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Abstract

In this paper, we consider a randomized greedy algorithm for independent sets in r-uniform
d-regular hypergraphs G on n vertices with girth g. By analyzing the expected size of the
independent sets generated by this algorithm, we show that α(G) ≥ (f(d, r)− ǫ(g, d, r))n, where
ǫ(g, d, r) converges to 0 as g → ∞ for fixed d and r, and f(d, r) is determined by a differential
equation. This extends earlier results of Gamarnik and Goldberg for graphs [8]. We also prove
that when applying this algorithm to uniform linear hypergraphs with bounded degree, the size
of the independent sets generated by this algorithm concentrate around the mean asymptotically
almost surely.

KEYWORDS: Randomized greedy algorithm, independent sets, hypergraphs with large girth.

1 Introduction

A hypergraph is a pair (V,E) where V is a set and E is a family of nonempty subsets of V . The
x ∈ V are called vertices and the e ∈ E are called edges. We use the notations v(G) = |V (G)|,
e(G) = |E(G)|. A hypergraph is called r-uniform if all edges have size r. A linear hypergraph is a
hypergraph (V,E) such that for any distinct edges e, f ∈ E, |e ∩ f | ≤ 1. The degree of a vertex v,
denoted by d(v), is the number of edges that contains it. A hypergraph is d-regular if all vertices
have degree d. An independent set of a hypergraph G is a subset of V (G) which does not contain
any edge of G. The maximum size of an independent set in G is called the independence number

of G, denoted α(G).

In this paper, we study a natural randomized greedy algorithm for finding independent sets in
hypergraphs. The algorithm iteratively selects a vertex uniformly randomly from all remaining
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vertices of the hypergraph and adds it to the independent set so far, and then deletes all remaining
vertices that form an edge with the set of selected vertices, and repeat until no vertices remain.
The independent set generated by this algorithm for a hypergraph G is denoted I(G).

1.1 Independent sets in graphs

Turán’s Theorem [14] shows that an n-vertex graph with average degree d has independence number
α(G) ≥ n/(d+ 1), with equality only for a disjoint union of cliques Kd+1. For triangle-free graphs
G, Ajtai, Komlós and Szemerédi [2] improved this bound by a factor of order log d, and Shearer [12]
gave a further improvement:

Theorem 1. Let G be an n-vertex graph triangle-free of average degree d ≥ 2. Then

α(G) ≥ d log d− d+ 1

(d− 1)2
· n. (1)

The girth of a graph containing a cycle is the length of a shortest cycle in the graph. For graphs
with high girth, Shearer [13] improved (1), and Lauer and Wormald [9] showed that there exist a
function δ = δ(g) such that limg→∞δ(g) = 0 and if G is a d-regular graph of girth g, then

α(G) ≥ 1

2
(1− (d− 1)−

2
d−2 )n− δn. (2)

By analyzing the performance of the greedy algorithm, Gamarnik and Goldberg [8] prove the same
bound, with an explicit form for δ. It is convenient to let

ǫ = ǫ(d, g) =
d(d − 1)⌊

g−3

2
⌋

(⌊g−1
2 ⌋)!

. (3)

Note that for each fixed d, ǫ(d, g) → 0 as g → ∞.

Theorem 2. Let integers d ≥ 3 and g ≥ 4, and let G be a d-regular graph on n vertices with girth

g, and let I be the independent set generated by the greedy algorithm. Then

(1− (d− 1)−2/(d−2)

2
− ǫ

)

n ≤ E[|I|] ≤
(1− (d− 1)−2/(d−2)

2
+ ǫ

)

n, (4)

The bounds are effective when d is fixed and g is large and, in particular, Theorem 2 shows

α(G) ≥
(1− (d− 1)−2/(d−2)

2
− ǫ

)

n. (5)

We also observe that when g is sufficiently large relative to d, this bound agrees with (1) asymp-
totically as d → ∞, since

(d− 1)−2/(d−2) = exp

(

−2 log(d− 1)

d− 2

)

= 1− 2 log(d− 1)

d− 2
(1 + od(1)),

where od(1) here represents a function of d that converges to zero as d → ∞. When we say
a function f(x) is asymptotic to g(x) as x → ∞(which is abbreviated f ∼ g), it means that
limx→∞ f(x)/g(x) = 1.
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1.2 Independent sets in hypergraphs

For (r + 1)-uniform hypergraphs with average degree d, Caro and Tuza [5] showed that

α(G) ≥ d!
∏d

i=1(i+
1
r )

· n. (6)

The same bound can also be obtained by extending the Caro-Wei [4] [15] bound for independent
sets in graphs: taking a random ordering of the vertices of the hypergraph, let I be the set of
vertices v such that for every edge e containing v, v is not the smallest vertex in e. Then it can be
shown via elementary combinatorial methods that

E[|I|] ≥
∑

v∈V

d!
∏d

i=1(i+
1
r )

=
d!

∏d
i=1(i+

1
r )

· n. (7)

The same algorithm can be implemented via the following random process, which provide a dif-
ferent (and possibly easier) way to analyze the outcome (see for example in Dutta, Mubayi and
Subramanian [7]):

1. Equip each vertex with i.i.d. weight from the uniform distribution on [0,1]. Then with prob-
ability 1, all vertices will have distinct weights.

2. Select all the vertices that are not the smallest-weighted vertex in any edge that contains it.
These vertices form an independent set.

