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ON THE EXISTENCE OF PRIMITIVE NORMAL ELEMENTS OF
RATIONAL FORM OVER FINITE FIELDS OF EVEN

CHARACTERISTIC

HIMANGSHU HAZARIKA, DHIREN KUMAR BASNET, AND GIORGOS KAPETANAKIS

Abstract. Let q be an even prime power and m ≥ 2 an integer. By Fq, we denote the
finite field of order q and by Fqm its extension degree m. In this paper we investigate the

existence of a primitive normal pair (α, f(α)), with f(x) =
ax2 + bx+ c

dx+ e
∈ Fqm(x), where

the rank of the matrix F =

(
a b c

0 d e

)
∈ M2×3(Fqm) is 2. Namely, we establish sufficient

conditions to show that nearly all fields of even characteristic possess such elements, except

for

(
1 1 0
0 1 0

)
if q = 2 and m is odd, and then we provide an explicit list of possible and

genuine exceptional pairs (q,m).

1. Introduction

Given an even prime power q and an integer m ≥ 2, we denote by Fq, the finite field of
order q and by Fqm its extension field of degree m. A generator of the (cyclic) multiplicative
group F∗

qm is called primitive. It is well-known that, for any finite field Fq, there are φ(q− 1)
primitive elements, where φ is Euler’s phi-function. Further, an Fq-basis of Fqm of the form

{α, αq, αq
2
, . . . , αq

m−1
} is called a normal basis and α is called normal or free.

The readers are referred to [12] and the references therein for the existence of both primitive
and free elements. The simultaneous occurrence of primitive and free elements in Fqm is given
by the following theorems.

Theorem 1.1 (Primitive normal basis theorem, [5]). For any prime power q and positive
integer m, the finite field Fqm contains some element which is simultaneously primitive and
free.

At first, this result was proved by Lenstra and Schoof in [11]. Later on, by implementing
a sieving technique that was initially introduced by Cohen [16], Cohen and Huczynska [5]
provided a computer-free proof.

Theorem 1.2 (Strong primitive normal basis theorem [6]). In Fqm, there exists some element
α such that both α and α−1 are primitive and free, unless (q,m) is (2, 3), (2, 4), (3, 4), (4, 3)
or (5, 4).
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Tian and Qi were the first to provide this result in [13], for m ≥ 32. Later on Cohen
and Huczynska [6] completed the proof up to the above form, again by using their sieving
technique.

The next theorems, which extend to rational functions, were given by Kapetanakis [9, 10]
by employing the aforementioned sieving technique.

Theorem 1.3 ([9]). For odd prime power q ≥ 23, an integer m ≥ 17 and A =

(
a b
c d

)

∈ GL2(Fq), with the condition that if A has exactly two non-zero entries and q is odd, then
the quotient of these entries is a square in Fqm. Then there exists some α ∈ Fqm such that

both α and
aα + b

cα + d
are simultaneously primitive and normal.

Theorem 1.4 ([10]). Let q be a prime power, n ≥ 2 an integer and some matrix M =(
a b
c d

)
∈ GL2(Fq), where M 6=

(
1 1
0 1

)
if q = 2 and m is odd. There exists some primitive

α ∈ Fqm such that α and
aα + b

cα + d
are both simultaneously normal elements of Fqm over Fq.

The existence of a primitive element α ∈ Fq such that f(α) is also primitive for an arbitrary
quadratic in Fq[x] has been completely resolved in [2].

Theorem 1.5 ([2]). For all q > 211, there always exists an element α ∈ Fqm such that α
and f(α) are both primitive, where f(x) = ax2 + bx+ c with b2 − 4ac 6= 0.

In this paper, we extend of Theorem 1.3. We solve the existence question for elements
α of Fqm that both α and f(α) are simultaneously primitive and normal over Fq, where

f(x) =
ax2 + bx + c

dx+ e
∈ Fqm(x) such that the F =

(
a b c
0 d e

)
∈ M2×3(Fqm) has rank 2.

For a = 0, the results are already discussed in [12], hence throughout this paper we assume
a 6= 0. We call the pair (q,m) a primitive normal pair if the field Fqm contains such elements.
In particular, we prove the following results, where m′ is odd such that m = 2km′, k ≥ 0.

