningful with regard to
the non-linear payoff function ® . For example, let us consider a payoff function ® that equals
z + (2 — K)1 in some neighborhood of K for some 1 < v < 2. If K equals the initial value

So , we prove that the leading order of delta is T’ T and we provide its coefficient in a rigorous
manner. Moreover, if we consider a payoff function that equals = + 1/(1 + e=*@=5)) for some
sufficiently large k > 0, our estimates could provide us with a fast way to hedge digital options.

As a special case, estimates for the Asian call and put option delta values are enhanced.
This paper supplements the asymptotic result in [Pirjol and Zh (Ig)ﬁ) in two ways. First,
we prove that the rate function of the out-of-the-money (OTM) Asian option delta value is
the same as that of the OTM Asian option price. Second, a precise Taylor expansion of the
in-the-money (I'TM) Asian option delta value is provided.

Estimates for the price and delta of the European option having the terminal payoff ®(S7)
are also investigated. Short-maturity formulas for the European option prices and delta values




are obtained if the Asian volatility is replaced by

1 [?
— 2
T /0 o?(t,Sy) dt

which we refer to as the European volatility, in the formulas for the Asian option prices and delta
values. With regard to o4(7T) and og(T), we compare the Asian option with the European
option in Section [l In addition to the European option, the geometric average Asian option

having the terminal payoff
P <e% ST 10g S¢ dt)

is also compared in the Black—Scholes model.

To obtain these estimates, we incorporate many well-known mathematical techniques with
the approximation scheme. The main technique is LP-approximation of the underlying stock
price (S¢)o<i<7 by some Gaussian process (Xt)0<t<T Precise arguments are presented in Section
Bl We adopt the method used in [Pirjol and Zhu (2016, 2019); [Pirjol et all (2019), where the
same idea was used to compute the short-maturity asymptotics of at-the-money(ATM) Asian
call and put option prices. On the basis of this idea, our research focus shifts from the random
variable % fOT Sy dt having a sophisticated density to the Gaussian random variable % fOT X, dt.
This is the key strategy that we adopt to approximate the Asian option throughout in Sections
2H4l In addition, we use Malliavin calculus theory to analyze the Asian option delta value. In
Benhamo (2000); Pirjol and Zhu (2018), the authors used Malliavin calculus for their sensi-
tivity analysis of the Asian call and put option. We use their methods to express the Asian
option delta value. Furthermore, we use the large deviation principle to examine both OTM
and I'TM Asian call and put options. The large deviation principle was first used to investigate
the short-maturity Asian option in [Pirjol and Zhu (Ig)m, M)

Our study is of practical interest because existing numerical methods have proven to be less
efficient in the case of short maturity or low volatility. Numerical analysis of the Asian option
was conducted in/Geman and Yol (1993); Linetsky (2004): Broadie et all (|19_9_d Boyle and Potapchik
(M) However, as pointed out in [Fu et all (|19_9_d), h@ﬁﬂ ), such methods are either prob-
lematic in the short-maturity regime or computationally expensive. We expect our analysis to
help overcome the numerical inefficiency in the short-maturity regime.

Recently, the short-maturity Asian option has been studied by many researchers. Un-
der a local volatility model, the asymptotics of Asian option price have been investigated in

); IPirjol et all (2019). In [Pirjol and Zhu (2019), asymptotic analysis was
conducted under the constant elasticity of the variance model. The above-mentioned studies
have used the large deviation principle. They have analytically solved the rate function of
the law of % fo S; dt for approximation. Sensitivity analysis was conducted in m;mz_hd
M) as a follow-up study under the Black—Scholes model. On the basis of the approxi-
mated option price established in |E1r49_l;«md_Zhu| (|2Qlﬂ), the sensitivities have been examined
in Pirjol and Zhu (2018).

Compared to the above-mentioned studies, the contributions of our study are threefold.
First, our paper focuses on a model having a time-dependent diffusion term. The analysis
performed in [Pirjol and Zhu (2016); Pirjol et al! (2019) was based on the assumption that the
diffusion is time-independent. The obtained rate function was strongly dependent on this time-
independent assumption. Second, we provide the leading order and its exact coefficient for an




arbitrary Hoélder continuous payoff function ® . This generalizes the results in h;mz_hd

@) where vanilla options(call and put) were mainly considered. Finally, in contrast
to [Pirjol and Zh (IM), our estimates for delta do not build upon the approximated option
price. Thus, our estimates are free from controlling nested errors.

The remainder of this paper is organized as follows. Section Pl outlines the model setup
and introduces six auxiliary processes that are used to approximate (S;)¢>o in the LP(Q) norm.
Section [3lexamines the Asian option price for small 7" when the payoff ® is Lipschitz continuous.
Under the same assumption on ®, Section M investigates the Asian option delta value. Section
generalizes the results from Sections [B] and M to the Holder continuous payoff ®. Section
performs numerical tests to justify estimations from Section Section [1 concatenates the
asymptotic results from SectionsBland (], and compares them with their European counterparts.
Section [§ uses the large deviation principle to study the Asian call and put option. Finally,
Section [@ concludes the paper.

2

2 Approximation scheme

We analyze the short-maturity asymptotic behavior of Asian options under local volatility
models. Assume that the stock price process (S;);>0 follows a local volatility model,

dSy = (r — q)Sedt + o (t,5;)Se dWy,  So >0, (2.1)

under risk-neutral measure Q, where r is the short rate, ¢ is the dividend rate, and (W;):>o
is a Q-Brownian motion. From Assumption [l below, there exists a unique strong solution of

Eq.2T).
Assumption 1. Let us consider the following assumptions for the diffusion function.

(i) The function o(t,x) is measurable in [0,00) X R and is bounded, i.e., there are two con-
stants ¢ and @ such that 0 < g < o(t,x) <7 < oo for all t and x.

(i) For each t, the function o(t,-) is twice differentiable in R.

(i11) Define v(t, ) : a[o(;f)z] and p(t,z) = %. Then, for each t, functions o(t,-),

o(t,-)-, v(t,-), p(t,-) are Lipschitz continuous with a Lipschitz coefficient « > 0. More
precisely, there is a constant o > 0 such that for any x,y € R,

sup |o(t,x) —o(t,y)| < alv —y|, suplo(t,z)x —o(t,y)y| < oz —yl,
t>0 t>0

sup [V(t, 2) — v(t,y)| < ale —y|, sup|p(t,x) — p(t,y)| < ale —y|
>0 t>0

Clearly, this assumption covers the Black—Scholes model. In this paper, only Holder continuous
payoff ® will be considered. Under Assumption 2, 8 and v always refer to constants with regard
to ® throughout this paper.

Assumption 2. The payoff function ® : R — R is v-Hélder continuous with coefficient g > 0.
More precisely, for any z,y € R, |®(x) — ®(y)| < Bz —y|” with 0 <~ < 1.



To clarify the arguments, we will first consider Lipschitz continuous payoff ® in Sections [3] and
[ Unless stated otherwise, 3 always refers to the Lipschitz coefficient.

Assumption 3. The payoff function ® : R — R is Lipschitz continuous with coefficient 3 > 0.
More precisely, for any z,y € R, |®(x) — ®(y)| < Blz — y|.

Now, we introduce six processes that are used to approximate (St)t>o in LP(Q):
XY X, 7, X, Y.
Define a process (X;):>o as
dX; =o(t, X)) Xe dWy, Xo=5y>0 (2.2)
and its first variation process as
aY; =v(t, X)YedW,, Yy=1. (2.3)

These two processes will be used to approximate the underlying process (S;);>o in Sections
and @l We also define two geometric Gaussian processes (X;)i>o and (Y;)i>0 as

dX, = o(t,S) X, dW,, Xo=5,, dY; = v(t, So)Y,dW,, Yy=1. (2.4)

In Lemma 2.1 these two processes will be used to approximate (X;);>o and (Y;);>0 in the LP(Q)
norm at short time. Finally, we define two Gaussian processes (X)i>o0, (Yi)i>0 by

dX, = o(t,80)SodW,, Xo=15Sy,  dY,=wv(t,So)dW,, Yy=1.

Furthermore, in Lemma 2] these two processes will be used to approximate (Xt>t20 and (}7})@0
in the LP(Q) norm at short time. Now, we introduce Lemma Il See Appendix [AT] for the
proof.

Lemma 2.1. Under Assumption[d, for anyp > 0, there exists a positive constant B, depending
only on p such that the following inequalities hold.

(i) For 0 <t <1,

EY|X, — X,|P] < B,t?, EY[|X, — X,|P] < B,t*. (2.5)
(i) For 0 <t <1,
EY|Y, - YVi[P] < Byt?, EY|Y, — V! < B,#*. (2:6)

We now present the short-time behavior of the four processes (X;)i>o, (Xt)tzo, (Yy) >0,
(fft)tzo in the following lemma. All the moments of the four random variables X7, XT, Yr. ffT
and their integrals over [0, 7] converge to constants as 7' — 0. We rephrase this argument as
the following technical statement for later use. The proof is provided in Appendix [A.2]

Lemma 2.2. Under Assumption[d, consider processes (Xy)=0, (Xi)iz0, (Yo)is0, (Yi)iso stated
in Egs.22), @3), and @4). The process (Z{*"*"*" )0, which is defined by Z{*P*"*P =
XPPXPPYPRYP* for any p; € R, i € {1,2,3,4}, satisfies following two statements.
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(Z) EQ[ max Zf17p27p3,p4] < 00 for (myT ~0. Furthermore, lim EQ[ max Zf17p27p3,p4] _ S(z)nerz .
0<t<T T—0 0<t<T

(i) Moreover, for any ¢; € R, j € {1,2,--- 8},

1 [T CIVE T w sy T VAT a8
Z01,42,03:94 X _ X — Y, — Y,
peee (g ) ([ ea) (g [v) (5 ) v)

— Sgl-l-tn-‘r%-l-% ] (27)

lim E@
T—0

3 Short-maturity limit of an option price with Lipschitz
continuous payoffs

Under the risk-neutral measure Q, the arbitrage-free values of the Asian and European options

where T is the maturity. Throughout this section, we impose AssumptionBon ® . Our objective
is to find an asymptotic formula for the Asian option price up to O(T); a formula for its
European counterpart is also presented.

First, in Lemma B3], the underlying (S;)o<:<r is approximated by (X;)o<t<r. Second, in
Theorem [B.1] we approximate the process (X;)o<t<r by ()A(t)ogtST using Lemma 2.1l The proof
of Lemma Bl is provided in Appendix [B.1l

Lemma 3.1. Under Assumptionsl and[3, as T'— 0, we have

(i) Py(T) = e "™ EC {cb (% /OTXt dt)] +0O(T),

(i1) Pg(T) = e "™ E[®(X7)] + O(T).

As can be seen in Egs.(2.) and ([2.2), the processes S and X have the same diffusion terms;
however, the drift term of X is zero. Thus, this lemma implies that while estimating the Asian
and European option prices, the drift of the underlying stock becomes negligible at small 7" > 0.
This is similar to Theorem 2 of [Pirjol and Zinl (2016) and Theorem 5 of Pirjol and Zhu (2019).
In Pirjol and Zhu (IQJM, M), the rate function that governs the short-maturity behavior of
the Asian call and put option was shown to be independent of the drift term.

