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ABSTRACT. The aim in packing problems is to decide if a given set of pieces can be placed
inside a given container. A packing problem is defined by the types of pieces and containers to be
handled, and the motions that are allowed to move the pieces. The pieces must be placed so that
in the resulting placement, they are pairwise interior-disjoint. We establish a framework which
enables us to show that for many combinations of allowed pieces, containers and motions, the
resulting problem is ∃R-complete. This means that the problem is equivalent (under polynomial
time reductions) to deciding whether a given system of polynomial equations and inequalities
with integer coefficients has a real solution.

We consider packing problems where only translations are allowed as the motions, and
problems where arbitrary rigid motions are allowed, i.e., both translations and rotations. When
rotations are allowed, we show that it is an ∃R-complete problem to decide if a set of convex
polygons, each of which has at most 7 corners, can be packed into a square.

Restricted to translations, we show that the following problems are ∃R-complete: (i) pieces
bounded by segments and hyperbolic curves to be packed in a square, and (ii) convex polygons
to be packed in a container bounded by segments and hyperbolic curves.
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Figure 1. Real examples of nesting on a leather hide (left) and a piece of fabric (right), kindly provided
by MIRISYS and produced by their software for automatic nesting, https://www.mirisys.com/.

1. Introduction

Packing problems are everywhere in our daily lives. To give a few examples, you solve packing
problems when finding room for your tupperware in the kitchen, the manufacturer of your
clothing arranges cutting patterns on a large piece of fabric in order to minimize waste, and at
Christmas time you are trying to cut out as many cookies from a dough as you can. In a large
number of industries, it is crucial to solve complicated instances of packing problems efficiently.
In addition to clothing manufacturing, we mention leather, glass, wood and sheet metal cutting,
selective laser sintering, shipping (packing goods in containers) and 3D printing (arranging the
parts to be printed in the printing volume); see Figure 1.

Packing problems can be easily and precisely defined in a mathematical manner, but many
important questions are still completely elusive. In this work, we uncover a fundamental aspect
of many versions of geometric packing by settling their computational difficulty.

We denote Pack[P → C,M] as the packing problem with pieces of the type P, containers
of type C and motions of typeM. In an instance of Pack[P → C,M], we are given pieces
𝑝1, . . . , 𝑝𝑛 of type P and a container 𝐶 of type C. We want to decide if there is a motion of typeM
for each piece such that after moving the pieces by these motions, each piece is in 𝐶 and the
pieces are pairwise interior-disjoint. Such a placement of the pieces is called a valid placement.

As the allowed motions, we consider translations ( ) and rigid motions ( ), where a
rigid motion is a combination of a translation and a rotation. As containers and pieces, we
consider squares (□), convex polygons ( ), simple polygons ( ) and curved polygons ( ), where
a curved polygon is a region enclosed by a simple closed curve consisting of a finite number
of line segments and arcs contained in hyperbolae (such as the graph of 𝑦 = 1/𝑥). Note that
hyperbolae, like all conic sections, can be represented as rational quadratic Bézier curves [32],
which are extensively used for computer-aided design and manufacturing. It would therefore
not be uncommon that curved pieces as the ones used here could appear in practical settings.

The problems with only translations allowed are relevant to some industries; for instance
when arranging cutting patterns on a roll of fabric for clothing production, where the orientation

https://www.mirisys.com/
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of each piece has to follow the orientation of the weaving or a pattern printed on the fabric. In
other contexts such as leather, glass, or sheet metal cutting, there are usually no such restrictions,
so rotations can be used to minimize waste. As can be seen from Figure 1, it is relevant to study
packing problems where the pieces as well as the containers may be non-convex and have
boundaries consisting of many types of curves (not just straight line segments).

We show that many of the above mentioned variants of packing are ∃R-complete. The
complexity class ∃R will be defined below. We call the techniques we developed a framework,
since the same techniques turn out to be applicable to prove hardness for many versions of
packing. With adjustments or additions, they can likely be used for other versions or proofs of
other types of hardness as well.

The Existential Theory of the Reals

The term Existential Theory of the Reals refers ambiguously to a formal language, a correspond-
ing algorithmic problem (ETR) and a complexity class (∃R). Let us start with the formal logic.
Let

Σ := {∀, ∃, 0, 1, 𝑥1, . . . , 𝑥𝑛, +, ·,=, ≤, <,∧,∨,¬}

be an alphabet for some 𝑛 ≥ 1. A sentence over Σ is a well-formed formula with no free variables,
i.e., so that every variable is bound to a quantifier. The Existential Theory of the Reals is the set
of true sentences of the form

∃𝑥1, . . . , 𝑥𝑛 Φ(𝑥1, . . . , 𝑥𝑛),

where Φ is a quantifier-free formula. The algorithmic problem ETR is to decide whether a
sentence of this form is true or not. At last, this leads us to the complexity class Existential
Theory of the Reals (∃R), which consists of all those languages that are many-one reducible to
ETR in polynomial time. Given a quantifier-free formula Φ, we define the solution space of Φ
as 𝑉 (Φ) := {x ∈ R𝑛 : Φ(x)}. Thus in other words, ETR is to decide if 𝑉 (Φ) is empty or not. It is
currently known that

NP ⊆ ∃R ⊆ PSPACE. (1)

To show the first inclusion is an easy exercise, whereas the second is non-trivial and was first
proven by Canny [17]. A problem 𝑃 is ∃R-hard if ETR is many-one reducible to 𝑃 in polynomial
time, and 𝑃 is ∃R-complete if 𝑃 is ∃R-hard and in ∃R. None of the inclusions (1) are known to be
strict, but the first is widely believed to be [15], implying that the ∃R-hard problems are not in
NP. As examples of ∃R-complete problems, we mention problems related to realization of order-
types [52, 51, 58], graph drawing [16, 27, 40, 43], recognition of geometric graphs [19, 20, 38,
45], straightening of curves [30], the art gallery problem [3], minimum convex covers [2], Nash-
equilibria [13, 34], linkages [1, 54, 55], matrix-decompositions [26, 56, 57], polytope theory [52],
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pieces

container

motions

∃R

NP

NP

*

(convex) (curved) (convex) (curved)

(curved)

(polygon)

� (square)

(translations) (rigid motions)

∃R ∃R ∃R

∃R ∃R ∃R

∃R * ∃R ∃R*

Table 1. This table displays 6 variants of the packing problem with rotations and translations, and 6
with translations only. ∃R means ∃R-complete and NP means NP-complete. We show that 10 of the
problems are ∃R-complete, and the remaining 2 are known to be NP-complete. The problems marked
with * are the basic problems. The ∃R-completeness of the remaining problems follows since there is a
basic problem in the table which is more restricted.

embedding of simplicial complexes [4] and training neural networks [5, 14]. See also the
surveys [18, 44, 53].

∃R-membership

Showing that the packing problems we are dealing with in this paper are contained in ∃R is
easy using the following recent result.

THEOREM 1.1 (Erickson, Hoog, Miltzow [31]). For any decision problem 𝑃, there is a real
verification algorithm for 𝑃 if and only if 𝑃 ∈ ∃R.

A real verification algorithm is like a verification algorithm for a problem in NP with the
additional feature that it accepts real inputs for the witness and runs on the real RAM. (We
refer to [31] for the full definition, as it is too long to include here.)

Thus in order to show that our packing problems lie in ∃R, we have to specify a witness and
a real verification algorithm. The witness is simply the motions that move the pieces to a valid
placement. The verification algorithm checks that the pieces are pairwise interior-disjoint and
contained in the container. Note that without the theorem above, we would need to describe an
ETR-formula equivalent to a given packing instance in order to show ∃R-membership. Although
this is not difficult for packing, it would still require some work.

Results

We show that a wide range of two-dimensional packing problems are ∃R-complete. A compact
overview of our results is displayed in Table 1. In the table, the second row (with problems
Pack[P → ,M]) is in some sense redundant, since the ∃R-completeness results can be
deduced from the more restricted third row (the problems Pack[P → □,M]). We anyway
include the row since a majority of our reduction is to establish hardness of problems with
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polygonal containers, and only later we reduce these problems to the case where the container
is a square.

A strength of our reductions is that in the resulting constructions, all corners can be
described with rational coordinates that require a number of bits only logarithmic in the total
number of bits used to represent the instance. Therefore, we show that the problems are
strongly ∃R-hard. Another strength is that all the pieces have constant complexity, i.e., each
piece can be described by its boundary as a union of 𝑂(1) straight line segments and arcs
contained in hyperbolae.

In the following we sketch an argument why Pack[ → , ] is in NP. This may be
folklore; the second author learned the proof from Günter Rote. We show that a valid placement
can be specified as the translations of the pieces represented by a number of bits polynomial
in the input size. Consider a valid placement of the pieces. For each pair of a segment 𝑠 and a
corner 𝑐 (of a piece or the container), we consider the line ℓ(𝑠) containing 𝑠 and note which
of the closed half-planes bounded by ℓ(𝑠) contains 𝑐. Then we build a linear program (LP)
using that information in the natural way. Here, the translation of each piece is described by
two variables and for each pair (𝑠, 𝑐), we have one constraint involving at most four variables,
enforcing 𝑐 to be on the correct side of ℓ(𝑠). It is easy to verify that the constraint is linear. The
solution of the LP gives a valid placement of every piece and as the LP is polynomial in the
input, so is the number of the bits of the solution to the LP. Note that if rotations are included,
the corresponding constraints become non-linear.

Our results show that some packing problems with rotations or non-polygonal features
allowed are ∃R-hard and thus likely not in NP. This gives a confirmation to the operations re-
search community that most likely, they cannot employ standard algorithm techniques (solvers
for ILP and SAT, etc.) that work well for many NP-complete problems like scheduling and TSP.
The main message for the theory community is that efficient algorithms dealing with rotations
or non-polygonal shapes can probably only be found if we relax the problems considerably.

Basis problem

In the first version of this paper [6], we could not show ∃R-hardness of the problem Pack[ →
□, ]. We introduced the problem Range-ETR-Inv, which in turn was a restricted version of
the problem ETR-Inv used to prove ∃R-hardness of the art gallery problem [3]. When proving
∃R-hardness by reducing from these problems, one must create gadgets for simulating inversion
constraints of the form 𝑥 𝑦 = 1, or, equivalently, 𝑥 𝑦 − 1 = 0. This is usually obtained by making
gadgets for each of the inequalities 𝑥 𝑦 − 1 ≥ 0 and −𝑥 𝑦 + 1 ≥ 0. We managed to make a
gadget for the constraint 𝑥 𝑦 − 1 ≥ 0 using convex pieces only, but despite much effort, we were
unable to realize −𝑥 𝑦 + 1 ≥ 0 unless we introduced non-convex pieces. Note that the equation
𝑥 𝑦 − 1 = 0 defines a convex curve while −𝑥 𝑦 + 1 = 0 defines a concave curve. In the recent
paper [50], Miltzow and Schmiermann proved that it is not important to make a gadget realizing
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the inversion constraint exactly, but that it suffices to make gadgets realizing constraints of the
forms 𝑓 (𝑥, 𝑦) ≥ 0 and 𝑔 (𝑥, 𝑦) ≥ 0 for any sufficiently well-behaved functions 𝑓 and 𝑔 , where
one is convex and the other is concave. This is the basis for the reduction in this paper. We now
specify the details of the problem we are reducing from.

DEF IN IT ION 1.2 (Curve-ETR[ 𝑓 , 𝑔] formula). Let 𝛿 > 0,𝑈 := [−𝛿, 𝛿] and 𝑓 , 𝑔 : 𝑈2 −→ R. An
Curve-ETR[ 𝑓 , 𝑔] formula Φ = Φ(𝑥1, . . . , 𝑥𝑛) is a conjunction

𝑚∧
𝑖=1

𝐶𝑖 ,

where each constraint 𝐶𝑖 has one of the forms

𝑥 ≥ 0, 𝑥 = 𝛿, 𝑥 + 𝑦 = 𝑧, 𝑓 (𝑥, 𝑦) ≥ 0, 𝑔 (𝑥, 𝑦) ≥ 0,

for 𝑥, 𝑦, 𝑧 ∈ {𝑥1, . . . , 𝑥𝑛}. Each constraint of the form 𝑓 (𝑥, 𝑦) ≥ 0 or 𝑔 (𝑥, 𝑦) ≥ 0 is called a curved
constraint.

DEF IN IT ION 1.3 (Well-behaved and convexly/concavely curved function). Let 𝛿 > 0 and
𝑈 := [−𝛿, 𝛿]. We say a function 𝑓 : 𝑈2 −→ R is well-behaved if the following conditions are met.

𝑓 is a 𝐶3-function, i.e., three times continuously differentiable,
𝑓 (0, 0) = 0, and all partial derivatives 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑥 , 𝑓𝑥 𝑦 and 𝑓𝑦 𝑦 are rational in (0, 0), and
𝑓𝑥 (0, 0) ≠ 0 or 𝑓𝑦 (0, 0) ≠ 0.

We write the curvature of a well-behaved function 𝑓 at (0, 0) as

𝜅 = 𝜅( 𝑓 ) =
(
𝑓 2
𝑦 𝑓𝑥𝑥 − 2 𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑦 + 𝑓 2

𝑥 𝑓𝑦 𝑦

( 𝑓 2
𝑥 + 𝑓 2

𝑦 )
3
2

)
(0, 0).

We say 𝑓 is convexly curved if 𝜅( 𝑓 ) < 0, and concavely curved if 𝜅( 𝑓 ) > 0.

THEOREM 1.4 (Miltzow and Schmiermann [50]). Let 𝛿 > 0,𝑈 := [−𝛿, 𝛿] and 𝑓 , 𝑔 : 𝑈2 −→ R
be two well-behaved functions, one being convexly curved, and the other being concavely curved.
Then deciding whether a Curve-ETR[ 𝑓 , 𝑔] formula Φ is satisfiable is an ∃R-hard problem, even
when 𝛿 = 𝑛−𝑐 for any constant 𝑐 > 0 and when we are promised that 𝑉 (Φ) ⊂ 𝑈𝑛.

The promise that we only need to look for solutions to a Curve-ETR[ 𝑓 , 𝑔] formula in the
tiny hyper-cube𝑈𝑛 will be crucial in our reduction. Note that the paper [50] is also focused on
proving ∃R-membership of problems like Curve-ETR[ 𝑓 , 𝑔]. We will only use the problem to
prove ∃R-hardness, which is why we present the theorem in a slightly simpler form.

Related work

Milenkovich [49, 47] described exact algorithms for Pack[ → , ] with running times
exponential in the number of pieces; see also the papers by Milenkovich and Daniels [24, 23].
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Figure 2. Left: The optimal packing of five unit squares already requires rotations. Right: The currently
best known packing of eleven unit squares into a larger square [35].

In another paper, Milenkovich [48] gave an algorithm and described a robust floating point
implementation for the problem Pack[ → , ] using a combination of computational
geometry and mathematical programming.

Alt [8] provides a survey of the literature on packing problems from a theoretical point of
view. A lot of work has been done on bin packing, strip packing and knapsack, usually with
rectangular pieces that can be translated or rotated by 90◦. We refer to the survey of Christensen,
Khan, Pokutta and Tetali [21] for an overview.

Recently, Merino and Wiese studied a version of 2-dimensional knapsack where the pieces
are convex polygons and arbitrary rotations are allowed and presented a QPTAS for the prob-
lem [46]. Note that the problem Pack[ → □, ] is a special case of the knapsack problem, so
it is also ∃R-hard by our result.

Several packing variants are known to be NP-hard. Here we mention the problem of
packing squares into a square by translation [42], packing segments into a simple polygon
by translation [39], packing disks into a square [25], packing identical simple polygons into
a simple polygon by translation [7], and packing unit squares into a polygon with holes by
translation [12, 33]. Alt [8] proves by a simple reduction from the partition problem that packing
rectangles into a rectangle is NP-hard, and this reduction works with and without rotations
allowed (note that a priori, it is not clear that rotations make the problems more difficult, and
it is straightforward to define (artificial) problems that even get easier with rotations). It is
easy to modify the reduction to the problem of packing rectangles into a square, so this implies
NP-hardness of all problems in Table 1.

A fundamental problem related to packing is to find the smallest square containing a
given number of unit squares, with rotations allowed. A long line of mathematical research
has been devoted to this problem, initiated by Erdős and Graham [29] in 1975, and it is still
an active research area [22]. Even for eleven unit squares, the exact answer is unknown [35];
see Figure 2. Other packing problems have much older roots, for instance Kepler’s conjecture
on the densest packings of spheres from 1611, famously proven by Hales in 2005 [36]. The 2D
analog, i.e., finding the densest packings of unit disks, was solved already in 1773 by Lagrange
under the assumption that the disk configurations are lattices, and the general case was solved



8 / 78 M. Abrahamsen, T. Miltzow, and N. Seiferth

by Fejes Tóth in 1940 [61] (Thue already published a proof in 1910 [60] which is considered
incomplete by some experts [62]).

There is a staggering amount of papers in operations research on packing problems.
The research is mainly experimental and focuses on the development of heuristics to solve
benchmark instances efficiently. We refer to some surveys for an overview [11, 10, 28, 37, 41,
59]. In contrary to theoretical work, there is a lot of experimental work on packing pieces with
irregular shapes and with arbitrary rotations allowed.

Open problems

A natural continuation of our research is to study even more restricted packing variants.
The problem Pack[ → □, ] (packing arbitrary rectangles) is particularly interesting,
as rectangles are very simple and widely studied. The problem Pack[ → □, ] (packing
disks of arbitrary sizes, which curiously has some relevance to origami [25]) is interesting for
similar reasons. Our techniques seem not to extend to these special cases. If both problems
are ∃R-complete, we expect that the proof techniques must be very different, since the non-
linearity stems from rotations in the rectangle case, but from the shape of the pieces in the
disk case. A first step to show ∃R-completeness of Pack[ → □, ] could be to show ∃R-
completeness of Pack[ → , ]. (Here, denotes convex curved polygons, or another
reasonable generalization of convex polygons to pieces with curved boundaries.) The access
to both convex and concave constraints is key in the currently known techniques for proving
∃R-hardness [50]. If all the pieces are convex and only translations are allowed, it seems that we
can only encode concave constraints. It is therefore conceivable that Pack[ → , ] and thus
also Pack[ → □, ] are contained in NP, by an argument similar as to why Pack[ → , ]
is in NP.

Another direction of research would be to consider the parameterized complexity of
geometric packing problems. A natural parameter is the number of pieces, 𝑘. Then an instance
of the problem Pack[ → , ] can be formulated as an ETR formula with 3𝑘 real variables,
since the placement of each piece can be described by a two-dimensional translation and a
rotation. Using general purpose algorithms from real algebraic geometry [9], this implies that
the instance can be decided in 𝐿𝑂(𝑘) time, where 𝐿 is the total length of the formula. It is
interesting to find out if this is best possible under widely believed hypotheses. As a first step,
one could investigate whether packing is W[1]-hard, or to show that 𝐿𝑂(𝑘) is the best possible
running time assuming the exponential time hypothesis (ETH). In a second step, it would be
interesting to see if it is possible to solve the packing problem using an ETR formula with
fewer real variables. We note that W[1]-hardness or ETH-based lower bounds are not enough
to give lower bounds on the number of real variables that are needed, as there could be a
two-phase algorithm: The first phase runs in 𝐿𝑂(𝑘) time, without using tools from real algebraic
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geometry. The second phase solves an ETR formula with, say, only 𝑂(
√
𝑘) real variables. Neither

W[1]-hardness nor an ETH lower bound of 𝐿Ω(𝑘) would exclude this scenario.

Acknowledgments

We thank Reinier Schmiermann for useful discussions related to the use of tools from [50]. We
would also like to thank anonymous reviewers for comments on earlier versions of this article.

2. Reduction skeleton

In this section, we give an overview of the steps and concepts needed in our reductions. The
rest of the paper will then fill out the details.

2.1 The problem Wired-Curve-ETR[ 𝒇, 𝒈]

We will reduce from an auxiliary problem called Wired-Curve-ETR[ 𝑓 , 𝑔]. An instance of this
problem is a graphical representation of a Curve-ETR[ 𝑓 , 𝑔] formula Φ, i.e., a drawing of Φ of
a specific form, which we call a wiring diagram; see Figure 3. We denote by 𝑛 the number of
variables of Φ.

The term “wiring diagram” is often used for drawings of a similar appearance used to
represent electrical circuits or pseudoline arrangements. We define equidistant horizontal
diagram lines ℓ1, . . . , ℓ2𝑛 so that ℓ1 is the topmost one and ℓ2𝑛 is bottommost. The distance
between consecutive lines is 10. In a wiring diagram, each variable 𝑥𝑖 in Φ is represented by
two 𝑥-monotone polygonal curves −→𝑥𝑖 and←−𝑥𝑖 , which we call wires. We think of −→𝑥𝑖 as oriented to
the right and←−𝑥𝑖 as oriented to the left. The wire −→𝑥𝑖 starts and ends on ℓ2𝑖−1, and←−𝑥𝑖 starts and
ends on ℓ2𝑖 . Each wire consists of horizontal segments contained in the diagram lines and jump
segments, which are line segments connecting one diagram line ℓ 𝑗 to a neighbouring diagram
line ℓ 𝑗±1. The wires are disjoint except that each jump segment must cross exactly one other

−→x1
←−x1
−→x2
←−x2
−→x3
←−x3

x2 + x3

≤ x1

x2 + x3

≥ x1

f(x2, x1)
≥ 0

`1

`2

`3

`4

`5

`6

g(x2, x1)
≥ 0

Figure 3. A wiring diagram corresponding to the Curve-ETR[ 𝑓 , 𝑔] formula
𝑥2 + 𝑥3 = 𝑥1 ∧ 𝑓 (𝑥2, 𝑥1) ≥ 0 ∧ 𝑔(𝑥2, 𝑥1) ≥ 0.
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jump segment. Thus, the jump segments are used when two wires following neighbouring
diagram lines swap lines.

The left and right endpoints of −→𝑥𝑖 and←−𝑥𝑖 are vertically aligned, and the wires appear and
disappear in the order (−→𝑥1,

←−𝑥1), . . . , (−→𝑥𝑛,←−𝑥𝑛) from left to right in a staircase-like fashion.
In the wiring diagram, we represent each addition constraint of Φ as two inequalities,

i.e., 𝑥𝑖 + 𝑥 𝑗 = 𝑥𝑘 becomes 𝑥𝑖 + 𝑥 𝑗 ≤ 𝑥𝑘 and 𝑥𝑖 + 𝑥 𝑗 ≥ 𝑥𝑘. Each addition inequality and each
curved constraint ( 𝑓 (𝑥𝑖 , 𝑥 𝑗) ≥ 0 and 𝑔 (𝑥𝑖 , 𝑥 𝑗) ≥ 0) is represented by an axis-parallel constraint
box intersecting the three or two topmost diagram lines; three for addition constraints and
two for curved constraints. These boxes are pairwise disjoint. For a constraint 𝑥𝑖 + 𝑥 𝑗 ≤ 𝑥𝑘,
the right-oriented wires −→𝑥𝑖 ,−→𝑥 𝑗 ,−→𝑥𝑘 must inside the box occupy the lines ℓ1, ℓ2, ℓ3, respectively.
For 𝑥𝑖 + 𝑥 𝑗 ≥ 𝑥𝑘, we need the left-oriented wires ←−𝑥𝑖 ,←−𝑥 𝑗 ,←−𝑥𝑘 instead. For a curved constraint
𝑓 (𝑥𝑖 , 𝑥 𝑗) ≥ 0 or 𝑓 (𝑥𝑖 , 𝑥 𝑗) ≥ 0, we need one of the wires of 𝑥𝑖 and one of the wires of 𝑥 𝑗 to occupy
ℓ1 and ℓ2. Which combination and which order depends on the particular variant of packing
that we are reducing to.