Theorem 1.6. For the finite field Fqm of even characteristic, suppose m′ is such that m′|q−1.
Then there exists an element α in Fqm, such that both α and f(α) are simultaneously primitive

normal in Fqm over Fq, where f(x) =
ax2 + bx+ c

dx+ e
, with a, b, c, d, e ∈ Fqm, a 6= 0, and

dx + e 6= 0 unless (q,m) is one of the pairs (2, 2), (2, 4), (2, 8), (2, 16), (4, 2), (4, 3), (4, 4),
(4, 6), (4, 8), (4, 12), (8, 2), (8, 4), (8, 7), (8, 8), (8, 14), (16, 2), (16, 3), (16, 4), (16, 5), (16, 6),
(16, 15), (32, 2), (64, 2), (64, 4), (128, 2), (256, 2), (512, 2) or (1024, 2).

Theorem 1.7. Let Fqm be a finite field of even characteristic and m′ ∤ q − 1. Then there
exists an element α in Fqm, such that both α and f(α) are simultaneously primitive normal

in Fqm over Fq, where f(x) =
ax2 + bx+ c

dx+ e
, with a, b, c, d, e ∈ Fqm, a 6= 0, and dx + e 6= 0

unless (q,m) is one of the pairs (2, 3), (2, 5), (2, 6), (2, 7), (2, 9), (2, 10), (2, 11), (2, 12),
(2, 13), (2, 14), (2, 15), (2, 18), (2, 20), (2, 21), (2, 24), (2, 30), (4, 5), (4, 7), (4, 9), (4, 10),
(8, 3), (8, 5), (8, 6) or (32, 3).

In addition, we employ explicit computational methods and show that the pairs (2, 2),
(2, 3), (2, 4), (2, 5), (2, 6), (4, 2) and (4, 6) appearing above are genuine exceptions, while,
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based on computational evidence, we conjecture, that they are actually the only genuine
exceptions, see Conjecture 6.1.

This work is heavily influenced by the the work of Lenstra and Schoof [11], while character
sums plays a very crucial role. Further, we adjust the sieving technique, provided by Cohen
and Huczynska [5, 6], in our setting.

In Section 3, we estimate a lower bound for existence of primitive normal pair. Then
in Section 4, by using "the prime sieve technique", we weaken the sufficient condition for
more efficient results. In Section 5, we apply the existence conditions on fields of even
characteristic for each and every possible case and complete the proofs of Theorems 1.6 and
1.7. In Section 6, we employ computers to further investigate the actual situation with the
pairs posing as possible exceptions on Theorems 1.6 and 1.7. We conclude this work with
the statement of two related conjectures in Section 7.

2. Preliminaries

Under the rule f ◦ α =
n∑
i=1

aiα
qi and f =

n∑
i=1

aix
i ∈ Fq[x] for α ∈ Fqm; the additive group

of Fqm is an Fq[x]-module. The Fq-order of α ∈ Fqm , is the monic Fq-divisor g of xm − 1 of
minimal degree such that g ◦ α = 0, which we define as Order of α and denote by Ord(α).
It is clear that the free elements of Fqm are exactly those of Order xm − 1.

The multiplicative order for α ∈ F∗
qm is denoted by ord(α) and α is primitive if and only

if ord(α) = qm − 1. Furthermore, it follows from the definitions that qm − 1 and xm − 1 can
be freely replaced by their radicals q0 and f0 := xm0 − 1 respectively, where m0 is such that
m = m0p

a, where a is a non negative integer and gcd(m0, p) = 1.
Throughout this section we present a couple of functions that characterize primitive and

free elements. To represent those functions, the idea of character of finite abelain group is
necessary.

Definition 2.1. Let G be a finite abelian group. A character χ of G is a group homomor-
phism from G into the group S1 := {z ∈ C : |z| = 1}. The characters of G form a group

under multiplication called the dual group or character group of G, that is denoted by Ĝ and
is isomorphic to G. The character χ0 defined as χ0(a) = 1 for all a ∈ G is called the trivial
character of G.

In a finite field Fqm , the additive group Fqm and the multiplicative group F∗
qm are abelian

groups. Throughout this paper we call the characters of the additive group Fqm additive
characters and the characters of F∗

qm multiplicative characters. Multiplicative characters are

extended from F∗
qm to Fqm by the rule χ(0) =

{
0, if χ 6= χ0,

1, if χ = χ0.
Furter, since F̂∗

qm
∼= F∗

qm , F̂∗
qm

is cyclic and for any divisor d of qm − 1 there are exactly φ(d) characters of order d in F̂∗
qm .

