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A CONSTRUCTION OF SKT MANIFOLDS USING TORIC

GEOMETRY

HATICE COBAN, CAGRI HACIYUSUFOGLU, AND MAINAK PODDAR

Abstract. We produce infinite families of SKT manifolds by using methods of
toric geometry like the J-construction. These SKT manifolds are total spaces of
certain principal G-bundles over smooth projective toric varieties, where G is an
even dimensional compact connected Lie group.

1. Introduction

An SKT structure on a complex manifold is a generalization of the more familiar
notion of Kähler structure in the following precise sense. Consider a Hermitian
manifold E with Riemannian metric g and integrable complex structure J . Consider
a tangential connection ∇ on E which is compatible with the Hermitian structure
and define the associated torsion 3-tensor µ by

µ(A,B,C) = g(T (A,B), C) ,

where T denotes the torsion 2-form of ∇, and A, B, and C are arbitrary vector fields
on E.

Then M admits a unique Hermitian connection ∇ such that the torsion tensor
µ is totally skew symmetric. This connection is known as the KT (Kähler with
torsion) or Bismut connection. Bismut used it to prove a local index formula for the
Dolbeault operator when the complex manifold is not Kähler [2].

For the KT connection, we actually have

µ(A,B,C) = dF (JA,JB,JC) ,

where F denotes the fundamental 2-form defined by F (A,B) = g(JA,B). Note
that M is Kähler if dF = 0, or equivalently, if µ = 0. A KT connection is called
strong KT or SKT if dµ = 0 or equivalently, if ddcF = 0 (or ∂∂F = 0). Thus,
we may say that E admits an SKT structure if it admits a Hermitian metric whose
fundamental form is ddc-closed or, equivalently, ∂∂-closed. Such a metric is referred
to as an SKT metric.

SKT structures arise naturally in two dimensional sigma models with (4, 0) su-
persymmetry in physics [16]. They are also closely related to generalized Kähler
geometry (cf. [15, 14, 8]). A generalized Kähler structure is a pair of SKT struc-
tures with a certain compatibility condition.
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Various constructions and properties of SKT manifolds have been studied exten-
sively (cf. [11, 7, 9, 19]). In particular, Grantcharov et. al. [12] have given a
construction of SKT structures on the total space of torus principal bundles of even
rank, say 2k, over a complex Kähler manifold under the condition

2k∑

j=1

w2
j = 0 (1.1)

where wj ’s are certain characteristic classes (see Section 5). When the base manifold
of the principal bundle is of dimension 4, then the sufficient condition (1.1) may be
dealt with using the intersection form on the middle cohomology of the base. In
[12] some examples of SKT manifolds of dimension six are given using this principle.
However, the condition is not easy to verify in general. In fact, nontrivial torus
principal bundles that satisfy (1.1) seem to be relatively rare.

In these notes, we give infinite families of examples of nontrivial torus bundles over
manifolds of arbitrary dimension that satisfy the condition (1.1). Our main tools are
from toric geometry. We observe that (1.1) holds for certain torus bundles over every
Bott manifold. The main point is that these manifolds admit nontrivial line bundles
whose first Chern class has square zero. Moreover, some of these examples may be
used to produce an infinite family of examples by applying the J-construction in
toric geometry. Finally, using some results of [22], we produce more SKT manifolds
from each of the above examples by extension of structure group.

2. Smooth toric varieties

The theory of toric varieties and their topological counterparts are widely studied
and there are many good references like [10, 20, 5] etc. for them. The main purpose
of this section is to introduce some definitions and notations.

A complex toric variety X of complex dimension n is a (partial) compactification
of the algebraic torus T n

C
= (C∗)n, which admits a natural extension of the trans-

lation action of T n
C
on itself. We will only deal with toric varieties that are smooth

(nonsingular) and compact (complete). A projective toric variety is, of course, com-
pact. For a smooth toric variety, the action of T n

C
in a neighborhood of any fixed

point is the same, up to an automorphism, as its standard action on (C∗)n.
A key role is played in toric geometry by the T n

C
-invariant subvarieties of X of

complex codimension one, known as the torus invariant divisors. There are finitely
many of them and let these be D1, . . . , Dm. Under natural choice of orientations
induced by the complex structure, the stabilizer of such a divisor Di can be identi-
fied with a vector λi in the co-character lattice N ∼= Zn of complex one-parameter
subgroups of T n

