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Abstract. Gromov asked if the bi-invariant metrics on a compact Lie group are extremal
compared to any other metrics. In this note, we prove that the bi-invariant metrics on
a compact connected semi-simple Lie group G are extremal (in fact rigid) in the sense
of Gromov when compared to the left-invariant metrics. In fact the same result holds for
a compact connected homogeneous manifold G/H with G compact connect and semi-simple.
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1 Introduction

In [6], Gromov asks: are bi-invariant metrics on compact Lie groups extremal? (This is already
problematic for SO(5).) Here a Riemannian metric g on a differentiable manifold M is extremal
in the sense of Gromov (not to be confused with Calabi’s extremal metrics in Kähler geometry)
if any metric g′ on M with g′ ≥ g and Rg′ ≥ Rg must have Rg′ = Rg, where Rg, Rg′ denote
the scalar curvature of g, g′ respectively. The metric g is rigid in the sense of Gromov if in fact
g′ = g from the conditions above.

The first result of this type is [10] in which Llarull showed that the standard metric on Sn

is rigid. The work gives a positive answer to an earlier question of Gromov, which is motivated
by Gromov–Lawson’s famous work on the non-existence of positive scalar curvature metrics
on the torus [7], later extended to more general class of manifolds, namely the enlargeable
manifolds. In the same spirit, Llarull in fact proved that a metric on a compact manifold
admitting a

(
1,Λ2

)
-contracting map to Sn is rigid. Min-Oo discussed the extremality/rigidity

of hermitian symmetric spaces of compact type in [12]. The extremality/rigidity of complex
and quaternionic projective spaces was established by Kramer [8]. Later, Goette and Semmel-
mann [4] proved that compact symmetric spaces of type G/K with rk(G) − rk(K) ≤ 1 are
extremal (see also [3]). Then Listing improves Goette–Semmelmann’s result in [9], by weakening
the extremality condition.

Note that a Lie group with a bi-invariant metric is a symmetric space, but not of the types
considered above. In this short note, we present a partial positive answer to Gromov’s question.
Namely, we show that the bi-invariant metrics on a compact connected semi-simple Lie group G
are rigid among the left-invariant metrics. More generally, we show that the normal metrics

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA/Gromov.html
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on any compact connected homogeneous space G/H without torus factor are rigid among G-
invariant metrics on G/H.

Theorem 1. Let M = G/H be a compact homogeneous space, with G a compact connected semi-
simple Lie group. Then any bi-invariant metric (also known as normal homogeneous metric) g0
on G/H is rigid among the G-invariant metrics. In other words, if g is a G-invariant metric
on G/H such that g ≥ g0 and Rg ≥ Rg0, then g = g0.

As an immediate consequence, we have

Corollary 2. Any bi-invariant metric on a compact connected semi-simple Lie group is rigid
among the left-invariant metrics.

According to [11], if a connected Lie group admits a bi-invariant metric, it is isomorphic to
the product of a compact Lie group with an abelian one. The semi-simple condition rules out
the abelian factor. On the other hand, we have the famous result of Gromov–Lawson [7] and
Schoen–Yau [13, 14] which implies that the only metrics of nonnegative scalar curvatures on the
torus are the flat ones.

Remark 3. The extremal/rigid metrics discussed here have positive scalar curvature. On the
other hand, we would like to point out a related but different scalar curvature (local) extremality
for Kähler–Einstein metrics with negative scalar curvature [2]. It is an immediate consequence
of Theorem 1.5 in [2] that for a Kähler–Einstein metric g0 with negative scalar curvature on
a compact complex manifold with integrable infinitesimal complex deformations, any metric g
sufficiently close to g0 satisfying Rg ≥ Rg0 and Vol(g) ≤ Vol(g0) must have Rg = Rg0 (and g is
also Kähler–Einstein).

2 Preliminaries

Given a Riemannian manifold (M, g), we denote by Rg the scalar curvature of g. We recall
Gromov’s notion of extremal/rigid metrics.

Definition 4. A metric g0 on M is extremal (in the sense of Gromov), if any metric g on M
satisfying g ≥ g0 and Rg ≥ Rg0 must have identical scalar curvature, Rg = Rg0 ; g0 is said to be
rigid (in the sense of Gromov) if the conditions above imply that g = g0.

For a Lie group G, we denote by Ad(a) (a ∈ G) the adjoint action of G on its Lie algebra g,
and by ad(X) (X ∈ g) the induced adjoint action of g on itself. In particular,

ad(X)Y = [X,Y ], X, Y ∈ g.

A Lie group G is semi-simple if its Lie algebra g is semi-simple, i.e., its Killing form

K(X,Y ) = Tr(ad(X) ad(Y )), X, Y ∈ g

is nondegenerate. Clearly, if g is semi-simple, it has a trivial center. For a compact Lie group,
the semi-simple condition is equivalent to its Lie algebra having trivial center.