Let e|qm − 1, then α ∈ Fqm is called e-free if d|e and α = βd, for some β ∈ Fqm implies
d = 1. Furthermore α is primitive if and only if α = βd, for some β ∈ Fqm and d|qm − 1
implies d = 1.
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For any e|qm − 1, following Cohen and Huczynska [5, 6], we express the characteristic
function for the subset of e-free elements of F∗

qm as follows:

ρe : α 7→ θ(e)
∑

d|e

(
µ(d)

φ(d)

∑

χd

χd(α)),

where θ(e) := φ(e)
e

, µ is the Möbius function and χd stands for any multiplicative character
of order d. For any e|qm − 1, we use “integral” notation due to Cohen and Huczynska [5, 6],
for weighted sums as follows

∫

d|qm−1

χd :=
∑

d|qm−1

µ(d)

φ(d)

∑

χd

χd.

Then the characteristic function for the subset of e-free elements of F∗
qm becomes,

ρe : α 7→ θ(e)

∫

d|e

χd(α).

Again, for any monic Fq-divisor g of xm − 1, a typical additive character ψg of Fq-order g
is one such that ψg ◦g is the trivial character of Fqm and g is of minimal degree satisfying this
property. It is well-known that there are Φ(g) characters ψg, where Φ(g) = (Fq[x]/gFq[x])

∗

is the analogue of the Euler function over Fq[x].
Then the characteristic function for the set of g-free elements in Fqm , for any g|xm − 1 is

given by

κg : α 7→ Θ(g)
∑

f |g

(
µ′(f)

Φ(f)

∑

ψf

ψf (α)),

where Θ(g) := Φ(g)

qdeg(g)
, the sum runs over all additive characters ψf of Fq-order g and µ′ is

the analogue of the Möbius function which is defined as follows:

µ′(g) =

{
(−1)s, if g is the product of s distinct irreducible monic polynomials,

0, otherwise.

We use the “integral” notation for weighted sum of additive characters as follows
∫

f |g

ψf :=
∑

f |g

µ′(f)

Φ(f)

∑

ψf

ψf .

Then the characteristic function for the set of g-free elements in Fqm, for any g|xm − 1, is
given by

κg : α 7→ Θ(g)

∫

f |g

ψf (α).

>From [13], we have the following about the typical additive character. Let λ be the canoni-
cal additive character of Fq. Thus for α ∈ Fq this character is defined as λ(α) = exp2πiTr(α)/p,
where Tr(α) is the absolute trace of α over Fp.

Now let ψ0 be the canonical additive character of Fqm, which is simply the lift of λ to
Fqm , i.e., ψ0(α) = λ(Tr(α)), α ∈ Fqm. Now for any δ ∈ Fqm, let ψδ be the character defined
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by ψδ(α) = ψ0(δα), α ∈ Fqm . Define the subset ∆g of Fqm as the set of δ for which ψδ has
Fq-order g. So we may also write ψδg for ψδ, where δg ∈ ∆g. So with the help of this we can
express any typical additive character ψg in terms of ψδg and further we can express this in
terms of canonical additive character ψ0.

In the following sections we will encounter various character sums and a calculation, or at
least an estimation, for them will be necessary. The following lemmas are well-established
and provide such results.

Lemma 2.1 ([12], Theorem 5.4 - Orthogonality relations). For any nontrivial character χ
of a finite abelian group G and any nontrivial element α ∈ G, the following hold:

∑

α∈G

χ(α) = 0 and
∑

χ∈Ĝ

χ(α) = 0.

.

Lemma 2.2 ([14], Corollary 2.3). Take two nontrivial multiplicative characters χ1, χ2 of
Fqm. Let f1(x) and f2(x) be two monic co-prime polynomials in Fqm [x], such that none of
fi(x) is of the form g(x)ord(χi) for i = 1, 2; where g(x) ∈ Fqm [x] with degree at least 1. Then∣∣∣

∑

α∈Fqm

χ1(f1(α))χ2(f2(α))
∣∣∣ ≤ (n1 + n2 − 1)qm/2,

where n1 and n2 are the degrees of largest square free divisors of f1 and f2 respectively.