If we select vertices in a more careful way – iteratively select the vertex with largest weight, i.e.,
select the vertex with largest weight, delete vertices that form an edge with the vertices selected thus
far, and repeat – then this random process will be equivalent to the randomized greedy algorithm.
In any case, a computation shows

E[|I|] ≥ n

∫ 1

0
(1− xr)ddx (8)

which gives (7). These bounds are asymptotic to Γ(1 + 1
r )nd

− 1
r as d → ∞, where Γ here is the

well-known gamma function that extends factorial function to complex numbers. In this paper, we
consider this algorithm in uniform hypergraphs of large girth.

To define girth in hypergraph, we first need to define what is a cycle in hypergraph. There are
many different ways to define cycle in hypergraph–see, e.g., a talk by Sárközy [11]. Here we
chose to work with the Berge-cycle. For k ≥ 3, a Berge k-cycle is an r-uniform hypergraph
with k edges e1, e2, . . . , ek such that there exist distinct vertices v1, v2, . . . , vk such that {vk, v1} ∈
e1, {v1, v2} ∈ e2, . . . , {vk−1, vk} ∈ ek. When k = 2, this corresponds to v1, v2 ∈ e1 ∩ e2. The girth of
a hypergraph containing a Berge cycle is the smallest g such that the hypergraph contains a Berge
g-cycle. In particular, the girth of a non-linear hypergraph is 2. Ajtai, Komlós, Pintz, Spencer
and Szemerédi [1] established the following lower bound for (r+1)-uniform hypergraphs with girth

g ≥ 5, which improves (7) by a factor of order (log d)
1
r .

Theorem 3. For integer r ≥ 1, real number d sufficiently large and integer n sufficiently large, let

G be an n-vertex (r + 1)-uniform hypergraphs with average degree d and girth at least 5, then

α(G) ≥ 0.36 · 10− 5
r

(

log d

rd

)
1
r

n. (9)
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Based on this theorem, Duke, Lefmann and Rödl [6] showed that the same bound(with different
constant) holds for linear hypergraphs.

1.3 Main Theorem

In this paper, we extend the ideas of Gamarnik and Goldberg [8] to hypergraphs. First, it is
convenient to define the following: Let u(d, r) be the only positive real number that satisfies the
following equation:

∑

n≥0

(

n+ d− 2

d− 2

)

u(d, r)rn+1

rn+ 1
= 1. (10)

Define

ǫ = ǫ(g, d, r) =
d(d − 1)⌊

g−3

2
⌋

r
∑⌊ g−1

2
⌋

k=1 (k + 1
r )
. (11)

Our main theorem is as follows:

Theorem 4. For any integers r ≥ 1, d ≥ 2 and g ≥ 4, let G be an (r + 1)-uniform d-regular
hypergraph with n vertices and girth g, let I be the independent set of G generated by the greedy

algorithm. Let

f(d, r) = u(d, r)− u(d, r)r+1

r + 1
. (12)

Then

(f(d, r)− ǫ)n ≤ E[|I|] ≤ (f(d, r) + ǫ)n, (13)

In particular, due to the form of the quantity ǫ = ǫ(g, d, r), this theorem is effective for fixed d and
large g, and shows

α(G) ≥ (f(d, r)− ǫ)n. (14)

For r = 1, this coincides with Theorem 2. We prove in Appendix A that as d → ∞,

f(d, r) ∼
( log d

rd

)
1
r
, (15)

and so if g is large enough relative to d, then this slightly improves the constant in (9) asymptotically
as d → ∞.

Our second result shows that the size of the independent set generated by the greedy algorithm
concentrate around its mean asymptotically almost surely for linear hypergraphs with bounded
degree (i.e. hypergraphs that are not necessarily regular):

Theorem 5. For any integers r ≥ 1 and d ≥ 2, let G be an (r+1)-uniform linear hypergraph with

maximum degree d on n vertices, I(G) be the independent set generated by the greedy algorithm,

then for any positive function b(n) with b(n) → ∞ as n → ∞, we have

P[||I(G)| − E[|I(G)|]| > √
nb(n)] → 0, as n → ∞.
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The rest of this paper is structured as follows. In Section 2, we introduce influence-blocking hyper-

graphs and bonus function of hypergraphs. They are originally notions for graphs from Gamarnik
and Goldberg [8], which are generalized to notions for hypergraphs here. In Section 3, we prove
Theorem 4 by using the property of influence-blocking hypergraphs to reduce the problem of esti-
mating E[|I(G)|] to a local problem on a rooted hypertree, and then using the bonus function of
hypergraphs to establish a differential equation. In Section 4, we use second moment method to
prove Theorem 5. In the appendix, we present the asymptotic analysis of the quantity f(d, r) from
Theorem 4.

2 Preliminaries

Gamarnik and Goldberg [8] introduce two notions for graphs, the influence-blocking subgraph and
bonus function. In this section, we generalize these notions to hypergraphs and discuss their prop-
erties. A hypertree is a linear hypergraph with no Berge cycle, and a rooted hypertree is a hypertree
in which a special vertex called the root is singled out. In summary, we show that the performance
of the greedy algorithm on hypergraphs with large girth is locally similar to its performance on a
rooted hypertree – note that if a hypergraph has high girth, then for each vertex, its neighbourhood
within finite distance looks like a hypertree. Hence, if we can show that the event of a vertex being
selected into the independent set is mostly dependent on its neighbourhood within finite distance,
then we can simplify the analysis of each vertex into the analysis of the root of a rooted tree.
Then we analyze the probability of the root of a rooted hypertree being selected by the randomized
greedy algorithm. For ease of analysis, we consider an equivalent way to do the randomized greedy
algorithm as follows:

1. Equip each vertex with i.i.d. weight from the uniform distribution on [0, 1]. Then with
probability 1, all vertices will have distinct weights.