C
. Topologists refer to λi as a (directed) characteristic vector. One

can form an n×m matrix

Λ = [λ1, . . . , λm]

with the characteristic vectors of the invariant divisors, in some fixed order, as
columns. Such a matrix will be called a characteristic matrix.
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We denote the coordinates of the characteristic vector λi by λji, 1 ≤ j ≤ n. Let
wi denote the first Chern class of the complex line bundle Li that corresponds to Di

under the divisor-line bundle correspondence. Then the classes w1, . . . , wm generate
the integral cohomology ring of the smooth toric variety X . The linear relations
among the wj ’s are encoded in the rows of the corresponding characteristic matrix.

Each characteristic vector λi generates a ray in N ⊗ R, which we will still denote
by λi for notational simplicity. These give rise to a combinatorial gadget called
the fan, denoted by Σ, of the toric variety. The fan is a collection of cones. The
zero vector forms the unique 0-dimensional cone in the fan. Rays corresponding to
characteristic vectors constitute the 1-dimensional cones of the fan. More generally
a collection λi1 , . . . , λik of characteristic vectors generate a k-dimensional cone in
the fan if the corresponding torus invariant divisors have nonempty intersection. We
denote such a cone by 〈λi1, . . . , λik〉. The fan completely determines the geometry of
the toric variety. For instance, the singular cohomology ring of a smooth compact
toric variety X with integer coefficients (cf. [20, pp. 134]) is given by

H∗(X) = Z[w1, . . . , wm]/I (2.1)

where the ideal I is generated by

(1) all products wi1 · · ·wik such that λi1 , . . . , λik do not form a cone of Σ, and
(2) all linear combinations

∑m

i=1 λjiwi where 1 ≤ j ≤ n.

3. Bott manifolds

A Bott tower (cf. [3, 13]) of height t,

Mt → Mt−1 → . . . → M2 → M1 → M0 = {point} ,

is an iterated projective bundle such that each Mk is a P1-bundle over Mk−1. More
precisely, Mk = P(OMk−1

⊕ Lk−1) where Lk−1 is a line bundle over Mk−1. Each Mk

is a smooth projective toric variety of complex dimension k and is known as a Bott
manifold. Note that M1 is just P1 and M2 is a Hirzebruch surface.

We now describe the fan of Mk for k ≥ 1. Let e1, . . . , ek denote the standard basis
of Zk. We identify e1, . . . , ek−1 with the standard basis of Zk−1 without confusion.
The manifold Mk in a Bott tower has 2k characteristic vectors which we denote by

λ
(k)
1 , . . . , λ

(k)
2k . These may be defined inductively as follows: Start with λ

(1)
1 = e1 and

λ
(1)
2 = −e1. Then define

λ
(k)
i = λ

(k−1)
i and λ

(k)
k+i = λ

(k−1)
k−1+i + ci,kek for i = 1, . . . , k − 1 .

Moreover, define

λ
(k)
k = ek and λ

(k)
2k = −ek .

Here each ci,k is an integer. It is to be noted that different values of these constants
may produce different manifolds Mk.

With respect to the standard basis, the characteristic matrix of Mk has the fol-
lowing form.
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Λ(Mk) =




1 0 . . . 0 −1 0 . . . 0
0 1 . . . 0 c1,2 −1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 c1,k c2,k . . . −1


 (3.1)

There are 2k cones in the fan of Mk of the top dimension k. These are also easy to
identify inductively. The top dimensional cones for M1 are simply 〈e1〉 and 〈−e1〉.
Corresponding to each (k − 1)-dimensional cone

σ = 〈λ
(k−1)
i1

, . . . , λ
(k−1)
ik−1

〉

in the fan of Mk−1, there are two k-dimensional cones, namely 〈σ̃, ek〉 and 〈σ̃,−ek〉,
in the fan of Mk where

σ̃ = 〈λ
(k)

ĩ1
, . . . , λ

(k)

ĩk−1

〉 and ĩj =

{
ij if ij < k
ij + 1 if ij ≥ k

Lemma 3.1. There exists a nontrivial line bundle on Mk whose first Chern class has

square zero, for any k ≥ 1. There exist at least two such independent line bundles

on Mk if k ≥ 2.