Lemma 2.3 ([7], Theorem 5.6). Let χ and ψ be two non-trivial multiplicative and additive
characters of the field Fqm respectively. Let F,G be rational functions in Fqm(x), where
F 6= βHn and G 6= Hp − H+ β, for any H ∈ Fqm(x) and any β ∈ Fqm, and n is the order of
χ. Then ∣∣∣∣∣∣

∑

α∈Fqm\S

χ(F(α))ψ(G(α))

∣∣∣∣∣∣
≤ [deg(G∞) + k0 + k1 − k2 − 2]qm/2,

where S denotes the set of all poles of F and G, G∞ denotes the pole divisor of G, k0 denotes
the number of distinct zeroes and poles of F in the algebraic closure Fqm of Fqm, k1 denotes
the number of distinct poles of G (including infinite pole) and k2 denotes the number of finite
poles of F, that are also zeroes or poles of G.

Lemma 2.4 ([7]). Let f1(x), f2(x), . . . , fs(x) ∈ Fqm [x] be distinct irreducible polynomials.
Let χ1, χ2, . . . , χs be multiplicative characters and ψ be a non trivial additive character of
Fqm, then ∣∣∣∣∣∣

∑

y∈Fqmft(y)6=0

χ1(f1(y))χ2(f2(y)) . . . χs(fs(y))ψ(y)

∣∣∣∣∣∣
≤ kqm/2,

where k =
s∑
i=1

deg(fi).

Definition 2.2. For a non-trivial additive character ψ of the finite field Fqm, the sum

K(ψ; a, b) :=
∑

α∈F∗
qm

ψ(aα + bα−1),

where a, b ∈ Fqm is called a Kloosterman sum.
5



Lemma 2.5 ([3], Theorem 5.45). If the finite field Fqm has a non-trivial additive character
ψ and a, b ∈ Fqm are not both zero, then the Kloosterman sum satisfies

|K(ψ; a, b)| ≤ 2qm/2.

3. A lower bound for M(e1, e2, g1, g2)

In this section, we try to estimate the number of the elements α ∈ Fqm such that both α
and f(α) are simultaneously primitive normal elements in Fqm over Fq. We consider q an
even prime power, i.e. q = 2k, where k is a positive integer. Take e1, e2 such that e1, e2|q

m−1
and g1, g2 such that g1, g2|x

m − 1. Let M(e1, e2, g1, g2) be the number of α ∈ Fqm , such that

α is both e1-free and g1-free and f(α) is e2-free, g2-free; where f(x) =
ax2 + bx+ c

dx+ e
and the

matrix M =

(
a b, c
0 d e

)
∈M2×3(Fqm) is of rank 2. In particular, for our purposes, it suffices

to prove that M(e1, e2, g1, g2) > 0.
For convenience, we use the notations ω(n) and gd to denote number of prime divisors of

n and the number of monic irreducible factors of g over Fq respectively. Furthermore, we
write W (n) := 2ω(n) and Ω(g) := 2gd.

Theorem 3.1. Let f(x) =
ax2 + bx + c

dx+ e
∈ Fqm(x) such that the matrix M =

(
a b c
0 d e

)

∈M2×3(Fqm) is of rank 2 and f(x) 6= yx, yx2 for any y ∈ Fqm. Suppose e1, e2 divide qm − 1

and g1, g2 divide xm − 1. If M 6=

(
1 1 0
0 1 0

)
when q = 2, m is odd and

(3.1) q
m
2 > 4W (e1)W (e2)Ω(g1)Ω(g2),

then M(e1, e2, g1, g2) > 0.
In particular, if

(3.2) qm/2 > 4W (qm − 1)2Ω(xm − 1)2,

then M(qm − 1, qm − 1, xm − 1, xm − 1) > 0.

Proof. First we establish the result for d 6= 0. >From the definition we have,

(3.3) M(e1, e2, g1, g2) = θ(e1)θ(e2)Θ(g1)Θ(g2)

∫

d1|e1
d2|e2

∫

h1|g1
h2|g2

S(χd1 , χd2 , ψh1, ψh2),

where

S(χd1 , χd2 , ψh1, ψh2) =
∑

α∈Fqm

χd1(α)χd2(f(α))ψh1(α)ψh2(f(α))

6



As there exists some l1, l2 ∈ {0, 1, . . . , qm − 2}, such that χli(α) = χqm−1(α
li), for i = 1, 2

and ψhi(α) = ψxm−1(βiα), for some βi ∈ Fqm for i = 1, 2, we have the following expression:

S(χd1 , χd2 , ψh1 , ψh2) =
∑

α∈Fqm

χqm−1(α
l1 (f(α))l2)ψxm−1((β1α) + β2f(α))

=
∑

α∈Fqm

χqm−1(F(α))ψxm−1(G(α)),

where F(x) = xl1(ax
2+bx+c
dx+e

)l2 and G(x) = β1x+β2(
ax2+bx+c
dx+e

), for some l1, l2 ∈ {0, 1, . . . , qm−
2} and β1, β2 ∈ Fqm.