2. Iteratively select the vertex with largest weight from all remaining vertices of G, and add it
to the independent set so far, and then delete all remaining vertices that form an edge with
the selected vertices, and repeat until no vertices remain.

The strategy is to analyze the probability of each vertex being selected into the independent set.

2.1 Influence-blocking hypergraphs

Garmarnik and Goldberg [8] introduce influence-blocking subgraphs; here we extend this notion to
hypergraphs. Suppose we already applied the first step of the greedy algorithm on G. That is, the
vertices of G are now equipped with distinct weights. Let v be a vertex of G, e be an edge of G
such that e contains v. We say v defeats e if there is another vertex v′ in e such that the weight
of v′ is smaller than the weight of v. That is, v is not the smallest weighted vertex in e. Observe
that if v defeats all the edges that contains it, then v must be selected into I(G), since it cannot
be deleted according to the rule of the algorithm. In this case, the weight of any other vertex that
is not in the neighbourhood of v will not influence the behaviour of v. This phenomenon can be
generalized to sub-hypergraphs, which gives us the following definition:

5



Definition 1. Let G be a hypergraph whose vertices are equipped with distinct weights. An induced

sub-hypergraph H of G is called an influence-blocking hypergraph if for every vertex v ∈ V (H),
and e ∈ E(G)\E(H) with v ∈ e, v is not the vertex in e with smallest weight.

If G is a hypergraph whose vertices are already equipped with distinct weights, then we also let I(G)
denote the independent set of G generated by applying the second step of the greedy algorithm
to G. Let v be a vertex of G, such that v 6∈ I(G). If e is an edge of G, such that v ∈ e and
e ⊂ v ∪I(G), then we say v is deleted by e. The first property of influence-blocking hypergraphs is
that the performance of the greedy algorithm inside this sub-hypergraph is not dependent on the
performance of the algorithm outside this sub-hypergraph. This phenomenon is described by the
following lemma, which is a straightforward modification of Lemma 5 in [8]:

Lemma 6. Let G be a hypergraph whose vertices are equipped with distinct weights. Let H be an

influence-blocking hypergraph of G. Then I(H) = I(G) ∩ V (H).

Proof. Let V (H) = {v1, v2, . . . , vm}, such that v1 > v2 > · · · > vm (where vi > vj means the weight
of vi is larger than the weight of vj). To prove the lemma, it suffices to show that vi ∈ I(H) if and
only if vi ∈ I(G), for all i such that 1 ≤ i ≤ m. We do that by induction. First, for i = 1, we have
v1 ∈ I(H). By the definition of influence-blocking hypergraph, v1 cannot be deleted by edges not
in H. Since v1 has the largest weight among all vertices of H, so it cannot be deleted by edges in
H either. Hence, we also have v1 ∈ I(G). This completes the base case. Now suppose 1 < i ≤ m,
and the argument holds for all integer less than i. If vi 6∈ I(H), then vi must be deleted by an edge
e ∈ E(H) such that e\vi consists of vertices whose weights are larger than the weight of vi. Then
by the inductive assumption, vi must be deleted by the same edge in the algorithm for G. Hence,
we have vi 6∈ I(G). If vi ∈ I(H), then vi cannot form an edge in H with vertices whose weights
are larger than the weight of vi. Hence, by inductive assumption, vi cannot be deleted by edges in
H. Also, by the definition of influence-blocking hypergraph, vi cannot be deleted by edges not in
H either. Therefore, we have vi ∈ I(G). This completes the inductive step, and hence the proof of
the lemma.

The second property of the influence-blocking hypergraphs is that any subset of vertices can be
extended to a unique minimal influence-blocking hypergraph, which is presented by the following
lemma, which is a straightforward modification of Lemma 3 in [8]:

Lemma 7. Let G be a hypergraph whose vertices are equipped with distinct weights. Let A be such

that A ⊂ V (G), then there exist a unique minimal influence-blocking hypergraph BG(A) of G such

that A ⊂ V (BG(A)). It can be simplified as B(A) if there is no ambiguity.

Proof. Pick a set of vertices VA as following. First, put all vertices of A into VA. Then, we
iteratively take edges that are not in A but whose smallest-weighted vertex is in A, and put all the
vertices of such edges into VA, and then repeat until no edge like this remains. Let B(A) be the
sub-hypergraph of G induced by VA. By definition, B(A) is an influence-blocking hypergraph of G,
and is contained in any influence-blocking hypergraph of G that contains A. Hence, it is minimal.
Also, by the process that it is generated, we can see that it is unique.

Definition 2. For any integers r, l ≥ 1, an (r+1)-uniform path of length l connecting v0 to vlr is a
hypergraph with vertices {v0, v1, . . . , vlr} and edges ek = {vkr, vkr+1, . . . , v(k+1)r} for 0 ≤ k ≤ l − 1.

6



If the vertices of a path are weighted and the smallest-weighted vertex in edge ek is vkr for all

0 ≤ k ≤ l − 1, then we say the weighted path is increasing from v0 to vlr.

Note that the definition of path here is different from the definition of a Berge path, which is defined
in a similar way as the Berge cycle.