As we define our packing instance using a vertical line sweeping over the wiring diagram
from left to right, we require that each vertical line is allowed to cross either zero or two jump
segments and in the latter case, these two must cross each other. A vertical line crossing a
constraint box must not cross any jump segment. This ensures that we only make one new
feature in each step of the construction.

DEF IN IT ION 2 .1. An instance I := [Φ, 𝐷] of the Wired-Curve-ETR[ 𝑓 , 𝑔] problem consists of a
Curve-ETR[ 𝑓 , 𝑔] formula Φ together with a wiring diagram 𝐷 of Φ.

LEMMA 2.2. Given a Curve-ETR[ 𝑓 , 𝑔] formula Φ with variables 𝑥1, . . . , 𝑥𝑛, we can in 𝑂(𝑛4) time
construct a wiring diagram of Φ.

PROOF . We may assume that Φ has 𝑂(𝑛3) constraints, since there will otherwise be duplicates
of some constraints. We construct a wiring diagram as follows; refer to Figure 3. We construct
all the curves simultaneously from left to right. We handle the constraints in order and define
the curves as we go along. For instance, for a constraint such as 𝑥𝑖 + 𝑥 𝑗 ≤ 𝑥𝑘, we route −→𝑥𝑖 to the
line ℓ1 using jump segments. This defines how all other curves should behave in the same range
of 𝑥-coordinates where we have routed −→𝑥𝑖 . We then route −→𝑥 𝑗 to the line ℓ2, and then route −→𝑥𝑘
to ℓ3. Each time we route a curve to a specific line, we introduce 𝑂(𝑛) crossings. Therefore, we
make 𝑂(𝑛4) crossings in total. ■

2.2 Constructing a packing instance

Let an instance I of Wired-Curve-ETR[ 𝑓 , 𝑔] be given with Curve-ETR[ 𝑓 , 𝑔] formula Φ of vari-
ables 𝑥1, . . . , 𝑥𝑛 and 𝛿 := 𝑛−300. We are going to construct an instance of a packing problem with
𝑁 = 𝑂(𝑛4) pieces, since this will be the complexity of the size of the wiring diagram of I. The
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general idea is to build a packing instance on top of the wiring diagram. We define a polygonal
container 𝐶 := 𝐶(I) containing the wiring diagram in the interior, and a set of pieces p to be
placed in 𝐶. The container 𝐶 is bounded from below by a line segment, from left and right by
𝑦-monotone chains, and from above by an 𝑥-monotone chain. See Figure 4 for a sketch of a
complete example.

In Sections 4 and 5, we present reductions to the packing problems Pack[ → , ],
Pack[ → , ], and Pack[ → , ], i.e., where the container is a polygon or a curved
polygon. In Section 6, we show how for fixed polygon and motion type, packing into a polygonal
container reduces to packing into a square container. Together, these results imply hardness for
Pack[ → □, ] and Pack[ → □, ].

Defining the construction in steps from left to right

We define the packing instance as we sweep over the wiring diagram of I with a vertical sweep
line from left to right. Each step corresponds to one of the following events:

the introduction of a pair of wires (−→𝑥𝑖 ,←−𝑥𝑖 ),
a crossing of two wires,
an addition or curved constraint,
the termination of a pair of wires (−→𝑥𝑖 ,←−𝑥𝑖 ).

In each step, we add one or more gadgets, each involving a constant number of pieces and
possibly a constant number of edges to the boundary of the container 𝐶. When the sweep line
passes over the right endpoints of the last wires (−→𝑥𝑛,←−𝑥𝑛), the construction of the container 𝐶
and all the pieces p is complete.

The overall goal of the construction is to prove the following theorem.

THEOREM 2.3. Let I be an instance of Wired-Curve-ETR[ 𝑓 , 𝑔]. For each of the problems
Pack[ → , ], Pack[ → , ], and Pack[ → , ], we can in polynomial time construct
an instance of the problem consisting of a container 𝐶 and a set of pieces p such that I has a
solution if and only if there is a valid placement of p in 𝐶.

From Theorem 2.3 and the ∃R-hardness of Wired-Curve-ETR[ 𝑓 , 𝑔], we now immediately
get the claimed results of row one and two in Table 1.

COROLLARY 2 .4. The problems Pack[ → , ], Pack[ → , ] and Pack[ → , ]
are ∃R-hard.

The third row in Table 1 follows from Section 6, as described later in this section. We now
describe how values of variables can be encoded by the placement of certain pieces in our
constructed packing instances.
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Figure 4. A sketch of the instance of Pack[ → , ] we get from the wiring diagram in Figure 3,
broken over six lines. The adders and curvers (swings) are marked with gray boxes. The (light and dark)
red, blue and green pieces are the variable pieces and the pieces of each nuance form a lane.
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2δ

−→x

10

Figure 5. A wire −→𝑥 and a variable piece representing 𝑥 placed on top, showing the leftmost and
rightmost canonical placements of the piece. The large arrow in the piece indicates that the piece is
right-oriented.

(a) (b) (c) (e)(d)

Figure 6. (a): anchor, (b): swap, (c): adder, (d): swing, (e): gramophone.

Variable pieces

Each variable 𝑥 of Φ will be represented by a number of variable pieces in our construction,
each of which is a convex polygon. Each variable piece represents exactly one variable 𝑥, and
we make a correspondence between certain placements of the piece and the values of 𝑥. When
adding a variable piece to our construction, we also specify the zero placement of the piece,
which is a specific placement where it encodes the value 0 of 𝑥. In the zero placement, the piece
will have a pair of (long) horizontal edges which have distance 10. By sliding the piece to the
left or to the right from the zero placement, we obtain placements of the piece that encode all
real values of 𝑥, even values outside the range [−𝛿, 𝛿]. Each variable piece will be defined to
be either right- or left-oriented. By sliding a right-oriented (resp. left-oriented) variable piece
to the right by some amount 𝑡 ≥ 0, we obtain a placement that encodes the value 𝑡 (resp. −𝑡),
while sliding it to the left by 𝑡 results in a placement encoding −𝑡 (resp. 𝑡). If the piece is rotated
differently or placed higher or lower than the zero placement, we do not define any value of 𝑥
to be encoded by the placement (we will in fact prove that in any solution to the constructed
packing instance, no piece can have such an undesirable placement). We define the canonical
placements of a variable piece to be the placements that encode values in the interval [−𝛿, 𝛿];
see Figure 5.

On each wire −→𝑥𝑖 or←−𝑥𝑖 in the wiring diagram of I, we will place several variable pieces
representing 𝑥𝑖 . The pieces placed on one wire are called a lane. The variable pieces on −→𝑥𝑖 and
←−𝑥𝑖 are oriented to the right and left, respectively. We also introduce some variable pieces which
will be placed at other places than on the wires, namely above the topmost wire where they will
be introduced in the steps of the construction corresponding to addition or curved constraints.
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Gadgets

Sketches of some of the gadgets can be seen in Figure 6. In the wiring diagram, each variable 𝑥𝑖
is represented by two wires −→𝑥𝑖 and←−𝑥𝑖 such that the left endpoints of −→𝑥𝑖 and←−𝑥𝑖 are vertically
aligned at distance 10, as are the right endpoints. In both ends of the wires, we build an anchor
(Section 4.1) which ensures that the pieces placed on −→𝑥𝑖 and those placed on←−𝑥𝑖 encode the value
of 𝑥𝑖 consistently. Furthermore, the anchor will ensure that the encoded value of 𝑥𝑖 is in the
range 𝐼 (𝑥𝑖), which we define as

𝐼 (𝑥) =


{𝛿} if Φ has a constraint 𝑥 = 𝛿,

[0, 𝛿] else, if Φ has a constraint 𝑥 ≥ 0,

[−𝛿, 𝛿] otherwise.

Whenever two wires cross, we build a swap (Section 4.2). The swap employs a central
piece that can translate in all directions, so that when it is pushed by a variable piece, the push
will propagate to the neighbouring variable piece on the other side of the crossing. We describe
adders (Section 4.4) to implement the addition constraints and curvers (Section 5) for the curved
constraints. We describe two curvers (see Figure 6 (d–e)), both of which exist in a convex and a
concave variant. Which version we use depends on the variant of packing we are reducing to.

Every time we add a gadget to the construction, we also introduce a constant number of
new pieces. Each variable piece is introduced in one gadget where the left end of the piece is
defined. The piece then extends outside the gadget to the right. The right end of the piece will
be defined in another gadget added later to the construction. The piece is exiting the former
gadget and entering the latter. In between the left and right end of the piece, defined in these
two gadgets, the piece is bounded by a pair of horizontal edges. All pieces that are not variable
pieces are contained within a single gadget.

Canonical placements

Recall that we define canonical placements of each variable piece. We do not define individual
canonical placements of pieces that are not variable pieces, but instead we define canonical
placements of all pieces of one or more gadgets: A placement of a set of pieces is canonical if (1)
the placement is valid (i.e., the pieces are in 𝐶 and are non-overlapping), (2) all variable pieces
have a canonical placement, and (3) the pieces have certain relationships such as edge-edge
contacts between each other. Part (3) will be specified for each gadget individually.

Preservation of solutions

The following lemma will be used to prove that for every solution to the Curve-ETR[ 𝑓 , 𝑔]
formula Φ, there is a canonical placement where the pieces encode that solution, meaning
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that for each variable 𝑥, all variable pieces representing 𝑥 encode the same value of 𝑥 as in
the solution. Define 𝑔 to be the total number of gadgets, and let p𝑖 denote the set of all pieces
introduced in the first 𝑖 gadgets, where 𝑖 ∈ {0, . . . , 𝑔}, so that p0 := ∅. The proof will be given in
the sections describing the individual types of gadgets.

LEMMA 2.5 (Solution preservation). Consider any 𝑖 ∈ {1, . . . , 𝑔} and suppose that for every
solution to Φ, there is a canonical placement of the pieces p𝑖−1 that encodes that solution. Then
the same holds for p𝑖 .

Soundness of the reduction

As mentioned, each variable 𝑥 will be represented by many variable pieces in the complete
construction. A difficulty is that conceivably, such a piece may not be placed in a way that
encodes a value of 𝑥. Even if all the pieces happen to be placed such that they do encode values
of 𝑥, these values could be different and therefore not represent a solution to the formula Φ.

For a small number Δ ≥ 𝛿, we are going to introduce a class of placements called aligned
Δ-placements. These are defined from the canonical placements by relaxing the requirements a
bit. In an aligned Δ-placement, each variable piece must be placed so that it encodes a value,
but it may slide Δ sideways from the placement encoding the value 0 instead of at most 𝛿 as for
the canonical placements. The requirements to the other pieces are likewise relaxed and will be
given later. The values encoded by the variable pieces in an aligned Δ-placement may therefore
conceivably be outside the required range [−𝛿, 𝛿]. The following lemma tells us that this is not
the case for Δ sufficiently small. In fact, the existence of such a placement is enough to ensure
that I has a solution. The number 𝜇 is the slack of the construction defined as the area of the
container 𝐶 minus the total area of the pieces p, and as will be explained later, 𝜇 = 𝑂(𝑛−296) in
our construction. The number 𝑔 = 𝑂(𝑛4) is the number of gadgets.

LEMMA 2.6 (Soundness). Consider an aligned 𝑔𝜇-placement and any variable 𝑥. There is a
specific non-empty subset of the pieces representing 𝑥 that encode the value of 𝑥 consistently (i.e.,
they all encode the same value of 𝑥) and the value is in the range 𝐼 (𝑥). Furthermore, these values
of the variables satisfy the constraints of Φ.

In fact, it will follow from Lemma 2.6 that every aligned 𝑔𝜇-placement is canonical, but
this is not important for our proof of Theorem 2.3. The remaining work in proving the theorem
will be to prove the following lemma.

LEMMA 2.7. Every valid placement is an aligned 𝑔𝜇-placement.

The proof of Theorem 2.3 is now straight-forward:

PROOF OF THEOREM 2.3 . If I has a solution, then it follows directly from repeated use of
Lemma 2.5 that there is a valid placement. Suppose now that there is a valid placement. By
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(a) (b) (d) (e)
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c
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Figure 7. (a): A pocket and an augmentation that fit perfectly together as in a jigsaw puzzle. (b): A
wedge of the empty space and a piece which fit together. (c): The corner of the piece we are
fingerprinting is marked with a dot. (d) and (e): Two examples where space is wasted because a wedge
is not occupied by a piece with a matching angle.

Lemma 2.7, the placement is an aligned 𝑔𝜇-placement. By Lemma 2.6, some variable pieces
encode a solution to the formula Φ. Therefore, I has a solution. ■

2.3 Basic tools: Slack, fingerprinting and unique angles

In the following we will describe some tools needed to prove Lemma 2.7.

The slack of the construction

The slack of an instance of a packing problem is the area of the container 𝐶 minus the total area
of the pieces, and we denote the slack of our construction by 𝜇. We need the slack to be very
small in order to use the fingerprinting technique which will be described later.

We now give an upper bound on the slack of the complete construction. Our construction
will be described as depending on the number 𝛿 := 𝑛−300. We place each variable piece so
that it encodes the value 0, and we place the remaining pieces as shown in the sections that
describe the individual gadgets. We now define 𝜇′ to be the area of the container 𝐶 that is not
covered by pieces in this placement and thus trivially have 𝜇 ≤ 𝜇′. By checking each type of
gadget, it is straightforward to verify that the placement can be realized as a canonical (and
thus valid) placement of the pieces in all gadgets except for the anchors, where some pieces
are not completely contained in 𝐶. The uncovered area in each gadget will appear as a thin
layer along some of the edges of the pieces in the gadget. This layer has thickness 𝑂(𝛿), and
the edges along which it appears have total length 𝑂(1), so the area is 𝑂(𝛿) in each gadget.
There will be no empty space outside the gadgets because that space will be completely covered
by variable pieces. Since the final construction has 𝑔 = 𝑂(𝑁) = 𝑂(𝑛4) gadgets, it follows that
𝜇 ≤ 𝜇′ = 𝑂(𝑛4𝛿) = 𝑂(𝑛−296). It may seem a little odd to measure the slack in this indirect way,
but we found it to be the easiest way to get the bound since we do not explicitly specify the area
of the container or the pieces in our construction. The bound 𝜇 = 𝑂(𝑛−296) ensures that 𝜇 is
sufficiently small that we can use of the fingerprinting technique, which is described in the
following.
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Fingerprinting

In order to prove Lemma 2.7, we first show that every piece must be placed very close to a
canonical placement using a technique we call fingerprinting. To grasp the idea of this technique,
we first present another simpler technique that only works for non-convex pieces, and which
we call the jigsaw puzzle technique for obvious reasons; see Figure 7 (a). The idea behind
this technique is to force each piece 𝑝1 to be at a specific position by creating a pocket of the
container and a corresponding augmentation of the piece 𝑝1 intended to be placed there. This
is done in a way that only the piece 𝑝1 has an augmentation that fits into the pocket, just as the
principle behind a jigsaw puzzle, and it can be done in a way that gives the piece freedom to
slide back and forth or rotate by a slight amount, etc. The pocket can also be created in another
piece 𝑝2 if 𝑝1 is intended to be placed next to 𝑝2. Making enough of these pairs of pockets and
extensions, we can therefore deduce where all the pieces are placed in all valid placements.

In fact, the jigsaw puzzle technique can be used to prove ∃R-hardness of packing problems
with non-convex pieces in a much simpler way than the proofs of this paper, but unfortunately,
the technique is not directly realizable with convex pieces. In fingerprinting, instead of making
complicated augmentations of the pieces, we only work with a piece 𝑝1 with a convex corner 𝑐
of a specific angle 𝛼1. In the canonical placements, the empty space left by the other pieces
forms a wedge with apex corner 𝑑 of angle 𝛼1 which can thus be covered very efficiently
by 𝑝1 by placing the corner 𝑐 at or very close to 𝑑, as in Figure 7 (b). We make sure that every
corner of every other piece has an angle 𝛼2 significantly different from 𝛼1, in the sense that
|𝛼2 − 𝛼1 | = Ω(𝑁−2). It should likewise hold that the total angle of any combination of corners of
other pieces is different from 𝛼1 in that sense. Furthermore, the slack 𝜇 is tiny, as described
above. As a result, we can show that if 𝑐 is not placed very close to 𝑑, this will result in the
empty space in a neighbourhood around 𝑑 with an area exceeding 𝜇, because no other piece (or
combination of pieces) can cover that neighbourhood efficiently, illustrated in Figure 7 (d-e). In
our constructions, fingerprinted corners are marked with a dot; see Figure 7 (c). For technical
reasons, the fingerprinted corners must have angles in the range from 5𝜋/180 to 𝜋/2.

We add a few remarks about the use of fingerprinting. First of all, the situation shown in
Figure 7 (b) is simplified. In our applications, the fat segments (bounding the empty space left
by the other pieces) do not need to meet at the apex corner 𝑑, since a short portion (of length
𝑂(𝛿)) close to the corner can be missing. Furthermore, the angle between the two fat segments
does not have to be exactly 𝛼1 before the technique can be used; just very close to 𝛼1 (this will
be important when we are fingerprinting more than one piece in a row).

Second, the fingerprinting does not imply that the piece 𝑝1 must be placed with the corner 𝑐
coincident with 𝑑, but only that the distance ∥𝑐𝑑∥ has to be small. This is used deliberately in
our constructions, since it allows for the piece 𝑝1 to move slightly.
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Third, when we introduce a new gadget and its 𝑘 new pieces 𝑝𝑖 , . . . , 𝑝𝑖+𝑘−1, we use finger-
printing iteratively to argue where the new pieces must be placed. Here, the 𝑗’th piece 𝑝𝑖+ 𝑗−1,
𝑗 ∈ {1, . . . , 𝑘}, can be fingerprinted in a wedge of the empty space formed by the preceding
pieces 𝑝𝑖 , . . . , 𝑝𝑖+ 𝑗−2. However, the bound on the uncertainty of where 𝑝𝑖+ 𝑗−1 is placed increases
with 𝑗. Slightly simplified, the bound grows as 𝑂(𝑛𝑂( 𝑗)√𝜇), and we need the bound to be at most
some small constant to be of any use. We prefer to create an instance where we need only a
logarithmic number of bits to represent the coordinates of the container and the pieces, since
this will prove that the packing problems are strongly ∃R-hard. It is therefore important that
we only apply fingerprinting iteratively a constant number of times, i.e., that 𝑘 = 𝑂(1), as we
will otherwise need to choose the slack 𝜇 to smaller than 𝑛−𝑞 for every constant 𝑞 > 0, and then
it will require a superlogarithmic number of bits to represent the coordinates of our instance.
In the construction, we will always have 𝑘 ≤ 7 and we can do with choosing 𝛿 := 𝑛−300 so that
𝜇 = 𝑂(𝑛−296).

In Section 3, we will develop the fingerprinting technique in detail. We consider this part
the technically most challenging of the paper. The technique is versatile and can likely be used
in other reductions to packing. Let us for instance mention that fingerprinting also works for
packing problems where we are allowed to reflect the pieces when placing them. This gives
two possibilities for each piece, and one must be excluded by other reasons, such as overlap
with other pieces. As the conditions for the fingerprinting technique are technical, we will list
them in Section 3 in detail. We will show for each gadget that those conditions are met.

After using fingerprinting iteratively a constant number of times for the new pieces, we
use other techniques, such as the alignment (to be described in the sequel), to argue about their
placement.

Choosing unique angles

As described in the previous paragraph, whenever we apply the fingerprinting technique to
argue that a corner with angle 𝛼1 of some piece is placed close to some specific point in the
container, we need that every combination of corners of the other pieces have angles that sum to
an angle 𝛼2 such that |𝛼2 − 𝛼1 | = Ω(𝑁−2). This will be called the unique angle property. In order
to obtain this property, the construction will be designed so that each piece has a special corner
where the angle can be chosen freely (within some interval of angles of size Ω(1)). Likewise,
the wedge (where the special corner is intended to be placed) formed by the boundary of the
container or the other pieces is flexible, so that the angle of the wedge can match the chosen
angle of the corner. In our figures, the special fingerprinted corners are marked with a dot, as
in Figure 7 (c). The following lemma is used to choose these free angles such that we get the
unique angle property.
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LEMMA 2.8. Let 𝑆𝑘 := { 𝑖𝑘 +
1

2𝑘2 | 𝑖 ∈ {1, . . . , 𝑘}}, consider a subset 𝑅 ⊆ 𝑆𝑘, and let 𝑥 :=
∑
𝑟∈𝑅 𝑟. If

𝑥 ∈ 𝑆𝑘, then 𝑅 = {𝑥}.

PROOF . If 𝑅 consists of 𝑚 elements, then 𝑥 has the form 𝑗
𝑘 +

𝑚
2𝑘2 for some 𝑗 ∈ N. A number of

this form, for 𝑚 ≤ 𝑘, can only be in 𝑆𝑘 if 𝑚 = 1. ■

The lemma provides a set of 𝑘 numbers in a range of size 𝑂(1) and any number is Ω(𝑘−2)
away from the sum of any combination of other numbers. We multiply the numbers in 𝑆𝑘 by 𝜋
to get a set of rational angles and choose the free angles from such a set 𝜋𝑆𝑘, for 𝑘 = 𝑂(𝑁).
The free angles are restricted to various subintervals of [0, 𝜋], so we choose 𝑘 so large that 𝜋𝑆𝑘
contains enough angles from each of these subintervals. However, as each subinterval has size
Ω(1), we can do with 𝑘 = 𝑂(𝑁).

2.4 Proof structure of Lemma 2.7

In the proof of Lemma 2.7, we use the fingerprinting technique to prove that in every valid
placement, the pieces are placed almost as in a canonical placement. To explain the structure
of the argument in more detail, we need some notions of placements that are close to being
canonical, which will be defined in the following paragraph.

Almost-canonical placements and aligned placements

We say that a valid placement of the pieces of a gadget is almost-canonical if there exists rigid
motions that move the pieces to a canonical placement such that every point in each piece is
moved a distance of at most 𝑛−1 (in other words, the displacement between the actual placement
and the canonical placement of each piece is 𝑛−1).

We say that a placement of the pieces of a gadget is an aligned Δ-placement for Δ ≥ 𝛿 if (i) the
placement is almost-canonical, and (ii) for each variable 𝑥, each variable piece representing 𝑥
encodes a value in the range [−Δ, Δ]. Note that since the placement is almost-canonical, we can
always assume Δ ≤ 𝑛−1 + 𝛿 = 𝑛−1 + 𝑛−300.

The following lemma says that the pieces of every new gadget can be assumed to be
almost-canonical if the preceding pieces have an aligned Δ-placement, for Δ sufficiently small.
Recall that p𝑖 is the set of all pieces introduced in the first 𝑖 gadgets, where 𝑖 ∈ {0, . . . , 𝑔}, so that
p0 := ∅. The lemma will follow from the use of fingerprinting, and the proof will be given in the
sections describing the individual types of gadgets.

LEMMA 2.9 (Almost-canonical Placement). For any 𝑖 ∈ {1, . . . , 𝑔}, consider a valid placement 𝑃
(of all the pieces) for which the pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-placement. It then holds for 𝑃
that the pieces p𝑖 have an almost-canonical placement.
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Figure 8. The alignment segment ℓ makes us conclude that the pieces must be horizontally aligned:
otherwise, they would overlap, cross the container boundary, or cover more of the alignment segment
than what is available.