If F 6= βHqm−1 and G 6= Hp − H + β, for any H ∈ Fqm(x) and β ∈ Fqm , then Lemma 2.3
implies

(3.4) |S(χd1, χd2 , ψh1 , ψh2)| ≤ 4qm/2,

unless all the four characters are trivial.
Now we consider the case F = βHqm−1, for some H ∈ Fqm(x) and β ∈ Fqm . Then H = H1

H2
,

for some H1, H2 coprime polynomials over Fqm . It follows that xl1(ax2 + bx + c)l2Hqm−1
2 =

β(dx+ e)l2Hqm−1
1 , and this implies H

qm−1
2 |(dx+ e)l2 , hence H2 is constant. Then comparing

the degrees of both sides we have l1 + 2l2 = l2 + k1(q
m − 1), where k1 is the degree of H1

and this gives l1 = 0 or 1 i.e. H1(x) = a′x + b′. When k1 = 1 then l1 must be non-zero,
otherwise l2 = qm − 1, a contradiction. Now,

(3.5) (ax2 + bx+ c)l2 = β(dx+ e)l2Bqm−1xq
m−1−l1 ,

where B(x) = H1(x)/x ∈ Fq[x], a constant polynomial. Comparing both sides we have
c = 0. After putting this in the equation, this is possible only if gcd(dx+ e, ax+ b) = x+ c

d
and qm − 1 = l1 + l2. In this case f(x) = a

d
x, which is a contradiction. Hence k1 = 0 and

l1 = l2 = 0.
Next, let β1 = 0 and β2 6= 0. Then,

|S(χd1 , χd2 , ψh1 , ψh2)| =

∣∣∣∣∣∣
∑

α6=− e
d

ψxm−1

(
β2(aα

2 + bα + c)

dα + e

)∣∣∣∣∣∣

=

∣∣∣∣∣
∑

y 6=0

ψxm−1

(
β2
d2
ay +

(
β2
d2

)
(e2 − de+ cd2)y−1

)∣∣∣∣∣ .

By Lemma 2.5, we have

|S(χd1 , χd2 , ψh1, ψh2)| ≤ 2qm/2 < 4qm/2.

Similarly, if β1 6= 0 and β2 = 0, by applying Lemma 2.1, we have

|S(χd1 , χd2 , ψh1 , ψh2)| =

∣∣∣∣∣∣
∑

α∈Fqm

ψxm−1(β1α)

∣∣∣∣∣∣
≤ 1 < 4qm/2.

7



If both β1 and β2 are non-zero, then we can proceed as follows:

|S(χd1 , χd2 , ψh1 , ψh2)| =

∣∣∣∣∣∣
∑

α6=− e
d

ψqm−1

(
β1α +

β2(aα
2 + bα + c)

dα+ e

)∣∣∣∣∣∣

=

∣∣∣∣∣
∑

y 6=0

ψqm−1

((
β1
d

+
β2a

d2

)
y +

(
β2ae

2

d2
−
be

d
+ c

)
y−1 +

(
β2b

d
−
β1e

d

))∣∣∣∣∣

=

∣∣∣∣∣
∑

y 6=0

ψqm−1

((
β1
d

+
β2a

d2

)
y +

(
β2ae

2

d2
−
be

d
+ c

)
y−1

)∣∣∣∣∣

Lemma 2.5 yields

|S(χd1 , χd2 , ψh1, ψh2)| ≤ 2qm/2 < 4qm/2.

If G = Hp − H + β for some H ∈ Fqm(x) and for some β ∈ Fqm , then we write H = H1

H2
,

where H1 and H2 are co-prime polynomials. Continuing this, we have the following.

β1x(dx+ e) + β2(ax
2 + bx+ c)

dx+ e
=
Hp

1 −H1H
p−1
2 + βHp

2

Hp
2

.