If a metric on G is both left-invariant and right-invariant, then it is called bi-invariant.
When G is compact, bi-invariant metrics always exist. Left-invariant metrics on G are in one-
to-one correspondence with inner products on its Lie algebra g. The following well known result
plays a crucial role in the proof of our main result.

Theorem 5 ([11, Lemma 7.2]). In the case of a connected group G, a left-invariant metric is
actually bi-invariant if and only if the linear transformation ad(X) is skew-adjoint with respect
to the corresponding inner product, for every X in the Lie algebra g of G.
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Now let M = G/H be a compact connected homogeneous space, where G is a compact
connected Lie group, H a closed subgroup, and the action of G on G/H is effective. Let h ⊂ g
be the Lie algebra of H. Denote by AdG the adjoint action of G on g and AdH = AdG |H
its restriction to H. Since AdH preserves h, it induces an action on g/h, which is equivalent
to the isotropy representation of H. A metric g on M = G/H is called G-invariant if it is
invariant under the left action of G. G-invariant metrics on G/H are naturally identified with
inner products on g/h which are invariant under the AdH action, see Proposition 3.16 in [1].
In particular, a bi-invariant metric on G gives rise to a G-invariant metric on G/H. The
corresponding metric on G/H, usually referred as a normal homogeneous metric on G/H in the
literature, will still be called bi-invariant here.

3 Proof of the theorem

Our proof relies crucially on a simple elegant formula for the scalar curvature for G-invariant
metrics, as well as another lemma, in [15]. We first recall this formula and the setup.

Let g0 be a bi-invariant metric on G; still denote by g0 the induced metric on G/H. Let
g = h + m be an AdH invariant decomposition orthogonal with respect to g0. Then G-invariant
metrics on G/H are identified with AdH -invariant inner products on m.

Let 〈·, ·〉0 be the AdH -invariant inner product on m corresponding to g0. Let 〈·, ·〉 be an
AdH -invariant inner product on m inducing a G-invariant metric g on G/H. Then, there is
a positive self-adjoint operator S on (m, 〈X,Y 〉0) commuting with the AdH -action such that

〈X,Y 〉 = 〈S(X), Y 〉0

for all X,Y ∈ m.
Since any eigenspace of S is AdH -invariant, there are AdH -invariant subspaces m1, . . . ,ms

of m such that

m = m1 ⊕ · · · ⊕ms (1)

in orthogonal decomposition with respect to 〈·, ·〉0; the action of AdH on each mi is irreducible,
and S(X) = λiX for all X ∈ mi, for some λ1, . . . , λs > 0. Consequently,

〈X,Y 〉 = λ1〈X1, Y1〉0 + · · ·+ λs〈Xs, Ys〉0,

for X = X1 + · · ·+Xs, Y = Y1 + · · ·+ Ys ∈ m decomposed with respect to (1). The metric g is
called diagonal with respect to the decomposition in (1).

For such metrics, there is a simple elegant formula for the scalar curvature; we refer the reader
to [15] for a more general discussion. Before we state this formula, let us point out the simplified
situation when M = G. Each mi in (1) is spanned by a basis vector whenever one chooses an
orthonormal basis of m = g consisting of eigenvectors of S. (Thus, such decompositions are by
no means unique.)

Let {Eα} be an orthonormal basis of (m, 〈 , 〉0) adapted to the decomposition (1). We write
[Eα, Eβ]m =

∑
γ C

γ
αβEγ for some real numbers

{
Cγαβ

}
that we call structural constants. Here

[ , ]m is the m-component of [ , ]. Set

Akij =
∑
α,β,γ

(
Cγαβ

)2
,

where the summation runs over Eα ∈ mi, Eβ ∈ mj , Eγ ∈ mk.
Let di = dimmi. Let B be the negative of the Killing form: B(X,Y ) = −K(X,Y ). Then

B(X,X) ≥ 0, with equality if and only if X is central. We define the real number bi by
B(X,Y ) = bi〈X,Y 〉0 for all X,Y ∈ mi. Note that bi = 0 if and only if mi is included in the
center of g. The following formula is equation (1.3) in [15].
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Lemma 6 ([15, equation (1.3)]). Let g be a G-invariant metric on G/H with a corresponding
decomposition (1) as described above. Then the scalar curvature of g is

Rg =
1

2

s∑
i=1

bidi
λi
− 1

4

s∑
i,j,k=1

Akij
λk
λiλj

.

The following lemma from [15] relates bidi to the structural constants. Let

Cmi,g0|h = −
h∑
i=1

ad(Zi) ◦ ad(Zi)

be the Casimir operator of the representation of h on mi, where {Z1, . . . , Zh} is an orthonormal
basis of (h, g0|h) and ad(Zi) should be interpreted as its restriction on mi. Since mi is AdH -
irreducible, Cmi,g0|h = ci Id for some constant ci ≥ 0. Moreover, ci = 0 if and only if AdH acts
trivially on mi.