Aligning pieces

Once we know that the pieces p𝑖 have an almost-canonical placement, provided by the previous
lemma, we can use so-called alignment segments to further restrict where the new pieces p𝑖 \p𝑖−1

introduced in gadget 𝑖 can be placed. In particular, we will be able to fix the rotations of some
pieces to be as in the canonical placements. The idea is sketched in Figure 8. From the rough
placements we get from fingerprinting, we know that a set of the pieces each has a pair of
parallel edges that are both cut through by a vertical alignment segment ℓ. If we sum the
distance between the two parallel edges over all the pieces, we get exactly the length of ℓ. Since
the portions of ℓ covered by the pieces must be pairwise disjoint in a valid placement, we can
conclude that the pieces have to be rotated so that the parallel edges are perpendicular to ℓ.
This technique will be used to prove the following lemma for each gadget individually. Using
the lemma repeatedly together with Lemma 2.9, we get that every valid placement is also an
aligned 𝑔𝜇-placement, proving Lemma 2.7.

LEMMA 2.10 (Aligned placement). For any 𝑖 ∈ {1, . . . , 𝑔}, consider a valid placement 𝑃 (of all
the pieces) for which the pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-placement and the pieces p𝑖 have an
almost-canonical placement. It then holds for 𝑃 that the pieces p𝑖 have an aligned 𝑖𝜇-placement.

It now remains to prove Lemma 2.6.

2.5 Proof structure of Lemma 2.6

The proof of Lemma 2.6 goes along the following lines. In an aligned 𝑔𝜇-placement, each variable
piece 𝑝𝑥 encodes a value for the variable 𝑥 it is representing, which we will denote by ⟨ 𝑝𝑥 ⟩. The
problem is that different pieces representing the same variable 𝑥 may conceivably not encode
the value consistently. However, recall that we build lanes of pieces on top of the two wires −→𝑥 ,←−𝑥 ,
and these meet at the left and right endpoints of the wires. We prove that the values encoded by
these pieces 𝑝1, . . . , 𝑝𝑚 make a cycle of inequalities: ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩ ≤ · · · ≤ ⟨ 𝑝𝑚 ⟩ ≤ ⟨ 𝑝1 ⟩. It thus
follows that all these pieces encode a value of 𝑥 consistently. Furthermore, the anchors, which
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Gx1
Gx2

Gx3

x2 + x3 ≤ x1

g(x1, x2) ≥ 0

f(x1, x2) ≥ 0

x2 + x3 ≥ x1

Figure 9. An abstract drawing of the dependency graphs of the instance we get from the wiring
diagram in Figure 3 and how the graphs connect to the gadgets for addition and curved constraints.
The number of vertices on the cycles and paths are neither important nor correct.

are the gadgets that we place at the left and right endpoints of the wires −→𝑥 ,←−𝑥 , will ensure that
⟨ 𝑝1 ⟩ ∈ 𝐼 (𝑥), so that the encoded values are in the correct range.

In our construction, we also make additional lanes of pieces going to the adders and
curvers. The functionality of the specific gadgets imply that the addition and curved constraints
of Φ are all satisfied. In order to describe the structure of the argument, we introduce a graph𝐺𝑥
for each variable 𝑥 as described in the next paragraph.

Dependency graph of variable pieces

For each variable 𝑥, we introduce a directed dependency graph 𝐺𝑥 . The vertices of 𝐺𝑥 are the
variable pieces representing 𝑥. Consider a gadget and two variable pieces 𝑝1, 𝑝2 appearing in
the gadget and both representing 𝑥. We add an edge from 𝑝1 to 𝑝2 in 𝐺𝑥 if 𝑝1 is an entering
right-oriented piece or an exiting left-oriented piece and 𝑝2 is an exiting right-oriented piece
or an entering left-oriented piece. In crossings between the two wires −→𝑥 ,←−𝑥 representing 𝑥,
there will be a swap where this rule introduces unintended edges, so we make one exception
described in Section 4.2 where the swap is described in detail.

The following lemma is going to follow trivially from the way we make the lanes on top of
the wires −→𝑥 ,←−𝑥 for each variable 𝑥, and the way we connect the gadgets representing addition
and curved constraints to these lanes. See Figure 9 for an illustration.

LEMMA 2.11. For each variable 𝑥, the graph𝐺𝑥 consists of a directed cycle 𝐾𝑥 with some directed
paths attached to it (oriented towards or away from 𝐾𝑥). The vertices of the cycle 𝐾𝑥 are the
variable pieces appearing on the wire −→𝑥 from left to right and the wire←−𝑥 from right to left in this
order. For each path attached to 𝐾𝑥 , the vertex farthest from 𝐾𝑥 is a piece entering or leaving a
gadget representing an addition or curved constraint.

In the following, we consider a given aligned 𝑔𝜇-placement of all the pieces. Since all edges
of 𝐺𝑥 are between pieces appearing in the same gadget, the following lemma will be proven for
each gadget individually.

LEMMA 2.12 (Edge inequality). Consider a variable 𝑥 and an edge (𝑝1, 𝑝2) of 𝐺𝑥 . Then ⟨ 𝑝1 ⟩ ≤
⟨ 𝑝2 ⟩.
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From Lemma 2.11 and Lemma 2.12, we now get the following (except that the part about
the anchor gadget will be proven in Section 4.1).

LEMMA 2.13. For each variable 𝑥, all the pieces of the cycle 𝐾𝑥 encode the value of 𝑥 consistently.
Furthermore, due to the design of the anchor gadget, the value is in 𝐼 (𝑥).

By the above lemma, we may write ⟨ 𝐾𝑥 ⟩ to denote the value represented by all pieces
of 𝐾𝑥 .

Adders and curvers work

We will show in Section 4.4 and Section 5 that the adders and curvers actually enforce addition
and curved constraints as they are supposed to. This entails showing that the gadgets implement
the addition constrainst or various convexly or concavely curved constraints in a geometric
sense and also that the variable pieces of the gadgets are correctly connected to the cycles in
the respective dependency graphs. In particular, we will show the following two lemmas.

LEMMA 2.14 (Adders work). For each constraint 𝑥 + 𝑦 = 𝑧 in the formula Φ, we have ⟨ 𝐾𝑥 ⟩ +〈
𝐾𝑦

〉
= ⟨ 𝐾𝑧 ⟩.

LEMMA 2.15 (Curvers work). For each of the problems Pack[ → , ], Pack[ → , ],
and Pack[ → , ], there exists well-behaved functions 𝑓 and 𝑔 that are convexly and con-
cavely curved, respectively, such that for every constraint of the form 𝑓 (𝑥, 𝑦) ≥ 0 in the Curve-
ETR[ 𝑓 , 𝑔] formula Φ, we have 𝑓 (⟨ 𝐾𝑥 ⟩ ,

〈
𝐾𝑦

〉
) ≥ 0, and for every constraint 𝑔 (𝑥, 𝑦) ≥ 0, we have

𝑔 (⟨ 𝐾𝑥 ⟩ ,
〈
𝐾𝑦

〉
) ≥ 0.

Combining Lemmas 2.13 to 2.15, we then have a proof of Lemma 2.6.

2.6 Square container

In Section 6, we describe a reduction from problems of type Pack[P → ,M] to Pack[P →
□,M]. It will be crucial that the container 𝐶 is 4-monotone, as defined below.

DEF IN IT ION 2 .16. A simple closed curve 𝛾 is 4-monotone if 𝛾 can be partitioned into four
parts 𝛾1, . . . , 𝛾4 in counterclockwise order that move monotonically down, to the right, up, and
to the left, respectively. A polygon 𝑄 is 4-monotone if the boundary of 𝑄 is a 4-monotone curve.

LEMMA 2.17. In the reductions resulting from using the gadgets described in Sections 4 and 5,
the resulting container is 4-monotone.

PROOF . The boundary of the resulting container has a left and a right staircase, 𝛾1 and 𝛾3,
created by the left and right anchors, respectively, and these staircases are 𝑦-monotone, and
their upper and lower endpoints are horizontally aligned. The lower endpoints of the staircases



23 / 78 Framework for ∃R-Completeness of Two-Dimensional Packing Problems

C

Figure 10. Construction used in the reduction to packing problems with a square container. The space
left by the exterior pieces (blue, green, orange, and turquoise) is exactly the 4-monotone container 𝐶 of
the instance we are reducing from.

𝛾1 and 𝛾3 are connected by a single horizontal line segment 𝛾2 bounding the bottom lane from
below. The upper endpoints of the staircases are connected by a curve 𝛾4 which bound the
topmost lane and the adders and curvers from above. The curve 𝛾4 is 𝑥-monotone, as can
easily be verified by inspecting the boundary added due to the adders and curvers. Hence, the
container is 4-monotone. ■

We get from the lemma that the packing problems are even ∃R-hard for 4-monotone
containers. Let I1 be an instance of a packing problem where the container 𝐶 := 𝐶(I1) is 4-
monotone. We place 𝐶 in the middle of a larger square and fill out the area around 𝐶 with pieces
carefully; the details are given in Section 6 and Figure 10 shows an example of the construction.
We call these new pieces the exterior pieces, whereas we call the pieces of I1 the inner pieces.
Using fingerprinting and other arguments, we are able to prove that there is essentially only
one way to fit the exterior pieces in the square, and the space left for the inner pieces is exactly
the container 𝐶. Therefore, there exists a valid placement of the pieces in the resulting instance
if and only if there is one of the inner pieces in 𝐶. We get the results in the third row of Table 1
as expressed by the following corollary.

COROLLARY 2 .18. The problems Pack[ → □, ] and Pack[ → □, ] are ∃R-hard.

3. Fingerprinting

In this section, we develop a technique to argue that pieces are roughly at the position where
we intend them to be. The high level idea is based on a few properties. First, the slack 𝜇, i.e.,
the difference between the area of the container and the total area of the pieces, is very small.
Second, every piece 𝑝 has a specific corner 𝑣 with a unique angle that fits precisely at one
position. If a piece is placed at a different location than the intended one, the empty space would
exceed 𝜇. In order to make such arguments, we first need to carefully define a few concepts.
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Motion and Placement

We encode a rotation by a rotation matrix, which is a matrix 𝑀 of the form

𝑀 =

(
𝑎 −𝑏
𝑏 𝑎

)
,

with det𝑀 = 1. From a translation 𝑡 ∈ R2 and a rotation 𝑀 , we get a motion 𝑚 := (𝑡, 𝑀). If only
translations are allowed, we require that 𝑀 is the identity.

Given a piece 𝑝 and a motion 𝑚 = (𝑀, 𝑡), then we denote by 𝑝𝑚 the piece 𝑝 after moving 𝑝
according to 𝑚, i.e.,

𝑝𝑚 := {𝑀𝑥 + 𝑡 : 𝑥 ∈ 𝑝}.

The set 𝑝𝑚 is the placement of 𝑝 by 𝑚. Given a tuple of p = (𝑝1, . . . , 𝑝𝑘) of pieces and a tuple
m = (𝑚1, . . . , 𝑚𝑘) of motions, then we denote by

pm = (𝑝𝑚1
1 , . . . , 𝑝𝑚𝑘

𝑘
)

the placement of p by m. We may write 𝑝𝑖m instead of 𝑝𝑖𝑚𝑖 .
Given a container 𝐶, pieces p = (𝑝1, . . . , 𝑝𝑘) and a motion m, we say that m (resp. pm) is a

valid motion (resp. placement), if (i) 𝑝𝑖m ⊂ 𝐶 for all 𝑖, and (ii) 𝑝𝑖m and 𝑝 𝑗
m are interior-disjoint

for all 𝑖 ≠ 𝑗.

Other geometric definitions

Let 𝑎𝑏 and 𝑐𝑑 be two (oriented) line segments. The angle between 𝑎𝑏 and 𝑐𝑑 is the minimum
angle that 𝑎𝑏 can be turned such that 𝑎𝑏 and 𝑐𝑑 become parallel and point in the same direction,
i.e., after turning, we should have (𝑏 − 𝑎)⊥ · (𝑑 − 𝑐) = 0 and (𝑏 − 𝑎) · (𝑑 − 𝑐) > 0.

Consider two motions 𝑚1 and 𝑚2 of a piece 𝑝. The displacement between 𝑚1 and 𝑚2 is
sup𝑥∈𝑝 ∥𝑥𝑚1 − 𝑥𝑚2∥. The displacement angle is the absolute difference in how much 𝑚1 and 𝑚2

rotate 𝑝 in the interval [0, 𝜋].
Given a compact set 𝑆 in the plane, we denote by area(𝑆) the area of 𝑆, and we define the

diameter of 𝑆 as diam(𝑆) := max𝑎,𝑏∈𝑆 ∥𝑎𝑏∥.
Given a container 𝐶 and pieces p, we define the slack as 𝜇 = area(𝐶) −∑

𝑝∈p area(𝑝).
Let 𝐴 ⊂ R2. Then 𝐴𝑐 = {𝑥 ∈ R2 | 𝑥 ∉ 𝐴}. Let 𝐴, 𝐵 ⊂ R2. Then we denote the Minkowski

sum as 𝐴 ⊕ 𝐵 := {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and the Minkowski difference as 𝐴 ⊖ 𝐵 := (𝐴𝑐 ⊕ 𝐵)𝑐. For
𝜆 > 0, define disk(𝜆) := {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 ≤ 𝜆2}.

3.1 Fingerprinting a single piece

Now let us go one level deeper into the details of the fingerprinting technique; see also Figure 11.
We consider a case where we already know the position of some pieces (possibly with some
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Figure 11. We are considering the placement of the pieces 𝑝1, . . . , 𝑝𝑖−1 according to a valid motion m.
The white area is the empty space 𝐸 available for the remaining pieces 𝑝𝑖 , . . . , 𝑝𝑁. The radius of the gray
circles centered at 𝑥, 𝑦, 𝑧 is the uncertainty value 𝜆; the first circle must contain 𝑎, the second 𝑏 and 𝑐,
and the third 𝑑, where 𝑎𝑏 and 𝑐𝑑 are segments on the boundary of 𝐸.

uncertainty), and we consider the empty space 𝐸 where the remaining pieces must be placed.
Ideally, we could identify a corner 𝑤 of the empty space and a corner 𝑣 of a remaining piece 𝑝
which has exactly the same angle as 𝑤 and deduce that 𝑝 must be placed with 𝑣 at 𝑤. Unfortu-
nately, this is not the case, for two reasons. First, we want to give most pieces some tiny but
non-zero amount of wiggle room. This is important as pieces are meant to represent variables.
Second, we do not know the precise position of the other pieces as previous fingerprinting steps
could only infer approximate and not exact positions of those pieces. Thus, we will identify for
each piece 𝑝 a triangle 𝑇 , which has a corner 𝑦 with the same angle as 𝑣. The edges adjacent
to 𝑦 will be very close to but not exactly on the boundary of the empty space 𝐸. The triangle 𝑇
will be our main protagonist in the forthcoming proofs and formal definitions. It may partially
overlap existing pieces or have some distance to already placed pieces. Another key player is
the uncertainty value 𝜆 ≥ 0, which is a measure of how much 𝑇 is off from the ideal. We are
now ready to go into the full details of the fingerprinting.

Setup

We are given a container 𝐶 and pieces p = (𝑝1, . . . , 𝑝𝑁 ). Each piece 𝑝 ∈ p is a simple polygon
with the following properties.

Each segment of 𝑝 has length at least 1.
The diameter of 𝑝 is at most some number 𝑑max.
The polygon 𝑝 is fat in the following sense. For any two points 𝑣, 𝑤 on different and
non-neighbouring segments of 𝑝, we have ∥𝑣𝑤∥ ≥ 𝜏 := 1/100.

In Section 3.4, we will show that the results developed in the following for polygonal pieces
also hold when the pieces are allowed to be curved polygons (provided that the curvature is
sufficiently small and the segments do not curve within distance 1 from the corners).
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The empty space 𝐸

We consider an arbitrary valid motion m and analyze how we can infer something about the
placement of the pieces 𝑝𝑖 , . . . , 𝑝𝑁 from the placement of the first 𝑖 − 1 pieces 𝑝1, . . . , 𝑝𝑖−1. We
can think of this situation as if we have already decided where to place the first 𝑖 − 1 pieces
𝑝1, . . . , 𝑝𝑖−1 in 𝐶 so that they are interior-disjoint, and we are now reasoning about where to
place the next piece.

Let

𝐸 := 𝐶 \
𝑖−1⋃
𝑗=1

𝑝 𝑗m

be (the closure of) the uncovered space available for the remaining pieces 𝑝𝑖 , . . . , 𝑝𝑁 , see
Figure 11. Then 𝐸 is a subset of 𝐶 bounded by a finite number of line segments, and each of
these segments is contained in edges of the pieces 𝑝1

m, . . . , 𝑝𝑖−1
m or 𝐶.

Covering a wedge of 𝐸

Assume that there is a special triangle 𝑇 ⊂ 𝐶 with corners 𝑥, 𝑦, 𝑧 and with the following
properties. We have ∥𝑥 𝑦∥ = ∥ 𝑦𝑧∥ = 1. Let 𝜆 ≥ 0 be a (small) number that will be defined
whenever we are going to apply the fingerprinting. The value 𝜆 can be thought of as a measure
of uncertainty of the already placed pieces and the distance from the boundary of 𝑇 to the
boundary of 𝐸. Let 𝑇 in = 𝑥in 𝑦in𝑧in denote the triangle 𝑇 ⊖ disk(𝜆) (where ⊖ is the Minkowski
difference and disk(𝜆) the disk of radius 𝜆, as defined in the beginning of this section), such
that 𝑥in, 𝑦in, 𝑧in are on the angular bisectors from 𝑥, 𝑦, 𝑧, respectively.

DEF IN IT ION 3.1. We say that 𝐸 is 𝜆-bounding 𝑇 at 𝑦 if the following two conditions hold:
There are segments 𝑎𝑏 and 𝑐𝑑 on the boundary of 𝐸 such that each of the distances ∥𝑎𝑥∥,
∥𝑏𝑦∥, ∥𝑐 𝑦∥, ∥𝑑𝑧∥ is at most 𝜆.
The interior of 𝑇 in is a subset of 𝐸.
The angle 𝛽 of 𝑇 at 𝑦 satisfies 𝛽 ∈ [𝛼min, 𝛼max], where 𝛼min := 5𝜋/180 and 𝛼max := 𝜋/2.

The second requirement means that no piece among 𝑝1, . . . , 𝑝𝑖−1 covers anything of 𝑇 in

when placed according to m. The triangle 𝑇 in will have an area much larger than 𝜇, which
implies that almost all of 𝑇 in must be covered by the pieces 𝑝𝑖m, . . . , 𝑝𝑁m.

Unique angle property

We assume that the pieces 𝑝𝑖 , . . . , 𝑝𝑁 have the following property, which we denote as the unique
angle property with respect to the angle 𝛽 of 𝑦 and a (small) number 𝜎 > 0:
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Consider any set 𝑆 := {𝑣1, . . . , 𝑣𝑚} such that it contains at most one corner from each piece
𝑝𝑖 , . . . , 𝑝𝑁 . If the sum of angles of corners in 𝑆 is in the interval [𝛽 − 𝜎, 𝛽 + 𝜎], then 𝑆 consists of
only one corner 𝑣, i.e., 𝑆 = {𝑣}.

In most applications of the fingerprinting technique, there will be only one such set 𝑆 = {𝑣}.
In other words, the angle range [𝛽 − 𝜎, 𝛽 + 𝜎] uniquely identifies a specific piece and a specific
corner 𝑣 of the piece. However, in Section 6, we are going to consider a special case where the
container is a square where there will be more such sets.

We will argue that almost all of 𝑇 in must be covered by a piece with a corner 𝑣 with an
angle in the range [𝛽 − 𝜎, 𝛽 + 𝜎], and the corner 𝑣 must be placed close to 𝑦. Informally, since 𝜇
is much smaller than the area of 𝑇 in, almost all of 𝑇 in must be covered by the pieces 𝑝𝑖 , . . . , 𝑝𝑁 .
Because of the unique angle property, it is only possible to cover a sufficient amount of 𝑇 in by
placing a piece with such a corner 𝑣 close to 𝑦 and with the adjacent edges close to parallel to
𝑦𝑥 and 𝑦𝑧, since the edges 𝑎𝑏 and 𝑐𝑑 of 𝜕𝐸 are preventing 𝑇 in from being covered in another
way.

Main lemma

To sum up, we have made these assumptions:
We consider a valid placement m of the pieces p.
The empty space 𝐸 is 𝜆-bounding the triangle 𝑇 at the corner 𝑦 of 𝑇 .
The pieces 𝑝𝑖 , . . . , 𝑝𝑁 have the unique angle property with respect to the angle 𝛽 of the
corner 𝑦 and the small number 𝜎.

In Section 3.3, we are going to prove the following lemma in the setting described above.

LEMMA 3.2 (Single fingerprint). There is a piece 𝑝 ∈ {𝑝𝑖 , . . . , 𝑝𝑁 } with a corner 𝑣 such that the
angle of 𝑣 is in [𝛽 − 𝜎, 𝛽 + 𝜎] and ∥ 𝑦𝑣m∥ = 𝑂

(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
.

Furthermore, let𝑢, 𝑤 be the corners preceding and succeeding 𝑣 in counterclockwise direction,
respectively. Then the angle between 𝑣m𝑢m and 𝑦𝑥 is 𝑂

(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
, as is the angle between

𝑣m𝑤m and 𝑦𝑧.

3.2 Fingerprinting more pieces at once

In this section, we consider the iterated use of the fingerprinting technique (in particular
Lemma 3.2) for some number of times. This describes the situation whenever we have intro-
duced the pieces of a new gadget to the construction. More precisely, we consider the situation
where we know how the pieces 𝑝1, . . . , 𝑝𝑖−1 must be placed, and we want to deduce how the
following 𝑘 pieces 𝑝𝑖 , . . . , 𝑝𝑖+𝑘−1, for some 𝑘 ≥ 1, must then be placed. To this end, consider
an arbitrary valid motion m. Consider a set s of intended motions 𝑠𝑖 , . . . , 𝑠𝑖+𝑘−1 of the pieces
𝑝𝑖 , . . . , 𝑝𝑖+𝑘−1. We are going to define what it means for the intended motions s to be sound, and
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then we prove that if they are sound, then the valid motion m must place the pieces 𝑝𝑖 , . . . , 𝑝𝑖+𝑘−1

in a way similar to the intended motions s.
To define soundness of the intended motions, we first define the empty space 𝐸s

𝑗
, for

𝑗 ∈ {𝑖, . . . , 𝑖 + 𝑘 − 1}, as

𝐸s𝑗 := 𝐶 \
(
𝑖−1⋃
𝑙=1

𝑝𝑙𝑚𝑙 ∪
𝑗−1⋃
𝑙=𝑖

𝑝𝑙 𝑠𝑙

)
.

Thus, 𝐸s
𝑗

is the free space where the piece 𝑝 𝑗 can be placed if the pieces 𝑝1, . . . , 𝑝𝑖−1 are placed
according to m while the pieces 𝑝𝑖 , . . . , 𝑝 𝑗−1 are placed according to the intended motions s.

DEF IN IT ION 3.3. We say that the intended motion 𝑠 𝑗 , 𝑗 ∈ {𝑖, . . . , 𝑖 + 𝑘 − 1}, is 𝜆-sound, for a
value 𝜆 ≥ 0, if there exists a triangle 𝑇𝑗 = 𝑥 𝑗 𝑦 𝑗𝑧 𝑗 and a corner 𝑣 𝑗 of 𝑝 𝑗 such that the following
holds,

the angle 𝛽 𝑗 of 𝑇𝑗 at 𝑦 𝑗 is in the range [𝛼min, 𝛼max],
∥𝑥 𝑗 𝑦 𝑗 ∥ = 1 and ∥ 𝑦 𝑗𝑧 𝑗 ∥ = 1,
𝐸s
𝑗

is 𝜆-bounding 𝑇𝑗 at 𝑦 𝑗 (recall Definition 3.1),
if a set 𝑆 of at most one corner from each of the pieces 𝑝 𝑗 , . . . , 𝑝𝑁 has a sum of angles in
the range [𝛽 𝑗 − 𝜎, 𝛽 𝑗 + 𝜎], then 𝑆 = {𝑣 𝑗} (note that this is a stronger version of the unique
angle property since the original definition just requires 𝑆 to be a singleton, while here 𝑆
must contain a specific corner 𝑣 𝑗),
𝑇𝑗 ⊂ 𝑝 𝑗 𝑠 𝑗 , and
𝑣 𝑗
𝑠 𝑗 = 𝑦 𝑗 and 𝑥 𝑗 𝑦 𝑗 , 𝑦 𝑗𝑧 𝑗 ⊂ 𝜕𝑝 𝑗 𝑠 𝑗 .