Proof. Let Lj denote the holomorphic line bundle associated to the torus invariant

divisor of Mk corresponding to λ
(k)
j . Let wj be the first Chern class of Lj . By (2.1),

the abelian group H2(Mk) is freely generated by {wj | j = 1, . . . , k}.
We also have the following linear relations corresponding to the rows of the char-

acteristic matrix (3.1),

wk+1 = w1

wk+2 = w2 + c1,2wk+1

wk+3 = w3 + c1,3wk+1 + c2,3wk+2

. . .
w2k = wk + c1,kwk+1 + c2,kwk+2 + . . .+ ck−1,kw2k−1 .

(3.2)

We note that λ
(k)
i and λ

(k)
k+i never form a cone in the fan of Mk. This implies that

wiwk+i = 0 for i = 1, . . . , k. Then using the first equation in (3.2), observe that

w2
1 = w1wk+1 = 0 .

Next, assume k ≥ 2. Then multiplying the second equation of (3.2) by w2 and
using wk+1 = w1, we get

w2
2 = −c1,2w1w2 .

It follows that (xw1 + yw2)
2 = 0 if 2x = c1,2y. Hence, (c1,2w1 + 2w2)

2 = 0. Thus,
the line bundles L1 and L

c1,2
1 ⊗ L2

2 over Mk satisfy the desired property. �

Remark 3.2. Proceeding inductively in the above proof, we can express w2
j as

a linear combination of the wiwj’s with i < j. Moreover, the classes wiwj with
i < j ≤ k form a basis of H4(Mk). However, it is necessary to impose conditions
on the defining constants ci,j’s of Mk to ensure existence of further independent line
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bundles whose first Chern class squared is zero. For instance, (xw1 + y2+ zw3)
2 = 0

if and only if

2x = c1,2 y, 2y = c2,3 z, and 2x = (c1,3 + c1,2 c2,3) z .

In addition, if z 6= 0, it follows that 2c1,3 + c1,2 c2,3 = 0 is required.

4. J-construction on nonsingular toric varieties

The origins of the J-construction can be traced back to [23] and [17] who referred
to it as simplicial wedge and dual wedge respectively. It was used by Ewald in [6], a
work we will invoke below, who called it canonical extension. It was referred to as
the doubling construction in [18]. But it was introduced in its current avatar in [1].
The relevance of this technique to us is that it produces a projective toric variety
of higher dimension starting from one of lower dimension, and the cohomology ring
generators of the two varieties have a simple bijective correspondence.

Let X be a toric variety of dimension n with m torus invariant divisors. Let J be
an m-tuple of natural numbers, J = (j1, . . . , jm). A J-construction on X produces
a toric variety X(J) of dimension

dJ := n +
m∑

k=1

(jk − 1) .

By definition, X(J) = X when J = (1, . . . , 1). In general, X(J) can be obtained
from X by a sequence of atomic steps that increase dJ by one. More precisely,
such an atomic step produces X(J) for J = (j1, . . . , ji, . . . , jm), where ji ≥ 2, from
X(J ′) where J ′ = (j1, . . . , ji − 1, . . . , jm). The order in which these atomic steps
are performed is not important for the end result. An atomic step is also commonly
referred to as a simplicial wedge construction.

Without loss of generality, we demonstrate how to perform the simplicial wedge
construction to produce X(J), where J = (2, 1, . . . , 1), from X . We may con-
veniently refer to this as performing the simplicial wedge construction along the
characteristic vector λ1. In the language of fans, it amounts to building a complete
fan Σ(J) of one higher dimension than Σ. To accomplish this, the fan Σ, with the
exception of λ1, is embedded in a coordinate hyperplane xn+1 = 0 of Rn+1, the sup-
port of Σ(J). Naturally, we define λi(J) = (λi, 0) for 1 < i ≤ m. The vector λ1 is
modified to λ1(J) = (λ1,−1). The fan Σ(J) has one additional characteristic vector,
λm+1(J) = (0, . . . , 0, 1).

We may write λ̃i for λi(J) without confusion for notational simplicity. Moreover,
we use the notation λi = (λ1i, . . . , λni) as in Section 2. Thus, we have the following
characteristic matrix for Σ(J).