The main result of this section is the following theorem, which states asymptotic formulas
for the Asian and European option prices.

Theorem 3.1. Under Assumptions[dl and[3, as T — 0, we have

(Z) PA(T) :EQ P S()—FS()\/% /TU2(t,So)(T—t)2dtZ ‘l‘O(T),



(ii) Pp(T) =E% |® 50+50\//T0—2(t,50)dtz +O(T),

where Z is a standard normal random variable, i.e., Z ~ N(0,1).

Proof. The statement actually directly comes from Lemmas 2.1l and B.Il Observe that

I T 26 [T )
o {cp (T/o Xtdt)} _EO {@ (T/O Xtdt)HgT/O E9(|X, — X[ dt = BB.T

for the positive constant By in Lemma 2.1l From a direct calculation using the Fubini theorem
regarding a stochastic integral,

EQ [cp (%/:Xtdt)] = [@ (Sﬁ%/;/ota(s,so)dwsdt)]

= E© {(I) (SO - %/0 a(s,80)(T — s) dWs)] :

Hence, we get the desired result for P4(7"). Applying the same argument to Pg(T'), we can
easily get the desired result. O

Corollary 3.2. Under Assumptions (1 and [3, the prices of both the Asian option and the
European option share the same limit ®(Sy) as T — 0 with the convergence order O(VT).
More precisely,

PA(T) = ®(So) + O(VT), Pu(T) = ®(S,) + O(T).

We introduce two notions of volatilities called the Asian volatility and the European volatil-
1ty.

Definition 3.1. We define the Asian volatility o4(T) and the European volatility og(T) as

oA(T) = \/%/0 2t S (T — )2 dt,  op(T) = \/%/0 o2t S)dt. (3.1)

In terms of the Asian volatility and the European volatility, Theorem B.I] can be rewritten as

PAo(T) = E°[®(Sy + Sooa(T)VWTZ)] +O(T), Pg(T) =E2®(Sy 4 Seop(T)VTZ)] +O(T).

In Section M, short-maturity asymptotic formulas for the delta values will be presented in terms
of the Asian volatility and the European volatility. We compute asymptotic results for the call
and put options as an example of Theorem [B.Il This generalizes the result in Theorem 6 of

Pirjol and Zhu (2016) for the ATM case.




Example 3.1. Let P and Pfjm be the Asian call and put prices with the strike K, i.e., the
payoff functions are (z) = (xr — K)4, and ®(z) = (K — z)., respectively. Then,

(04 O(T), if Sy < K,

PPNT) = § PASVT +O(1), if So=K.

(S0 — K +0O(T), if So > K,

(K — Sy + O(T), if So < K ,

PR(T) = § 2ZDVT + O(T), if So =K,

L0+ O(T), if So > K .

The prices of the European call and put option are obtained by replacing o(T) in the above-
mentioned expressions with og(T).

Example 3.2. Giwen any K ,6 >0 and 1 <y < 2, define the payoff function ® by
P(2) = (v — K) Lig<ocrtsy + 0" Lixro<a) -
Suppose that Sg = K . Then, we get the following asymptotic equation.
1

PA(T) = 5(S00a(T))" M()T% + O(T),

where M(v) := EQ[|Z|"] with a standard normal variable Z . If we replace o4(T) with og(T),
we get the asymptotic result for the European option price Pe(T).

4 Short-maturity estimates for an option delta value with
Lipschitz continuous payoffs

In this section, we present the short-maturity asymptotic for the sensitivity of the option with
respect to the initial value Sy. In many studies, this sensitivity is referred to as delta. We follow
this convention to define the Asian delta value and the European delta value as

0 0
AA(T) := —Pu(T Ap(T) = —Pg(T).
A(T) = 52 PA(T) . B(T) = e Pi(T)
Throughout this section, only the Lipschitz continuous payoff ® will be considered. Our main
objective is to obtain the short-maturity asymptotic for As(7T), Ag(T). These asymptotic
results are given in Theorems [4.]] and In Lemma [A.1] we first approximate (S;)o<i<r by
(Xt)o<t<r in line with Lemma Bl See Appendix for the proof.

Lemma 4.1. Under Assumptions[d] and[3, as T — 0, we have

(i) AA(T) =e"T 9 go [cb (1 /OT X, dt)] +O(WT),

dSy T
(i1) Ap(T) =" %EQ[@D(XT)] +OWT).

Next, in Sections [£1] and B.2] we present a short-maturity asymptotic formula for the Asian
delta value A4(T'). A formula for the European delta value Ag(T') is presented in Section [4.3
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4.1 Approximation for the Malliavin representation of the Asian
delta value

By Malliavin calculus, the Asian delta value can be represented by the weighted sum of
the payoffs. The computation under the Black—Scholes model has already been presented in

(lZDDﬁ); [Benhamou (|21)Dd) Under the local volatility model, we describe

a possible representation in the following proposition.

Proposition 4.1 (Nualart (1995); Benhamot (2000)). For the process X stated in Eq.(Z2)

under Assumption D, we have

T [ T 2
9 go [cp <l/ Xtdt)} ~ E° @(l/ Xtdt)é 2
95, T J, \T s o( X)X [Ty, dt

1 [T 2y 1
= EQ @(—/th)é( : )
| \T o o( X)X ) [Ty, dt

1/T )/T 2}/;2 1
D = X dt ————D, | —— | ds| ,
(T 0 ' 0 U(S7XS)X8 fOTY;dt

where §(-) is the Skorokhod integral in [0,T] and Ds(-) is the Malliavin derivative.

—EQ

With this proposition, Lemma [F.1] implies that for small 7" > 0, the Asian delta value asymp-
totically behaves as

Ay(T) =E2 [cb <% /OT X, dt) 5(u)F} —EQ [cp (% /OT X, dt) /OT us(DsF) ds} +OWT).

(4.1)
Here, we define a process (us)o<s<r and a random variable F' by
2V, 1
Ug = ——r, = —5 .
o(s, X)X, 7Y, dt

To investigate A4(T'), we will approximate the two expectations on the right-hand side of
Eq.([@1). The approximation of the first expectation,

E© {cb (% /O ' X, dt) 5(u)F} : (4.2)

is described in Proposition [£.2] and the approximation of the second expectation,

E© {cb (% /O ' X, dt) /O : us(D,F) ds] : (4.3)

is described in Proposition To analyze Eq.([£2), we introduce two processes (us)o<s<7 and
(Us)o<s<r and two random variables F' and F', defined by

2Y2 ) 2Y2 . 1 . 1

US-—f7 us-—f:ﬂA S F_ — , -_7/\]17TA i,
o(s, X)X, o(s, Xs) X, {(Xe>3) fOTY}dt fOTY;dt (L [T Vedi>1)



where 1,4 denotes the indicator function of set A. In Lemma (L2 the process (us)o<s<r is
approximated using (s)o<s<r and (Us)o<s<7. As for the random variable F| we use F and F.
This procedure is similar to the approximation based on Lemma 2.1l The proof of Lemma
is given in Appendix

Lemma 4.2. Under Assumptionl[d, for anyp > 0, there exists a positive constant D,, depending
only on p such that the following inequalities hold.

(i) For0<t<1,

B Juy — @[] < Dpt?,  EQ[|d, — 0|"] < Dpt?. (4.4)

(ii) For 0 <T <1,

EY|TF - TFPP) < D,T°, EY|TF —TF") < D,T". (4.5)

Proposition 4.2. Under Assumptions and[3, as T — 0, we have
1 (T 1 (7. .
E? [cb (f/ X, dt) 5(u)F} =E¢ {(I) (f/ X, dt) (5(12)F} +O(T).
0 0

Proof. We may assume that ®(0) = 0. Consider a translation W(-) := ®(-) — ®(0) otherwise.
Observe that

® <% /OT X, dt) S(u)F — @ (% /OT X, dt) S(0)F
= % <q> (% /OTXtdt) ) (% /OTXtdt)) §(u)TF

1o l/Tth S(u— @)TF + ~® l/Tth 6(A)<TF—TF)
T T ; t Uu u T T ; t u .

From Lemmas 2.1] 2.2 [4.2] the standard argument, and the fact the Skorokhod integral of u
becomes the Ito integral whenever (ug)o<s<r is adapted to the Brownian filtration (FV)o<s<r,
for 0 < T < 1, we can complete the proof. O

Now, we will approximate Eq.([£3]). To do this, we approximate D F' by D,F and DZF ,
where D} F' is defined as

- 1
DiF = D, <W> ]l{% S Yedt>1y

Through some auxiliary steps, these approximations among D F', DSF, and DjF are presented
in Lemma [4l Before investigating them, we first show in Lemma that the pth moments
of D,F, D,F, and D;‘F are (’)(%) in a short-maturity regime. As a necessary step, we also
observe that the moments of D, X;, D,Y;, Ds}}t, and Dsfft are bounded. See Appendices
and for the proofs.
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Lemma 4.3. Under Assumption[d], for any p > 0, there exists a positive constant E, depending
only on p such that the following inequalities hold.

(i) For (0 <t<1,
sup E¥[| D X, [P] < E,,. (4.6)

s>0

(ii) For0<t<1,

SQEEQHDSYQVJ] < Ep, SQEEQHDS}%V}] < Ep, SQEEQHDSYQM < Ep. (4.7)

(iii) For 0 <T <1,

s>0

sup EY[|TD,F|F] < E,, sggE@[|TDSF|p] < E,, sslilgE@HTD:FP]ng. (4.8)

Lemma 4.4. Under Assumption[d], for any p > 0, there exists a positive constant F,, depending
only on p such that the following inequalities hold.

(i) For0<t<1,

sup EY[|D,Y; — D,Y;|P] < F,t?, supEQ[|D,Y; — D,Y|P] < F,t*. (4.9)

s>0 s>0
(ii) For 0 <T <1,

sup EQ[|TD,F — TD,F|’] < F,T%, supE%[|TD,F — TD:F|’] < F,T%. (4.10)

s>0 s>0

Proposition 4.3. Under Assumptions and[3, as T — 0, we have

EC [cb (% /OTXt dt) /OTUS(DSF) ds} — EC [cb (% /OTX; dt) /OTas(D;F) ds] +O(WT).

Proof. We may assume that ®(0) = 0. Observe that

1 T T 1 TA T R
q><_/ Xtdt)/ uS(DSF)ds—(ID(—/ Xtdt)/ i, (D*F) ds
T 0 0 T 0 0
1 T 1 TA 1 T
_ | xyat) o (= Rat))= | w(TD.F)d
(3 0) o3 [ 58))3 i
1 (7. 1 7 1T I -
+<1><?/0 Xtdt) ?/0 (us—us)TDsts—i—éD(T/O Xtdt) f/0 iy (TDSF—TDSF> ds.

From Lemmas 2.1 2.2 4.2 4.3l [4.4] and the standard argument, we can obtain the desired
result. O

11



4.2 Short-maturity asymptotic for the Asian delta value
Let us concatenate the approximations established in Propositions and to obtain

A(T) = E© {cb (% /OT X, dt) 5(@)F} —E° {(I) (% /OT X, dt) /OT (DI F) ds] +OWT).

To deduce the short-maturity asymptotic formula presented in Theorem .1 we now estimate
the following two expectations.