The following lemma evaluate the probability that a path in a hypergraph is increasing when given
a random total order:

Lemma 8. For any integers r, l ≥ 1, the number of ways to assign {0, 1, . . . , lr} as distinct weights

to the vertices of an (r + 1)-uniform paths of length l from v0 to vlr so that it is increasing is

(lr + 1)!
∏l

k=1(kr + 1)
.

Hence, for an (r + 1)-uniform path P of length l, if each vertex is equipped with i.i.d. weight from

the uniform distribution on [0, 1], then

P[P is increasing from v0 to vlr] =
1

∏l
k=1(kr + 1)

. (16)

Proof. For simplicity, we only prove this for r = 2. In this case, we want to show that the number
of proper weight assignments for paths of length l is (2l)!! =

∏l
k=1(2k). The idea of the proof for

general case is exactly the same. Let al be the number of proper weight assignments for 3-uniform
paths of length l with distinct weights from {0, 1, . . . , 2l}. Let Wi be the weight of vi. We prove
al = (2l)!! by induction. First, for l = 1, W0 has to be 0, W2 can be either 1 or 2. So a1 = 2 = 2!!.
Now for l ≥ 2, suppose the lemma is true for l− 1. Then again, W0 has to be 0. W2 is less than all
Wi with i > 2, so W2 is at least the third smallest weight. As a result, W2 = 1 or 2. When W2 = 1,
W1 can be any number in {2, 3, . . . , 2l}, and all the other vertices form a 3-uniform increasing path
of length l − 1. So the number of proper weight assignments of this kind is (2l − 1)al−1. When
W2 = 2, W1 has to be 1, and all the other vertices form a 3-uniform increasing path of length l− 1,
the number of proper weight assignments of this kind is al−1. Hence, by inductive assumption, we
have al = 2lal−1 = 2l · (2l − 2)!! = (2l)!!. This completes the proof for r = 2.

For any vertex v and any integer h ≥ 1, let Nh(v) be the set of vertices w such that there exist
a path, as defined in Definition 2, connecting v to w, whose length is less or equal than h. When
h = 0, let N0(v) = v. The following lemma, which is a modification of Lemma 6 in [8], show that
for any vertex v, the probability that the minimal influence-blocking hypergraph containing v is
not a sub-hypergraph of Nh(v) converges to 0 as h → ∞.

Lemma 9. For any integers r ≥ 1 and d ≥ 2, let G be any (r + 1)-uniform linear hypergraph of

maximum degree d, and suppose that the vertices are equipped with i.i.d. weights from the uniform

distribution on [0, 1]. Then for any vertex v and any h ≥ 0,

P[B(v) 6⊂ Nh(v)] ≤
d(d − 1)h

r
∏h+1

k=1(k + 1
r )
.

Proof. For any vertex v there exist at most d(d−1)hrh distinct paths of length h+1 that connecting
v to some vertex in Nh+1(i)\Nh(i). By definition, B(v) 6⊂ Nh(v) if and only if at least one of these
path is increasing. So by applying a union bound and equation (16), we have

7



P[B(v) 6⊂ Nh(v)] ≤
d(d − 1)hrh
∏h+1

k=1(kr + 1)
=

d(d− 1)h

r
∏h+1

k=1(k + 1
r )
.

2.2 Bonus function of hypergraphs

To analyze the probability of the root of a rooted hypertree being selected into the independent
set, we use the following notion to establish a recursive equation, and hence by some analysis, a
differential equation.

Consider the following bonus function of hypergraphs, which is extended from the bonus function
of graphs introduced by Garmarnik and Goldberg [8]:

Definition 3. Let T be a rooted hypertree, whose vertices are equipped with distinct positive weights.

Let Wv be the weight of a vertex v, DE(v) be the set of descending edges of v and I be the indicator

function. Then the bonus function of hypergraphs ST : V (T ) → R is defined by

ST (v) =











Wv, v is leaf,

Wv

∏

e∈DE(v)

I(Wv > min
u∈e,u 6=v

{ST (u)}), otherwise.

Given a weighted rooted tree, the bonus function value of the root is exactly the weight of the root
if the root is selected by the greedy algorithm, and is 0 if the the root is not selected, as shown by
the following lemma:

Lemma 10. Let T be a rooted hypertree, whose vertices are equipped with distinct positive weights.

Let γ be the root of T , Wγ be the weight of γ, then we have

ST (γ) = WγI(γ ∈ I(T )).

Proof. We prove by induction on the height of the tree. When the height is 0, this lemma is true.
Now suppose T has height h > 0, and this lemma holds for all trees with height less than h. Let
ek, 1 ≤ k ≤ d, be all descending edges of the root γ. Then by definition of the bonus function, we
have

ST (γ) = Wγ

d
∏

k=1

I(Wγ > min
v∈ek,v 6=γ

{ST (v)}).

So it suffices to show that

d
∏

k=1

I(Wγ > min
v∈ek ,v 6=γ

{ST (v)}) = I(γ ∈ I(T )).

Let Tv be the subtree of T with root v, such that Tv contains only the edges descending from v. If
Wγ > minv∈ek ,v 6=γ{ST (v)} for all k such that 1 ≤ k ≤ d. For an arbitrary k, pick v ∈ ek, v 6= γ,
such that Wγ > ST (v), then there are two cases. Firstly, if Wγ < Wv, then we have ST (v) = 0. By
inductive assumption, this implies v 6∈ I(Tv). Then by Lemma 6, since Tv is an influence-blocking

8



hypergraph of T , we have v 6∈ I(T ). This means that γ will not be deleted by ek. Secondly, if
Wγ > Wv. This also means that γ will not be deleted by ek. This argument works for all 1 ≤ k ≤ d.
Therefore, γ ∈ I(T ).