We likewise define the placement 𝑝 𝑗 𝑠 𝑗 to be 𝜆-sound if the motion 𝑠 𝑗 is 𝜆-sound.

LEMMA 3.4. There exists an absolute constant 𝑐 > 0 such that the following holds. Define

Λ𝑖 := 0, and

Λ 𝑗 := 𝑐𝑑max/𝜎 · Λ 𝑗−1 + 𝑐𝑑max(𝜆/𝜎 +
√︁
𝜇/𝜎),

for 𝑗 > 𝑖. If the motions 𝑠𝑖 , . . . , 𝑠𝑖+𝑘−1 are 𝜆-sound, then for each 𝑗 ∈ {𝑖, . . . , 𝑖 + 𝑘 − 1}, the
displacement between the motions 𝑚 𝑗 and 𝑠 𝑗 of the piece 𝑝 𝑗 is at most Λ 𝑗+1. It holds that

Λ𝑘+1 ≤ (𝑘 + 1) (𝑐𝑑max/𝜎)𝑘+1(𝜆/𝜎 +
√︁
𝜇/𝜎),

which is a bound on all the mentioned displacements.

PROOF . We proceed by induction on 𝑗. For 𝑗 = 𝑖, we apply Lemma 3.2. We get that ∥ 𝑦𝑖𝑣𝑖m∥ ≤
𝑂

(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
. Furthermore, the second half of Lemma 3.2 implies that the displacement

angle between the motions 𝑚𝑖 and 𝑠𝑖 is likewise at most 𝑂
(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
. We therefore get that

the displacement between 𝑚𝑖 and 𝑠𝑖 is

𝑐𝑑max(𝜆/𝜎 +
√︁
𝜇/𝜎) = Λ𝑖+1
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for some constant 𝑐.
Suppose now that the statement holds for indices 𝑖, 𝑖 + 1, . . . , 𝑗 − 1. Define

𝐸m𝑗 := 𝐶 \
𝑗−1⋃
𝑙=1

𝑝𝑙𝑚𝑙 .

Since 𝐸s
𝑗

is 𝜆-bounding 𝑇𝑗 at 𝑦 𝑗 and the displacement between 𝑚 𝑗−1 and 𝑠 𝑗−1 is at most Λ 𝑗 , we
get that 𝐸m

𝑗
is (Λ 𝑗 + 𝜆)-bounding 𝑇𝑗 at 𝑦 𝑗 . Therefore, Lemma 3.2 gives that the displacement

between 𝑚 𝑗 and 𝑠 𝑗 is at most

𝑐𝑑max((Λ 𝑗 + 𝜆)/𝜎 +
√︁
𝜇/𝜎) = 𝑐𝑑max/𝜎 · Λ 𝑗 + 𝑐𝑑max(𝜆/𝜎 +

√︁
𝜇/𝜎) = Λ 𝑗+1,

for the constant 𝑐 introduced above. Unfolding the expression, we get

Λ𝑘+1 =

𝑘∑︁
𝑗=0
(𝑐𝑑max/𝜎) 𝑗 · 𝑐𝑑max(𝜆/𝜎 +

√︁
𝜇/𝜎)

≤
𝑘∑︁
𝑗=0
(𝑐𝑑max/𝜎) 𝑗+1 · (𝜆/𝜎 +

√︁
𝜇/𝜎)

≤ (𝑘 + 1) (𝑐𝑑max/𝜎)𝑘+1(𝜆/𝜎 +
√︁
𝜇/𝜎).

■

The following lemma will be used to fingerprint the pieces in each gadget individually.

LEMMA 3.5 (Multiple fingerprints). Consider a gadget together with its pieces 𝑝𝑖 , . . . , 𝑝𝑖+𝑘−1,
for 𝑘 ≤ 7, which are introduced in some step of the construction. Suppose that there is a valid
motion m of the complete construction. Furthermore, suppose that there exists intended motions
𝑠𝑖 , . . . , 𝑠𝑖+𝑘−1 which are 𝑔𝜇-sound. Then the displacement between the intended motion 𝑠 𝑗 and the
actual motion 𝑚 𝑗 is of the order 𝑂(𝑛−48).

PROOF . In our construction, we have 𝑑max = 𝑂(𝑛4), 𝜇 = 𝑂(𝑛−296), and 𝑔 = 𝑂(𝑛4). We use the
method described in the proof of Lemma 2.8 to choose unique angles. As our reduction results
in a packing instance of 𝑁 = 𝑂(𝑔) = 𝑂(𝑛4) pieces, we get the unique angle condition satisfied for
a value of 𝜎 of the order Ω(𝑁−2) = Ω(𝑛−8). We now get from Lemma 3.4 with 𝜆 = 𝑔𝜇 = 𝑂(𝑛−292)
that the displacement is at most

8(𝑐𝑑max/𝜎)8(𝜆/𝜎 +
√︁
𝜇/𝜎) =𝑂((𝑛4𝑛8)8(𝑛−292𝑛8 +

√
𝑛−296𝑛8))

=𝑂(𝑛96𝑛−144) = 𝑂(𝑛−48).

■
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Figure 12. Setup in the proof of Lemma 3.2. The circles centered at 𝑥, 𝑦, 𝑧 bound the disks of radius 𝜆 in
which the points 𝑎, 𝑏, 𝑐, 𝑑 are known to be. The figure is not to scale. In practice, 𝜆 is very small so that
the triangles 𝑇out, 𝑇, 𝑇 in are almost equally large. Furthermore, the radius of 𝐴2 is much larger than the
radius of 𝐴1, which in turn is much larger than the radius of 𝐴0. The bottom figure shows the regions 𝐷1

and 𝐷2, that together make up 𝐷. The segments 𝑎𝑏 and 𝑐𝑑 are drawn with thick lines to indicate that
these act as a restriction to where the next piece can be placed.

3.3 Proof of Single fingerprint (Lemma 3.2)

Proof setup

We prove auxiliary Lemmas 3.6 to 3.11 and then show Lemma 3.2 (restated as Lemma 3.12).
See Figure 12. Let 𝜁 (𝜃) := 1

sin(𝜃/2) . The function 𝜁 is important when computing the distances
between corresponding corners of offset versions of the same triangle, as the following lemma
makes clear.

LEMMA 3.6. (1) Consider a triangle 𝑈 = 𝑒 𝑓 𝑔 and define for some 𝑠 > 0 the triangle 𝑈 in :=
𝑈 ⊖ disk(𝑠) = 𝑒in 𝑓 in𝑔 in, so that 𝑒in, 𝑓 in, 𝑔 in are on the angular bisectors of 𝑒, 𝑓 , 𝑔, respectively.
Then ∥𝑒𝑒in∥ = 𝑠𝜁 (𝜃), where 𝜃 is the angle of𝑈 at 𝑒.

(2) Let 𝑒, 𝑓 , 𝑔 be points such that the distances from a point 𝑒in to each of the segments 𝑒 𝑓
and 𝑒𝑔 is at most 𝑠. Then ∥𝑒𝑒in∥ ≤ 𝑠𝜁 (𝜃), where 𝜃 ∈ [0, 𝜋) is the angle between 𝑒 𝑓 and 𝑒𝑔 .

PROOF . Proof of (1): Let 𝑝 be the projection of 𝑒in on 𝑒 𝑓 . Then ∥𝑒𝑒in∥ = ∥𝑝𝑒in∥/sin(𝜃/2) =
𝑠𝜁 (𝜃).
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Proof of (2): For a given angle 𝜃, the distance ∥𝑒𝑒in∥ is maximum if the distances from
𝑒in to each segment 𝑒 𝑓 and 𝑒𝑔 are both 𝑠, so that, in particular, 𝑒in is on the angular bisector
between the segments 𝑒 𝑓 and 𝑒𝑔 . We then proceed as in the proof for (1). ■

Lemma 3.6 gives that ∥ 𝑦 𝑦in∥ = 𝜆𝜁 (𝛽). Let 𝑇out = 𝑥out 𝑦out𝑧out be the triangle we get by
offsetting the edges of 𝑇 outwards in a parallel fashion by distance 𝜆 · 𝜁 (𝛼min), i.e., 𝑇out is the
triangle such that 𝑇out ⊖ disk(𝜆 · 𝜁 (𝛼min)) = 𝑇 . The corners 𝑥out, 𝑦out, 𝑧out are on the angular
bisectors of 𝑥, 𝑦, 𝑧, respectively.

Define 𝜓 := 𝜁 (𝛼min) + 𝜁 (𝛼min)2 = 𝑂(1). By Lemma 3.6, we have ∥ 𝑦 𝑦out∥ = 𝜆𝜁 (𝛼min)𝜁 (𝛽) ≤
𝜆𝜁 (𝛼min)2, and ∥ 𝑦out 𝑦in∥ = 𝜆 (𝜁 (𝛽) + 𝜁 (𝛼min)𝜁 (𝛽)) ≤ 𝜆𝜓.

Subdividing 𝑇out by arcs

For some small constants 𝑐1, 𝑐2 > 0, we define three radii as

𝑟0 := 𝜆𝜓,

𝑟1 := 𝑐1

(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
,

𝑟2 := 𝑐2 (𝑟1/𝜎) .

We require that 𝑟2 is much smaller than 1, say 𝑟2 < 1/10 (as it turns out, by choosing 𝛿 small
enough, we can make 𝜇 and 𝜆 so small that 𝑟2 is below any desired constant). For the ease
of presentation, we will not explicitly specify the constants 𝑐1, 𝑐2, but it will follow from the
analysis that constants exist that will make the arguments work. Note that in our application of
Lemma 3.5, we will have 𝜎 = Θ(𝑛−8). Furthermore, one should think of 𝑟1 as much larger than
𝑟0 and 𝑟2 as much larger than 𝑟1.

Let 𝐴𝑖 be the arc with center 𝑦out and radius 𝑟𝑖 from the point 𝑠out
𝑖

on segment 𝑦out𝑧out

counterclockwise to the point 𝑡out
𝑖

on segment 𝑥out 𝑦out. Let 𝐷 be the region bounded by segments
𝑡out
2 𝑦out and 𝑦out𝑠out

2 and the arc 𝐴2. The arc 𝐴1 separates 𝐷 into two regions 𝐷1 and 𝐷2, where 𝐴2

appears on the boundary of 𝐷2.

Geometric core lemma

The following lemma is the geometric core of our argument and the setup is shown in Figure 13.
We use this lemma to conclude that if a set 𝑄 of pieces cover most of 𝐷1, then they have corners
whose angles sum to a number close to 𝛽. It then follows from the unique angle property that 𝑄
consists of just one piece.

LEMMA 3.7. Let {𝑊𝑖 = 𝑥𝑖 𝑦𝑖𝑧𝑖 | 𝑖 = 1, . . . , 𝑚} be a collection of triangles where each 𝑦𝑖 is a
corner in 𝐷1 and the edge 𝑥𝑖𝑧𝑖 is disjoint from 𝐷. Let 𝛽𝑖 be the angle of𝑊𝑖 at 𝑦𝑖 and suppose that
𝛽𝑖 ∈ [𝛼min, 𝛼max]. Suppose that𝑊1, . . . ,𝑊𝑚 are pairwise interior disjoint and that the interior of
each𝑊𝑖 is disjoint from 𝑡out

2 𝑦out and 𝑦out𝑠out
2 . LetW :=

⋃𝑚
𝑖=1𝑊𝑖 , and let 𝜌 ∈ [0, 1] be the fraction
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Figure 13. The setup of Lemma 3.7.

of 𝐴2 covered byW. Then

area(𝐷1 ∩W)
area(𝐷1)

≤ 𝜌 + 𝑂(𝑟1/𝑟2), and (2)

𝑚∑︁
𝑖=1

𝛽𝑖 ∈ [𝛽𝜌 − 𝑂(𝑟1/𝑟2), 𝛽𝜌 + 𝑂(𝑟1/𝑟2)] . (3)

PROOF . We first analyze just a single triangle𝑊𝑖 and then generalize to all of𝑊1, . . . ,𝑊𝑚. For
𝑗 ∈ {1, 2}, let 𝐴(𝑖)

𝑗
:= 𝐴 𝑗 ∩𝑊𝑖 be the arc on 𝐴 𝑗 contained in𝑊𝑖 , and let 𝛾𝑖 ∈ (0, 𝛽] be the angle

spanned by 𝐴(𝑖)2 . We claim that

𝛽𝑖 ∈ [𝛾𝑖 − 𝑂(𝑟1/𝑟2), 𝛾𝑖 + 𝑂(𝑟1/𝑟2)], and (4)

area(𝐷1 ∩𝑊𝑖) ≤ 𝑟2
1𝛾𝑖/2 + 𝑂(𝑟3

1/𝑟2). (5)

Before proving (4) and (5), we show how (2) and (3) follow. We get from (5) that

area(𝐷1 ∩𝑊𝑖)
area(𝐷1)

≤
𝑟2

1𝛾𝑖/2 + 𝑂(𝑟3
1/𝑟2)

𝑟2
1𝛽/2

= 𝛾𝑖/𝛽 + 𝑂(𝑟1/𝑟2).

Note that by (4) and since 𝛽𝑖 ∈ [𝛼min, 𝛼max] for all 𝑖, we know that the number of triangles
is 𝑚 = 𝑂(1). We now have that

area(𝐷1 ∩W)
area(𝐷1)

=

𝑚∑︁
𝑖=1

area(𝐷1 ∩𝑊𝑖)
area(𝐷1)

≤
𝑚∑︁
𝑖=1

(𝛾𝑖/𝛽 + 𝑂(𝑟1/𝑟2)) = 𝜌 + 𝑂(𝑟1/𝑟2),

which proves (2). Likewise, (3) follows from (4) using that 𝑚 = 𝑂(1) as
𝑚∑︁
𝑖=1

𝛽𝑖 ∈
[
𝑚∑︁
𝑖=1

(𝛾𝑖 − 𝑂(𝑟1/𝑟2)) ,
𝑚∑︁
𝑖=1

(𝛾𝑖 + 𝑂(𝑟1/𝑟2))
]
= [𝜌𝛽 − 𝑂(𝑟1/𝑟2), 𝜌𝛽 + 𝑂(𝑟1/𝑟2)] .

For the following proof of (4), we refer to Figure 14 (left). Let 𝑠′1 ∈ 𝑦𝑖𝑧𝑖 and 𝑡′1 ∈ 𝑦𝑖𝑥𝑖 be
the endpoints of 𝐴(𝑖)1 and define 𝑠′2 and 𝑡′2 similarly as the endpoints of 𝐴(𝑖)2 . Note first that if
𝑦𝑖 = 𝑦out, we have 𝛽𝑖 = 𝛾𝑖 . However, in general 𝑦𝑖 is just a point within distance 𝑟1 from 𝑦out.
Therefore, the angle 𝛼𝑠 between the segments 𝑦out𝑠′2 and 𝑦𝑖𝑠

′
2 is at most arcsin(𝑟1/𝑟2), which
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Figure 14. Left: In the shown example, 𝛽𝑖 = 𝛾𝑖 − 𝛼𝑠 + 𝛼𝑡. Since 𝛼𝑠 = 𝑂(𝑟1/𝑟2) and 𝛼𝑡 = 𝑂(𝑟1/𝑟2), we always
have 𝛽𝑖 = [𝛾𝑖 −𝑂(𝑟1/𝑟2), 𝛾𝑖 +𝑂(𝑟1/𝑟2)]. Right: The angle 𝜃 is an argument of the segment 𝑦𝑖𝑤. The
argument is bounded by 𝛽 +𝑂(𝑟1/𝑟2).

is obtained when 𝑦out 𝑦𝑖𝑠
′
2 is a triangle with ∥ 𝑦out 𝑦𝑖 ∥ = 𝑟1 and a right angle at 𝑦𝑖 . Since 𝑟2 is

much larger than 𝑟1, we have arcsin(𝑟1/𝑟2) = 𝑂(𝑟1/𝑟2). Similarly, the angle 𝛼𝑡 between the
segments 𝑦out𝑡′2 and 𝑦𝑖𝑡

′
2 is at most arcsin(𝑟1/𝑟2) = 𝑂(𝑟1/𝑟2). Note that 𝛽𝑖 = 𝛾𝑖 ± 𝛼𝑠 ± 𝛼𝑡, so we

get 𝛽𝑖 ∈ [𝛾𝑖 − 𝑂(𝑟1/𝑟2), 𝛾𝑖 + 𝑂(𝑟1/𝑟2)].
By the argument of a line ℓ, we mean the counterclockwise angle from the 𝑥-axis to ℓ. The

argument of a line segment 𝑠 is the argument of the line containing 𝑠. Assume without loss of
generality that 𝑦out𝑠out

2 is horizontal with 𝑠out
2 to the right of 𝑦out, so that the argument of any

line through 𝑦out and a point on 𝐴2 is in the range [0, 𝛽]. We claim that then the argument of
every segment 𝑦𝑖𝑤, where 𝑤 ∈𝑊𝑖 , is in the range [−𝑂(𝑟1/𝑟2), 𝛽 +𝑂(𝑟1/𝑟2)]. To verify the upper
bound, note that the argument of 𝑦𝑖𝑤 is maximum if 𝑤 = 𝑥𝑖 and 𝑡′2 = 𝑡out

2 , see Figure 14 (right).
By an argument as the one used in the previous paragraph, we get that the argument can be at
most 𝑂(𝑟1/𝑟2) larger than 𝛽. The lower bound follows similarly.

We now observe that each of the segments 𝑦𝑖𝑠′1 and 𝑦𝑖𝑡
′
1 has length at most 𝑟1 + 𝑂(𝑟2

1/𝑟2),
as follows. See Figure 15 (left). Since 𝛽 ≤ 𝜋/2, the longest segment ℓ1 in 𝐷1 with an argument in
[0, 𝛽] connects 𝑦out to a point on 𝐴1 and has length 𝑟1. The longest segment ℓ2 in 𝐷1 with an
argument in (𝛽, 𝛽 + 𝑂(𝑟1/𝑟2)] connects 𝑡out

1 to a point 𝑝 on 𝑦out𝑠out
1 . We then get

∥ℓ2∥ = ∥𝑡out
1 𝑝∥ ≤ ∥𝑡out

1 𝑦out∥ + ∥ 𝑦out𝑝∥

≤ 𝑟1 + 𝑟1 tan(𝑂(𝑟1/𝑟2)) = 𝑟1 + 𝑟1
sin(𝑂(𝑟1/𝑟2))
cos(𝑂(𝑟1/𝑟2))

≤ 𝑟1 + 𝑟1
𝑂(𝑟1/𝑟2)

1 − 𝑂(𝑟1/𝑟2)
= 𝑟1 + 𝑂

(
𝑟2

1
𝑟2 − 𝑟1

)
= 𝑟1 + 𝑂(𝑟2

1/𝑟2),

where the last equality follows since 𝑟2 is much larger than 𝑟1. Similarly, the longest segment
in 𝐷1 with an argument in [−𝑟1/𝑟2, 0) connects 𝑠out

1 to a point on 𝑦out𝑡out
1 and has length 𝑟1 +

𝑂(𝑟2
1/𝑟2). Hence, 𝑟1 + 𝑂(𝑟2

1/𝑟2) is also an upper bound on the length of 𝑦𝑖𝑠′1 and 𝑦𝑖𝑡
′
1.
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Figure 15. Left: Longest segments in 𝐷1. The segment ℓ1 shows the case that the argument is in [0, 𝛽],
and then the longest segment has length 𝑟1. The segment ℓ2 shows the case where the argument is in
(𝛽, 𝛽 +𝑂(𝑟1/𝑟2)], and then the segment has length 𝑟1 +𝑂(𝑟2

1/𝑟2). Right: Figure to show that
area(𝐷1 ∩𝑊𝑖) ≤ 𝑟2

1𝛾𝑖/2 +𝑂(𝑟3
1/𝑟2). The segments 𝑦𝑖𝑠

′
1 and 𝑦𝑖𝑡

′
1 are assumed to have the same length

𝑟1 +𝑂(𝑟2
1/𝑟2), and the angle 𝛽𝑖 at 𝑦𝑖 is 𝛾𝑖 +𝑂(𝑟1/𝑟2). We consider the point 𝑦′𝑖 such that ∥ 𝑦′𝑖 𝑠′1∥ = ∥ 𝑦′𝑖 𝑡′1∥ = 𝑟1.

Then the angle at 𝑦′𝑖 is likewise 𝛾𝑖 +𝑂(𝑟1/𝑟2), so the area of the blue triangle is 𝑟2
1𝛾𝑖/2 +𝑂(𝑟3

1/𝑟2). The white
triangles have area at most 𝑂(𝑟3

1/𝑟2), so the total area of 𝐷1 ∩𝑊𝑖 is at most 𝑟2
1𝛾𝑖/2 +𝑂(𝑟3

1/𝑟2).

We get an upper bound on area(𝐷1 ∩𝑊𝑖) in the case that 𝛽𝑖 and the edges 𝑦𝑖𝑠′1 and 𝑦𝑖𝑡
′
1 all

reach the upper bounds. This might not be realizable, but still provides an upper bound. See
Figure 15 (right). If the edges have length ∥ 𝑦𝑖𝑠′1∥ = ∥ 𝑦𝑖𝑡′1∥ = 𝑟1, the area is 𝑟2

1 (𝛾𝑖 + 𝑂(𝑟1/𝑟2))/2 =

𝑟2
1𝛾𝑖/2 + 𝑂(𝑟3

1/𝑟2). Extending the edges to ∥ 𝑦𝑖𝑠′1∥ = ∥ 𝑦𝑖𝑡′1∥ = 𝑟1 + 𝑂(𝑟2
1/𝑟2), we are adding two

triangles each of which has area at most 𝑟1 · 𝑂(𝑟2
1/𝑟2) = 𝑂(𝑟3

1/𝑟2), and the desired bound (5)
follows. ■

We want to apply Lemma 3.7 to a set of pieces covering parts of 𝐷1; see Figure 16. Let 𝑠in
𝑖

and 𝑡in
𝑖

be the intersection points of 𝐴𝑖 with 𝑦in𝑧in and 𝑥in 𝑦in, respectively. Let 𝐵 ⊂ 𝐷1 ∩ 𝑇 in be
the region bounded by segments 𝑠in

0 𝑠
in
1 , 𝑡in0 𝑡

in
1 , and the arcs 𝐴0 ∩ 𝑇 in and 𝐴1 ∩ 𝑇 in. We consider

only pieces that cover a part of 𝐵. The reason we do not consider all pieces covering a part
of 𝐷1 is that a piece covering a part of 𝐷1 but not 𝐵 might violate the assumptions of Lemma 3.7.
In particular, such a piece might not have an interior disjoint from 𝑡out

2 𝑦out and 𝑦out𝑠out
2 , as is

seen in case (ii.a) in Figure 18. Cases (i.b) and (ii.b) in Figures 17 and 18, respectively, show the
possibilities of a piece covering a part of 𝐵, and here the piece fits the assumptions of Lemma 3.7.
The following lemma makes this intuition precise. Conceivably, there may be some pieces that
fulfill the conditions of Lemma 3.7 but do not cover a part of 𝐵. However, even considering only
pieces covering a part of 𝐵, we will be able to arrive at our desired conclusion. Recall that the
segments 𝑎𝑏 and 𝑐𝑑 are bounding some pieces (or the container 𝐶) in the valid motion m, so
these segments act as obstacles that restrict the placement of a piece 𝑝 𝑗m covering a part of 𝐵.