1 /7. . 1 [T . T .
E© {(I) <—/ X, dt) 5(@)15} , E® [cb (—/ Xtdt>/ tis(DIF) ds] : (4.11)
T Jo T Jo 0
In the first step, §(a) is approximated to a normal variable ¢ (ﬁ) in Lemma [L.5 See

Appendix for the proof.

Lemma 4.5. Under Assumption(l, for anyp > 0, there exists a positive constant G, depending
only on p such that the following inequalities hold for 0 < T < 1:

st < Gor B2 [Joi) o ()

p
} < G,T". (4.12)

Then, using this lemma, we can directly estimate the expectations in Eq.(dI1]) only in terms
of multivariate normal random variables. Consequently, we propose the following asymptotic
relations in Proposition E4l Further details are provided in Appendix

Proposition 4.4. Under Assumptionsl and[3, as T — 0, we have

EQ {(I) (% /OT X, dt) 5(@)16’]

(4.13)
B O(So + Sooa(MVTZ) | ,®(S0) 1 [T v(s,S) o ds
_E@[ ENCING: 2= e T2/0 U(S,SO)(T )ds + O(NT)
and
E2 [cp (%/0 Xtdt)/o ay(DF) ds} - —2%“:0)%/0 ZE:::?Z%(T—S) ds+O(VT), (4.14)

where Z is a standard normal random variable, i.e., Z ~ N(0,1).

We now reach one of the two main results in this section. The two estimates in Proposition
@4 directly give the short-maturity asymptotic for the Asian delta value A4(T). Recall the
definition of the Asian volatility o4(7) in Eq.(3J]).

Theorem 4.1. Under Assumptions[dl and[3, as T — 0, we have

(I)(So + S()O'A(T)\/TZ)

_ wQ
BalT) =E Sooa(T)WT

Z| +0OWT),

where Z is a standard normal random variable, i.e., Z ~ N(0,1).
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Corollary 4.2. Under Assumptions[d and [3,
(i) if Aa(T') converges as T — 0, then

lim A4 (T) = lim EQ (S + €Z) — (%)

Z2
T-0 AN e/

Y

where Z is a standard normal random variable, i.e., Z ~ N(0,1);

(ii) if both the right derivative D®(So+) and the left derivative D®(Sy—) exist, then Aa(T)
converges and

We present some examples of Theorem F11

Example 4.1. Let AS" and A% be the Asian call and put delta value with the strike K, i.e.,
the payoff functions are ®(z) = (x — K)4 and ®(x) = (K — x)4, respectively. Then,

0+0OWT), ifSy <K, ~1+0(WT), ifS<K,
AT =45 +O0WT), ifSo=K, AY(T)={3+0WT), ifS=K,
1+0OWT), ifSy>K, 0+O0WT), ifSy>K.

Example 4.2. Giwen any K ,6 >0, and 1 <~ < 2, define the payoff function ® by
O(z) = (v — K)"I{g<ocrtsy T 0" Lixo<a) -

Suppose that Sg = K . Then, we get the following asymptotic equation.

1 ~y—1
AL(T) = 3 (SooalT)'™ Mly + DI + OWT)
where M (v + 1) := EQ[|Z|"™] with a standard normal variable Z . In this example, the leading

order of Au(T) is T% asT —0.

4.3 Short-maturity asymptotic for the European delta value

In the remainder of this section, we will investigate the short-maturity behavior of the European
delta value Ag(T). The desired asymptotic formula is presented in Theorem .3l To prove this,
we follow the same approximation steps used to derive the asymptotic formula for the Asian
delta value A4(T") with a slight modification. First, we use Malliavin calculus to rewrite the
European delta value as the weighted sum of the payoffs.

Proposition 4.5 (Nualart (1995); Benhamot (2000)). For the process X stated in Eq.(22)

under Assumption D, we have

%E@[@(XT)] = SOLTE@ {(I) (Xr) o (ﬁ) )}f—ﬂ - SLOE%(XT)]
g 20 /OT S s

where §(-) denotes the Skorokhod integral in [0,T] and Ds(-) is the Malliavin derivative.

13



Thus, we can observe from Corollary and Lemma ] that for small "> 0,

(%), 1 po /T
S, +SOTE d(X7) 0 hoH,ds

Ap(T) = SOLTE@ D(Xp)3(h)G] - ¢

+OWT), (4.15)

where the processes (hg)o<s<r , (Hs)o<s<r and a random variable G are defined by

Y Xr(DsY;
i Xr(DsYr)

e G=2
U(S,X%)X;’ 5 Y%2 ’

hs::: = .
Yr

In the second step, we approximate the two expectations on the right-hand side of Eq.(4.13]),
ie.,

1 1 T
_ - w0 _ - we
SOTE d(X7)d(h)G|, SOTE {@(XT)/O thst} . (4.16)

For the approximation, we define four auxiliary processes (ﬁs)ogng, (ﬁs)ogng, (ﬁs)ogng,

A

(Hs)o<s<r by

h ié 2 f; 7 XZ(Lk§%) > vX}(L%§})
hs s o ’ hs = ﬁ:ﬂ' $ Y HS = -~ 9 HS = ~ 9 1y .
o(s, X)X, o(s, X)X, =) V2 vz 0D

In Lemma [£.0] (ﬁs)ogng, (}AZS)QSSST are used to approximate (hg)o<s<r. Similarly, (ﬁs)ogsgp,

(Hy)o<s<r are used to approximate (H;)o<s<r . We also define two new random variables G, G
by

= Xrp A Xr
Yr Yr ’

to approximate G.

Lemma 4.6. Under Assumption(d, for anyp > 0, there exists a positive constant I,, depending
only on p such that the following inequalities hold.

(i) For0<t<1, B .
EQ[|h; — hy|P] < Lt?,  E|hy — hy|P] < Lt

(ii) For 0 <T <1,

IS
[Nl

sup EQ[|H, — H,|P) < I,T%, supEY[|H, — H,|") < I,T%.

s>0 s>0

(iii) For 0 <T <1, s -
BY(|G — GF) < L,T7, G - GP) < 7.

Using this lemma, we can approximate the two expectations in Eq.(dI€). The approximation
results are given in the following proposition.

Proposition 4.6. Under Assumptions[d and[3, as T — 0, we have

14



(i) SOLT o [@(XT)(S(h)G} - SOLT o [@(XT)é(ﬁ)G] +O(T).

o1 T 1 X T
(ii)) — EX <I>(XT)/ hoH,ds| = ——E @(XT)/ hoH,ds| + ONT).
S(]T 0 SOT 0
Since the proofs for Lemma and Proposition are obtained by merely duplicating those
for Lemma and Propositions [4.2] [4.3] we omit them.
Then, it is easy to observe from Proposition that for small "> 0,

Ap(T) = SOLTE@ [B(X)6()C] -

®(5i0)+&)%EQ {@(XT) /0 ﬁsﬁsds]+0(ﬁ). (4.17)

To obtain the asymptotic formula for Ag(7"), we need to estimate the following two expectations
for the last step.

1 N 1 T
_— wQ _~ w0
o7 F [@(XT)é(h)G}, o7 F [@(XT)/O thsds]. (4.18)

~

As a necessary lemma, we approximate d(h) to a normal random variable § <m> in the
following. The proof is similar to the proof for Lemma .5 hence, it is omitted.

Lemma 4.7. Under Assumption[d, for any p > 0, there exists a positive constant .J, depending
only on p such that the following inequalities hold for 0 <T < 1:

04 (5

As Lemma 5] helps estimate the expectations in Eq.(TIT), this lemma enables us to estimate
the expectations in Eq.(4I8]) in relation to multivariate normal random variables. Direct calcu-

lations with regard to normal random variables yield the following two estimates. See Appendix
for details.

Eo()] < HTH EC |

P
| <1

Proposition 4.7. Under Assumptions[d and[3, as T — 0, we have

1 o [B(Xr)6()

SoT
o | (S0 + Soor(T)VTZ) B(Sy) [T o (s, S0) — (5, S0) 8 (4.19)
= S(]O'E(T)\/T . SOT /0 U(S,SQ) d "‘O(ﬁ)
and
SOLTEQ [@(XT)/O i}sﬁlsds] _ q)éOSTo)/O Zgzg‘;; ds + O(VT), (4.20)

where Z is a standard normal random variable, i.e., Z ~ N(0,1).

Therefore, we obtain the desired asymptotic formula for Ag(7T) by straightforward use of Propo-

sition 7 in Eq.(@I7).
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Theorem 4.3. Under Assumptions[dl and[3, as T — 0, we have

o) (I)(SQ+SQUE(T)\/TZ)
Ag(T)=E Seon ()T Z| +O(T)

where Z is a standard normal random variable, i.e., Z ~ N(0,1).

By comparing Theorem (] with Theorem 3] we can observe that the limits of A4(7") and
Ag(T) are the same.

Corollary 4.4. Under Assumptions [l and[3, if Ag(T) converges as T — 0, then AA(T) also
converges and vice versa. Moreover,

lim A4 (T) = lim Ag(T).

T—0 T—0

5 Short-maturity options with Holder continuous pay-
offs

In this section, we generalize Theorems 3.1l A T], and to the Holder continuous function ® .
Under Assumption [T} the first variation process of S is the unique solution of Eq.([C.I):

dZ; = (r —q)Zydt + v(t,S) Zy dWy,  Zy=1.

Analogous to Lemma [2.1], the lemma below is crucial in the following.

Lemma 5.1. Under Assumption[d, for anyp >0, ast — 0, we have
E°[S, — X,[") = O(t"), E¥[|Z, —Yi["] = O(t").

Proof. The first equality with p = 2 has already been proved in the proof of Lemma [B.1] in
Appendix [B.I] The remainder of the proof is the same as that of Lemma 2. in Appendix

A1l O

This section considers Holder continuous payoffs in the following order. In Section Bl the
asymptotic for option prices in Theorem [3.1] will be generalized. Estimates for the option delta
value in Theorems [4.1] and are generalized to Holder continuous payoffs in Section 5.2

5.1 Estimates for option prices

The following lemma is a generalization of Lemma B.11

Lemma 5.2. Under Assumptionsl and[2, as T — 0, we have
1 T
(i) Py(T) = e TEQ [cb (T/ X, dt)] +O(T7),
0

(ii) Py(T) = e EA@(X1)] + O(T7).

Here, 7 is the Hélder exponent in Assumption [2.
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Proof. Choose ¢ > 1 such that v¢ > 1. Then, by the Jensen inequality and Assumption 2]

1 [ 1 [ I ‘
EQ [cb (?/0 Stdt) —® (?/0 Xtdt)} <p <?/0 EQ[|S; — X" dt) :
Then, the remainder of the proof comes from Lemma 3.1l O
Now, we get the asymptotic estimates for the prices of options having Hélder continuous payoffs.
Theorem 5.1. Under Assumptions[dl and[d, as T — 0, we have
PA(T) = EQ[®(So+Sooa(T)WTZ)|+O(TY), Pg(T) = EQd(So+Seou(T)WTZ)]+O(T7).

Here, 7 is the Hélder exponent in Assumption [2.

Proof. The proof is straightforward from the proofs of Theorem B.I] and Lemma [5.2] !

Compared to the Lipschitz continuous case (7 = 1), the convergence order is degraded
for v < 1. However, the following example shows that this asymptotic relation is optimal in
general.