Λ(J) =




λ11 λ12 . . . λ1m 0
λ21 λ22 . . . λ2m 0
. . . . . . . . . . . . . . .
λn1 λn2 . . . λnm 0
−1 0 . . . 0 1



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The top or (n+ 1)-dimensional cones of the fan Σ(J) are as follows. For every n-
dimensional cone < λi1 , . . . , λin > of Σ that does not contain λ1, there are two (n+1)-

dimensional cones in Σ(J) namely, < λ̃i1, . . . , λ̃in, λ̃1 > and < λ̃i1, . . . , λ̃in , λ̃m+1 >.
Moreover, for every n-dimensional cone that contains λ1, say < λ1, λi2 , . . . , λin >,

there is an (n+1)-dimensional cone in Σ(J), < λ̃1, λ̃i2 , . . . , λ̃in , λ̃m+1 >. The subcones
of these top dimensional cones constitute, and thus determine, the fan Σ(J).

The toric variety X(J) corresponding to Σ(J) is nonsingular if X is so. We denote
the torus invariant divisor of X(J) corresponding to λj(J) by Dj(J), and its first
Chern class by wj(J), or simply by w̃j when there is no scope for confusion. We can
read off the linear relations among the generators w̃j’s from the rows of the matrix
Λ(J). Note that w̃1 = w̃m+1. It follows that the classes w̃1, . . . , w̃m generate the
cohomology ring of X(J). This easily generalises to the case of an arbitrary J by
induction.

The notations used above may be conveniently applied to the situation of a general
J as well. We refer the reader to [1, Section 3] for a more comprehensive description of
the J-construction. We content ourselves here by providing below the characteristic
matrix Λ(J) when J = (3, 2, 1, . . . , 1) as an example:

Λ(J) =




λ1 λ2 λ3 . . . λm
~0 ~0 ~0

−1 0 0 . . . 0 1 0 0
−1 0 0 . . . 0 0 1 0
0 −1 0 . . . 0 0 0 1




Definition 4.1. Let X be a nonsingular toric variety with fan Σ. Suppose wp in
H2(X) is the cohomology class corresponding to the torus invariant divisor Dp. We
say that wp has the isolation property if it admits a decomposition wp =

∑
k∈I akwk,

where p /∈ I, such that λp and λk do not form a cone in Σ for each k ∈ I.

Lemma 4.2. Let X be a nonsingular toric variety. Suppose wp admits the isolation

property. Then w2
p = 0.

Proof. Consider a decomposition wp =
∑

k∈I akwk, where p /∈ I, such that λp and
λk do not form a cone in Σ for each k ∈ I. Note that w2

p =
∑

k∈I akwkwp, and each
wkwp = 0 as λk, λp do not form a cone. �

Lemma 4.3. Let X be a smooth toric variety. Let X(J) be a nonsingular toric

variety obtained from X by a J-construction. Suppose wp ∈ H2(X) admits the

isolation property. Then wp(J) also admits the isolation property.

Proof. By induction, it is enough to verify this for an atomic J-construction. With-
out loss of generality, let J = (2, 1, . . . , 1). Then,

∑
aiwi = 0 =⇒

∑
aiwi(J) = 0 .

Moreover, if λi and λj do not form a cone in Σ, neither do λi(J) and λj(J) in Σ(J).
The lemma follows. �
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Corollary 4.4. Suppose X is a Bott manifold Mk. Let X(J) be a nonsingular toric

variety obtained from X by a J-construction. Then there exist nontrivial line bundles

on X(J) whose first Chern class squared is zero.

Proof. Note that the class wp in a Bott manifold Mk, where p ≤ k, has the isolation

property if the constants c1,p, . . . , cp−1,p are zero (see (3.2)) as λ
(k)
p and λ

(k)
p+k do not

form a cone. In particular, the class w1 in a Bott manifold always has the isolation
property. Then the result follows from Lemmas 4.2 and 4.3. �

5. Construction of SKT metrics

Suppose π : E → X is principal torus bundle over a complex manifold X with a
2k-dimensional real torus T ∼= (S1)2k as fiber. The Lie algebra t of T has a natural
lattice given by the circle subgroups of T . A choice of an integral basis of t gives a
decomposition of T into a product of S1’s.