LEMMA 3.8. A piece 𝑝 𝑗m covering a part of the interior of 𝐵 has the following properties:
There is a corner 𝑣m of 𝑝 𝑗m contained in 𝐷1.
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Figure 16. Regions 𝐵 and 𝐷′. The region 𝐷′ is drawn with a pattern of falling gray lines. The fat part
of 𝐴2 is the arc 𝐴′2 that bounds 𝐷′. A piece covering part of 𝐵 has edges crossing one or both of 𝐴′2
and 𝑏𝑐. The figure is not to scale—in practice 𝐵 will cover almost all of the region 𝐷1 below the arc 𝐴1.

The edges of 𝑝 𝑗m adjacent to 𝑣m cross 𝐴2.

PROOF . Let 𝑠2 and 𝑡2 be the intersection points of 𝐴2 with segment 𝑐𝑑 and 𝑎𝑏, respectively,
as shown in Figure 16. Let 𝐴′2 be the part of 𝐴2 from 𝑠2 counterclockwise to 𝑡2. Let 𝐷′ be the
region bounded by segments 𝑠2𝑐, 𝑏𝑐, 𝑡2𝑏, and the arc 𝐴′2. Then 𝐵 ⊂ 𝐷′ ⊂ 𝐷. Since 𝑟2 < 1/2, the
diameter of 𝐷 is less than 1. Since 𝑝 𝑗m covers a part of the interior of 𝐵, there is one or more
edges of 𝑝 𝑗m that cross the boundary of 𝐷′. An edge of 𝑝 𝑗m can only cross the boundary of 𝐷′

at a point on the segment 𝑏𝑐 or the arc 𝐴′2, since the segments 𝑐𝑠2 and 𝑏𝑡2 are bounding some
other pieces. We divide into the following cases, which are also shown in Figures 17 and 18,
respectively:

Case (i): No edge of 𝑝 𝑗m crosses 𝑏𝑐. Then there is an edge 𝑒 𝑓 crossing 𝐴′2. We have the
following two cases:

Case (i.a): The edge 𝑒 𝑓 crosses 𝐴′2 twice. Since 𝛽 ≤ 𝜋/2, we get that the distance from
𝑦out to 𝑒 𝑓 is at least 𝑟2/

√
2. Since 𝑟1 is much smaller, this edge cannot contribute to

covering a part of 𝐵, so there must be some edges of 𝑝 𝑗m crossing the boundary of 𝐷′

that do not belong to this case.
Case (i.b): One of the endpoints 𝑒 and 𝑓 is inside 𝐷′while the other is outside. Assume
without loss of generality that 𝑓 is inside. It follows that the succeeding edge 𝑓 𝑔

likewise intersects 𝐴′2 due to the minimum length of the edges, and the claim holds.
Case (ii): An edge 𝑒 𝑓 of 𝑝 𝑗m crosses 𝑏𝑐. Suppose that as we follow 𝑒 𝑓 from 𝑒 to 𝑓 , we
enter 𝐷′ as we cross 𝑏𝑐. In particular 𝑒 ∉ 𝐷′. There must likewise be another edge 𝑔ℎ
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Figure 17. Cases from the proof of Lemma 3.8. Left: Case (i.a). In this case, the piece 𝑝𝑗
m is too far

from 𝑦out to cover any of 𝐵. Right: Case (i.b). This case agrees with the statement of the lemma.

of 𝑝 𝑗m crossing 𝑏𝑐, since otherwise, the interior of 𝑝𝑖m would intersect 𝑎𝑏 or 𝑐𝑑. We have
the following cases depending on whether an endpoint of 𝑒 𝑓 coincides with one of 𝑔ℎ:

Case (ii.a): 𝑓 coincides with an endpoint of 𝑔ℎ. Assume without loss of generality that
𝑓 = 𝑔 . By Lemma 3.6 part (1), we have ∥ 𝑦out 𝑦∥ ≤ 𝜆𝜁 (𝛼min)2, and by part (2), we have
∥ 𝑦 𝑓 ∥ ≤ 𝜆𝜁 (𝛼min). Therefore ∥ 𝑦out 𝑓 ∥ ≤ ∥ 𝑦out 𝑦∥ + ∥ 𝑦 𝑓 ∥ ≤ 𝑟0. But then the edges 𝑒 𝑓
and 𝑔ℎ do not get far enough into 𝐷′ so that the wedge they form can cover a part of
𝐵, as every point in 𝐵 has distance at least 𝑟0 to 𝑦out. Therefore, there must be some
edges of 𝑝 𝑗m crossing the boundary of 𝐷′ that do not belong to this case.
Case (ii.b): 𝑒 coincides with an endpoint of 𝑔ℎ. Assume without loss of generality that
𝑒 = 𝑔 . Because the angle at 𝑒 is at least 𝛼min, it follows from Lemma 3.6 part (2) that
∥ 𝑦𝑒∥ ≤ 𝜆𝜁 (𝛼min). Therefore, 𝑒 is contained in 𝐷. It then follows that 𝑒 𝑓 and 𝑔ℎ both
cross 𝐴2, since they must exit 𝐷, and the claim of the lemma thus holds.
Case (ii.c): No endpoint of 𝑒 𝑓 coincides with one of 𝑔ℎ. Since ∥𝑏𝑐∥ ≤ 2𝜆 < 𝜏 and both
segments 𝑒 𝑓 and 𝑔ℎ cross ∥𝑏𝑐∥, we conclude that the fatness condition is violated in
this case.

■

Here, we give an informal description of the following three lemmas. Lemma 3.9 states
that the area of 𝐵 grows quadratically in 𝑟1 while 𝐷1 \ 𝐵 grows only linearly. Lemma 3.10 says
that almost all of 𝐵 must be covered by pieces, as the uncovered area will otherwise be larger
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Figure 18. Cases from the proof of Lemma 3.8. Top left: Case (ii.a). In this case, 𝑝𝑗
m cannot cover any

of 𝐵. Top right: Case (ii.b). This case agrees with the statement of the lemma. Bottom left: Case (ii.c).
This case violates the fatness assumption of the pieces.
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than 𝜇. We are then able to conclude in Lemma 3.11 that almost all of 𝐷1 must be covered by
the pieces covering 𝐵, as 𝐵 has asymptotically the same area as 𝐷1. This eventually makes it
possible to apply Lemma 3.7 in the proof of Lemma 3.2.

LEMMA 3.9. We have
area(𝐷1 \ 𝐵) = 𝑂(𝑟2

0 + 𝜆𝑟1).
area(𝐵) = Ω(𝑟2

1 − 𝑟2
0).

PROOF . The points in 𝐷1 \ 𝐵 are either within distance 𝑟0 from 𝑦out or within distance 𝜆 (1 +
𝜁 (𝛼min)) = 𝑂(𝜆) from one of the line segments 𝑦out𝑠out

1 or 𝑦out𝑡out
1 , each of length 𝑟1. It then

follows that area(𝐷1 \ 𝐵) = 𝑂(𝑟2
0 + 𝜆𝑟1).

We thus have area(𝐵) = area(𝐷1) − area(𝐷1 \ 𝐵) = Ω(𝑟2
1) − 𝑂(𝑟2

0 + 𝜆𝑟1) = Ω(𝑟2
1 − 𝑟2

0). ■

Let 𝑄 := {𝑝 𝑗 | 𝑗 ∈ {𝑖, . . . , 𝑛} and 𝑝 𝑗
m ∩ 𝐵 ≠ ∅}, and let Q :=

⋃
𝑝 𝑗∈𝑄 𝑝 𝑗

m.

LEMMA 3.10. By choosing 𝑟1 := Ω
(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
, where Ω hides a sufficiently large constant,

we get area(𝐵 ∩ Q) ≥ (1 − 𝜎/4)area(𝐵).

PROOF . Recall that the pieces 𝑝1
m, . . . , 𝑝𝑖−1

m are interior disjoint from 𝑇 in, as 𝑇 in ⊂ 𝐸𝑖m. Since

𝑟1 = Ω
(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
= Ω

(
𝑟0 +

√︂
𝜇

𝜎

)
= Ω

(√︂
𝑟2

0 +
𝜇

𝜎

)
,

we get from Lemma 3.9 that

area(𝐵) = Ω(𝑟2
1 − 𝑟2

0) = Ω(𝜇/𝜎).

Now, if the constant hidden in the Ω-notation is large enough, we have area(𝐵) ≥ 𝜇
𝜎/4 , or

equivalently, 𝜎/4 · area(𝐵) ≥ 𝜇. This means that the area of 𝐵 covered by the pieces in 𝑄 is at
least (1 − 𝜎/4)area(𝐵), as otherwise the uncovered part would be larger than 𝜇. ■

LEMMA 3.11. By choosing 𝑟1 := Ω
(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
, where Ω hides a sufficiently large constant, we

get area(𝐷1 ∩ Q) ≥ (1 − 𝜎/2)area(𝐷1).

PROOF . Note that 𝑟1 = Ω(𝜆/𝜎) = Ω(𝑟0/
√
𝜎 + 𝜆/𝜎). We get 𝑟2

1 = Ω
(
𝑟2

0+𝜆𝑟1
𝜎

)
, where we can

choose the constant hidden in the Ω-notation as big as needed. Since 𝑟1 = Ω(𝑟0), we then get
𝑟2

1 − 𝑟2
0 = Ω

(
𝑟2

0+𝜆𝑟1
𝜎

)
. Now, if we choose the constant big enough, we get from Lemma 3.9 that

𝜎/4 · area(𝐵) ≥ area(𝐷1 \ 𝐵) and thus

area(𝐷1)
area(𝐵) =

area(𝐵) + area(𝐷1 \ 𝐵)
area(𝐵) ≤ 1 + 𝜎/4.

It follows that
area(𝐵)
area(𝐷1)

=
area(𝐵)

area(𝐵) + area(𝐷1 \ 𝐵)
≥ 1

1 + 𝜎/4 ≥
1 − 𝜎/2
1 − 𝜎/4 .
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Hence we have that
(1 − 𝜎/4)area(𝐵) ≥ (1 − 𝜎/2)area(𝐷1).

The claim now follows from Lemma 3.10 as

area(𝐷1 ∩ Q) ≥ area(𝐵 ∩ Q) ≥ (1 − 𝜎/4)area(𝐵) ≥ (1 − 𝜎/2)area(𝐷1).

■

We are now ready to prove Lemma 3.2. We rephrase the lemma as follows.

LEMMA 3.12. By choosing 𝑟2 := Ω (𝑟1/𝜎), where Ω hides a sufficiently large constant, we get
that𝑄 consists of just one piece 𝑝 𝑗 , and 𝑝 𝑗 has a corner 𝑦 𝑗 such that the angle of 𝑦 𝑗 is in [𝛽−𝜎, 𝛽+𝜎]
and 𝑦 𝑗

m ∈ 𝐷1. In particular, ∥ 𝑦 𝑦 𝑗m∥ ≤ 2𝑟1 = 𝑂
(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
.

Furthermore, let 𝑥 𝑗 , 𝑧 𝑗 be the corners preceding and succeeding 𝑦 𝑗 , respectively. Then the
angle between 𝑦 𝑗

m𝑥 𝑗
m and 𝑦𝑥 is 𝑂

(
𝜆/𝜎 +

√︁
𝜇/𝜎

)
, as is the angle between 𝑦 𝑗

m𝑧 𝑗
m and 𝑦𝑧.

PROOF . By Lemma 3.8, each piece 𝑝 𝑗 ∈ 𝑄 has a corner 𝑦 𝑗 such that 𝑦 𝑗m is contained in 𝐷1, and
the two adjacent edges cross 𝐴2. For each piece 𝑝 𝑗 ∈ 𝑄, we consider the triangle𝑊 𝑗 := 𝑥 𝑗 𝑦 𝑗𝑧 𝑗 ,
such that 𝑥 𝑗 𝑦 𝑗 and 𝑦 𝑗𝑧 𝑗 are the edges adjacent to 𝑦 𝑗 . The triangles𝑊 𝑗 now fit in the setup of
Lemma 3.7. Let 𝜌 be the fraction of 𝐴2 covered by Q. We then get by Lemma 3.11 and Lemma 3.7
that

1 − 𝜎/2 ≤ area(𝐷1 ∩ Q)
area(𝐷1)

≤ 𝜌 + 𝑂(𝑟1/𝑟2).

Lemma 3.7 furthermore yields that the sum 𝑆 of angles of the corners 𝑦 𝑗 is in the range
[𝛽𝜌 − 𝑂(𝑟1/𝑟2), 𝛽𝜌 + 𝑂(𝑟1/𝑟2)]. Since 1 − 𝜎/2 − 𝑂(𝑟1/𝑟2) ≤ 𝜌 ≤ 1, we get

𝛽𝜌 − 𝑂(𝑟1/𝑟2) ≥ (1 − 𝜎/2 − 𝑂(𝑟1/𝑟2))𝛽 − 𝑂(𝑟1/𝑟2) ≥ 𝛽 − 𝜎𝜋/4 − 𝑂(𝑟1/𝑟2), and (6)

𝛽𝜌 + 𝑂(𝑟1/𝑟2) ≤ 𝛽 + 𝑂(𝑟1/𝑟2). (7)

If we now choose 𝑟2 := Ω (𝑟1/𝜎), where Ω hides a sufficiently large constant, we get
𝑆 ∈ [𝛽 − 𝜎, 𝛽 + 𝜎]. We then get from the unique angle property that 𝑄 consists of just one
piece 𝑝 𝑗 .

Since ∥ 𝑦 𝑦 𝑗m∥ = 𝑂(𝑟1) and ∥𝑥𝑎∥ ≤ 𝜆 = 𝑂(𝑟1) and 𝑟1 is much smaller than ∥𝑥 𝑦∥ = 1, we
get that the angle between 𝑦 𝑗

m𝑥 𝑗
m and 𝑦𝑥 is 𝑂(𝑟1/∥ 𝑦𝑥∥) = 𝑂(𝑟1), and likewise for the angle

between 𝑦 𝑗
m𝑧 𝑗

m and 𝑦𝑧. ■

3.4 Generalization to curved polygons

Let 𝛾 : [0, 𝐿] −→ R2 be a simple curve parameterized by arc-length and of length 𝐿 ≥ 1. We say
that 𝛾 is a curved segment if

the prefix 𝛾( [0, 1]) and suffix 𝛾( [𝐿 − 1, 𝐿]) are line segments (each of length 1),
𝛾 is differentiable,
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Figure 19. Case (i.a) from the proof of Lemma 3.8 when the pieces can be curved. Since the curvature
is bounded by some small constant 𝜅, the distance from 𝑦out to 𝑒 𝑓 is at least 𝑥 · 𝑟2 for some constant 𝑥.

the mean curvature of 𝛾 at most some small constant 𝜅 = 𝑂(1), i.e., for all 𝑠1, 𝑠2 ∈ (0, 𝐿), we
have

∥𝛾′(𝑠1) − 𝛾′(𝑠2)∥ ≤ 𝜅|𝑠1 − 𝑠2 |.

As an example, consider a simple curve 𝛾 satisfying the first condition and which is the
concatenation of line segments and circular arcs. Then 𝛾 is a curved segment as long as each
circular arc has radius at least 𝜅 and each transition from one line segment or circular arc to
the next is tangential.

We claim that the above results on fingerprinting also hold when the pieces are curved
polygons, each of which has a boundary which is a finite union of curved segments. The first
requirement for a curved segment (i.e., that it has a straight prefix and suffix of length 1) ensures
that near every corner of a curved polygon, the curved polygon behaves as a normal polygon.
Because of this, the setup described in Sections 3.1 and 3.2 also makes sense for curved polygons.

We first check that Lemma 3.8 still holds. Because we require a curved segment to have
a straight prefix and suffix of length 1, the Case (ii.a) is excluded for the same reason when
using curved polygons as when using normal polygons. Likewise, Case (ii.c) is excluded because
we still have the fatness assumption. Hence, Case (i.a) is the only case that should be excluded
where the curved segments make a difference, namely the case where a curved segment 𝑒 𝑓
crosses 𝐴′2 twice. Here, the piece can cover a bit more of 𝐷′ because the segment can curve;
see Figure 19. However, the mean curvature is at most 𝜅 = 𝑂(1) and we can choose 𝑟2 to be an
arbitrarily small constant. We therefore still get that the distance from 𝑦out to 𝑒 𝑓 is at least 𝑥𝑟2

for some constant 𝑥 < 1/
√

2 (where, in the version for normal polygons, we had 𝑥 = 1/
√

2). But



41 / 78 Framework for ∃R-Completeness of Two-Dimensional Packing Problems

we have 𝑟1 = 𝑂(𝜎 · 𝑟2) = 𝑂(𝑛−8𝑟2), since 𝜎 = Θ(𝑛−8), so it follows that it is still impossible that
the piece can cover anything of 𝐵 in this case when 𝑛 is large enough.

Lemmas 3.9 and 3.11 do not use any assumption on the geometry of the pieces, and can
thus still be used. Finally, in the proof of Lemma 3.12, we can now apply Lemma 3.8 as before.
Since the prefix and suffix of each curved segment are line segments of length 1, we can again
define triangles𝑊 𝑗 and apply Lemma 3.7 (the geometric core lemma), so the proof goes through
unaltered.

4. Linear gadgets

In this section we are describing four types of gadgets called anchor, swap, split, and adder.
They all work with convex polygonal pieces, a polygonal container, and translations. They also
work when rotations are allowed and can thus be used for all packing variants studied in the
paper.

For each gadget, we will define canonical placements and verify the four required lemmas
of Section 2. Here we repeat the properties we need to verify for each gadget.

For every solution to Φ, if the previously added pieces can be placed so that they encode
the solution, then the same holds when the pieces of this gadget are added (Lemma 2.5).
In a valid placement of all the pieces, if the earlier introduced pieces have an aligned place-
ment, then the pieces of this gadget must have an almost-canonical placement (Lemma 2.9).
In a valid placement of all the pieces, if the earlier introduced pieces have an aligned
placement and the pieces of this gadget have an almost-canonical placement, then the
pieces of this gadget must also have an aligned placement (Lemma 2.10).
For each edge (𝑝1, 𝑝2) of the dependency graph 𝐺𝑥 , where 𝑝1 and 𝑝2 are pieces of this
gadget, we have ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩, i.e., the value encoded by 𝑝1 is at most that encoded by 𝑝2

(Lemma 2.12).

Some of the steps will be very similar for all the gadgets. In order to avoid unnecessary
repetition, we will handle the first two gadgets, the anchor and the swap, in greater detail than
the subsequent gadgets.

4.1 Anchor

Recall that each variable 𝑥 is represented by two wires −→𝑥 and←−𝑥 in the wiring diagram of the
instance I of Wired-Curve-ETR[ 𝑓 , 𝑔] which we reduce to a packing instance. Furthermore,
the left endpoints of the wires are vertically aligned and occupy neighbouring diagram lines ℓ
and ℓ′, as do the right endpoints. In our packing instance, we cover each wire with variable
pieces that can slide back and forth and thus encode the value of 𝑥, and the pieces covering one
wire are called a lane. In order to make the value represented by the lane on −→𝑥 consistent with
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Figure 20. Left: A simplified illustration of the anchor and how it is placed on top of the two wires
representing a variable 𝑥. Right: If the blue piece is pushed to the left, the yellow piece must move by an
equal amount to the right, and vice versa. Color codes: 1 blue, 2 yellow, 3 orange.

that of the lane on←−𝑥 , we make an anchor at both ends, which will propagate a push from one
lane to the other. Most of this section will be about the anchors at the left ends of the wires. The
anchors at the right ends will be handled in the end of the section.

When we use an anchor in our construction, we also define part of the boundary of the
container. Two of the three introduced pieces are variable pieces that will extend out through
the right side of the gadget, and the remaining part of those will be defined as part of another
gadget farther to the right, which will be described in other parts of the paper. It is a general
convention in our figures of gadgets that if a part of the boundary of the gadget is drawn with
thick full segments, it will be part of the container boundary. If part of the boundary is drawn
with thick dashed segments, it means that the segments can be either part of the container
boundary or part of the boundary of other pieces that have been introduced to the construction
in earlier steps.

Simplified anchor

The anchor is meant to be a connection between the two lanes that represent a variable 𝑥; see
Figure 20 for an illustration. The gadget consists of part of the boundary of the container and
three pieces: orange, yellow, and blue. The yellow and blue pieces are the two leftmost pieces
on the lanes of −→𝑥 and←−𝑥 , respectively. The orange piece functions as a connection between the
two lanes. The idea is that if we move the blue piece to the left by 𝑡, then we have to move the
yellow piece to the right by at least 𝑡 as well, and vice versa.

The segment bounding the gadget from below is part of the container boundary. The
segment bounding the gadget from above is part of the boundary of a piece introduced in
an earlier anchor, except for the very first anchor, which will be bounded from above by the
container boundary.
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Figure 21. Left: An illustration of the anchor gadget. The placement of the pieces corresponds to the
value 𝑥 = 0. The arrows show the orientation of the pieces, and the dots show the fingerprinted corners.
The magnifying glass shows a scale of the correspondence between placements of the yellow piece
and the encoded value of the variable 𝑥. The length 𝑎 is 1 +𝑂(𝛿) and depends on 𝛼. Right: Another
instance of the gadget with other angles chosen.

The actual anchor

See Figure 21 for an illustration of the following description. Recall that we need the slack
added by each gadget to be only 𝑂(𝛿), where 𝛿 := 𝑛−300. We therefore design the boundary of
the anchor to follow the pieces closely. The yellow and blue pieces are fingerprinted on the
boundary, as indicated by the dots. The orange piece is fingerprinted in the wedge created by
the yellow and blue pieces.

Lines that appear axis-parallel must be axis-parallel; those are important for the alignment.
The height of the orange piece is 14. The angle 𝛼 is in the range [3𝜋/4, 7𝜋/8]. The lower bound
ensures that a range of size at most 2𝛿 is needed for the orange piece, while the upper bound
ensures that the length 𝑎 is only 1 +𝑂(𝛿). The angle 𝛼 and the angles where the yellow and blue
pieces are fingerprinted are not fixed, and we therefore have flexibility to choose the angles of
the fingerprinted corners freely to obtain the unique angle property; two different choices of
angles are shown in Figure 21.

Canonical placements and solution preservation

As the next step, we define the set of canonical positions for the three pieces. The yellow and
blue pieces are variable pieces, and in the placement shown in Figure 21, both pieces encode
the value 𝑥 = 0. By definition, the canonical placements of each are all placements obtained
by sliding the piece to the left or right by distance at most 𝛿 from the placement shown. Recall
that a placement of all pieces of a gadget is canonical if it is (1) valid, (2) canonical for each
variable piece, and (3) have certain extra properties defined for each gadget individually. For the
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Figure 22. The three triangles 𝑇1, 𝑇2, 𝑇3 (shown a bit larger than they should be for clarity) are a witness
that the intended placements (middle) are 𝑂(𝛿)-sound. We can therefore conclude that the pieces have
an almost-canonical placement, as shown to the right (ignore here that the shown placement is not a
valid placement).

anchor, we specify point (3) as having edge-edge contacts between the pieces and the container
boundary as shown in the figure.

We are now ready to prove Lemma 2.5 for the anchor, namely that the reduction preserves
solutions.