Example 5.1. Given any K and 0 <~ < 1, define the payoff function ® by
(@) = (z— K)1.
Suppose that Sy = K . Then, we get the following asymptotic equation.

PA(T) = S (Sooa(T)) M(3)T? +O(T"),

where M(v) := EQ[|Z|"] with a standard normal variable Z . If we replace o4(T) with og(T),
we get the asymptotic result for the European option price Pr(T) .

5.2 Estimates for option delta values

In this section, we investigate the short-maturity option delta values when ® is any Holder
continuous function. The main results are as follows:

o | @S0+ Seoa(TIVTZ) 1
AA(T)=E SOUA(T)\/T Z|+0(T"2)
and /T
o) (I)(So + S()O'E (T) TZ) ’Y—%
Ap(T)=E [ SOUE(T)\/T Z|+0(172),

where Z denotes a standard normal variable and ~ is the Holder exponent in Assumption

The proof begins by recognizing the changes in Lemma [£.1] from Section 4l In the proof of
Lemma[4.1], we make use of the fact that any Lipschitz continuous function is almost everywhere
differentiable with respect to the Lebesgue measure. However, this condition fails for arbitrary
~v-Holder continuous functions in general. Therefore, we should rely only on the Malliavin
representation of the option delta (see Proposition[d.T]) for the approximation. First, we examine
the following Malliavin representation for A4(T).
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Proposition 5.1 (Nualart (1995): Benhamou (2000)). For the process S stated in Eq.(1),

under Assumption [, we have

1 (7 2772 1
o (L [Msa)a(L 2
<T o o(-,5.)8. fOTtht

1 /T ) /T 27,2 1
O — S, dt — = Dyl —— | dul
<T 0 ' 0 U(u> Su)Su fOT Zt dt

where 6(-) is the Skorokhod integral in [0, T and Ds(-) is the Malliavin derivative.

A(T) = e "TED

. 6—TTEQ

As we approximated u by @ and @ in Lemma [£.2] we would approximate a process % by

1
Jy Ziadt
and [5.4] in comparison to Lemmas (4.2, 4.3, and [£.4]

u . Likewise, a random variable is approximated to F'. Examine following Lemmas [5.3]

Lemma 5.3. Under Assumption[d, for anyp >0, ast — 0, we have

222 p
E° || —— — = O(t").
[ ot 505 " } )
Proof. Same as the proof of Lemma Use Lemma [5.1] instead of Lemma 21 O

Lemma 5.4. Under Assumption[d, for any p >0, as T — 0, we have

E© D 1% —TD,F
Tfo Zy dt

Proof. Examine the following Malliavin derivatives:

4
DuSl = Z—la(u, Su)Su]I{uSl} ’

p p

1

——— —TF
= [y Zidt

= O(T?) supE@

s>0

= o(1)

t

t
DuZi = 7 [V(u, S,) — / u(l, S)p(l, S) Doy dl + /
0 0

The remainder of the proof is similar to the proofs of Lemmas 2HA4l Use Lemma [5.1]instead
of Lemma .11 O

p(l, S1)DyS; sz} Lu<ey -

Through minor changes in Propositions[d.2] and [4.3], we obtain the generalized version of Lemma

4.1l

Lemma 5.5. Under Assumptionsl and[2, as T'— 0, we have

0 1 [T ,
AT =T~ EQ [CD <—/ th)}ﬂow—a .
A(T) =e 5, T ), ( )

Proof. Apply Lemmas and [5.4] to the proofs of Propositions and [L.3] instead of Lemmas
4244 O

This section is devoted to the following result, which is the generalization of Theorems 1]
and
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Theorem 5.2. Under Assumptions[dl and[2, as T — 0, we have

d(Sy+ S TWTZ
A1) = @ | 250+ 5ol VIZ) 4l O(T77%)
S()O'A (T)\/T
and
P VTZ
Ap(T) = EQ (So + Soog( )\/7 )Z —I—O(TV_%).
S()O'E (T)\/T
Proof. Minor changes to the convergence rates in Propositions EE22HA 4] give the first asymptotic.
For the European delta, we duplicate the arguments in this section. O

Remark 5.1. The borderline is v = % in these formulas. If v < %, the estimates in Theorem
(2.2 are meaningless; however, for % <~ <1, they provide us with the short-maturity estimate
with the convergence rate v — % < % .

Example 5.2. Given any K and % <y < 1, define the payoff function ® by
(@) = (= K)1.
Suppose that Sg = K . Then, we get the following asymptotic equation.

. M(’}/—i-l) 1 'y—%
AAT) = 5 i X s + O,

where M (v + 1) := EQ[|Z|"*Y] with a standard normal variable Z .

6 Numerical tests
In this section, we conduct some numerical tests of the asymptotic formulas in Theorems [B.1]
and We consider the two following local volatility models.
(1) Extended constant elasticity of variance(CEV) model:
dSt = (T' — Q)Stdt + €_>\t§Sdet, (61)

with r = ¢ = 0, Sy = 100. Thus, we get o(t,z) = e M€x%~!. In our tests, we choose
A=1,&=02and # = 0.5. Inl|Gatheral et all 12{!12); Sachs and Schneidel 12{!14), the

same set of parameters except for A = 0 was used to test estimations of implied volatility.

(2) Quadratic model:

—Xt 1 (Sy — So)?
dS; = (r—q)Sidt + e "o |Sy+ (1 —1)So + SRR AL (6.2)
0
with r = ¢ =0, Syp = 100. Here, the volatility function is given by
—\t Q2
olt0) = 7 [va+ (1= wysy+ JEZEL),
0

Our choices of parameters are A = 1, ¢ = 0.2, ¥ = 0.5 and n = 10. With the same
choice of (r,q, So,0,1,n) as above, Andersen (|20_1J.|) investigated implied volatility smile
for time-independent cases (A = 0). Here, we put A = 1 to study time-dependent cases

as proposed in |Gatheral et al. (2!!12).
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T =1/365 T=1/10 T=1
MC Asymptotics MC Asymptotics MC Asymptotics

v=0.1 0.35586 0.35647 0.42815 0.4257 0.46778 0.46856
v =0.6 0.074969 0.075051 0.21755 0.21767 0.38484 0.38708
v=1 0.02389 0.024095 0.14123 0.14213 0.36948 0.37097
v=15 0.0063799  0.006383  0.091161 0.091443  0.38319 0.38559
v=19 0.0023342  0.0023313  0.067727  0.067922  0.42306 0.42038

value of 7

Table 1: ATM Asian option prices for ®(z) = (x — K)” under the CEV model.

T =1/365 T=1/10 T=1
value of MC Asymptotics MC Asymptotics MC Asymptotics
v =0.6 1.3541 1.3547 0.67115 0.66609 0.44313 0.45381
v=1 0.4939 0.5 0.49631 0.5 0.50188 0.5

vy=15 0.1518 0.15154 0.36411 0.36806 0.59254 0.59462
v=19 0.060072 0.060393 0.2991 0.2983 0.71432 0.70736

Table 2: ATM Asian option deltas for ®(z) = (x — K)" under the CEV model.

Observe that Assumption [dis not fulfilled in CEV and Quadratic models. However, only finite
observations of (t,z) are used for numerical test. Since the volatility functions o (¢, x) in both
models satisfy Assumption [I] in compact neighborhoods of (¢, ) = (0, 5p), we will regard the
volatility functions o(t,z) as bounded and smooth outside some compact neighborhoods of
(t,z) = (0,5,) so that Assumption [ is satisfied. Sachs and Schneider (2014) took the same
approach to solve the discrepancy between technical assumptions for their estimations of implied
volatility and CEV model.

6.1 Powers of call options

Under these two models, we will first compare asymptotic formulas for ATM (K = Sy) Asian
option prices and deltas having the payoff ®(z) = (x — K)7 presented in Examples B.2] 2] B.1]
and with results from the Monte Carlo simulation. While these options are not traded in a
real market, numerical tests could show how accurate our asymptotic formulas are.

In Tables [, 2, Bl and [ numerical results from asymptotic formulas presented in this paper
are given in Asymptotics columns. Results from the Monte Carlo simulation are given in
MC' columns. We consider M = 10° paths and N = 10? time steps during simulations. For

T =1/365 T=1/10 T=1
MC Asymptotics MC Asymptotics MC Asymptotics
~v=0.1 0.44697 0.44877 0.52977 0.53592 0.57678 0.58988

value of ~

v=10.6 0.29916 0.29878 0.8577 0.86658 1.5252 1.541

v = 0.23978 0.24095 1.428 1.4213 3.7326 3.7097
v=1.5 0.20237 0.20185 2.9437 2.8917 12.7076 12,1934
v=19 0.18516 0.18518 5.487 5.3952 36.3354 33.3923

Table 3: ATM Asian option prices for ®(z) = (z — K)" under the Quadratic model.
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T =1/365 T=1/10 T=1
MC Asymptotics MC Asymptotics MC Asymptotics

value of 7

v=20.6 0.53762 0.5393 0.26232 0.26517 0.1791 0.18066
v=1 0.49713 0.5 0.50838 0.5 0.51115 0.5

v=15 0.48055 0.47923 1.1917 1.1639 1.9573 1.8804
v=19 0.47943 0.47972 2.4184 2.3695 6.2038 5.6188

Table 4: ATM Asian option deltas for ®(x) = (x — K)” under the Quadratic model.

0
99 992 994 996 99.8 100 100.2 100.4 100.6 100.8 101

Figure 1: Plots of ®pinary and Pogistic (- © £) with K = 100 and k£ = 60.

simulating deltas, we use the Malliavin representation in Proposition 5.1

Tables [II, 2], Bl and @] show that asymptotic formulas are being more accurate as the maturity
T gets shorter. It is also noteworthy that asymptotic formulas are more accurate under the
CEV model (6.I]) than under the Quadratic model (6.2). These differences, however, are natural
considering that the Quadratic model implies relatively higher (local) volatilities o (¢, S;) than
the CEV model.

6.2 Approximations of digital options

Next, we consider the way to hedge Digital options which are defined as having the terminal
payoff Ppinary(z) = Iiz>k}3. The main technical issue regarding digital options is that their
delta values are being unrealistically large at small T', especially when a spot price Sy is close
to a strike K.

One way to deviate this problem is to replace digital options by more manageable options for
hedging purposes. Consider options having logistic functions ®jogistic(z; £) = 1/(1 + e (@K,
k > 0 as the terminal payoff. (Say these options as Logistic options.) Logistic functions have
following properties:

Value of T Digital option(MC) Logistic option(MC)

T =1/10° 0.50081 0.50004
T =1/10* 0.49976 0.49987
T =1/102 0.49813 0.49827

Table 5: Price approximation of digital options by logistic options under the CEV model.
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Logistic option

MC Asymptotics

Value of " Digital option(MC)

T =1/10° 343.3846 14.4961 14.982
T =1/10% 34.5661 13.5341 13.5279
T =1/10% 3.4577 3.3438 3.3521

Table 6: Delta approximation of digital options by logistic options under the CEV model.

Value of T Digital option(MC) Logistic option(MC)

T=1/108 0.4996 0.50002
T =1/10° 0.49968 0.49996
T =1/10* 0.50112 0.50044

Table 7: Price approximation of digital options by logistic options under the Quadratic model.