On the other hand, if Wγ < minv∈ek ,v 6=γ{ST (v)} for some k, then Wγ must be the smallest-weighted
vertex in ek and v ∈ I(Tv) for all v ∈ ek, v 6= γ. Since Tv is an influence-blocking hypergraph of
T , by Lemma 6 we have v ∈ I(T ) for all v ∈ ek, v 6= γ. This implies that γ will be deleted by ek.
Therefore, γ 6∈ I(T ).

Let T (d, h) be the (r+1)-uniform rooted hypertree such that all non-leaf vertices have d descending
edges, and all leaves have depth h. Let T̃ (d, h) be the (r + 1)-uniform rooted hypertree such that
the root has d descending edges while all other non-leaf vertices have d− 1 descending edges, and
all leaves have depth h.

Let γ be the root of T (d, h). Apply the first step of the greedy algorithm to T (d, h), that is,
randomly assign weights to T (d, h). Let Fd,h be the distribution function of ST (d,h)(γ). That is,

Fd,h(x) = P[ST (d,h)(γ) ≤ x]. Similarly, let F̃d,h be the distribution function of ST̃ (d,h)(γ). That is,

F̃d,h(x) = P[ST̃ (d,h)(γ) ≤ x]. Note that by Lemma 10, we have

1− Fd,h(0) = P[γ ∈ I(T (d, h)] (17)

1− F̃d,h(0) = P[γ ∈ I(T̃ (d, h)] (18)

Also by definition of the bonus function of hypergraphs, Fd,h and F̃d,h satisfy the following recursive
equations for all x ∈ [0, 1]:

Fd,h(x) = 1−
∫ 1

x
P[ST (d,h)(γ) = Wγ |Wγ = t]dt = 1−

∫ 1

x
[1− (1− Fd,h−1(t))

r]ddt (19)

F̃d,h(x) = 1−
∫ 1

x
P[ST̃ (d,h)(γ) = Wγ |Wγ = t]dt = 1−

∫ 1

x
[1− (1− Fd−1,h−1(t))

r]ddt (20)

In order to get a differential equation, we need to show that Fd,h and F̃d,h converge as h → ∞. We
make use of the following lemma:

Lemma 11. For any x ∈ R and integer h ≥ 0, the following inequalities hold:

(−1)hFd,h(x) ≤ (−1)hFd,h+1(x) (21)

(−1)hFd,h(x) ≤ (−1)hFd,h+2(x) (22)

Proof. We prove inequality (21) by induction. First, when h = 0, by definition we have Fd,0(x) ≤
Fd,1(x). Now for h ≥ 1, suppose inequality (21) holds for h− 1. Replace h by h+1 in equality (19)
and consider its difference with the original equality, we have

Fd,h+1(x)− Fd,h(x) =

∫ 1

x

(

(1− (1− Fd,h−1(t))
r)d − (1− (1− Fd,h(t))

r)d
)

dt

Using this equation, we can check that when Fd,h(x) ≥ Fd,h−1(x), we have Fd,h+1(x) ≤ Fd,h(x);
and when Fd,h(x) ≤ Fd,h−1(x), we have Fd,h+1(x) ≥ Fd,h(x). Hence, by inductive assumption, we
have (−1)hFd,h(x) ≤ (−1)hFd,h+1(x). This completes the proof for inequality (21). Same reasoning
gives the proof for inequality (22).
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Corollary 12. There exist functions Fd,even(x) : R → [0, 1] and Fd,odd(x) : R → [0, 1] such that the

sequence of functions {Fd,2k(x)}k≥0 converges pointwise to Fd,even(x) and the sequence of functions

{Fd,2k+1(x)}k≥0 converges pointwise to Fd,odd(x), and Fd,even(x) ≤ Fd,odd(x) for all x ∈ R.

Proof. As a result of inequality (22), for any x ∈ R, the sequence {Fd,2k(x)}k≥0 is increasing and
the sequence {Fd,2k+1(x)}k≥0 is decreasing. Also, by inequality (21), both sequences are bounded.
Hence, by the Monotone Convergence Theorem [10], they must converge, which implies the existence
of Fd,even(x) and Fd,odd(x). The inequality can be obtained by considering the inequality (21) with
h = 2k and k → ∞.

Similar results as Lemma 11 and Corollary 12 for F̃d,h can also be obtained using the same idea,
and we omit the details.

3 Proof of Theorem 4

The following lemma, which is a modification of Theorem 7 in [8], provide an upper bound for
the difference between the probability that a vertex v in a hypergraph G is selected and the
probability that the root γ of a rooted hypertree is selected by the greedy algorithm, showing that
the performance of the greedy algorithm on G is locally similar to that on a hypertree.