Immediately from the restriction on the rational polynomial ax2+bx+c
dx+e

we get (dx+ e) is co-

prime to β1x(dx+ e) + β2(ax
2 + bx+ c) and hence Hp

2 is co-prime to Hp
1 −H1H

p−1
2 + βHp

2 .
Then dx+e = Hp

2 , which is a contradiction as d 6= 0. It follows that G = 0, i.e. β1 = β2 = 0.
Additionally if at least one of l1, l2 is non-zero, then xl1(ax2 + bx+ c)l2(dx+ e)q

m−1−l2 has
at most 4 distinct roots and is not of the form βHqm−1, for H ∈ Fqm(x) and β ∈ Fqm. Then
from Equation (3.5) we have

S(χd1 , χd2 , ψh1 , ψh2) =
∑

α6=− e
d

χqm−1

(
αl1(aα2 + bα + c)l2(dx+ e)q

m−1−l2
)
.

>From Lemma 2.5 we have the bound |S(χd1 , χd2 , ψh1, ψh2)| ≤ 2qm/2 < 4qm/2.
In all of the above cases, Equation (3.3) gives M(e1, e2, g1, g2) > 0 if

qm > 1 + 4qm/2 (W (e1)W (e2)Ω(g1)Ω(g2)− 1) ,

hence a sufficient condition is (3.1). This concludes the d 6= 0 case.

Next, we deal with the case d = 0. Then f(x) = ax2+bx+c
e

= a
e
x2 + b

e
x+ c

e
= a1x

2 + b1 + c1
and

(3.6) M(e1, e2, g1, g2) = θ(e1)θ(e2)Θ(g1)Θ(g2)

∫

d1|e1
d2|e2

∫

h1|g1
h2|g2

S(χd1 , χd2 , ψh1 , ψh2).

8



Where

S(χd1 , χd2 , ψh1, ψh2) =
∑

α∈Fqm

χd1(α)χd2(f(α))ψh1(α)ψh2(f(α))

=
∑

α∈Fqm

χd1(α)χd2(f(α))ψh1(α)ψ
′
h2
(α)

=
∑

α∈Fqm

χd1(α)χd2(f(α))(ψh1ψ
′
h2)(α),

and ψ′
h2
(x) = ψh2(f(x)) for all x ∈ Fqm.

Now, if (χd1 , χd2 , (ψh1ψ
′
h2
) = ψh) 6= (χ0, χ0, ψ0), then we consider following cases.

• If ψh1ψ
′
h2

= ψh is non trivial character, then applying Lemma 2.4 we have

|S(χd1 , χd2 , ψh1 , ψh2)| = |S(χd1 , χd2 , ψh)| ≤ 3qm/2 < 4qm/2.

• If ψh1ψ
′
h2

= ψh is the trivial character ψ0, then following Lemma 2.3, we have

|S(χd1 , χd2 , ψh1, ψh2)| = |S(χd1, χd2 , ψ0)| ≤ 2qm/2 < 4qm/2.

• Finally, if χd1 = χd2 = χ0 then |S(χd1 , χd2 , ψh1 , ψh2)| = |S(χ0, χ0, ψh)| = 0.

Hence |S(χd1, χd2 , ψh1 , ψh2)| < 4qm/2 if (χd1 , χd2 , ψh) 6= (χ0, χ0, ψ0), where ψh = ψh1ψ
′
h2

.
Then, from Equation (3.6) we have that a sufficient condition for M(e1, e2, g1, g2) > 0 is
given by (3.1).

In particular setting e1 = e2 = qm − 1 and g1 = g2 = xm − 1, we obtain the sufficient
condition (3.2).

Finally, we briefly consider the case c1 = 0 i.e. c = 0. Then f(x) = a1x
2+b1x = x(a1x+b1),

where a1, b1 ∈ Fqm with b1 6= 0. This time we have

M(e1, e2, g1, g2) = θ(e1)θ(e2)Θ(g1)Θ(g2)

∫

d1|e1
d2|e2

∫

h2|g2
h1|g1

S(χd1 , χd2 , ψh1, ψh2),

where

S(χd1 , χd2, ψh1 , ψh2) =
∑

α∈Fqm

χd1(α)χd2(α(a1α + b1))ψh(α) =
∑

α∈Fqm

χd3(α)χd2(a1α + b1)ψh(α).

with χd3 = χd1χd2 . Now, from Lemma 2.4.

|S(χd1 , χd2 , ψh1, ψh2)| =

∣∣∣∣∣∣
∑

α∈Fqm

χd3(α)χd2(a1α + b1)ψh(α)

∣∣∣∣∣∣
≤ 2qm/2 < 4qm/2

and the conditions (3.1) and (3.2) follow as before. �

Note: If q = 2 and m is odd then for the matrix M =

(
1 1 0
0 1 0

)
, the elements α and f(α)

are not simultaneously normal. Again, for m odd this case is trivially true. Hence we exclude
this matrix from our claim.