(1) They are Lipschitz continuous and ®@gistic(@; &) = (1/2)Lizmiy + Lizsky as £ — 00.
(2) 0< (I)iogistic('; Ii) S H/4 and (I)iogistic(K7 Ii) = H/4

These properties indicate two advantages of replacing binary options by logistic options for
hedging purposes. First, prices of logistic options are close to prices of binary options for
sufficiently large k. Second, hedging logistic options is feasible in the sense that delta values do
not explode at small T". This feature makes hedging logistic options in replace of binary options
attractive. Corollary implies that the upper bounded of delta values of logistic options is
close to k/4 when K = Sy. Therefore by controlling k, practitioners can manage the cost of
hedging logistic options.

We perform numerical test for k = 60 and K = S under the CEV model (6.I)) and the
Quadratic model ([62)). In Tables [l and [[, computations of digital option prices and logistic
options prices by the Monte Carlo simulation are listed in Digital option(MC) and Logistic
option(MC) columns, respectively. Test results justify that risk-neutral valuations of logistic
options are similar to that of binary options. Similarly in Tables [l and [8] delta values of digital
options and logistic options from the Monte Carlo method are respectively given in the first and
second columns. The third columns contain estimated delta values of logistic options obtained
from Theorem Il As one can see, delta values of binary options explode at small T" where
as those of logistic options seem to be bounded above by x/4 = 15. Also, estimations from
Theorem [£.1] and the Monte Carlo simulation are in good agreement. Therefore, estimations of
delta values of logistic options by Theorem [4.1] provide us with the new way to hedge digital
options.

Logistic option

MC Asymptotics

Value of ' Digital option(MC)

T=1/108 344.38 14.6368 14.982
T =1/10° 34.5449 13.4539 13.5279
T =1/10% 3.4775 3.3679 3.3443

Table 8: Delta Approximation of digital options by logistic options under the Quadratic model.
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7 Comparison between volatilities at short maturity

To emphasize the dependence on the payoff function ® and the volatility function o(t, z) , we de-
note the option price P4(T), Pg(T') and the option delta value A4 (T), Ag(T) by PA(T;®,0),
Pp(T;®,0)and As(T;P,0), Ap(T;®,0), respectively. Since the Asian and European volatil-
ities 04(T'), og(T) defined in Eq.([3]) also depend on the volatility function o(t, z) , we denote
them by o4(T;0), op(T;0).

7.1 Comparison under the general local volatility model

In practice, Asian-style options are mainly quoted by their prices, not by their implied volatil-
ities. This is due to the lack of a simple closed-form formula for the density of % fOT Sy dt .
Instead, many practitioners estimate the implied volatilities of European-style options for pric-
ing and hedging purposes.

Let us focus on the situation in which the volatility function o (¢, x) of the underlying process
Eq.(21) is calibrated to match market data on European-style options. Denote this calibrated
volatility by ormpiied(t, ). In this section, we aim to price and hedge the Asian option under
the volatility function opmpiied(t, ) . Note from the asymptotic formulas established in Theorems
B, BTl and 3 that if a function 7(¢, x) satisfies Assumption [Il and the equality

JA (T7 UImplied) = UE(Ta T) (71)
for sufficiently small 7" > 0, then for any Lipschitz continuous function ®(-),
PA<T; (I), UImpliod) = PE(T7 (I), T) + O(T) y AA(T; (I), UImpliod) = AE(T, (I), T) + O(ﬁ) . (72)

Meanwhile, if the equality Eq.(ZI]) fails in any neighborhood of 7" = 0 and, heuristically
speaking, 7 deviates excessively from opmplied, we will see in Propositions [.I] and that
the convergence rates in Eq.(T.2) are degraded in general. In this sense, we may regard the
European option under the volatility 7(¢,x) satisfying Eq.(7I)) as a short-maturity proxy for
the Asian option under the volatility opmplied(t, ).

Proposition 7.1. Consider any volatility function T that satisfies Assumption [1

(i) For any payoff function ® that satisfies Assumption [3,
PA(T; (I), UImpIiod) = PE(T7 (I), 7') + O(ﬁ) .

(it) Suppose that limsupy_q |0a(T; Otmptiea) — 0p(T57)| # 0. Then, for any 0 < e < 1, there
exists a payoff function ®. that satisfies Assumption [3 such that

|PA(T; @, Onplica) — Pu(T; @, 7)| # O(T2). (7.3)

(i1i) By contrast, suppose that oa(T; ommplica) = or(T;7) for small T > 0. Then, for any ®
that satisfies Assumption [3,

PA(T; (I), UImpliod) = PE(T7 (I), 7') + O(T) .
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Proof. Except for Eq.(3), the remainder of the proof is obvious from Theorem B.Il Take &,
as
O (x) = (v — K)1+E]l{1<gz<21<} + (QK)HEH{%Sw} ,

with K = Sy. Then, Eq.(Z.3) easily follows. O
Proposition 7.2. Consider any volatility function T that satisfies Assumption [

(i) For any payoff function ® that satisfies Assumption [3,
AA(T7 (I), UImplied) - AE(ira q>> T) + O(l) .

(it) Suppose that limsupy_q |04(T; Otmpiiea) — 0p(L57)| # 0. Then, for any 0 < e < 1, there
exists a payoff function ®. that satisfies Assumption[d such that

|AA(T7 q>5a UImplied) - AE(T7 (I)e, T)| 7é O(TE) .

(i11) By contrast, suppose that oa(T; ommplica) = or(T;7) for small T > 0. Then, for any ®
that satisfies Assumption [3,

AA(T; (I), UImplicd) = AE(T, (I), 7') + O(ﬁ) .

Proof. Same as that of Proposition [l O

Remark 7.1. Suppose that s — Ormprica(s, So) and s — 7(s,Sy) are both continuous at s = 0.
Then, the condition Uimsupp_,o |0 a(T; Otmpliea) — 05(1;7)| # 0 is equivalent to

1
7(0,Sp) # %UImplicd(Ov So)

because limp_,o 04(T'; Ormplied) = %almplied(O,So) and limp_oop(T;7) = 7(0,S0). These lim-
its coincide with the well-known result that ATM Asian vol = % ATM FEuropean vol. See

\Pirjol_and Zhi (2016).

If some suitable technical condition is satisfied for s — opmplica(s, So) , then Eq.(71]) forces
7 to be determined uniquely. Hence, whenever oyplieq is given, we can always approximate the
Asian option having volatility opmpliea by the European option having volatility 7.

Proposition 7.3. Suppose that T satisfies Assumption [ and Eq.(T1)). If s — Ormplied(s, So) s
continuous in some neighborhood of s =0, say [0, 9], then s +— 7(s,Sy) is uniquely determined
in [0, 9] by

1
2

2 s
T(57 SO) = |:§ /(; alzmplied(uv SO)(US - u2) du:|

Conversely, if s — 7(s,Sp) is of C?[0,0], then the only choice of a continuous function s +—
Otmplicd (S, So) in [0, 6] is

/ ’ 2 ” %
34 (550) L (T (s,so)) L (3,50)] |

T(S,So) T(S, S(])

UImplied(Sv SO) - T(Sa SO)

Proof. Differentiate both sides of Eq.([.I]) by 7. O
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7.2 Comparison under the Black—Scholes model

In this section, we focus on the Black—Scholes model, i.e., o(t,z) = 0. Observe that under the
Black—Scholes model, o4(T;0) = % and op(T;0) = 0. Now, consider a new option, i.e., the
so-called geometric average Asian option, whose price is given by

PES(T;@,0) i= T B2 |@ (ef o stat) |

Here, the superscript BS is used to emphasize the Black—Scholes model. We denote its delta
value by ABS(T;®, 7).

Let us confine ourselves to the situation in which a constant opmplieqa is obtained from the
European option. We want to approximate the Asian option price PES(T; Q. Ormpliea) and its
delta value AES(T; O, Opmpliea) by their European and geometric average Asian counterparts.
In Propositions [.4] and [Z.5, we observe that the European option having volatility %almphed
and the geometric average Asian option having volatility opmpliea are optimal choices for the
asymptotic approximation.

Proposition 7.4. Consider any constant volatility 7 > 0.

(i) For any payoff function ® that satisfies Assumption[3,

PBS(T;®, opied) = PES(T:®,7) + O(VT),
PES(T; P, OImphed) = PgS(T; O 7)+ @(ﬁ) .

(ii) Suppose that T # %almphed. Then, for any 0 < € < %, there exists a payoff function @,
that satisfies Assumption [d such that

| PES(T; @, 0mpiiea) — PES (T3 ®,,7)| # O(T2%).

Likewise, if T # Oimpliea and 0 < € < %, there exists a payoff function ®. that satisfies
Assumption 3 such that

|P§S(T7 (I)ea UImplied) - PGBS(T, CPE, 7')| 7& O(T%"'E) .
(iii) By contrast, for any ® that satisfies Assumption [3,

1
PES(Ta q>5> UImplied) - PEBS (Ta q>5a ﬁalmplied> + O(T) ;

PES(T; q>5> UImplied) = PC]?S(T’ q>5’ UImplied) + O(T) :

Proof. Under the Black—Scholes model, et Jo logStdt ig o log-normal random variable. Hence, it
is easy to check from Lemma B.1] that

PE(T; @, 1) = P2 (T; d, %7) +O(T)

for any positive constant 7 and ® satisfying Assumption [3l The remainder of the proof is the
same as that of Proposition [[.1] O
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Proposition 7.5. Consider any constant volatility 7 > 0.

(i) For any payoff function ® that satisfies Assumption [3,
AES(T; (I), UImpliod) = A%S(T, (I), T) + O(l) s
AB(T; @, oppiicd) = Ae> (T ®,7) + O(1) .

(i) Suppose that T # %Ulmplied. Then, for any 0 < e < %, there exists a payoff function ®,
that satisfies Assumption [3 such that

|ABS(T; ®,, Otmprica) — AP (T; @, 7)| # O(TF) .

Likewise, if T # Otmpliea and 0 < € < %, there exists a payoff function ®. that satisfies
Assumption [3 such that

|ABS(T; ®,, 0tmprica) — AR (T; @, 7)| # O(TF) .
(iii) By contrast, for any ® that satisfies Assumption [3,

1

AES(Ta (bsa UImplied) = A%S (Ta (I>5> ﬁalmplied) + O(\/T) )

AES (Tu (I)ea UImplied) - AE‘S (T, (I)ev UImpliod) + O(ﬁ) .
Proof. From Lemma [£]] and Lemma in its proof, it is easy to check that

1
AB(T; @,7) = AP (T; o, —7) +O(VT)
V3

for any positive constant 7 and ® satisfying Assumption 3l The remainder of the proof is the

same as that of Proposition O

Remark 7.2. Consider any positive constant 7. Even though P¥S(T;®,7), PES(T;®,71),
PBS(T;®,7) as well as AB(T;®,7), ABS(T; @, 1), ABS(T; ®, 1) share the same limit as T — 0
from Corollaries [3.2 and [{.3, Propositions and [7.9] argue that the Asian option is more
“close” to the geometric average Asian option than to the FEuropean option.

8 Special case: Approximation for call and put options

This section only considers the Asian call option, i.e., ®(z) = (x — K),, and the Asian put
option, i.e., ®(z) = (K — ), . The meanings of the following notations are self-explanatory:

PE(T), PRM(T), AGNT), ARN(T).