PROOF OF LEMMA 2.5 FOR THE ANCHOR. Suppose that for a given solution x to the ETR-
Inv formula Φ, there exists a canonical placement of the previously introduced pieces p𝑖−1

that encodes that solution. To extend the placement to the pieces p𝑖 , i.e., with the yellow, blue,
and orange piece of this anchor included, we place the yellow and blue pieces so that they
represent the value of 𝑥 in x. This leaves room for the orange piece to be placed with the
required edge-edge contacts to the blue and yellow pieces. ■

Fingerprinting and almost-canonical placement

We now prove Lemma 2.9. Recall that in this lemma, we assume that the previous pieces p𝑖−1

have an aligned (𝑖 − 1)𝜇-placement and we want to conclude that the new pieces p𝑖 \ p𝑖−1, i.e.,
the three pieces of this anchor, must have an almost-canonical placement.

PROOF OF LEMMA 2.9 FOR THE ANCHOR. Since the pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-
placement, the gadget is bounded from above by an earlier introduced piece (unless 𝑖 = 1, in
which case it is bounded by the boundary of the container). We want to use Lemma 3.5 (Multiple
Fingerprints) to prove that the three pieces have an almost-canonical placement. For this we
need to point out intended placements that are 𝑔𝜇-sound; recall Definition 3.3. We choose the
placement shown in Figure 21. To certify that the intended placements are 𝑔𝜇-sound, we need to
point out three triangles𝑇1, 𝑇2, 𝑇3, such that 𝐸 𝑗s is 𝑔𝜇-bounding𝑇𝑗 for 𝑗 ∈ {1, 2, 3}. Here 𝐸 𝑗s is the
empty space left by the pieces p𝑖−1 and the intended placements of the pieces 𝑞1, . . . , 𝑞 𝑗−1, where
𝑞1, 𝑞2, 𝑞3 are the blue, yellow, and orange piece, respectively. We choose the triangles as the tips
of fingerprinted corners, as shown in Figure 22. The placements of the blue and yellow pieces
are 𝛿-sound because the boundary of the container or the pieces of p𝑖−1 follow the relevant
edges of the respective triangles 𝑇1 and 𝑇2 within distance 𝛿. The placement of the orange piece
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Figure 23. The parallel edges of the yellow and blue pieces must intersect the alignment segment ℓ.
Therefore, the segments must be horizontal.

is 0-sound since the boundaries of the blue and yellow pieces contain the edges of 𝑇3. As the
intended placements are 𝛿-sound, we conclude using Lemma 3.5 (Multiple Fingerprints) that
the displacement is 𝑂(𝑛−48), so the three pieces must have an almost-canonical placement. ■

Aligned placement

We show now Lemma 2.10, which assumes that the pieces in the anchor are almost-canonical
and all previous pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-placement. The goal is to conclude that the
pieces of this gadget have an aligned 𝑖𝜇-placement, which requires the variable pieces to be
correctly aligned and encode values in the range [−𝑖𝜇, 𝑖𝜇].

PROOF OF LEMMA 2.10 FOR THE ANCHOR. Consider a valid placement where the piecesp𝑖−1

have an aligned (𝑖 − 1)𝜇-placement and the pieces p𝑖 \ p𝑖−1, i.e., the yellow, blue, and orange
pieces of this anchor, have almost-canonical placements; see Figure 23. We consider the align-
ment segment ℓ which has length 20. Since the placements are almost-canonical, it follows
that ℓ crosses both of the parallel edges of the yellow and the blue pieces. Since the distance
between the segments in each pair is 10, it follows that the segments must be horizontal.

In order to show that the pieces p𝑖 have an aligned 𝑖𝜇-placement, it remains to bound the
horizontal displacement of the yellow and blue pieces as compared to the placements encoding
the value 0. Consider the yellow piece 𝑝, the argument for the blue piece is similar. We need
to prove ⟨ 𝑝 ⟩ ∈ [−𝑖𝜇, 𝑖𝜇]. We will actually show the stronger statement that ⟨ 𝑝 ⟩ ∈ [−𝛿, 𝜇] ⊂
[−𝑖𝜇, 𝑖𝜇].

Recall that 𝑝 is right-oriented. The constraint that 𝑝 must be inside 𝐶 ensures that ⟨ 𝑝 ⟩ ≥
−𝛿. Since the pieces have an almost-canonical placement by assumption, we know that the
displacement as compared to the situation in Figure 21 is at most 𝑛−1. It therefore follows that
no other pieces than the orange piece can fit in the region to the left of the yellow and blue
pieces. We consider a canonical placement and analyze how much 𝑝 can slide to the right before
too much empty space has been made in the region. Observe that sliding 𝑝 to the right by 𝑡
creates empty space of area 10𝑡, since the height of the piece is 10. It therefore follows that we
must have 𝑡 ≤ 𝜇/10. This translates to ⟨ 𝑝 ⟩ ≤ 𝛿 + 𝜇/10 ≤ 𝜇, and we are done. ■
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⇒ ⇒

Figure 24. If the pieces do not have a canonical placement, there is room for the orange piece to be
oriented in the canonical way and get a vertical edge-edge contact with the container. Then the blue
and yellow pieces can be pushed to the left to obtain a canonical placement, which will decrease the
value encoded by the yellow piece and increase the value encoded by the blue piece.

1 1 + δ 1 + 2δ

[−δ, δ] [0, δ] {δ}

Figure 25. The figure shows how we adjust the left wall of an anchor to ensure that we respect the
range constraint.

Edge inequalities

Recall that Lemma 2.12 states that for any edge (𝑝1, 𝑝2) in the dependency graph 𝐺𝑥 , we have
the inequality ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩, where ⟨ · ⟩ denotes the value encoded by a piece. We show this
lemma now for the anchor.

PROOF OF LEMMA 2.12 FOR THE ANCHOR. Denote by 𝑝1 and 𝑝2 the blue and yellow
piece, respectively. The pieces induce the edge (𝑝1, 𝑝2) in 𝐺𝑥 and we have to show ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩.
We have that ⟨ 𝑝1 ⟩ = ⟨ 𝑝2 ⟩ when the pieces have an edge-edge contact with the orange piece, as
shown in Figure 21. We have to show that it is not possible that ⟨ 𝑝1 ⟩ > ⟨ 𝑝2 ⟩. This could only
potentially happen if the pieces do not have a canonical placement. However, some straightfor-
ward rotation arguments show that in this case we even have ⟨ 𝑝1 ⟩ < ⟨ 𝑝2 ⟩; see Figure 24. It
follows that ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩. ■

Range Constraints

Recall that together with the variable 𝑥 is also given an interval 𝐼 (𝑥) of one of the forms
[−𝛿, 𝛿], [−0, 𝛿], {𝛿}. It is claimed in Lemma 2.13 that the pieces representing the variable 𝑥
encode a consistent value ⟨ 𝐾𝑥 ⟩, which is in the range 𝐼 (𝑥) due to the design of the anchor. This
is ensured by adjusting the left wall of the anchor as showed in Figure 25, so that the value



47 / 78 Framework for ∃R-Completeness of Two-Dimensional Packing Problems

lanes

swaps

`1

`2

`n

. . .

Figure 26. Anchors are placed one on top of the other to form two staircases. The alignment segments
ℓ1, . . . , ℓ𝑛 are used to align the blue and yellow pieces of the anchors in this order. The dots in the orange
pieces in the right staircase mark the fingerprinted corners (all other pieces are fingerprinted in other
gadgets).

encoded by the yellow piece is bounded from below according to 𝐼 (𝑥). Since the blue piece is
restricted to encode a value of at most 𝛿, it then follows that ⟨ 𝐾𝑥 ⟩ ∈ 𝐼 (𝑥).

Staircases of anchors

As the next step, we describe how we organize all the anchors of the construction. Recall that
the wires of the wiring diagram appear and disappear in the order (−→𝑥1,

←−𝑥1), . . . , (−→𝑥𝑛,←−𝑥𝑛) from
left to right in a staircase-like fashion. Therefore, we also stack the anchors onto one another
as displayed in Figure 26, so that the boundary of each stack appears similar to a staircase.
This ensures that the container will be 4-monotone, which is used when proving hardness for
packing into a square container in Section 6. The rest of the construction will be in between
these two staircases. Anchors in the right staircase are treated in the following paragraph.

Anchors in the right staircase

For an anchor on the right side, the entering yellow and blue variable pieces have been started
in other gadgets farther to the left, and we only add the orange piece. We define the canonical
placements in an analogous way as for the left anchors. The proof of Lemma 2.5 (solution
preservation) is trivial since no new variable pieces are introduced. The orange piece in a right
anchor is fingerprinted as in the left anchors, and Lemma 2.9 follows. Lemma 2.10 is trivial
since no new variable pieces are introduced. The edge inequality of Lemma 2.12 is proven as
for the left anchors.

4.2 Swap
Idea

Recall that in the wiring diagram, the wires may cross each other (see Figure 3). On top of
such a crossing, we build a swap. The purpose of the swap is thus to make a crossing of two
neighbouring lanes of pieces. To get intuition about how the gadget works, consider Figure 27.
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Figure 27. The simplified swap. The yellow pieces representing 𝑥 are either both right- or both
left-oriented. Likewise for the blue pieces representing 𝑦. For color codes, see Figure 28.
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Figure 28. The actual swap. Color codes: 1 blue, 2 yellow, 3 turquoise, 4 orange, 5 yellow, 6 blue.

The yellow pieces encode a variable 𝑥 and the blue pieces encode a variable 𝑦. It is possible
that 𝑥 = 𝑦, which will happen only when the two wires −→𝑥 ,←−𝑥 cross each other. Therefore, the
yellow pieces will have the opposite orientation of the blue pieces in this special case.

We want to show that when the pieces have edge-edge contacts to the orange piece, the
variables are encoded consistently, so that the lanes have been swapped. The key observation
is that if the left blue piece pushes to the right and the yellow pieces are fixed, then the orange
piece will slide along the yellow pieces and push the right blue piece by an equal amount.
Similarly, if the left yellow piece pushes to the right, then the orange piece will slide along the
blue pieces, and will push the right yellow piece by an equal amount. For this to work the two
opposite edges of the orange piece in contact with the blue pieces must be parallel and similarly
the two other edges in contact with the yellow pieces must be parallel as well. The conclusion is
that for all placements of the orange piece where it has edge-edge contacts to all yellow and
blue pieces, the horizontal distance between the two yellow pieces is the same, as is the distance
between the two blue pieces.
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Figure 29. Left: the construction without the turquoise piece. Middle: We remove part of the pieces,
leaving a triangular empty space with edges of length more than 1. Right: The turquoise piece is
designed to fit in the triangle of empty space, but it is surrounded by empty space of thickness 𝛿 in
every direction. This leaves enough wiggle room for the other pieces to encode all solutions to Φ.

The actual swap

See Figure 28 for the following description. The swap consists of six pieces. Those are the left
and right yellow piece, the left and right blue piece, the orange piece and the turquoise piece.

The left yellow and blue pieces extend outside the gadget to the left, where they have been
introduced in other gadgets added earlier to the construction. Likewise, the right yellow and
blue pieces extend outside the gadget to the right, where their ends will be defined in other
gadgets added later to the construction. The gadget is bounded by horizontal segments from
above and below, and these are either part of the container boundary or the boundary of other
pieces that have been added earlier. As is seen from the figure, the yellow pieces have corners
with the same angle 𝛼, and the blue pieces have corners with the same angle 𝛽. The precise
value of those angles is chosen freely for the fingerprinting. Similarly, the orange and turquoise
piece have a corner with a flexible angle that can be chosen freely for fingerprinting. The
orange piece has a horizontal top and bottom edge of length 2.

For the way we construct the turquoise piece, we refer the reader to Figure 29. The role of
the turquoise piece is solely to be able to fingerprint the orange piece. It has no direct use in the
functionality of the swap. If we avoid using the turquoise piece and instead use pieces as in the
simplified Figure 27, the left corner of the orange piece, that we want to fingerprint in the wedge
between the left yellow and blue pieces, has angle 𝛼 + 𝛽, and thus the unique angle property is
violated; indeed, the right yellow and blue pieces can cover the wedge equally well. The left
endpoints of the horizontal segments of the orange piece cannot be used for fingerprinting,
because the angles are more than 𝜋/2. It may be tempting to believe that one could avoid the
turquoise piece, but we could not find such a way using only convex pieces. Note that we have
only two degrees of freedom without the turquoise piece, as certain edges must be parallel. This
is not enough to choose three angles freely for fingerprinting.
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Canonical placements and solution preservation

Recall that the yellow and blue pieces represent the variables 𝑥 and 𝑦, respectively. In Figure 28,
all variable pieces encode the value 0. For a placement of the six pieces to be canonical, we
require that the yellow and blue pieces have edge-edge contacts to the orange piece as shown
and that the turquoise piece is enclosed by the left yellow and blue pieces and the orange piece
as shown.

We prove now Lemma 2.5, about solution preservation, for the swap.

PROOF OF LEMMA 2.5 FOR THE SWAP. Suppose that for a given solution x to the ETR-Inv
formula Φ, there exists a canonical placement of the previously introduced pieces p𝑖−1 that
encodes that solution. To extend the placement to the pieces p𝑖 , i.e., with the yellow, blue,
turquoise and orange pieces of this swap included, we place the yellow and blue pieces so that
they represent the value of 𝑥 and 𝑦 in x. This leaves room for the orange piece to be placed
with the required edge-edge contacts to the blue and yellow pieces. The turquoise piece has
enough wiggle room to be placed correctly as well. ■

Fingerprinting and almost-canonical placement

Here we are less detailed in the application of Lemma 3.5 (Multiple Fingerprints) than in the
section about the anchor in order to avoid unnecessary repetition.

Recall that in Lemma 2.9, we assume that the previous pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-
placement and we want to conclude that the new pieces p𝑖 have an almost canonical placement.

PROOF OF LEMMA 2.9 FOR THE SWAP. Recall that p𝑖−1 consists of all pieces introduced
previously, including the left blue and yellow pieces, whereas p𝑖 additionally includes the orange,
turquoise and the right blue and yellow pieces. We now fingerprint the turquoise, orange, right
blue, and right yellow pieces in this order. We use the intended placements of those pieces
shown in Figure 28 (corresponding to the case where the variables encode the value 0) and
fingerprint the corners marked with dots. These intended placements are 𝑂(𝛿 + (𝑖 − 1)𝜇)-sound
for any aligned (𝑖 − 1)𝜇-placement of the pieces p𝑖−1, since the empty space has thickness 𝑂(𝛿)
and the left blue and yellow pieces have displacement of at most (𝑖 − 1)𝜇 compared to the
shown placement, by the assumption of Lemma 2.9. We conclude using Lemma 3.5 (Multiple
Fingerprints) that the displacement is 𝑂(𝑛−48), so the pieces must have an almost-canonical
placement. ■

Aligned placement

PROOF OF LEMMA 2.10 FOR THE SWAP. Consider a valid placement where the piecesp𝑖−1

have an aligned (𝑖 − 1)𝜇-placement and the pieces of this swap have an almost-canonical place-
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Figure 30. Left: Due to the alignment segment ℓ1, the right yellow and blue pieces must be axis-parallel.
Right: Due to the alignment segment ℓ2, the orange piece must also be in a canonical placement.

ment; see Figure 30 (left). Similarly as in the proof for the anchor, we consider the alignment
segment ℓ1 and get that the right yellow and blue edges are in horizontal position.

In order to show that the pieces p𝑖 have an aligned 𝑖𝜇-placement, it remains to bound the
horizontal displacement of the right yellow and blue pieces as compared to the placements
encoding the value 0. Consider the yellow piece, the argument for the blue is similar. Let 𝑝1 be
the left yellow piece and 𝑝2 the right one. By assumption, we have ⟨ 𝑝1 ⟩ ∈ [−(𝑖 − 1)𝜇, (𝑖 − 1)𝜇],
and we need to prove ⟨ 𝑝2 ⟩ ∈ [−𝑖𝜇, 𝑖𝜇]. Suppose that the yellow pieces are right-oriented;
the other case is similar. From the proof of Lemma 2.12 for the swap (given below), we have
that ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩, so we just need to show ⟨ 𝑝2 ⟩ ≤ 𝑖𝜇. It is therefore sufficient to show
⟨ 𝑝2 ⟩ ≤ ⟨ 𝑝1 ⟩ + 𝜇. This follows as in the proof for the anchor by considering how much the
piece 𝑝2 can be slid to the right before the empty space thus created gets larger than 𝜇. ■

Edge inequalities

PROOF OF LEMMA 2.12 FOR THE SWAP. In the swap, the yellow pieces induce an edge
in the graph 𝐺𝑥 and the blue induce an edge in 𝐺 𝑦. In the special case that 𝑥 = 𝑦, the blue and
yellow pieces have opposite orientations, so according to the rule about when to add edges to
the dependency graph 𝐺𝑥 , there will also be an edge between the left pieces and one between
the right pieces. We make an exception to the rule and do not add these edges to the dependency
graph.

We now prove the edge inequality for the edge between the yellow pieces; the argument
for the blue pieces is analogous. Suppose that the yellow pieces are right-oriented and let 𝑝1

be the left and 𝑝2 be the right, so that they induce the edge (𝑝1, 𝑝2) of 𝐺𝑥 . The argument is
analogous if they are left-oriented. Recall that ⟨ 𝑝1 ⟩ = ⟨ 𝑝2 ⟩ exactly when the pieces have the
horizontal distance shown in Figure 28, where the orange piece has edge-edge contacts with
both yellow pieces. Since the pieces have an almost-canonical placement by assumption, the
displacement of the orange piece is at most 𝑛−1. It therefore follows that the same pair of parallel
edges of the orange piece will prevent the yellow pieces from being closer than in the figure, so
we have ⟨ 𝑝1 ⟩ ≤ ⟨ 𝑝2 ⟩. ■
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Figure 31. The split. The yellow, blue, and green pieces represent the variable 𝑥 and are either all
right-oriented or all left-oriented. Color codes: 1 yellow, 2 orange, 3 blue, 4 green.

4.3 Split

The purpose of the split is to make an extra lane representing a variable 𝑥. This will be needed
in order to lead lanes into the gadgets for the adders and curvers.

Description

See Figure 31 for an illustration of the split. We always split the topmost lane in the construction,
so that there is room to expand above with one more lane. Therefore, the split is bounded from
above by the boundary of the container and from below by pieces in the second-highest lane,
which have been added to the construction earlier.

The yellow piece extends outside the gadget to the left, where it has been introduced to
the construction in an earlier step. The yellow piece is in contact to the right with an orange
piece with height 20, i.e., twice the height of a lane. The orange piece is in contact to the right
with the blue and green pieces, which extend outside the gadget to the right, where they will
enter other gadgets defined later in the construction. Each of the orange, blue, and green piece
has a corner with an angle that can be freely chosen for fingerprinting.

Canonical placements and solution preservation

The yellow, blue, and green pieces are all variable pieces encoding a variable 𝑥. The position
as indicated in Figure 31 show the situation where they all encode the value 0. The placement
of all four pieces is canonical if they have the shown edge-edge contacts. Lemma 2.5 (solution
preservation) follows trivially.

Fingerprinting and almost-canonical placement

The proof of Lemma 2.9 for the split is completely analogous to the one for the swap.
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Figure 32. The left-split.

Aligned placement

All pieces must be aligned because of the container boundary and the edge of a piece from p𝑖−1

bounding the gadget from below. As for the swap, to get Lemma 2.10 for the split, we need to
verify that the blue and green piece encodes a value that is at most 𝜇 larger than that encoded
by the yellow piece. The proof is analogous as the one for the swap.

Edge inequalities

In the split, we get two edges in the dependency graph. If the pieces are right-oriented, we have
edges from the yellow to green and to the blue pieces. Otherwise, we have edges from green to
yellow and blue to yellow. That the edges satisfy the edge inequality (Lemma 2.12) follows by
construction, since the orange piece restricts how close the yellow piece can get to the green
and blue pieces.

Left-split

We explained above how to split an entering variable piece into two exiting pieces. We will also
need the opposite, i.e., splitting an exiting piece into two entering pieces (or, in other words,
merging two entering pieces into one exiting piece). It is straightforward to construct such a
gadget by similar principles, as shown in Figure 32. In order to avoid disambiguation, we will
occasionally denote these splits as right-splits and left-splits, respectively.

4.4 Adder
Idea

For the following description, see Figure 33. Here we explain the principle behind the adder
for 𝑥 + 𝑦 ≤ 𝑧. The adder for 𝑥 + 𝑦 ≥ 𝑧 is identical, but has the entering variable pieces for
𝑥, 𝑦, 𝑧 oriented to the left instead of to the right. The adder has three entering variable pieces
(yellow, blue, left green), representing three variable (𝑥, 𝑦, 𝑧). There is also one exiting green
variable piece representing 𝑧. In addition to this, there are three pieces that are not variable
pieces (turquoise, orange, pink). The role of the turquoise piece is to transform horizontal
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Figure 33. Left: The simplified adder. Right: The variable 𝑥 is increased by two units. The variable 𝑦 is
decreased by one unit. Thus the variable 𝑧 is increased by one unit. Color codes: 1 blue, 2 yellow, 3
green, 4 turquoise, 5 orange, 6 pink, 7 green.
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Figure 34. The actual adder.

motion to the right of the blue piece to downwards vertical motion. Motion of the orange piece
downwards or to the right both make the pink piece move to the right by an equal amount.
Therefore, when the blue and yellow pieces push to the right, the pink piece will be pushed to
the right by the sum of the two motions.

Actual description

The actual adder is shown in Figure 34. The figure shows the situation where all the variable
pieces encode the value 0. The actual adder varies in several points from the simplified version
in Figure 33, which is needed in order to use fingerprinting. The orange, turquoise, pink,
and right green pieces must be fingerprinted, so they cannot have only nice angles as in the
simplified gadget. The turquoise piece can easily be fingerprinted using the top right corner.
The orange piece is fingerprinted in the upper left corner. The pink and right green pieces
are fingerprinted at their lower left corners. In each case, the angle can be chosen freely by
changing the slope of the edge-edge contact with the piece to the left.

As a consequence of changing the angle on the top left of the orange piece to something
else than 𝜋/4, we also have to change the angle of the top right corner. See Figure 35 for an
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h

Figure 35. In each of these three pictures, thick segments drawn with the same color are equally long.
Left: The construction of the orange piece. Middle: Pushing the orange piece down by its height makes
it push the pink piece by the same amount. Right: This also holds when pushing less.

Figure 36. The lines through corners and perpendicular to diagonals are disjoint from the interiors.

illustration of the following. First we describe how to construct the orange piece and then we
explain why it actually works. The orange piece is a trapezoid with horizontal bottom and top
edges and height 10 − 10𝛿. The left edge of the orange piece is parallel to the right edge of the
yellow piece. The length of the top edge should be at least as long as the bottom edge of the
turquoise piece. The length of the bottom piece is the length of the top edge minus the height
10 − 10𝛿. The right edge is determined by the description of all the other edges.

We need to explain why pushing the blue piece to the right by some amount 𝑡 > 0 will
push the pink piece to the right by 𝑡 as well; see Figure 35. It is helpful to consider the case
where 𝑡 equals the height ℎ of the orange piece (even though there is not room for pushing the
pieces so much). This push of the blue piece will push the orange piece down by ℎ. Since the
length of the top edge of the orange piece equals the length of the bottom edge plus ℎ, the pink
piece will be pushed to the right by ℎ as well. All the pieces move linearly, so it will also be the
case for smaller values of 𝑡.