In the next section, we apply the results on primes dividing qm − 1 and irreducible poly-
nomials dividing xm−1 for enhanced results. As already mentioned, this technique was first
introduced by Cohen and Huczynska in [5, 6].
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4. The prime sieve technique

We begin this section with the sieving inequality, as established by Kapetanakis in [10],
which we adjust properly.

Lemma 4.1 (Sieving Inequality). Let d be a divisor of qm − 1 and p1, p2, . . . , pn be the
remaining distinct primes dividing qm − 1. Furthermore, let g be a divisor of xm − 1 such
that g1, g2, . . . , gk are the remaining distinct irreducible factors of xm−1. Abbreviate M(qm−
1, qm − 1, xm − 1, xm − 1) to M. Then

(4.1) M ≥
n∑

i=1

M(pid, d, g, g) +
n∑

i=1

M(d, pid, g, g) +
k∑

i=1

M(d, d, gig, g)

+
k∑

i=1

M(d, d, g, gig)− (2n+ 2k − 1)M(d, d, g, g).

Theorem 4.2. With the assumptions of Lemma 4.1, define

ϑ := 1− 2

n∑

i=1

1

pi
− 2

k∑

i=1

1

qdeg(gi)

and

S :=
2n+ 2k − 1

ϑ
+ 2.

Suppose ϑ > 0. Then a sufficient condition for the existence of an element α ∈ Fqm such

that both α and f(α) =
aα2 + bα + c

dα + e
are simultaneously primitive normal over Fqm, where

the matrix M =

(
a b c
0 d e

)
is of rank 2 and if (q,m) = (2, odd) then M 6=

(
1 1 0
0 1 0

)
is

(4.2) qm/2 > 4W (d)2Ω(g)2S.

Proof. A key step is to write (4.1) in the equivalent form

(4.3) M ≥

n∑

i=1

(
M(pid, d, g, g)−

(
1−

1

pi

)
M(d, d, g, g)

)

+

n∑

i=1

(
M(d, dpi, g, g)−

(
1−

1

pi

)
M(d, d, g, g)

)

+

k∑

i=1

(
M(d, d, gig, g)−

(
1−

1

qdeg(gi)

)
M(d, d, g, g)

)

+
k∑

i=1

(
M(d, d, g, gig)−

(
1−

1

qdeg(gi)

)
M(d, d, g, g)

)
+ ϑM(d, d, g, g).

On the right side of (4.3), since ϑ > 0, we can bound the last term below using (3.1).
Thus

(4.4) ϑM(d, d, g, g) ≥ ϑθ2(d)Θ2(g)q
m
2 (q

m
2 − 4W 2(d)Ω2(g)).
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Moreover, since θ(pid) = θ(pi)θ(d) =
(
1− 1

pi

)
and Θ(gig) = Θ(gi)Θ(g) =

(
1− 1

qdeg(gi)

)

we have from (3.3),

M(pid, d, g, g)−

(
1−

1

pi

)
M(d, d, g, g) =

(
1−

1

pi

)
θ2Θ2

∫
d1|d
d2|d

∫
h1|g
h2|g

S(χpid1 , χd2 , ψh1 , ψh2).

and

M(d, d, gig, g)−

(
1−

1

qdeg(gi)

)
M(d, d, g, g) =

(
1−

1

qdeg(gi)

)
θ2Θ2

∫
d1|d
d2|d

∫
h1|g
h2|g

S(χd1 , χd2 , ψgih1, ψh2).

Hence, as for (3.1),
∣∣∣∣M(pid, d, g, g)−

(
1−

1

pi

)
M(d, d, g, g)

∣∣∣∣ ≤ 4

(
1−

1

pi

)
θ2(d)Θ2(g)

(
W (pid)−W (pi)

)
W (d)

= 4

(
1−

1

pi

)
θ2(d)W 2(d).(4.5)

∣∣∣∣M(d, d, gig, g)−

(
1−

1

qdeg(gi)

)
M(d, d, g, g)

∣∣∣∣ ≤ 4

(
1−

1

pi

)
θ2(d)Θ2(g)

(
Ω(gig)− Ω(gi)

)
Ω(g)

= 4

(
1−

1

qdeg(gi)

)
Θ2(g)Ω2(g).(4.6)

Similarly,

(4.7)

∣∣∣∣M(d, d, g, g)−

(
1−

1

pi

)
M(d, pid, g, g)

∣∣∣∣ ≤ 4

(
1−

1

pi

)
θ2(d)Θ2(g)W 2(d)

and

(4.8)

∣∣∣∣M(d, d, gig, g)−

(
1−

1

qdeg(gi)

)
M(d, d, g, g)

∣∣∣∣ ≤ 4θ2(d)

(
1−

1

qdeg(gi)

)
Θ2(g)Ω2(g).