The short-maturity behaviors of these four quantities have already been examined in Examples
B and 11 However, this section uses the large deviation principle to provide additional
information about their behaviors.
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8.1 Application of the large deviation principle

Consider the model where the volatility function o(¢,z) is independent of ¢. In other words,
o(t,x) = o(x). Besides Assumption [I let us impose the following assumption on the volatility
function o(z) .

Assumption 4. There are constants M > 0 and v > 0 such that for any z,y € R,
|o(e”) —o(e”)] < Mz —y[".

Under Assumptions [l and B _the following short-maturity asymptotic results for P{!(T)
and PP™(T)) were first proved in [Pirjol and Zhd (2016).

Theorem 8.1 (Pirjol and Zhu (2!!16)). Under Assumptions [l and[4), the following hold.
(i) For an OTM Asian call option, i.e., K > Sy,

lim T'log(P$™(T)) = —Z(K, Sy) .

T—0
(ii) For an OTM Asian put option, i.e., S > K,

lim T'log(PY"(T")) = —Z(K, Sp) .

T—0

Here, for any x,y > 0, the rate function I is defined by

_ . NS IORY
I(x,y) = fole;(gfdt:x, 5/0 (o—(eg(t))) dt, (8.1)

9(0)=logy, g€.AC[0,1]

where AC[0, 1] is the space of absolutely continuous functions on [0, 1].

Remark 8.1. Note that the rate function T in |Pirjol and Zhu (2016) comes from the large

deviation principle. According to the large deviation principle, for any Borel set A in RT

. o 1"
—xlenjo I(x,Sy) < hTm_i(:glleog (@ {T/o Spdt € A})

T
< limsup T'log (Q {%/ S dt € A}) < —inf Z(z, Sy) ,
0

T—0 z€EA

where A° is the interior of A and A is the closure of A. See \Dembo (TLQQS), Pirjol and Zhal
(2016) for details.

By solving the variational problem on the right-hand side of Eq.(81]), the following property of

the rate function Z was proposed in [Pirjol and Zhu (2016).

Proposition 8.1 (Pirjol and Zhu 12{!16)). Given any y > 0, z — Z(x,y) is a continuous map
that is monotone decreasing in (—o0,y] and monotone increasing in [y, 00).
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8.2 Short-maturity asymptotic for the Asian call and put option
delta value

Similarly to [Pirjol and Zhu 12{!16), we use the large deviation theory to examine the short-
maturity asymptotic for A (T) and AP (7). See Appendix [D.1] for the proof.

Theorem 8.2. Under Assumptions[ll and[{], the following hold for the rate function I defined
by Eq.(81)).
(i) For an OTM Asian call option, i.e., K > Sy,

Jim Tlog(ASN(T)) = —~Z(K, So) - (8.2)

(ii) For an OTM Asian put option, i.e., Sy > K,
lim 7" log(— APM(T)) = —I(K, Sp) .

As a corollary of Theorem R.2] we can approximate ITM Asian call and put option delta values.
Corollary 8.3. Under Assumptions[l and[4), the following asymptotic relations hold as T — 0.
(i) For an ITM Asian call option, i.e., Sy > K,

1 2 2
AT =1 — §(r +q)T + <%) T +O(T?).
(ii) For an ITM Asian put option, i.e., K > S,
1 2 2
ARYT) = 1+ 5(r + )T - (%) T2 + O(T%).

Proof. From Lemma in Appendix [C1] we can get the put-call parity for the Asian option
delta value:

e—rT 1 —rT 1 —qT __ e—rT

" ge € " g ptr—ar ¢
— | E t=— [ Sperigr ="
So T/O [ d So T/o 0 (r—q)T

From Theorem [B.2] the OTM Asian delta value vanishes at an exponential rate. Therefore, the
Taylor expansion

AGNT) — ARN(T) =

e il — T 1 r? 4+ rq+ ¢
—_—=1-= T — )T+ 01
(r—aT plr+a) +< 6 ) + O
gives Corollary O

Remark 8.2. Theorem[8.2 and its Corollary[8.3 are obtained from direct use of the large devi-

ation theory. This is different from the method used in |Pirjol and Zhal (tZQI_éj) More precisely,

[Bmuzumd_Zh_’d (tZQI_éj ) involved a sensitivity analysis of approzimated option prices, not true
option prices.

Remark 8.3. Observe that Corollary [8.3 extends the result in Example [{.1. The drift term
determines the order greater than /T .
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9 Conclusion

This paper described the short-maturity asymptotic analysis of the Asian option having an
arbitrary Holder continuous payoff in the local volatility model. We were mainly interested in
the Asian option price and the Asian option delta value. The short-maturity behaviors of the

option price and the delta value were both expressed in terms of the Asian volatility, which was
defined by

oA(T) = \/%/0 o2(t, o) (T — £)2 dt

For sufficiently small 7" > 0, we proved that

Pu(T) = EQ[®(Sy + Sooa(T)WWTZ)) + O(T7),

O(Sy + Sooa(T)NTZ)

Sooa(T)VT +0O(1T772),

Z

Ayu(T) =E2 [

for a standard normal random variable Z and the Holder exponent ~ of the payoff function .
These estimations can be applied to hedge digital options.

These asymptotic results were based on the idea that an underlying process (S;);>¢ under
the local volatility model can be approximated by some suitable Gaussian processes in the
LP(Q) norm. To implement this main idea in the approximation, we used Malliavin calculus
theory to represent the delta of the Asian option. In addition, we used the large deviation
principle to investigate an asymptotic for the Asian call and put option.

For comparison with the Asian option, we examined the short-maturity behavior of the
European option. In contrast to the Asian volatility, we proved that at short maturity 7',
the European option is expressed by the Furopean volatility. In terms of these volatilities, we
observed the resemblance between Asian and European options at short maturity.
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A Proofs of the results in Section

A.1 Proof for Lemma 2.1

Proof. First, we prove the second inequality of Eq.(2.3]). It suffices to show this for p > 2 since
once this is proven, for 0 < p < 2, we can show by the Jensen inequality, Now, for p > 2,
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observe that

E%X; - XiJP] < C,EC

(/Ot o (s, So) X, — o(s, SO)SO|2ds) ]

t
< Cpﬁptg_lfo EQ[| X, — Sy|?] ds (A1)

for some constant C},, > 0. For these inequalities, we used the Burkholder-Davis-Gundy in-
equality, Assumption [Tl and the Jensen inequality. Using the Jensen inequality and Theorem
3.4.3 of Zhang and Zhang (2017), it follows that for ¢ < 1,

t t t
t’z’—l/ EQ[| X, — Sp|F]ds < 21’—1/ EQ[| X, — X,[F]ds + 2p—1t’z’—1/ E2[| X, — So|F] ds
0 0 0

t
<or-t / EQ[|X, — X,[P]ds + 2P~ 'GP Sy C,, tr (A.2)
0

L+1

for some constant C, > 0. Hence, from Eqs.(AI) and (A2), we get

t
EQIX, — X,P) < f,(0) + A, / EQ[|X, — X.[7] ds,
0

where f,(t) := C,o? 2757 5" Cy 5517 and A, := C,5727~" . Then, by the Gronwall inequality,
2

for any 0 <t <1, we can find a constant B, for EQ[|)~Q — Xt|p] < BytP.
For the first inequality of Eq.(2.5]), we also present the proof for p > 2. By the Burkholder—
Davis—Gundy inequality and the Jensen inequality, we get

t
E2[|X, — X,] < Gt~ / E2lo (s, X,) X, — o(s, So) X [?] ds

0
for some constant C),, > 0. Using the Jensen inequality,

t ~ ~

t
51 / EQ|o (s, X)X, — (s, S0) Xs|P] ds < 3771571 [ Eo(s, X,) X, — (s, X,) X,|"] ds
0

S—

~+

+ 3771 | EQ|o(s, X)X, — o(s, X,) X,|P] ds

t

+ 37457 | EQ|o(s, X)X, — o(s, So) X, [P ds .

S—

First, observe under Assumption [ that if ¢t < 1,

‘ t
tg—l/ EQ|o(s, Xo) X, — o(s, X,) X,|F] ds < Ozp/ E%| X, — X,|7] ds .
; 0

30



Second, by Assumption [Il the Holder inequality and the second inequality of Eq. (Z.3) with
t<1,
t t
51 [TBRlio(s, X)X, —ots, X0 Rup)ds < 57 [ EJots, X)) — (s, XD HES K, ) s
0 0

t . ) o
< thar [ (EOYR, - Kbt
0
1 p_q K p(2p—1)72
Sap(ng)2Sopt2_/spe > Cds.
0

p(2p—1)72 s
2

1
Sap(ng)éSoptp/ e ds. (A.3)

0
Observe that Eq.(A.3]) holds under ¢ < 1 with p > 2. Third, we can easily see that

p t P p(2p—1)§2
ti_l/ sze 2z “ds
0

1 ; pp-17?

Pe
2+l

NI

t
131 / E%|o(s, X,) X, — 0(s, o) X [P] ds < 0?5?52 (Csy)
0

=

< P55y (Cop)

(A4)

From ¢ < 1, Eq.([A4) follows. By combining the three inequalities and Gronwall inequality, for
t <1, we obtain EQ[| X, — X,|] < Btr.

The proof for the second inequality of Eq.(2.0]) is nearly a repetition of the proof for the
second inequality of Eq.(23]); hence, it is omitted. Here, we examine only the first inequality
of Eq.(Z6]). Observe that

t t
Y,-Y, = / v(s, Xs)Ys —v(s, X,)Ysds + / v(s, Xs)Ys —v(s, Xs)Ysds
0 0

t
—i—/ (s, Xs)Ys — v(s, Sp)Ys ds .
0
The remainder of the proof is similar to the proof for Eq.(ZH). we can easily obtain the
results. u

Remark A.1l. In the sequel, any argument using Jensen, and Holder inequality such as the
ones used in the proof of Lemma 21 will be referred to as “a standard argument’.

A.2 Proof for Lemma

Before we prove Lemma 2.2 we state and prove the generalized version of it. Later, we will
show that the following lemma is actually a sufficient condition.

Lemma A.1. Given a measure space (2, F,Q) and a Brownian motion (W;)i>o, suppose that
a process (0;)¢>0 is adapted to the Brownian filtration (F}" )i>o and is uniformly bounded. More
precisely, there is a constant C' > 0 such that |6;(w)| < C for any t > 0 and w € . Define a
continuous martingale process (My)i>o as

M, := Mye~3 Jo G2dstfgbsaWs — ppo <
Then, for any & € R, the following three statements hold.
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(i) lim B[] = M.
(ii) EQ[ max Mf} < 00, for any T > 0. Furthermore, lim EQ[ max Mf] = M; .
0<t<T 750

0<t<T
1 T 3

Proof. Observe that

(iii) :lrli%E

MEROT =3 Jo 202 dset [y €0:dWs < NfE < NEK(OT o= Jy €203 dt [ €W (A.5)

where k(&) := @ N0, K(&) := 5(5—2_1) V 0. By taking the expectation E€ on both sides, we

obtain M§eFOT < EQMS] < M{eX©T. Take T — 0 to get the limit Hm EQ9[M§] = M; .
Suppose that & > 0. Choose p such that p > 1 and &p > 1. Use the Jensen inequality and
the Doob L inequality to obtain

([ n) ])" <[ (s0) ] = (525) "ot

Since EQ[M?’] < MEPeKET < 5o | we get that EQ [Or?tz?% Mf} < oo for any 7" > 0. Note that

Jnax Mf Ny Mé almost surely as T" — 0. Thus, from the Lebesgue dominated convergence

theorem, limy_,o E@ [01212}% Mf] = Mé . Next, suppose that £ < 0. Observe that

i _ L s Jy 02 ds— [y 05 dWs _ Lefg 03 ds .~ [y 62 ds—[g s dWs 1 oC2t o5 o (=0:)? ds+ [y —bs dWs
M, M, My - M,

Q § : Q €l _ g€
Then E [orgtag}fir Mt] < o0 for any T > 0 and limp_,o E [@%Mt] = M;.