Lemma 13. For any integers r ≥ 1, d ≥ 2 and g ≥ 4, let G be an (r + 1)-uniform d-regular
hypergraph with girth g. Let h0 = ⌊g−3

2 ⌋, T = T̃ (d, h) with h ≥ h0 +1, let γ be the root of T . Then

for every vertex v ∈ V (G),

|P[v ∈ I(G)]− P[γ ∈ I(T )]| ≤ d(d− 1)h0

r
∏h0+1

k=1 (k + 1
r )
. (23)

Proof. We apply the first step of greedy algorithm on G and T in the following way. We first
give vertices of G i.i.d. weights from the uniform distribution on [0, 1]. Observe that Nh0+1(v) is a
T̃ (d, h0 + 1) hypertree, so we can find an isomorphism f that maps Nh0+1(v) to Nh0+1(γ). Then
we give the vertices in Nh0+1(γ) the same weight as their coimage in Nh0+1(v). Finally we give all
remaining vertices in T i.i.d. weights from the uniform distribution on [0, 1]. Then we apply the
second step of greedy algorithm on both G and T to get I(G) and I(T ). In this setting, we have
the following estimate:

P[v ∈ I(G)] =P[v ∈ I(G),BG(v) ⊂ Nh0
(v)] + P[v ∈ I(G),BG(v) 6⊂ Nh0

(v)]

=P[γ ∈ I(T ),BT (γ) ⊂ Nh0
(γ)] + P[v ∈ I(G),BG(v) 6⊂ Nh0

(v)] (Lemma 6)

≤P[γ ∈ I(T )] + P[BG(v) 6⊂ Nh0
(v)].

This implies that

P[v ∈ I(G)]− P[γ ∈ I(T )] ≤ P[BG(v) 6⊂ Nh0
(v)]

≤ d(d− 1)h0

r
∏h0+1

k=1 (k + 1
r )
. (Lemma 9)

We complete the proof by repeating the reasoning above with the roles of P[v ∈ I(G)] and P[γ ∈
I(T )] reversed.

10



Using similar idea as in the proof above, we can also show that the following limits exist:

Lemma 14. For any fixed integer d, the limits limh→∞ P[γ ∈ I(T (d, h))] and limh→∞ P[γ ∈ I(T̃ (d, h))]
exist, where γ denote the root of the rooted hypertrees.

Proof. We only present the proof of the existence of limh→∞ P[γ ∈ I(T̃ (d, h))]. The proof of the
existence of limh→∞ P[γ ∈ I(T (d, h))] is similar and we omit the details. Let h, h′ be positive
integers with h′ > h. Using the same idea as in the proof of Lemma 13, we can show that

|P[γ ∈ I(T̃ (d, h))] − P[γ ∈ I(T̃ (d, h′))]| ≤ d(d− 1)h−1

r
∏h

k=1(k + 1
r )

→ 0 as h → ∞.

So we conclude that the sequence {P[γ ∈ I(T̃ (d, h))]}h≥1 is a Cauchy sequence and therefore has a
limit.

Now we are ready to show that Fd,h(x) and F̃d,h(x) converge, and hence get the differential equations
we need:

Lemma 15. there exist functions Fd(x) and F̃d(x)such that Fd,h(x) converges pointwise to Fd(x)
and F̃d,h(x) converges pointwise to F̃d(x) as h → ∞. Fd(x) and F̃d(x) satisfy the following equa-

tions:

Fd(x) = 1−
∫ 1

x
[1− (1− Fd(t))

r]ddt, (24)

F̃d(x) = 1−
∫ 1

x
[1− (1− Fd−1(t))

r]ddt. (25)

Proof. We only present the proof of the existence of Fd here. The proof of the existence of F̃d

is similar and we omit the details. By Corollary 12, there exist Fd,even(x) and Fd,odd(x) such
that Fd,2k(x) converges pointwise to Fd,even(x) and Fd,2k+1(x) converges pointwise to Fd,odd(x) as
k → ∞. Hence, to prove the existence of Fd, it suffices to show that Fd,even(x) = Fd,odd(x) for all
x ∈ R. By Lemma 14, limh→∞ P[γ ∈ I(T (d, h))] exists. Since Fd,h(0) = 1− P[γ ∈ I(T (d, h))], this
implies that limh→∞ Fd,h(0) exists. So we have

Fd,even(0) = lim
h→∞

Fd,h(0) = Fd,odd(0).

Now consider equation (19) with h = 2k, and let k go to infinity on both sides, and then use the
Dominated Convergence Theorem [10], we have

Fd,even(x) = 1−
∫ 1

x
[1− (1− Fd,odd(t))

r]ddt.

Similarly, we also have

Fd,odd(x) = 1−
∫ 1

x
[1− (1− Fd,even(t))

r]ddt.

Take the derivative on both sides and then take the difference of these two equations, we have

F ′
d,even(x)− F ′

d,odd(x) = [1− (1− Fd,odd(x))
r]d − [1− (1 − Fd,even(x))

r]d ≥ 0,

11



where the inequality comes from the fact that Fd,even ≤ Fd,odd by Corollary 12. So for any fixed
x ∈ [0, 1],

Fd,even(x) = Fd,even(0) +

∫ x

0
F ′
d,even(t)dt ≥ Fd,odd(0) +

∫ x

0
F ′
d,odd(t)dt = Fd,odd(x).

This combined with the inequality Fd,even ≤ Fd,odd, implies Fd,even = Fd,odd. This completes the
proof of the existence of Fd(x). Now consider equations (19) and (20), let h → ∞ and then use the
Dominated Convergence Theorem [10], we get the desired differential equations.

Lemma 16. For any integer d ≥ 3, let Gd(x) = 1 − Fd−1(x), then Gd(x) satisfies the following

equation:

1−
∑

n≥0

(

n+ d− 2

d− 2

)

Gd(x)
rn+1

rn+ 1
= x. (26)

Proof. By equation (24), we have

Gd(x) =

∫ 1

x
(1−Gd(t)

r)d−1dt.