We furthermore want the property that for each of the top corners of the turquoise piece,
the line through the corner and perpendicular to the diagonal of the corner is a tangent to the
piece (i.e., the line intersects the piece only at the corner). The same must hold for the bottom
corners of the orange piece; see Figure 36. It is easy to choose the fingerprinted angles so that
the pieces have this property. We will use the property in the proof of Lemma 2.14 given later to
conclude that if the turquoise or the orange piece is not aligned as in the canonical placements,
they will take up too much space.
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Figure 37. Incorporation of the adder. Splits are marked in turquoise, swaps are marked red.

Canonical placements and solution preservation

The canonical placements are defined as the placements with the edge-edge contacts as shown
in Figure 34. That there is a canonical placement encoding any given solution to Φ (Lemma 2.5)
follows by construction.

Incorporating the gadget

In order to incorporate the adder into the construction, we use two splits and eight swaps in
order to organize the in-going and out-going lanes to the gadget; see Figure 37 for a schematic
illustration.

Fingerprinting and almost-canonical placement

The proof of Lemma 2.9 for the adder is completely analogous to the one for the swap.

Aligned placement

The right green piece must be aligned because of the container boundary and the edge of a
piece from p𝑖−1 bounding the gadget from below. As for the swap, to get Lemma 2.10 for the
adder, we need to verify that the right green piece encodes a value that is at most 𝜇 larger than
that encoded by the left green piece. The proof is analogous as the one for the swap.

Edge inequalities

In the adder, the left and right green pieces induce an edge in the dependency graph. That the
edge satisfies the edge inequality (Lemma 2.12) is proven as for the swap.

The adder works

In this paragraph we prove Lemma 2.14. Here we are considering an aligned 𝑔𝜇-placement, and
we need to prove that for every addition constraint 𝑥 + 𝑦 = 𝑧 of Φ, we have ⟨ 𝐾𝑥 ⟩ +

〈
𝐾𝑦

〉
= ⟨ 𝐾𝑧 ⟩.
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Figure 38. Top: If the turquoise piece does not have edge-edge contacts to the blue piece and the
boundary, then all points of the lower edge have strictly smaller 𝑦-coordinates than otherwise. Bottom:
If the orange piece does not have edge-edge contacts to the yellow and pink pieces, then the top edge
is strictly higher than otherwise. The dashed segments are the edges in the canonical situations shown
to the left.

PROOF OF LEMMA 2.14 . We prove the inequality ⟨ 𝐾𝑥 ⟩+
〈
𝐾𝑦

〉
≤ ⟨ 𝐾𝑧 ⟩. The other inequality

follows from analogous arguments about the gadget for 𝑥 + 𝑦 ≥ 𝑧. Let 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧1 be the yellow,
blue, and left green pieces, and 𝑝𝑧2 be the right green piece.

Note first that due to the way we incorporate the adder, there are paths 𝑃𝑥 and 𝑃 𝑦 in 𝐺𝑥
and 𝐺 𝑦 attached to and directed away from the cycles 𝐾𝑥 and 𝐾𝑦, and the vertices farthest
away from the cycles are the pieces 𝑝𝑥 and 𝑝𝑦. Furthermore, the pieces 𝑝𝑧1 and 𝑝𝑧2 are two
consecutive vertices on the cycle 𝐾𝑧, so by Lemma 2.13, we have ⟨ 𝑝𝑧1 ⟩ = ⟨ 𝑝𝑧2 ⟩ = ⟨ 𝐾𝑧 ⟩.

We argue that if ⟨ 𝑝𝑥 ⟩ +
〈
𝑝𝑦

〉
= ⟨ 𝐾𝑧 ⟩, the only way to place the pieces is the canonical

way. This excludes the situation ⟨ 𝑝𝑥 ⟩ +
〈
𝑝𝑦

〉
> ⟨ 𝐾𝑧 ⟩, since there the turquoise, orange, and

pink pieces have strictly less space. Consider first the turquoise piece. It is straightforward to
check that if it does not have edge-edge contacts to the blue piece and the container boundary,
then the lower edge will be strictly below the placement of the edge where these contacts were
present, in the sense that every point on the segment will have a placement with a smaller
𝑦-coordinate. This can be seen in Figure 38 and is due to the property that the lines through
corners perpendicular to diagonals are tangents, as shown in Figure 36. Similarly for the orange
piece, if it does not have edge-edge contacts with the yellow and pink pieces, the top edge is
strictly above the edge in the placement where it does have these contacts. In the canonical
placements, the bottom edge of the turquoise piece is contained in the top edge of the orange
piece. Therefore, in any other placement of the turquoise and orange pieces, there will be points
on the turquoise edge below the orange edge, which makes the placement invalid. We can now
conclude that in general, we must have ⟨ 𝑝𝑥 ⟩ +

〈
𝑝𝑦

〉
≤ ⟨ 𝐾𝑧 ⟩.

To finish the proof, note that since the paths 𝑃𝑥 and 𝑃 𝑦 are directed away from the cycles
𝐾𝑥 and 𝐾𝑦, we get from the edge inequalities (Lemma 2.12) that

⟨ 𝐾𝑥 ⟩ +
〈
𝐾𝑦

〉
≤ ⟨ 𝑝𝑥 ⟩ +

〈
𝑝𝑦

〉
≤ ⟨ 𝐾𝑧 ⟩ . ■
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5. Curvers

We are going to construct two different types of curvers. Both curvers will be described in a
convex and a concave version. To prove ∃R-hardness of the problem Pack[ → , ], we will
use the convex and the concave swing. For the problems Pack[ → , ] and Pack[ → , ],
we will instead use variants of the convex and the concave gramophone.

5.1 Swing

The swing is reminiscent of the swings found on playgrounds, especially the twin version
where two kids face each other and must collaborate to get the swing going; see Figure 39.
In the preliminary version of this paper [6], we also used other playground inspired gadgets,
namely the teeter-totter and the seesaw, which could encode a convex and a concave constraint,
respectively. However, the seesaw needed non-convex pieces, and since our new swing can also
encode a convex constraint, we need neither of them anymore. The orange piece in the swing
plays the role of the swing itself and can rotate around the top corner 𝑜, while the blue and
yellow pieces correspond to the children, pushing the swing from each side. Surprisingly, by
adjusting the height of the contact points 𝑐𝑥 and 𝑐 𝑦 of the orange piece with the other pieces,
we can make versions of the swing that enforce convex and concave constraints, as we like.

Principle

For the following argument, see Figure 40. We assume for simplicity that |𝑜𝑎| = 1 and consider
the situation where the orange piece is rotated so that the segment 𝑜𝑎 makes an angle of
𝜑 ∈ (−𝜋/4, 𝜋/4) with the vertical axis. The corners of the blue and yellow pieces that are in
contact with the orange piece lie on the horizontal line ℓ𝑧 which is 𝑧 > 0 below the horizontal
line ℓ𝑜 through 𝑜. We consider the extensions of the edges of the orange piece incident at 𝑎 and
construct the intersections 𝑐𝑥 and 𝑐 𝑦 with ℓ𝑧. We want to find formulas for horizontal distances

a

1 2

3

o

cx cy

Figure 39. A simplified drawing of the swing. The corner 𝑎 is a right angle. Color codes: 1 blue, 2
yellow, 3 orange.



59 / 78 Framework for ∃R-Completeness of Two-Dimensional Packing Problems

ϕ

π/4

z
1

x0 y0

x1 y1

o

a

`o

`z

b c

ozcx cy

f

Figure 40. The geometry of the swing.

𝑥1 and 𝑦1 from 𝑜 to 𝑐𝑥 and 𝑐 𝑦, respectively, since the rightmost corner of the blue piece will be
at 𝑐𝑥 or to the left, and the leftmost corner of the yellow piece will be at 𝑐 𝑦 or to the right, so 𝑥1

and 𝑦1 will lead to lower bounds for the values encoded by the pieces, as the pieces are oriented
away from 𝑐𝑥 and 𝑐 𝑦, respectively. (In the figure, 𝑐𝑥 is in the exterior of the orange piece and
would thus not be a bound on the placement of the blue piece, but when using the gadget, the
point will always be on the boundary of the orange piece, since it will only be slightly rotated.)
The distances 𝑥1 and 𝑦1 are signed distances, so that 𝑥1 is positive if and only if 𝑐𝑥 is to the left
of 𝑜𝑧 and 𝑦1 is positive if and only if 𝑐 𝑦 is to the right of 𝑜𝑧.

Note that |𝑎 𝑓 | = cos 𝜑. Considering the right triangles 𝑎 𝑓 𝑏 and 𝑎 𝑓 𝑐, we then obtain

|𝑎𝑏| = cos 𝜑
cos(𝜋/4 + 𝜑) ;

|𝑎𝑐| = cos 𝜑
cos(𝜋/4 − 𝜑) .

We then get

𝑥0 = |𝑜𝑏| = | 𝑓 𝑏| − |𝑜 𝑓 | = sin(𝜋/4 + 𝜑) |𝑎𝑏| − |𝑜 𝑓 | = tan(𝜋/4 + 𝜑) cos 𝜑 − sin 𝜑;

𝑦0 = |𝑜𝑐| = | 𝑓 𝑐| + |𝑜 𝑓 | = sin(𝜋/4 − 𝜑) |𝑎𝑐| + |𝑜 𝑓 | = tan(𝜋/4 − 𝜑) cos 𝜑 + sin 𝜑.

We observe that if ℓ𝑧 coincides with ℓ𝑜, then 𝑥1 = 𝑥0, while if ℓ𝑧 passes through 𝑎, then
𝑥1 = − sin 𝜑. Since the vertical distance from ℓ𝑜 down to 𝑎 is cos 𝜑, we define 𝑣 := 𝑧/cos 𝜑 and
get 𝑥1 by interpolating between 𝑥0 and − sin 𝜑 using the factor 𝑣, and we can express 𝑦1 in an
analogous way. By standard trigonometric identities, we obtain the expressions

𝑥1 = 𝑥0 · (1 − 𝑣) − sin 𝜑 · 𝑣 = 1 + 𝑧(− cos 𝜑 − sin 𝜑)
cos 𝜑 − sin 𝜑

;

𝑦1 = 𝑦0 · (1 − 𝑣) + sin 𝜑 · 𝑣 = 1 + 𝑧(− cos 𝜑 + sin 𝜑)
cos 𝜑 + sin 𝜑

.

We consider 𝑥1 and 𝑦1 as functions of 𝜑. Note that 𝑥1(0) = 𝑦1(0) = 1 − 𝑧. The curve
𝛾𝑧 : 𝜑 ↦→ (𝑥1(𝜑), 𝑦1(𝜑)) undergoes a remarkable metamorphosis as we increase 𝑧 from 0 to 1;
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Figure 41. The curve 𝛾𝑧 for each of the values 𝑧 ∈ {𝑖/20 | 𝑖 = 0, . . . , 20}. The curves for 𝑧 = 0.7 and 𝑧 = 0.9,
that we will use in our construction, have been highlighted.

see Figure 41. Note the sudden change from the curve being convex to concave at the diagonal
point (1 − 𝑧, 1 − 𝑧) as 𝑧 changes from 𝑧 = 0.7 to 𝑧 = 0.8. This is what we exploit to make convex
and concave variants of the swing.

To obtain well-behaved functions 𝑓 and 𝑔, as required in Theorem 1.4, we will use an
implicit function 𝐹𝑧 : 𝑈2 −→ R, for an interval 𝑈 ⊂ R around 0, such that 𝐹𝑧 (𝑥, 𝑦) = 0 if and
only if (𝑥, 𝑦) = 𝛾𝑧 (𝜑) + (𝑧 − 1, 𝑧 − 1) for some 𝜑 ∈ (−𝜋/4, 𝜋/4). We add (𝑧 − 1, 𝑧 − 1) to obtain a
curve that passes through (0, 0) for 𝜑 = 0. In order to show that there exists such a function
which is well-behaved, we use the following lemma from [50, Sec. 1.5], which has been slightly
rephrased.

LEMMA 5.1 (Miltzow and Schmiermann [50]). Let 𝛾 = (𝛾𝑥 , 𝛾𝑦) : (−𝜋/4, 𝜋/4) −→ R2 be a
𝐶3-function such that 𝛾(𝑡) = (0, 0) if and only if 𝑡 = 0. Assume that the derivatives 𝛾′𝑥 , 𝛾′′𝑥 , 𝛾′𝑦, 𝛾′′𝑦
are all rational in 0 and that 𝛾′𝑥 (𝑡) ≠ 0 for all 𝑡 ∈ (−𝜋/4, 𝜋/4). Then there exists an interval around
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Figure 42. The convex swing (left) and the concave swing (right).

the origin 𝐽 ⊂ R and a well-behaved function 𝐹 such that

{𝛾(𝑡) ∈ R2 | 𝑡 ∈ (−𝜋/4, 𝜋/4)} = {(𝑥, 𝑦) ∈ 𝐽 × R | 𝐹 (𝑥, 𝑦) = 0}.

In our case, it follows trivially from the definitions that the first and second derivatives
of 𝑥1 and 𝑦1 in 𝜑 = 0 are rational and that 𝑥′1(0) ≠ 0, so the lemma ensures the existence of a
function 𝐹𝑧 as described.

We will use 𝑓 := 𝐹7/10 for our convex constraint and 𝑔 := 𝐹9/10 for our concave constraint.
It is then straightforward to check that 𝑓 is convex and 𝑔 concave at (0, 0) by evaluating the
sign of the curvature of the curves 𝛾7/10 and 𝛾9/10 at 𝜑 = 0.

Actual swing

Figure 42 shows a more accurate illustration of the convex and the concave swing. The blue
and yellow variable pieces represent variables 𝑥 and 𝑦, respectively. The blue piece enters the
gadget and is left-oriented, while the yellow piece exits the gadget and is right-oriented. The
top corner 𝑜 of the orange piece is fingerprinted at a wedge formed by the boundary of the
container 𝐶. We need to ensure that the angle at the corner 𝑜 can be changed continuously. By
moving the orange piece up or down, we can also change the lengths of the edges meeting at
the corner 𝑎, and then the angle at 𝑜 also changes. We need to move the contact corners 𝑐𝑥 and
𝑐 𝑦 of the blue and yellow pieces correspondingly, so that the 𝑧-value (described above) remains
invariant. The yellow piece is fingerprinted at a wedge formed by the blue piece and the lower
boundary of the gadget.

The figure shows the case where the blue and the yellow piece encode the value 0 of both 𝑥
and 𝑦. In the convex swing, the vertical distance from 𝑜 to the contact corners 𝑐𝑥 , 𝑐 𝑦 is 7|𝑜𝑎|/10.
In the concave swing, the distance is 9|𝑜𝑎|/10.

Incorporation of the swing

Figure 43 shows a schematic illustration of how the swing is incorportated in the construction.
We use a right-split and a swap before the swing itself, and a left-split and a swap after.
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swing←−x
−→y

Figure 43. Incorporation of the swing.

Canonical placements and solution preservation

A placement of the three pieces of the gadget is canonical if the orange piece separates the
yellow and blue pieces in the sense that the segment 𝑐𝑥𝑐 𝑦 (connecting the contact corners of
the blue and yellow pieces) intersects both edges of the orange piece incident at the corner 𝑎.

PROOF OF LEMMA 2.5 FOR THE SWING. Suppose that for a given solution to the Curve-
ETR[ 𝑓 , 𝑔] formula Φ, there exists a canonical placement of the previously introduced pieces p𝑖−1

that encodes that solution. We place the yellow piece so that it encodes the value of 𝑦 as specified
by Φ. We need to verify that there is enough empty room such that the orange piece can be
placed in the gadget. Consider without loss of generality the case that we introduced the gadget
because of a convex constraint of the form 𝑓 (𝑥, 𝑦) ≥ 0 in Φ. If the blue and yellow pieces touch
the orange piece, it corresponds to the case 𝑓 (𝑥, 𝑦) = 0. Since we consider a solution to Φ, we
have 𝑓 (𝑥, 𝑦) ≥ 0, so there is enough room for the orange piece. ■

Fingerprinting and almost-canonical placement

The proof of Lemma 2.9 for the swing follows exactly as for the swap. We first fingerprint the
orange and then the yellow piece.

Aligned placement

PROOF OF LEMMA 2.10 FOR THE SWING. Consider a valid placement where the pieces
p𝑖−1 have an aligned (𝑖 − 1)𝜇-placement and the pieces of this swing have an almost-canonical
placement. We need to verify that the exiting yellow piece has an aligned 𝑖𝜇-placement. It is
clear that the yellow piece has an aligned placement because it is bounded from above and
below by horizontal edges of the container 𝐶 and a piece below. It is however not immediately
clear that it has an 𝑖𝜇-placement, since we have no entering piece representing 𝑦, so we cannot
use the assumption that the pieces p𝑖−1 have an aligned (𝑖 − 1)𝜇-placement directly. Instead
of considering the swing as an isolated gadget, we therefore take the two extra pieces of the
left-split, which is to the right of the swing, into account; see Figure 43. We then get that if these
pieces do not have an aligned 𝑖𝜇-placement, then the slack would exceed 𝜇, as we argued for
the swap. ■
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Edge inequalities

The pieces of the swing induce no edges in the dependency graphs, so there are no edge
inequalities to verify.

The swing works

In this paragraph we prove the part of Lemma 2.15 that the swing is responsible for, namely
that in a given aligned 𝑔𝜇-placement, the convex swing used for the variables 𝑥 and 𝑦 implies
that 𝑓 (⟨ 𝐾𝑥 ⟩ ,

〈
𝐾𝑦

〉
) ≥ 0 and the concave swing implies 𝑔 (⟨ 𝐾𝑥 ⟩ ,

〈
𝐾𝑦

〉
) ≥ 0.

PROOF OF LEMMA 2.15 FOR THE SWING. We prove that 𝑓 (⟨ 𝐾𝑥 ⟩ ,
〈
𝐾𝑦

〉
) ≥ 0 when we

use a convex swing; the statement for the concave swing follows in an analogous way. Let 𝑝𝑥
and 𝑝𝑦 be the blue and yellow pieces, respectively. We note that there are paths 𝑃𝑥 and 𝑃 𝑦

in 𝐺𝑥 and 𝐺 𝑦 attached to and directed towards the cycles 𝐾𝑥 and 𝐾𝑦, and the vertices farthest
away from the cycles are the yellow and blue pieces 𝑝𝑥 and 𝑝𝑦, so that we have ⟨ 𝐾𝑥 ⟩ ≥ ⟨ 𝑝𝑥 ⟩
and

〈
𝐾𝑦

〉
≥

〈
𝑝𝑦

〉
. Since we consider an aligned 𝑔𝜇-placement, the orange piece separates

the yellow and blue pieces, as defined for a canonical placement. Without loss of generality,
we can consider a situation where the corners 𝑐𝑥 and 𝑐 𝑦 of the blue and yellow pieces are in
contact with the orange piece (otherwise, we can slide them towards the orange piece until
they make such a contact). We then get from the principle behind the gadget (described in
the beginning of this section) that 𝑓 (⟨ 𝑝𝑥 ⟩ ,

〈
𝑝𝑦

〉
) = 0. It is straightforward to verify that we

have derivatives 𝑓𝑥 (0, 0) = 1 and 𝑓𝑦 (0, 0) = 1. Since 𝑓𝑥 and 𝑓𝑦 are also continuous, we have
𝑓𝑥 > 0 and 𝑓𝑦 > 0 in a neighbourhood of constant size around the origin (0, 0). Hence, we have
𝑓 (⟨ 𝐾𝑥 ⟩ ,

〈
𝐾𝑦

〉
) ≥ 𝑓 (⟨ 𝑝𝑥 ⟩ ,

〈
𝑝𝑦

〉
) = 0. ■

5.2 Gramophone

The gramophone works when only translations of the pieces are allowed. It works in fact
also when rotations are allowed, but we will use the swing in that case since the gramophone
requires non-polygonal features of the container or the pieces. The idea behind the gramophone
is to have a special pink piece which is translated horizontally by motions of one lane and
translated vertically by motions of another lane; see Figure 44 for an illustration. Therefore, the
placement of the piece in a sense encodes two variables at once. The pink piece has a corner 𝑐
which is bounded from above by a curve, and that induces a dependency between the two lanes,
translating to an inequality of the variables represented by the lanes. The name is chosen since
motion of one lane makes the pink piece trace and “read” the curve and thus act as the stylus of
a gramophone.

The inequality can be changed by choosing another curve bounding the corner 𝑐. We can
therefore make gramophones for inequalities (𝑥 +1) · ( 𝑦+1) −1 ≥ 0 and −(𝑥 +1) · ( 𝑦+1) +1 ≥ 0,
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Figure 44. The concave and convex gramophone. Here, the gray pieces marked with 𝑘 cannot move,
so these can be thought of as representing a constant 𝑘. The purpose of these is to fix the horizontal
placement of the orange piece such that horizontal motion of the blue pieces translates directly to
vertical motion of the pink piece. In all cases the gramophone relies on translations only. For the
resulting dependency between 𝑥 and 𝑦 to be non-linear, the curve restricting the corner 𝑐 must be
non-linear, requiring the boundary of the container to have curved parts. For color codes, see Figure 46.

which correspond to the regions on one side of a hyperbola. We could also have chosen a
circular arc or another well-behaved curve. The curved arc is part of the boundary of the
container 𝐶, so the reduction leads to an instance of the problem Pack[ → , ], but as we
will see, we can also obtain an instance of the problem Pack[ → , ] by introducing a curved
piece instead of using a curved container boundary.

In the following, we will first explain the principle in more detail. Then we describe how
to turn the principle into a gadget that can be installed in our framework.

Principle

To understand the principle behind the gramophone, it helps to draw a coordinate system
showing the correspondence between the position of the corner 𝑐 and the variables 𝑥 and 𝑦

represented by the two lanes; see Figure 45. The curve restricting the corner 𝑐 from above is the
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Figure 45. All three graphs display the curve for the equation (𝑥 + 1) · ( 𝑦 + 1) − 1 = 0. The drawings differ
because of different 𝑦-axes. The left and middle diagrams correspond to the concave gramophone,
while the right corresponds to the convex gramophone.
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Figure 46. The actual concave gramophone (left) and a variant with polygonal container (right). The
solid boundary bounding the gadgets from above are part of the boundary of the container, whereas
the dashed segment bounding the gadgets from below is on the boundary of a piece that has been
added to the construction earlier. The gray pieces marked with 𝑘 cannot move, so these can be thought
of as representing a constant 𝑘. For a detailed picture of the pink and green pieces, see Figure 47. Color
codes: 1 yellow, 2 gray, 3 blue, 4 turquoise, 5 orange, 6 green, 7 pink, 8 yellow, 9 blue, 10 gray.

curve described by the equation (𝑥 +1) · ( 𝑦+1) −1 = 0 in the respective coordinate system. Note
that the region of possible positions of the corner 𝑐 is below the curve. That region is concave
in the left and middle diagram but convex in the right diagram. In order to get from concave to
convex, we have flipped the 𝑦-axis, but that simply corresponds to changing the orientation of
the blue pieces; see Figure 44. It then follows that gramophones can be made to encode both the
concave constraint −(𝑥 + 1) · ( 𝑦 + 1) + 1 ≥ 0 and the convex constraint (𝑥 + 1) · ( 𝑦 + 1) − 1 ≥ 0.

Actual gadget

The actual design of the gramophone can be seen in Figure 46 (left) and many details differ
from the simplified drawing in Figure 44. We only go through the concave gramophones. The
convex gramophone differs only in the curved part and the orientation of the blue pieces. In
order to incorporate the gadget into the complete construction, we need to add some swaps
and a constant lane, as we will explain below.