13
Finally, we prove that limp_,o E® [(% fOT M, dt) ] = Mg . This is straightforward from the

3
. . 1 T 3
< .
Fatou lemma and a inequality < T fo M, dt) Orélt% M; for £ e R O

Proof of Lemma[22. We now prove Lemma 221 Observe that the processes (X;)i>o0, (X0,
(V)0 (Yi)i>0 all satisfy the condition in Lemma [AJ]l Thus, from Lemma [Ad] and the Holder

Zpl P2 7p37p4:|

inequality we obtain EQ[max < oo for any T' > 0. Moreover, it is followed by

0<t<T

the upper bound lim sup;_,, E? [Orgtzg% ZPepepsb 4} < SPYP2. The Fatou lemma yields the lower

bound S < liminfy_,oE@ [01212}% Zpvpp 3’“} . The inequality Eq.(2.7) can be proved simi-

larly. O
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B Proofs of the results in Section

B.1 Proof for Lemma [3.1]
Proof. By Theorem 3.4.3 of [Zhang and Zhané (2017) and the standard argument,

</0T(7“ — q)Xu dU)2

for some constant Cy > 0. Thus, from the inequalities and Lemma 2.2, we obtain the desired
proof. O

T
EQ[| X, — S|4 < CLE® < CQT/ Ir — q> EY| X, ] du < O(T?)
0

C Proofs of the results in Section 4

C.1 Proof for Lemma [4.1]
To prove the Lemma (1] we need following Lemma.
Lemma C.1. For the process S stated in (1)) under Assumptionsd and[3, we have

iE@ ) l/TSdzs —EQ |9 l/TSdzs l/TZdzs
850 T 0 ¢ o T 0 ¢ T 0 ¢ ’

0 1 /
a_SOE@@(sTn = S—OEQ[(I) (St)Zr) .

where Z; is a unique solution of SDE
dZt = (7’ _Q)Zt dt‘l—l/(t, St)Zt dVVt, ZQ =1. (C]_)
Here, the derivative ® is defined almost everywhere with respect to the Lebesque measure.

Proof. By Theorem 3.4.3 of [Zhang and Zhang (201 1) and Assumptions [l B] for p > 1,

1 LT sorn 1T ’

_ (I) _ 0 _ CD - 0

(ol st (g [ sa) )]
is bounded for |h| < 1. Thus From Theorems 6.21 and 6.25 of [Klenkd (@), and Lemma 5.2.3

of Zhang and Zhang (2017), we obtain the results. O

Proof of Lemma[{.1l Define a bounded process 6, := ﬁ,t > 0. Then, a process M, =

e~ 3 Jo O du=f5 0w dWu ig continuous martingale. By the Girsanov theorem, dB; := dW; + 6, dt, 0 <
t < T is a Brownian motion under the measure dP := My dQ on F}¥. Since dS; = o(t, S;)S; dB;
under the measure P, Lemma states that

e 1 [T dQ
= rTrP
A T) =eE {@ (—T/O Stdt) _T/o tht—dp}

_ / 1 T 1 T~ _1 T 2 T
= "TE? |® —/ X, dt _/ Z, dt e Jo i dt+ [y medW
T J, T/, =
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where 7, = % and Z, is the unique solution of SDE

N — Ot X\ - N
47, — ((r G azft)”)((’) t)) Zydt + v(t, X) 20 dWe,  Zo = 1.
) t

Therefore, by the inequality |®'| < 8 from Assumption [}

'AA(T)—e—"TE@ [@’ <% /OTXtdt) %/OTYtdtH

—rTa | 1 . — L T2 at+ [ e dW I
< BeE® | = tht‘ezom 0 M t—1‘+—
T Jo T Jo

Z =Y,

:

2 2
Since by Theorem 3.4.3 of [Zhang and Zhang (2017), E2 “e_é Jo ¢ d+f e dWe 1’ + } =

O(T) , the proof for the Asian delta value is complete. The proof for the European delta value
can be obtained similarly. O

7, — X,

C.2 Proof for Lemma
Proof. We prove the first inequality of Eq.[4]). It is sufficient to show this for p > 1. By
Assumption [Il observe that,
- - - ~ = P
2, +Y)(Yi = Y) | 2YP(o(t, X)X, — a(t, Xi)Xy)
O'(t, Xt)Xt O'(t, Xt)XtO'(t, Xt)Xt .

[uy — @y |P =

From Lemmas 2.1 and the standard argument, we get
E%|ug — "] < Dyt”,

The second inequality of Eq.([@4]) can be obtained similarly. We may assume that p > 1.
Observe from the Jensen inequality,
E°[|a; — "]

p p

2V

2V 2V
O'(t, Xt)Xt

o(t, X)X, o(t, X)X,

< 2P~ IEQ + 9P 1EQ

(%<0}

H{X»S;}] :

Following the argument used to prove the first inequality of Eq. (4.4]), there exists some positive
constant D, such that

p

2Y2 2Y2
t t ]]_

EC L L.
O'(t,Xt)Xt O'(t,Xt)Xt

] < D,t?

{X:>50y

for small 0 < ¢ < 1. Now, note from Assumption [l and the Holder inequality that
g 2P S Y\ 2
N Q 4P Y —2p % 0
H{XKSQO}] <> (E [Orgagl (Y X ) D (Q {Xt <3 }) .
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Let Z be the standard normal variable with respect to the measure Q and N(-) be a cumulative
function of Z. Since X; is a normal random variable, it is implied from Assumption [ that the
following inequality holds for any ¢ > 0.

o5 <3t ) = ()

However, it is easy to check from the definition of N(-) that N (—ﬁ) = o(t7) for any ¢ > 0

as t — 0. Thus, from Lemma 2.2 we can completes the proof of Eq.(Z4).
The proof for first inequality of Eq.(@3H]) can be proven by Lemmas [ZT], 22 and the standard
argument.

For the second inequality of Eq.(.1]), we may also assume that p > 1. Note from the Jensen

inequality that
1 (Mo N7
(T /0 Wt) g i vy
LT e o N (e N T T
(T/O m_mdt) <T/0 Ytdt) (?/0 Edt) 1{%f5%dt>%}] :
Observe Lemma 2.1l Lemma 2.2 and the standard argument, for 0 <t < T,

1 T - R p 1 T _ —-p 1 T R -Pp

Next, observe from the Fubini theorem with regard to a stochastic integral and Assumption [II

that
Q l/Tfde1 =Q 1+1/T/T (s,50)1 AW, dt < -
Tot o~ Tooysuo{sgt}s 5
1

_ {%/OTV(S,SO)(T— §)dW, < —5}

T
Q %\//0 VQ(S,SO)(T—3)2dsZ<—%

N( - 2£T) ’ 2

where Z denotes a standard normal random variable and N(-) denotes a cumulative function

1
of Z. Since (N <_2£T)> * = o(T9) for any ¢ > 0 as T — 0, the second inequality of ([@F) is

proven. ]

EY|TF — TEP) < 2~ 'EC

+ Qp—lEQ

EQ

IN
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C.3 Proof for Lemma 4.3

Proof. First, we present the proof for Eq.(46]). In Benhamou (IZ(Hld), D X, is explicitly ex-
pressed as

Y,
DX, = ?ta(s,XS)XS]l{sgt}

s

under Assumption [Il Therefore, for any p > 0 and 0 < t < 1, by Assumption [l and Lemma
22 and the standard argument, the proof of Eq.([&0) can be complete.

Next, let us prov. The only nontrivial inequality of Eq.(.1) is the first one. From
Proposition 1.5.1 of (@), DY, and D,Y; can be computed as

Dsz == I/(S, SO)};;]]-{SSt} s Dsf/t = I/(S, SO)]]-{sgt} . (CB)
Therefore, from Assumption [I, Lemma and the standard argument, it is easy to check
that both sup,-, E?[|D,Y;|"] and sup,., E?[|D,Y;[?] are bounded by some constant E, > 0 in

0 <t < 1. To prove the first inequality of Eq.(d.1), use Malliavin calculus theory presented in
Proposition 1.5.1 of (@) to express DyY; by

t t
DY, =Y, lu(s,Xs) —/ v(u, Xy)p(u, X)) Ds X, du —l—/ p(u, X, ) Ds X, qu} Lis<sy. (C4)
0 0

Now using the inequalities |v| < «a, |p| < «, observe that for p > 1, s > 0, by the Jensen
inequality,

t

E%[|D,Y;|"] < 3" LaPER[Y/] + 37~ 1a*E {Yg’ / |D3Xu\pdu] Pt
0

|

t 1 L
ECQ [Yg’/ |D,X,|P du} =L < (EQ)Y3])) 2 (Bop)2t? < C (C.5)
0

t
4 3P7IED {Yg’ / p(u, X)) DX, dW,
0

By Lemma 2.2] the standard argument and Eq.(4.0]), that

and

t P ) .
= [Yt” | stux)p.x,aw, }f (EQYi7))* (Cpa® Bt <C (C6)
0

for 0 <t <1 and s> 0. Hence, we complete the proof of Eq.([@T) .
Finally, we will examine the proof of Eq.(4.8]). Note from Proposition 1.5.1 of (@)

-2
that T D F can be expressed as TD,F = —% OT DY, dt <% fOTYt dt) . Assume that p > 1.
From Lemma 2.2 the standard argument and Eq.([@.7), Eq.([L8]) can be established. O
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C.4 Proof of Lemma 4.4

Proof. We will prove the first inequality of Eq.(£9). Assume that p > 1. From Egs.(C.3) and
(C4)), we derive the following inequality under Assumption [T}

EQHDsY; - Dsﬁf‘p]
t
< 3P~IEY [mu(s, X,) — Y(s, SO)}”] Lis<ry + 3P 1a®EC {Yg’ / DX, [P du} Pt
0
|
The inequalities Eqs. (CH) and (C5) imply E [Yf JHDX, [P du} =1 +EQ [Yg’

Fptg ,in 0 <t <1 for some positive constant F,. Now, observe from

t
4 3P~ IR {Yf / p(u, X)) DX, dW,
0

[y plu, X,) DX, dW,

e

Y- Y.

Y;I/(S, Xs) - );;V(S, SO)} ]]-{sgt} < Y;f |I/(S, XS) - V(Sa SO)| ]]-{sgt} + |V(S> SO)|

From Lemmas 2.1] 22, Theorem 3.4.3 of Zhang and Zhang (2017) and the standard argument,
we can prove the first inequality of Eq.(€3]).