Taking derivatives on both sides, we have

G′
d(x) = −(1−Gd(x)

r)d−1.

Let Hd(x) =
∑

n≥0

(

n+d−2
d−2

)

xrn+1

rn+1 , it is not hard to check that H ′
d(x) =

1
(1−xr)d−1 . So the equation

above is equivalent to
(Hd (Gd(x)))

′ = −1.

Solving this equation, we obtain

∑

n≥0

(

n+ d− 2

d− 2

)

Gd(x)
rn+1

rn+ 1
= −x+ C

Let x = 1, we have 0 = −1 +C, which implies C = 1. This completes the proof.

Lemma 17. For any integer d ≥ 3, let G̃d(x) = 1− F̃d(x), then we have the following equation:

G̃d(x) = Gd(x)−
Gd(x)

r+1

r + 1
(27)

Proof. By equation (25),

G̃d(x) =

∫ 1

x
(1−Gd(t)

r)ddt

Consider changing the variable in the integral by letting u = Gd(t). By equation (24), not hard to
see dt = − du

(1−ur)d−1 . Hence,

G̃d(x) = −
∫ Gd(1)

Gd(x)
(1− ur)du = Gd(x)−

Gd(x)
r+1

r + 1

12



Now we are ready to prove Theorem 4.

Proof of Theorem 4. Applying inequality (23), we have

|E[|I(G)|]
n

− P[γ ∈ I(T̃ (d, h))]| ≤ 1

n

∑

v∈V (G)

|P[v ∈ I(G)]− P[γ ∈ I(T̃ (d, h))]|

≤ d(d − 1)h0

r
∏h0+1

k=1 (k + 1
r )

Note that this inequality holds for all h ≥ h0 + 1. Let h → ∞, we have

|E[|I(G)|]
n

− lim
h→∞

P[γ ∈ I(T̃ (d, h))]| ≤ d(d− 1)h0

r
∏h0+1

k=1 (k + 1
r )
.

Let f(d, r) = limh→∞ P[γ ∈ I(T̃ (d, h))] = G̃d(0), then we have the required inequality (13). Let
u(d, r) = limh→∞ P[γ ∈ I(T (d− 1, h))] = Gd(0). By Lemma 16, we know that u(d, r) satisfy
equation (10). By Lemma 17, we have

f(d, r) = G̃d(0) = Gd(0)−
Gd(0)

r+1

r + 1
= u(d, r) − u(d, r)r+1

r + 1
.

This completes the proof.

4 Proof of Theorem 5

In section 2, we notice that vertices that are far away from each other are very likely “independent”.
More accurately, if two vertices u,v are far away from each other, then the indicator of the event
that u is selected and the indicator of the event that v is selected by the greedy algorithm have
small covariance. This phenomenon can also be used to give an upper bound for the variance of
the algorithm.

Lemma 18. For any integers r ≥ 1 and d ≥ 2, let G be an (r + 1)-uniform linear hypergraph on

n vertices with maximum degree d, then the variance satisfies:

Var[I(G)] ≤ 3d2r2er
2(d−1)3n. (28)

Proof. Let V (G) = {v1, v2, . . . , vn}, Xi = I(vi ∈ I(G)). Then

Var(I(G)) = Var(
n
∑

i=1

Xi)

=

n
∑

i=1

(E[X2
i ]− E[Xi]

2) +
∑

1≤i 6=j≤n

(E[XiXj ]− E[Xi]E[Xj ])

≤ n+
∑

1≤i≤n

∑

δ≥1

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj ]− E[Xi]E[Xj ]),

13



where the inequality uses the bound (E[X2
i ]−E[Xi]

2) ≤ 1. For any 1 ≤ i ≤ n, we consider the sum

∑

δ≥1

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj]− E[Xi]E[Xj ])

First, for any δ ≥ 3, let h = ⌊ δ−3
2 ⌋, and let Ai,h denote the event {B(vi) 6⊂ Nh(vi)}, Ac

i,h denote the
complement of the event Ai,h, that is {B(vi) ⊂ Nh(vi)}. This event is only determined by the weights
of vertices in Nh+1(vi). Notice that for every vj ∈ Nδ(vi)\Nδ−1(vi), Nh+1(vi) ∩Nh+1(vj) = ∅. So
Ac

i,h and Ac
j,h are independent. Then we have,

E[XiXj ] = P[vi ∈ I(G), vj ∈ I(G)]

= P[vi ∈ I(G), vj ∈ I(G), Ac
i,h ∩Ac

j,h] + P[vi ∈ I(G), vj ∈ I(G), Ai,h ∪Aj,h].

By Lemma 6 and the independence between Ac
i,h and Ac

j,h, we have

P[vi ∈ I(G), vj ∈ I(G), Ac
i,h ∩Ac

j,h] = P[vi ∈ I(B(vi)), vj ∈ I(B(vj)), Ac
i,h ∩Ac

j,h]

= P[vi ∈ I(B(vi)), Ac
i,h]P[vj ∈ I(B(vj)), Ac

j,h]

≤ E[Xi]E[Xj ].