Lemma 7 ([3, Lemma 1.5]). One has, for i = 1, . . . , s,

s∑
j,k=1

Akij = bidi − 2cidi.

Remark 8. Again let us look at the situation when M = G. In this case we choose an

orthonormal basis {Ei}ni=1 of g consisting of eigenvectors of S. Then [Ei, Ej ] =
n∑
k=1

CkijEk via the

structure constants Ckij . The decomposition (1) is given by mi = Span{Ei}, hence Akij =
(
Ckij
)2

.
Moreover ci = 0 for all i. Therefore, the two lemmas above yield

Rg =
1

4

n∑
i,j,k=1

(
Ckij
)2 [ 2

λi
− λk
λiλj

]
. (2)

This formula can also be deduced from Koszul’s formula via a direct computation.

Proof of Theorem 1. Since {Eα} is an orthonormal basis for (m, 〈·, ·〉0), and 〈·, ·〉0 is bi-
invariant, Cγαβ = 〈[Eα, Eβ], Eγ〉0 is skew-symmetric in all three indices by Theorem 5. Hence Akij
is symmetric in all three indices.

Now the extremal conditions 〈X,Y 〉 ≥ 〈X,Y 〉0 and Rg ≥ Rg0 yield λi ≥ 1 (i = 1, . . . , s) as
well as Rg −Rg0 ≥ 0. Lemmas 6 and 7 give

0 ≤ Rg −Rg0 =
1

2

∑
i

bidi
λi

(1− λi)−
1

4

∑
i,j,k

Akij

(
λk
λiλj

− 1

)

=
∑
i

cidi
λi

(1− λi)−
1

4

∑
i,j,k

Akij

[
λk
λiλj

+ 1− 2

λi

]
.

Since ci ≥ 0 and di > 0, each term in the first summation is less than or equal to zero, with
equality if and only if either ci = 0 or λi = 1.

For the second summation, we use the symmetry to rewrite it as

− 1

12

∑
i,j,k

Akij

[
λk
λiλj

+
λi
λjλk

+
λj
λkλi

− 2

λj
− 2

λi
− 2

λk
+ 3

]

= − 1

12

∑
i,j,k

Akij
λ2i + λ2j + λ2k − 2λiλj − 2λiλk − 2λkλj + 3λiλjλk

λiλjλk
.



Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces 5

For a fixed triple i, j, k, we consider the order of λi, λj , λk. Without loss of generality we can
assume that λk ≥ λj ≥ λi ≥ 1. Then the summand in the sum above can be re-organized as

λ2i + λ2j + λ2k − 2λiλj − 2λiλk − 2λkλj + 3λiλjλk

= (λi − λj)2 + (λk − λj)2 + λjλk(λi − 1) + λj(λk − λj) + 2λiλk(λj − 1) ≥ 0

with equality if and only if λk = λj = λi = 1.
But then all the inequalities become equalities. Hence, either ci = 0 or λi = 1 for each i, and,

at the same time, either Akij = 0 or λk = λj = λi = 1 for each (i, j, k). If λi > 1 for some i, then

ci = 0, and Akij = 0 for all j, k. Thus bi = 0 by Lemma 7. Therefore mi is in the center of g,
which contradicts the hypotheses. We conclude that λi = 1 for all i, and the result follows. �

We end with a couple of remarks.

Remark 9. From the proof, we see that if a bi-invariant metric g0 on G/H is not rigid among
the G-invariant metrics, then G/H must have a torus factor. Indeed, let z ⊂ g be the center.
If for some i, λi > 1, then mi ⊂ z. Decompose g = z + g′ and z = mi + k. Then h ⊂ k + g′. It
follows that G/H = T di × (K ×G′)/H.

Remark 10. It is interesting to note that the extremal conditions g ≥ g0 and Rg ≥ Rg0 can
not be changed to the opposite inequalities. In fact, there exist G-invariant metrics g such that
g < g0 and Rg < Rg0 . We illustrate the situation for M = G = SU(2).

The basis E1 =
√
−1σ1, E2 =

√
−1σ2, E3 =

√
−1σ3 of g in terms of the Pauli spin matrices

σ1, σ2, σ3 satisfies [E1, E2] = 2E3 as well as its cyclic permutations. We take g0 so that
〈X,Y 〉0 = 1

8B(X,Y ), with respect to which {E1, E2, E3} is orthonormal. Following the notations
in Remark 8, we choose g so that E1, E2, E3 are the eigenvectors with eigenvalues λ1 = λ2 =
λ < 1, and λ3 = 1/2, respectively. Then g < g0. On the other hand, by (2),

Rg −Rg0 =
1

4

3∑
i,j,k=1

(
Ckij
)2 [ 2

λi
− λk
λiλj

− 1

]
= − 1

λ2
+O

(
1

λ

)
,

as λ→ 0+. Thus, for λ sufficiently small, we have Rg < Rg0 .
Note that this represents the opposite rescaling of the standard sphere as compared to the

example of Berger’s sphere mentioned in [5, p. 34].
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