Next, we prove the second inequality of Eq.[Q). This easily comes from Eq.(C3]) and

straightforward use of Theorem 3.4.3 of Zhang and Zhané (2017 i
Finally, we will prove Eq.(4.10). From Proposition 1.5.1 of (@), Malliavin calculus

gives

1T 1T Y
—= [ DY dt - —= | DY, dt

TfOT . TDF =TS0 o
<% fO Ytdt) <% fO Ytdt)

If p > 1, by the Jensen inequality, EQ[|TD,F — TD,F|’] < 2P"'EQ[Lh] + 27" 'EQ[R"], where
Ly, Rr are given by

TD,F =

T Jo DYedt 1 Jy DuYidt _ | #Jy DYidt 7 [y DYidt

T = . T 27 ] T o 7| G 27 ] To 2
(FJvede) (£ 45 Vo) (0 Vede) (£ 45 Vo)
Then, from Lemmas 2.1], 2.2] and the standard argument, we can completes the proof.
The second inequality of Eq.([dI0) can be obtained similarly except that we should addi-
tionally control the indicator function of {7 fOTYtdt > 1} shown in the definition of D}F'.

However, we can resolve this subtle difference with the same technique as that used to prove
Lemma 2] O

C.5 Proof of Lemma

Proof. Observe that the Skorokhod integral 6(%) coincides with the Ito integral of 44 in s €
[0,7]. By from Doob LP inequality, Burkholder-Davis-Gundy inequality and the standard
argument, we get

4p 2p 2p P
Q S|P < - L 3
B3] < Gy oy <2p_1) G,T%.
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forany 0 < T <1.
Next, we Will prove the second inequality of Eq.(412). For simplicity, we use the notation
gs 1= Us — U(T for the remainder of the proof. Observe that the Skorokhod integral 6(g)

coincides with the It6 integral of g5 in s € [0,7] and gs can be written as

2y 2Y2 2Y2 2

~ S S S

9 = ( - W“{}) TR << S0)So “<8=S°>S°> |

Then since Y, , X, are normal variables and Q{ X, < %0} = o(s7) for any ¢ > 0 as s — 0, from

the Theorem 3.4.3 of [Zhang and Zhané (2017) and the standard argument,

E® [lgs]"] < Gpsﬁ- (C.7)
Then we can complete the proof for Lemma O

C.6 Proof for Proposition 4.4

Proof. First, we will prove Eq.(£I3]). The proof comprises five claims: Claims [C.6.THC.6.5
Throughout the proof, we will use the notation A% (7'), which is defined as

AY(T) := E® [cb (% /OT X, dt) %5(@)] .

O(Sy + Sooa(T)NTZ)
S()O'A (T) \/T

Proof. From EQ [§(@)] = 0, EQ [5 <0( 575 )] Lemma A5 Theorem 3.4.3 of Zhang and Zhang
(@) and the standard argument, we get

= o (7 [ ) 74 (355)] - = [z
<E@[( Xtdt) o(50)| 11500} < OVT,

where g 1= G55 . Next, from the Fubini theorem with regard to a stochastic integral,

{ (5 [ %) 7 (i)

[ <50+—/ (5. S0)(T —s)dW);/OdeWS].

We can easily see that

Claim C.6.1.

A*(T) = E? Z| +O(T).

T T 9 T2/, T

/ o(s,So)(T—s)dW, L / — v AW / o(s,So)(T—s)dW;.
0 o 0(s,50)5 Jo 02(s,50)(T = s)*ds Jo

Therefore, by direct calculation, we can get the desired result. O
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Claim C.6.2.
* Q 1 T i 1 ~ \/—

Proof. We may assume that ®(0) = 0. Otherwise, consider a translation ®(-) — ®(0) and follow

the arguments below to get the result. From Lemma 3 Eq.(C2), N (—%) = o(T) for

any ¢ >0 as T — 0. and the standard argument, we can get the desired result. O

Claim C.6.3.
1 [t . (1 [T
A(T) — EC {cp <? / X, dt) 5(@)4 — B(Sy)E® {5(@)1@ (? / Y dt - 1)} + OWT).
0 0
Proof. Apply Claim to this Claim. Then,
1 [t . 1 [t 1T
AY(T) — E® {(I) <—/ X, dt) 5(@)15} = [E° [cb <—/ X, dt) S(a)F (—/ Y, dt — 1)] +O(WT).
T Jo T Jo T Jo
Thus, it suffices to show that

EQ [cb (% /OT X, dt) 5(0)F <% /OTYtdt - 1)} — d(Sy)EC [5(@)1% (% /OTdet - 1)} +OWT).

To show this, observe from the inequality TF < 2, Lemmal5, Theorem 3.4.3 of [Zhaﬁng_aﬁnd_z.hgmé
(@) and the standard argument that

Er — ®(Sy)E? [5(@)F <% /OTYt dt — 1)} ‘
o <%/OTXtdt) _ B(S)) i|5(a)|%/0T|f/t—1|dt} < VT

VT
where C' is postivie constant. we can prove the claim. O

e

Claim C.6.4.

EQ [5(@)1% <%/0Tfftdt—1)} = E¢ [%5(@) (%/:Ytdt—lﬂ +OWT).

Proof. proof easily comes from Lemma and the standard argument. O

Claim C.6.5.
jop {%5(@) (% /OTYth - 1)} - S%% /OT Zgi “;3 (T — s)ds + O(T).
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Proof. Observe from Lemma [L7] and the standard argument that

E? [%5(@) (% /OTYtdt — 1)} =E? [%5 <ﬁ) <% /OTYtdt - 1)} +O(VT).
Note from the Ito isometry that
“ [ (esom) (7. 0]
Y Ny )

2 1 (T u(s,Sh)
= —— T — .
SO T2 /0 O'(S, S(]) ( S) dS

This completes the proof.

Concatenate the inequalities established through Claims [C.6.THC.6.5] to obtain Eq.(@I3]).
Now, we will prove Eq.([ZI4]). We divide the proof into four claims.

Claim C.6.6.
EQ {cp <% /OT X, dt) /OT (DI F) ds} — $(5))EY UOTas(D;F) ds] +OWT).

Proof. Observe from Lemma 3] definition of u, and the standard argument that

E2 {cb (% /OT X, dt) /OTas(D;F) ds] — ®(Sy)EC [/OTQS(D;*F) ds]
<3 (% /OT EQ[|X, — Sof] dt)% (% /OT EQ[2(T D )2 ds)% < VT

where C'is a positive constant. Thus, we achieve Claim [C.6.6

T . 1 [T . 2
/ (D' F) ds <— / mt)
0 T 0

Proof. From Lemma [£3] definition of 44 and the standard argument,

T . 1 /T . 2
/ ts(DIF) ds (—/ Ytdt)
0 T 0
1 T 1 T 2 2 %
< <—/ EQ[|a8|2|TD:F|2]ds) EC (—/ Y;dt) —1 <C
T 0 T 0

where C' is the positive constant. Then this complete the proof.

Claim C.6.7.

E© UOT iy (D F) ds} — k¢ +OWT).

T
EQ { / Gs(DIF) ds] —EC
0

N

3
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Claim C.6.8.

= E¢ +O(WT).

T 9 - 1 [T 2
/0 70(3,SO)SO(DSF) ds (T/o Kdt)

Proof. From the inequality E.q (C1), Lemma 3] and the standard argument,

T X 1 /T . 2 T 9 . 1 [T
is(DFYds (= | Yidt — = (DF)ds (= [ YVt
/o“( ) (T/o t ) /oa<s,so>so( ) (T/o : )

s;Q%ATEWﬁuvxﬁfhw)%Q%/TEWﬁﬂw)%SCV?,

0

EQ _ EQ

where g, := s —

Claim C.6.9.

T 2 R 1 (7.
— (DIF — Y,
/0 U($>50)50( 1) ds (T/o tdt)

Proof. From the definition of D:F and the computation of D,Y; in Eq.([C3), we get

[ DY, dt ) 1 (s, S)(T — s)
T - 2L [y a>ly T T - 2

(Jo Yidt) (% Jy Yidt)

Using this identity, and Q {% fOT Y, dt < %} = o(T17) for any ¢ > 0 as T'— 0. we can prove the

m . and C' is the positive constant. This proves the claim. O

_ 21 TV(S’SO)(T—s)ds+O(\/T).

EQ _ -
SO T2 0 0’(8, S())

DF = — 1

(L[ Vedt>1y -

claim. O
Combining Claims [C.6.6HC.6.9] we finally get Eq.([@I4]). Here, we complete the proof of Propo-
sition 41 O

C.7 Proof for Proposition (4.7

Proof. Observe from  First, we will study Eq.(@IJ). Observe from EQ[| X7 — So[?] = O(T%),
N A . p »

EUGr) = O(1) for any p > 0, BYIG — 7] = O(T%), B2 [|5 (5255 )[] = 0(T%) and

Lemma (7] that

SOLTE@ [®(X)5(h)C] -

= SOLTE@ {(cp(fm — cp(so)) 5 (70—(., ;O)SO) ] +OVT)

- SOLTEQ {(q)(XT> - (I)(So)> )

O(Sy + Soop(TWTZ)
Soop(T)VT

—EQ




The same type of manipulation technique has already been used to prove Claim in Ap-
pendix [C6 Similarly, from E[5(h)] = 0, EY[|G — SofP] = O(T%), EQ[|Yr — 1|F] = O(T*%)
Q{Yr < 3} = o(T?) for any p > 0, the Ito isometry and Lemma 7]

EQ {5(%)@} - %E@ :5( )G — Soﬂ
D(So) o [
~ S, T E? |6

®(Sp)

D(S0) i
5

- 2o, (L) - som} +OWT)
(

SoT

SoT’
®(S0) o [
= E* |6
SoT

) 700050 =05 gy o,

From these arguments, we can prove Eq.([I9).
Now, we analyze Eq.([20) from a series of asymptotic relations below. Observe from

~

supEQ[| 1,7 = O(1), EC [ [ ”] — O(s8), as T — 0. that
s>0 190)50
1 polox )/Tﬁﬁ ds| = LEe [ocx )/T¥FI ds| + O(VT)
T g 0 e T g 0 0(3,50)50 °
1 [ T 1 . .
= _E2|p(X —  —  _H.dsY? T
FE° | [ g T]+0(\F)
1 [ T u(s, So) .
= _E?|9(X Y s X T
e L e R Rl
d(S) /T v(s,So)
_ d T).
T ), o(s.5) s—i—@(\/_)
The proof for Eq.(Z20) is thus complete. O

D Proofs of the results in Section [§

D.1 Proof for Theorem

Proof. First, we will show Eq.([82). Let Z; be the unique solution of E.q (C). Using Lemma
[C1l and the standard argument,

call e’ ol g
AA (T) = SO E |:T/O Zt dt:ﬂ_{% f()T A dtZK}:|
1 1

<6_TT l/TSp p(r—a)t K (p)o°t 1 Q l/TS at>KSs |
<5 \7/ he e T ) == :
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For the last inequality, we use Eq.([A.]) with K(p) := @ V0. By taking T'— 0, we get the
following inequality from Remark [8.1],
—Z(K, Sy)

limsup T'log AGN(T) < —/———~
T—0 P

Take p' — 1 to get an upper bound. Next, a lower bound for Eq.(82) is obtained from Lemma
[AT] the reverse Holder inequality , Z; > 0 and Remark Bl Thus we get the desired results. [
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