On the other hand, by Lemma 9

P[vi ∈ I(G), vj ∈ I(G), Ai,h ∪Aj,h] ≤ P[Ai,h] + P[Aj,h]

≤ 2d(d − 1)h

r
∏h+1

k=1(k + 1
r )

Hence,

E[XiXj ]− E[Xi]E[Xj ] ≤
2d(d − 1)h

r
∏h+1

k=1(k + 1
r )

Since G has maximum degree d, we have |Nδ(vi)\Nδ−1(vi)| ≤ d(d− 1)δ−1rδ.
In particular, for odd integer δ ≥ 3, we have δ = 2h+ 3. So the sum

∑

odd δ≥3

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj ]− E[Xi]E[Xj ]) ≤
∑

h≥0

d(d− 1)2h+2r2h+3 2d(d − 1)h

r(h+ 1)!

=
2d2

d− 1

∑

h≥1

r2h(d− 1)3h

h!

≤ 2d2
∑

h≥1

r2h(d− 1)3h

h!

For even integer δ ≥ 3, we have δ = 2h+ 4. So the sum

∑

even δ≥3

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj]− E[Xi]E[Xj ]) ≤
∑

h≥0

d(d − 1)2h+3r2h+42d(d − 1)h

r(h+ 1)!

= 2d2r
∑

h≥1

r2h(d− 1)3h

h!
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For 1 ≤ δ ≤ 2, use the bound E[XiXj ]− E[Xi]E[Xj ] ≤ 1, we have

∑

1≤δ≤2

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj ]− E[Xi]E[Xj ]) ≤ 2d2r2

Combine the three inequalities above, we have

∑

δ≥1

∑

vj∈Nδ(vi)\Nδ−1(vi)

(E[XiXj ]− E[Xi]E[Xj ]) ≤ 2d2r2er
2(d−1)3

So the variance
Var(I(G)) ≤ n+ 2d2r2er

2(d−1)3n ≤ 3d2r2er
2(d−1)3n

Proof of Theorem 5. By Lemma 18, we know that for fix d and r, there exist a constant c such
that Var(I(G)) < cn. Hence, by Chebyshev’s Inequality we have

P[||I(G)| − E[|I(G)|]| > √
nb(n)] ≤ Var(|I(G)|)

b(n)2n
→ 0, as n → ∞.

Appendix A

We first collect some real number inequalities:

Proposition 19. Let n, r, d be positive integers. Then

1. For x ≥ 0,
∫ x

0
et

r

dt =
∑

n≥0

xrn+1

n!(rn+ 1)
(29)

2. For n ≤
√
d,

(

1 +
n

d

)n
< e

n2

d < e (30)

3. For y ≥ 0,
( y

n

)n
≤ e

y
e (31)

Let ud = limh→∞ P[γ ∈ I(T (d, h))] = u(d + 1, r). Note that ud can be viewed as the probability
of the root of T (d,∞) being selected by the greedy algorithm, while f(d, r) can be viewed as the
probability of the root of T̃ (d,∞) being selected by the greedy algorithm.

Proposition 20. f(d, r) ∼ ( log drd )
1
r as d → ∞.
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Proof. Let g(d, u) =
∑

n≥0

(n+d−1
n

)

urn+1

rn+1 . It is not hard to see that g is increasing with respect to

u. By Lemma 16, we have g(d, ud) = 1. Now for any ǫ > 0, let u = ((1r )
1
r + ǫ)( log dd )

1
r , we have

g(d, u) ≥
∑

n≥0

dn

n!

urn+1

rn+ 1

= d−
1
r

∑

n≥0

(ud
1
r )rn+1

n!(rn+ 1)

= d−
1
r

∫ ud
1
r

0
et

r

dt (by 29)

> d−
1
r

∫ (log d)
1
r [( 1

r
)
1
r +ǫ]

(log d)
1
r ( 1

r
)
1
r

et
r

dt

> d−
1
r (ǫ(log d)

1
r )e

log d
r

= ǫ(log d)
1
r .

This means that g(d, u) → ∞ as d → ∞, hence ud < [(1r )
1
r + ǫ]( log dd )

1
r when d is large enough.

On the other hand, for any ǫ > 0, let u = c( log dd )
1
r , where c = (1r − ǫ)

1
r , we have

g(d, u) ≤
∑

n≥0

(

e(n + d)

n

)n urn+1

rn+ 1

=
∑

n≥0

u

rn+ 1

( e

n
+

e

d

)n
(cr log d)n

When n ≥ 4cre log d, and d is large enough, we have

∑

n≥4cre log d

u

rn+ 1

( e

n
+

e

d

)n
(cr log d)n ≤ u

∑

n≥4cre log d

(

2e

4cre log d

)n

(cr log d)n

= u
∑

n≥4cre log d

(

1

2

)n

< c

(

log d

d

)
1
r

→ 0 as d → ∞.

When n < 4cre log d, and d is large enough, we have
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∑

n<4cre log d

u

rn+ 1

( e

n
+

e

d

)n
(cr log d)n < u

∑

n<4cre log d

(

1 +
n

d

)n
(

cre log d

n

)n

< ue
∑

n<4cre log d

(

cre log d

n

)n

(by 30)

< c

(

log d

d

)
1
r

e(4cre log d)ec
r log d (by 31)

= 4e2cr+1(log d)
r+1
r d−ǫ → 0 as d → ∞.

This means that g(d, u) → 0 as d → ∞, hence ud > (1r − ǫ)
1
r ( log dd )

1
r when d is large enough.

These estimates imply that ud ∼ ( log drd )
1
r , hence ud → 0 as d → ∞. Recall that by Theorem 4,

f(d, r) = u(d, r)− u(d, r)r+1

r + 1
= ud−1 −

ur+1
d−1

r + 1

Therefore, f(d, r) ∼ ( log drd )
1
r as d → ∞.
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