Note first that since 𝑥 and 𝑦 are restricted to tiny ranges 𝐼 (𝑥), 𝐼 ( 𝑦) ⊆ [−𝛿, 𝛿], the curved
part needed is likewise of length𝑂(𝛿), i.e., extremely short. The gray, orange, blue and turquoise
pieces form a swap. We refer to the details and correctness of the swap to Section 4.2. The
gray pieces will have a fixed placement and can therefore be considered as pieces encoding
a constant value. A lane for the constant will be started to the left of the gramophone and
terminated to the right, which will be explained later.
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Figure 47. Left: Detail of the pink and green pieces and their point of contact in the convex and the
concave version of the polygonal gramophone. Right: Fingerprinting the pink piece. By moving the
green piece up and down, the angle of the fingerprinted corner of the pink piece can be continuously
altered.

Above the swap is the yellow lane and a pink piece. The pink piece has edge-edge contacts
with the yellow and orange pieces. The top vertex of the pink piece is our special vertex 𝑐 that
is bounded from above by a curve. In the simplified description, the pink piece had a pair
of parallel segments that were fixed at a vertical orientation by the yellow pieces. However,
in order to fingerprint the right yellow piece, we rotate the pink piece a bit clockwise (and
adjust the edges of the yellow pieces accordingly) so that the angle of the corner where the right
yellow piece is fingerprinted can be chosen freely. The gadget is bounded from above by the
container boundary and this part contains a tiny curved part, which corresponds to the curve
(𝑥 + 1) · ( 𝑦 + 1) − 1 = 0, marked red. However, because of the slanted orientation of the pink
piece, the 𝑦-axis of the corner 𝑐 is now likewise slanted as in Figure 45 (middle).

In the simplified construction, the angles were chosen so that horizontal motion of the
blue pieces was translated to vertical motion of the orange piece with no scaling involved. In the
actual gadget, since we want to fingerprint the right blue piece, we need to chose the slope of
the edge-edge contact between the blue and orange pieces freely, and then a horizontal motion
of the blue pieces is scaled when transformed to a vertical motion of the orange piece.

These two differences (slanted and scaled 𝑦-axis) result in a linear deformation of the red
curve, as compared to the simplified situation. An example of such a deformation can be seen
in Figure 45 (middle). The curve will however still be contained in a hyperbola. Moving the
red curve up and down (where up and down is defined by the transformed 𝑦-axis) makes it
possible to freely choose the fingerprinted angle of the pink piece.

Polygonal gramophone

We introduce special polygonal gramophones that work with a polygonal container 𝐶, but has
curved pieces in order to show hardness of the problemPack[ → , ]. The polygonal concave
gramophone can be seen in Figure 46 (right). In this version, we have an additional green piece
which is the only piece that is curved. If we encode the concave constraint−(𝑥+1) · ( 𝑦+1)+1 ≥ 0,
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gramophone k

Figure 48. Left: Installation manual for the gramophone. The gray lane consists of pieces with a fixed
placement and can be interpreted as encoding a constant. This lane start and ends just outside the
gramophone. Right: The start of a constant lane consists of a single gray piece, which is fingerprinted
at the left corner. The top of the gadget is the container boundary and we assume that the gadget is
bounded from below by a yellow piece representing the variable 𝑥, which has been introduced to the
construction earlier. The yellow piece is already known to be horizontally aligned, and it then follows
that the gray is as well. The lane of the gray pieces is terminated in an analogous way.

then the green piece is convex. If we encode the constraint (𝑥 + 1) · ( 𝑦 + 1) − 1 ≥ 0, the green
piece will not be convex. Recall from Section 3.4 that for pieces with curved segments, it is
needed that the curvature is bounded and that the curved segments have a straight line segment
of length 1 as prefix and suffix. In Figure 47 (left), the red curve and the blue segments together
form a curved segment that satisfies the requirements. The pink piece is changed accordingly:
In this version of the gramophone, the pink piece has one corner which can touch the curved
part of the green piece and an extra corner on each side to fill out the space below the green
piece. The left corner is fingerprinted. It is shown in Figure 47 (right) how the angle of the
fingerprinted corner can be changed freely by moving up and down the green piece.

Installation of the gramophone

Figure 48 (left) shows how to install the gramophone in the complete construction. We make
a new lane representing a constant which is started just to the left of the gramophone and
terminated just to the right; see Figure 48 (right) on how a constant lane can start and end. In
addition to this, three swaps are needed to organize the lanes in the right way.

Canonical placements and solution preservation

The variable pieces are the yellow and blue pieces. We define the canonical placements to be
placements where the pieces have the edge-edge contacts as in Figure 46 and the turquoise
piece is enclosed by the left gray and blue pieces and the orange piece. If the green piece is
present, it should have edge-edge contacts with the container boundary as shown.

PROOF OF LEMMA 2.5 FOR THE GRAMOPHONE . Suppose that for a given solution to the
ETR-Inv formula Φ, there exists a canonical placement of the previously introduced pieces p𝑖−1

that encodes that solution. The placement of the left yellow, gray, and blue piece is then fixed. It
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is now clear from the construction that the remaining pieces can be placed, since the inequality
of the gramophone is satisfied by the solution to Φ. ■

Fingerprinting and almost-canonical placement

The proof of Lemma 2.9 for the gramophone follows exactly as for the swap. We fingerprint the
pieces in the order shown in Figure 46 used for color codes.

Aligned placement

From the alignment line ℓ (shown in Figure 46), we get that the right yellow, right blue, and
right gray pieces are correctly aligned. As for the swap, to get Lemma 2.10 for the gramophone,
we can argue that the exiting blue and yellow pieces encode a value which is at most 𝜇 away
from that encoded by the entering pieces. It therefore follows that the placement must be an
aligned 𝑖𝜇-placement.

Edge inequalities

We have an edge from the left to the right yellow piece and from the left to the right blue piece.
The edge inequalities (Lemma 2.12) follow similarly as for the split (yellow) and swap (blue).

Constant lane of gray pieces

As seen from the installation manual in Figure 48 (left), there are four swaps in the gray lane
(including the one inside the gramophone itself), so the lane consists of 5 pieces 𝑝1, . . . , 𝑝5 in
order from left to right. Here, 𝑝2 and 𝑝3 are the left and right gray piece in the gramophone itself.
The pieces 𝑝2, . . . , 𝑝5 are introduced in swaps and in the gramophone, but 𝑝1 is introduced in
its own minuscule gadget shown in Figure 48 (right). The canonical placement of 𝑝1 is when it
has edge contacts with the boundary and the yellow piece as shown, and 𝑝1 is fingerprinted
as indicated by the dot in the figure. We now argue that these five pieces must have a fixed
placement independent of the rest of the construction, so that they can indeed be considered as
variable pieces encoding a constant. Let us define the placement of the first piece 𝑝1 shown in
Figure 48 to encode the value ⟨ 𝑝1 ⟩ = 0. We then know that in every placement, 0 ≤ ⟨ 𝑝1 ⟩, since
the piece may slide to the right, but not to the left due to the container boundary. Similarly as
for the proof of the edge inequality in Lemma 2.12, we get that 0 ≤ ⟨ 𝑝1 ⟩ ≤ · · · ≤ ⟨ 𝑝5 ⟩ ≤ 0,
where the last inequality follows since 𝑝5 is bounded from the right by the container boundary.
We then have ⟨ 𝑝1 ⟩ = · · · = ⟨ 𝑝5 ⟩ = 0.
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The gramophone works

In this paragraph we prove the part of Lemma 2.15 that the gramophone is responsible for,
namely that in a given aligned 𝑔𝜇-placement, a concave gramophone used for the variables 𝑥
and 𝑦 implies that −(⟨ 𝐾𝑥 ⟩ + 1) · (

〈
𝐾𝑦

〉
+ 1) + 1 ≥ 0 while a convex gramophone implies that

(⟨ 𝐾𝑥 ⟩ + 1) · (
〈
𝐾𝑦

〉
+ 1) − 1 ≥ 0.

PROOF OF LEMMA 2.15 FOR THE GRAMOPHONE . We show the statement for the con-
cave gramophone; the proof for the convex gramophone is analogous. The yellow pieces are
part of the cycle 𝐾𝑥 . Since they encode values consistently by Lemma 2.13, the rotation of the
pink piece is fixed and it has edge-edge contacts with the yellow pieces. Likewise, the blue pieces
are part of 𝐾𝑦, so they also encode the same value of 𝑦. Since the gray pieces encode the same
constant, we now get that the orange piece has edge-edge contacts to all blue and gray pieces.
We can slide the pink piece down until it gets edge-edge contact to the orange piece. We now
consider sliding the yellow pieces to the right until the pink piece gets in contact with the curved
part of 𝐶. In this situation, we have −(⟨ 𝐾𝑥 ⟩ + 1) · (

〈
𝐾𝑦

〉
+ 1) + 1 = 0 by construction. Since we

have slid the yellow pieces to the right and thus increased the value of ⟨ 𝐾𝑥 ⟩, we started with a
placement where −(⟨ 𝐾𝑥 ⟩ + 1) · (

〈
𝐾𝑦

〉
+ 1) + 1 ≥ 0. ■

6. Square container

Recall from Lemma 2.17 that when we reduce to problems where the container is a polygon,
the resulting container is 4-monotone (for the definition of 4-monotone, see Definition 2.16).
Let I1 be an instance of a packing problem where the container 𝐶 := 𝐶(I1) is a 4-monotone
polygon. We show how to make a reduction from Pack[P → ,M] to Pack[P → □,M]. We
will use the reduction for the problem Pack[ → , ] and obtain that Pack[ → □, ] is
∃R-hard. Likewise, we will use the reduction for the problem Pack[ → , ] (where we use
polygonal gramophones as curvers) and get that Pack[ → □, ] is ∃R-hard. In conclusion, we
aim at proving the following theorem.

THEOREM 6.1. Given an instance I1 of Pack[P → ,M] where P ∈ { , } andM ∈ { , },
we can in polynomial time compute an instance I2 of Pack[P → □,M] such that I1 is feasible if
and only if I2 is feasible.

Most of the remaining part of this section is devoted to the proof of this theorem. We show
that the instance I1 can be reduced to an instance I2 where the container is a square 𝑆 with
corners 𝑏1𝑏2𝑏3𝑏4. To this end, we introduce some auxiliary pieces that can essentially be placed
in only one way in 𝑆. We call these new pieces the exterior pieces, whereas we call the pieces
of I1 the inner pieces. The empty space left by the exterior pieces is the 4-monotone polygon 𝐶
which act as the container 𝐶 of I1. We scale down the container 𝐶 and the inner pieces so that 𝐶



70 / 78 M. Abrahamsen, T. Miltzow, and N. Seiferth

fits in an 𝜀 × 𝜀 square in the middle of 𝑆, for a small value 𝜀 = Θ(1) to be defined shortly. Since
the original container 𝐶 has size 𝑂(𝑛4) × 𝑂(𝑛), we scale it down by a factor of 𝑂(𝑛4).

An example of the construction can be seen in Figure 49, where only the exterior pieces
are shown. Our construction is parameterized by a number 𝜀 > 0, and the container 𝑆 is the
square [0, 1 + 𝜀] × [0, 1 + 𝜀]. The blue pieces 𝐵1, 𝐵2, 𝐵3, 𝐵4 are independent of 𝜀, but the green,
turquoise, and orange pieces depend on 𝜀. Only the exterior pieces are shown, but the full
instance I2 does also include the inner pieces, which are intended to be packed in 𝐶. Each green
piece 𝐺𝑖 has a pair of corners 𝑐𝑖 , 𝑑𝑖 of interior angle 𝛼𝑖 such that 𝛼𝑖 ≠ 𝛼 𝑗 for 𝑖 ≠ 𝑗. In reality,
these angles 𝛼𝑖 are only slightly less than 𝜋/2, so that all the eight segments from a point 𝑐𝑖 or 𝑑𝑖
to the closest corner 𝑏 𝑗 are almost equally large. The angles 𝛼𝑖 are independent of 𝜀 and the
instance I1.

Each orange piece is a trapezoid, and edges of the orange pieces form the boundary of 𝐶.
At the opposite end of the pieces, they meet the green or turquoise pieces. To make sure that
they are placed in the right order, they have unique angles so that fingerprinting can be used to
argue about their placement. This will be explained in more detail in the end of this section.

We denote the placement of the exterior pieces shown in Figure 49 to be canonical. We
also define the placements we get from the figure by sliding the orange and turquoise pieces
towards 𝐶 to be canonical. We aim at proving the following lemma.

LEMMA 6.2. For a sufficiently small constant 𝜀 > 0, the following holds. For all valid placements
of the pieces in I2, the exterior pieces have a canonical placement.

It follows from the lemma that I1 has a solution if and only if I2 has one, so that the
problems are equivalent under polynomial time reductions.

The first step in proving Lemma 6.2 is to prove that the blue and green pieces, up to a
rotation, can only be placed in the canonical way, i.e., even when we disregard the turquoise
and orange pieces and the inner pieces. To prove this, we consider the situation when 𝜀 gets
very small, as shown in Figure 50 (left), so that the blue and green pieces cover almost all of 𝐶.
Then all the turquoise and orange pieces are skinny, and the 4-monotone polygon 𝐶 is very
small. When changing 𝜀, we keep all angles constant and the blue pieces constant, and 𝐶 is
scaled appropriately so that it fits in the central square of size 𝜀 × 𝜀 (this square is drawn with
dashed segments in Figure 49). We will eventually scale the pieces from I1 so that they fit in
a square of size 𝜀 × 𝜀. Since they originally fit in a container of size 𝑂(𝑛4) × 𝑂(𝑛) and 𝜀 is a
constant, this scaling is polynomial and thus allowed in our reduction.

LEMMA 6.3. If 𝜀 > 0 is a sufficiently small constant, the canonical placement is the only way
to place the blue and green pieces into 𝑆, i.e., even when the turquoise and orange pieces and the
inner pieces do not have to be placed. (When rotations are allowed, the three rotations of this
packing by angles 𝜋/2, 𝜋, 3𝜋/2 are also possible.)
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Figure 49. An example of the instance we get from the reduction using a square container for a given
4-monotone polygon 𝐶. In reality, the angles 𝛼 𝑖 are just slightly less than 𝜋/2, and all the eight segments
from a point 𝑐𝑖 or 𝑑𝑖 to the closest corner 𝑏 𝑗 have length almost 1/2. Color codes: 𝐵1, . . . , 𝐵4 are blue,
𝐺1, . . . , 𝐺4 are green, 1 is turquoise, 2 is orange.
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Figure 50. Left: The situation from Figure 49 in the limit 𝜀 = 0. Right: The canonical placement of the
green and blue pieces. For some sufficiently small 𝜀, 𝑄𝑚 must be the shown placement. We have four
alignment segments ℓ1, ℓ2, ℓ3, ℓ4.

PROOF . Suppose for the purpose of contradiction that for arbitrarily small 𝜀 > 0, there are
other ways in which the eight pieces can be placed. For every𝑚 ∈ N, let𝑄𝑚 be such a placement
for some 𝜀 ∈ (0, 1/𝑚). Recall that the blue pieces are independent of 𝜀, and note that as𝑚 −→ ∞,
the shape of the green pieces converge to the pieces shown in Figure 50 (left). Note that the
pieces are compact sets in the plane, and recall that the Hausdorff distance turns the set of non-
empty compact sets into a compact metric space in its own right. By passing to a subsequence,
we may therefore assume that for each piece 𝑝, the placement of 𝑝 according to 𝑄𝑚 is likewise
converging with respect to the Hausdorff distance.

We are going to apply the Single Fingerprint Lemma 3.2 to the corner 𝑏1 of the square
container 𝑆, and we want to prove that in the limit placement, a right corner of a blue piece
coincides with 𝑏1. For the following consider the notation of Lemma 3.2. We define the triangle𝑇
so that 𝑥 ∈ 𝑏1𝑏4, 𝑦 = 𝑏1, and 𝑧 ∈ 𝑏1𝑏2, and we set 𝑢 := 0. Choose 𝜎 so small that the eight blue
and green pieces have the unique angle property. We get that a blue piece must be placed such
that one of its right corners 𝑣 is within distance 𝑂

(√︁
𝜇/𝜎

)
from 𝑏1. Now, as 𝑚 −→ ∞, 𝜇 gets

arbitrarily small, and therefore we get that 𝑣 coincides with 𝑏1 in the limit.
We likewise get that corners with right angles of the other blue segments are placed at the

other corners 𝑏2, 𝑏3, 𝑏4 of 𝑆.
Conceivably, the blue pieces can be placed incorrectly in two ways: (i) their cyclic order

around the boundary of 𝑆 can be different from 𝐵1, 𝐵2, 𝐵3, 𝐵4 and (ii) one of the right corners 𝑒𝑖
which is supposed to be placed in the interior of 𝑆 can be placed at a corner of 𝑆. Due to the
difference in the angles 𝛼1, . . . , 𝛼4, it is clear that in each of these cases, the green pieces cannot
be placed. Hence, the pieces must be placed as shown in Figure 50 (left) in the limit.

We conclude that by choosing 𝑚 sufficiently large (and thus 𝜀 sufficiently small), the
difference between each piece of 𝑄𝑚 and the packing of Figure 50 (left) can be made arbitrarily
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Figure 51. Left: The red segments show the parts of the alignment segments that is occupied by the
pieces 𝐵1 and 𝐺3. Right: The fat red segments show the parts of the alignment segment ℓ3 that is
occupied by the piece 𝐺3 in three different situations. The thin red segments are the parts occupied in
the preceding situations. First is shown the canonical situation from Figure 50 (right). The middle
situation shows that as 𝐺3 is rotated, it occupies more. The last situation shows that when 𝐺3 is
translated, it occupies even more.

small. We now prove that if the difference is sufficiently small, the placement 𝑄𝑚 must be the
canonical placement. Intuitively, this means that the canonical placement is “locked” in the
sense that it is not possible to move the pieces just a little bit and obtain another valid placement.

In order to argue about the precise placement, we make an alignment argument using
four alignment segments ℓ1, ℓ2, ℓ3, ℓ4 simultaneously. For each edge of 𝑆, we have an alignment
segment ℓ𝑖 parallel to and close to the edge, as shown in Figure 50 (right). For each of the eight
blue and green pieces 𝑝, we measure how much 𝑝 occupies of each alignment segment, and
we take the sum of all these measures and show that it is strictly minimum in the canonical
placement. In that placement, the segments are fully covered by the pieces, which means that
there cannot be any other placement since they would occupy more of the segments than what
is available.

Note that as we consider a placement that is close to the canonical placement, we get that
the blue piece 𝐵1 only intersects the segments ℓ1 and ℓ2, and the other blue pieces likewise only
intersect two segments each. Each green piece 𝐺𝑖 only intersects ℓ𝑖 . We now define the occupied
parts of the alignment segments as follows, see Figure 51 for an illustration. Each green piece 𝐺𝑖
occupies the part 𝐺𝑖 ∩ ℓ𝑖 of the segment ℓ𝑖 and nothing of the other segments. The piece blue
piece 𝐵1 occupies the part of ℓ1 from the upper endpoint of ℓ1 to the lowest point in 𝐵1 ∩ ℓ1.
Similarly, 𝐵1 occupies the part of ℓ2 from the right endpoint to the leftmost point in 𝐵1 ∩ ℓ2.
Each of the other pieces 𝐵2, 𝐵3, 𝐵4 occupies parts of the two segments it intersects, defined in
the analogous way. It follows that the parts of a segment ℓ𝑖 occupied by two different pieces are
interior-disjoint: This is trivial for the parts covered by the green pieces, but a blue piece 𝐵 𝑗 can
also occupy parts that it does not cover close to the boundary of 𝑆. However, these parts of the
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Figure 52. The fat red segments show the parts of the alignment segments ℓ1 and ℓ2 that are occupied
by a piece in three different situations. The thin red segments are the parts occupied in the preceding
situation.

alignment segments are close to the corner 𝑏 𝑗 , and since the constructed placement is close to
canonical, the other pieces are far away, so they cannot cover anything close to the corner 𝑏 𝑗 .

Let 𝐿 be the sum of lengths of the occupied parts. Since the occupied parts are interior-
disjoint, we get that 𝐿 is at most 4 · (1+𝜀), i.e., the sum of lengths of ℓ1, . . . , ℓ4. We now show that 𝐿
has a strict local minimum in the canonical placement. To this end, we observe that starting
with the canonical placement, any small movement of one of the pieces makes 𝐿 increase. This
is seen for a green piece 𝐺3 in Figure 51 (right). For a blue piece, consider the blue piece in
Figure 52. First is shown the canonical placement. The middle figure shows a situation where
the piece is rotated slightly while keeping it is far up and to the right as possible. We see that
it occupies more of both alignment segments. The last situation shows that when the piece is
translated to the left, the part occupied of ℓ2 increases as much as the translation, while the part
occupied of ℓ1 slightly decreases (slightly since the piece has been only slightly rotated and the
angles 𝛼𝑖 are close to 𝜋/2). In total, the piece occupies more of ℓ1 and ℓ2. The occupied amount
likewise increases when the piece is translated down. It then follows that moving the piece
from the canonical placement by any small movement (rotation and translation combined) will
strictly increase the occupied amount of the alignment segments.

To sum up, choosing 𝑚 sufficiently big, the packing 𝑄𝑚 can be made arbitrarily close to the
canonical packing, but this implies that it must be identical to the packing, as it would otherwise
occupy more of the alignment segments ℓ1, . . . , ℓ4 that what is possible. Hence, when 𝜀 is small
enough, the eight blue and green pieces can only be placed in the canonical way. ■

To finish the proof of Theorem 6.1, it remains to argue about the fixed placement of the
orange and turquoise pieces. The use of fingerprinting and aligning used here is similar to how
we argued about the gadgets. We consider the piece 𝐺3 as an example, and refer to Figure 53 for
an illustration of the process. We fix the pieces in layers, so that there are a constant number of
pieces in each layer. We first fingerprint the pieces touching 𝐺3 in the canonical packing. We
then align them. This may leave a bit of empty space to the right of 𝐺3 and to the left of the
orange and turquoise pieces, but that is allowed in the canonical placements, and the empty
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Figure 53. Left: Fixing the alignment of the first layer of pieces. The three pieces are fingerprinted and
then aligned. The empty space between 𝐺3 and the three pieces is so small that no piece can fit in
there. Right: The three layers which together fix all the orange and turquoise pieces. Note that the
empty space between the exterior pieces leaves less room in 𝐶 for the inner pieces (refer to Figure 49).

space will be too small for any piece to fit there. We then fingerprint the pieces touching the
first turquoise piece, and repeat. This leads to a canonical placement of the exterior pieces,
proving Lemma 6.2.

Recall that the (unscaled) instance I1 has 𝜇 = Θ(𝑛−296) and size 𝑂(𝑛4) × 𝑂(𝑛). We scale it
down to be contained in a square of size 𝜀 × 𝜀, where 𝜀 = Θ(1), so we get that the slack of our
created instance I2 is 𝜇 = Θ(𝑛−304), which is polynomial. The reason that we use the turquoise
pieces is that if instead all orange pieces were adjacent to the green pieces, we would need to
fingerprint a superconstant number of pieces at once, and then we would need 𝜇 to be smaller
than polynomial, as mentioned in Section 2.

As mentioned above, the empty space to the left of the orange and turquoise pieces sticking
out from 𝐺3 is too small that any pieces can fit there. We can therefore without loss of generality
slide the pieces to the left so that they create all the edge-edge contacts shown in Figure 49.
Similarly, those sticking our from 𝐺4 can be pushed down, etc. After pushing all the orange and
turquoise pieces towards their green piece, the empty area left for the inner pieces is exactly
the container 𝐶. We conclude that there is a solution to the created instance I2 with a square
container if and only if there is a solution to the given instance I1, and Theorem 6.1 has been
proven. We then have the following corollary.

COROLLARY 2 .18. The problems Pack[ → □, ] and Pack[ → □, ] are ∃R-hard.
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