Let Θ be a connection 1-form on the bundle E → X and (θ1, . . . , θ2k) be a repre-
sentation of Θ corresponding to a basis of t. Define an almost complex structure JE

on E by lifting the complex structure JX on X to the horizontal space of Θ, and by
defining

JE θ2j−1 = θ2j , 1 ≤ j ≤ k ,

along the vertical directions. The Chern classes of π : E → X are generated by
ωj ∈ Ω2(X) where π∗(ωj) = dθj . If the classes wj := [ωj ] ∈ H2(X,R) are of type
(1, 1), then JE is integrable and π is holomorphic with respect to it, see [12, Lemma
1].

If the bundle π : E → X is obtained by reduction of structure group from a
holomorphic principal bundle over X , then the above construction of integrable
complex structure on E is applicable, see [22, Section 5]. In the sequel, we will apply
this construction when the torus bundle is obtained by reduction from a direct sum
of holomorphic line bundles.

Suppose that gX is a Hermitian metric onX with fundamental form FX . Following
[12], consider a Hermitian metric gE on E defined by

gE = π∗gX +

2k∑

j=1

θj ⊗ θj .

The fundamental form of gE is given by

FE = π∗FX +

k∑

j=1

θ2j−1 ∧ θ2j .

It follows that

ddcFE = π∗ddcFX −
2k∑

j=1

π∗(ωj ∧ ωj) .
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Thus E admits an SKT structure if

ddcFX =

2k∑

j=1

ωj ∧ ωj . (5.1)

Therefore, if X is Kähler, the vanishing of
∑

ωj ∧ ωj is sufficient for existence of
an SKT structure on E. The following lemma, which is based on a trick in the proof
of Theorem 15 of [12], shows that the vanishing of

∑
[ωj]∧ [ωj] =

∑
w2

j is sufficient.

Lemma 5.1. If X is Kähler and
∑2k

j=1w
2
j = 0, then E admits an SKT structure.

Proof. As
∑

w2
j = 0, the (2,2)-form

∑
ωj ∧ωj is d-exact and d-closed. The complex

structure JX on X preserves (2, 2)-forms. Hence,
∑

ωj ∧ ωj is dc-closed. So, by
the ddc-lemma, there exists a real (1, 1)-form α on X such that

∑
ωj ∧ ωj = ddcα.

Choose an appropriate multiple β of a Kähler form on X such that

min
p∈X

( min
||ζ||=1

βp(ζ,JXζ)) > −min
p∈X

( min
||ζ||=1

αp(ζ,JXζ)) .

Then the positive definite form α + β defines a Hermitian metric gX on X which
satisfies (5.1). �

Theorem 5.2. Suppose X is a Bott manifold Mk. Let X(J) be a nonsingular toric

variety obtained from X by a J-construction. Then there exist nontrivial principal

torus bundles E(J) over X(J) such that the total space of E(J) admits an SKT

structure.

Proof. As noted in Corollary 4.4 , there exist nontrivial line bundles on X(J) whose
first Chern class squared is zero. (This also follows from Lemma 3.1 when X(J) =
X .) Consider E(J) to be the torus bundle over X(J) obtained by the reduction of
structure group from the direct sum of an even number of such line bundles. As X
is projective, X(J) is also projective (cf. [6, Theorem 2]), and hence Kähler. Then
E(J) admits an SKT structure by Lemma 5.1. �

Note that the above procedure produces a family of SKT metrics onE(J) parametrised
by an open subset of the space of Kähler metrics on Mk. A good reference for Kähler
metrics on Bott manifolds is the recent article [4] by Boyer et al.

Compact connected Lie groups of even dimension admit invariant complex struc-
tures (cf. [21] or [22, Section 2]). Let G be such a group whose rank ≥ 2k. Then
there exists an injective homomorphism of Lie groups, φ : T → G such that the
image of φ is a closed subgroup of G. A choice of a complex structure on T has been
made above while defining JE. Assume that we have used an integral basis of t in
defining Θ. It is then explained in [22, Section 5] how an invariant complex structure
may be chosen on G so that the map φ is holomorphic. The following result then
follows from the proof of [22, Theorem 5.2].

Corollary 5.3. Let E(J) be a principal T -bundle as in Theorem 5.2, and let φ :
T → G be a holomorphic monomorphism of Lie groups as above. Then the total

space of the principal G-bundle E(J)×φ G admits an SKT structure.
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