Inserting (4.4), (4.5), (4.7) and (4.8) in (4.3) and cancelling the common factor θ2(d)Θ2(g),
we obtain (4.2) as a condition for M to be positive (since ϑ is positive). This completes the
proof. �

We conclude our paper by discussing all the possible cases for fields of characteristic 2.

5. Some estimations for fields of even characteristic

The prime purpose of this section is to analyse the conditions (3.2) and (4.2) for the
existence of elements of desired properties in fields of even characteristic. Towards that,
we express the pairs (q,m) with the desired properties with extending and developing the
techniques employed in [13], [14] and [7] by the functions presented earlier, leading us to
character sums. We have already defined such pairs (q,m) as primitive normal pair.

Also, it is worth mentioning that due to the complexity of the character sums and their
fragile behaviour on fields of different orders, it is necessary to distinguish a few cases de-
pending on the order of the prime subfield. Henceforth, we assume that q = 2k, where k is
a positive integer.
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From now on we use the concept of the radical of m i.e. m′ and the radical of xm−1 which
is xm

′
− 1. Where m′ is such that m = 2km′, where gcd(2, m′) = 1 and k is a non-negative

integer. In fact, when m′ = 1, trivially k is positive.
We split our computations in two cases:

• m′|q − 1
• m′ ∤ q − 1

Notice that, in the former case, xm
′
− 1 splits at most into a product of m′ linear factors

over Fq. The following result is inspired from Lemma 6.1 of Cohen’s work [4].

Lemma 5.1. For q = 2k, where k ≥ 1, let d = qm − 1 and let g|xm − 1 with g1, g2, . . . , gr
be the remaining distinct irreducible polynomials dividing xm − 1. Furthermore, let us write

ϑ := 1 −
r∑
i=1

1
qdeg(gi)

and S := r−1
ϑ

+ 2, with ϑ > 0. Let m = m′ 2k, where k is a non-negative

integer and gcd(m′, 2) = 1. If m′|q − 1, then

S =
2q2 − 6q + aq + 4

aq − 2q + 2
,

where m′ = q−1
a

. In particular, S < 2q2.

We also need the following. We use this result in the next case and all the subsequent
cases, unless stated otherwise.

Lemma 5.2 (Lemma 6.2, [4]). For any odd positive integer n, W (n) < 6.46n1/5, where W
has same meaning as stated earlier.

From Theorem 4.2 it is clear that some concepts regarding the factorization of xm− 1 can
be used in order to effectively use the results of the previous section. Such as if m′|q − 1,
then xm

′
−1 splits into m′ distinct linear polynomials. Throughout this section we use prime

sieve technique result to establish the rest.

Lemma 5.3. For f(x) ∈ Fqm(x), such that f(x) = x or f(x) = x2, we have M(qm− 1, qm−
1, xm − 1, xm − 1) > 0.

Proof. The proof follows from Lemma 4.1 of [11]. Since q is even, qm − 1 is odd, hence
both α and f(α) are simultaneously primitive. Similarly, since m′ is odd, α and f(α) are
simultaneously normal. �

5.1. Proof of Theorem 1.6. Taking g = 1 in Inequality (4.2) and applying Lemma 5.2,
we have the sufficient condition

q
m
10 > 334 q2.

Then for m′ = q − 1, the inequality transforms to

q
q−1
10

−2 > 334,

which holds for q ≥ 64.
Next, we consider q = 32 and m = m′ = q−1 = 31. Then, by factorizing, ω(2726−1) = 12

and the pair (q,m) = (32, 31) satisfies the condition (4.2). Hence F3231 contains an element
α such that both α and f(α) are simultaneously primitive normal with the given conditions.
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In order to reduce our calculations, we now consider the range 19 ≤ m′ < q−1
3

, for
q ≥ 64. Then, by Lemma 5.1 we have S < (2q + 2). Hence Inequality (4.2) is satisfied if

q
m′−1
10 > 167(2q + 2) and this holds for m′ ≥ 19.

When m′ = q−1
3

, then S ≤ q and then the condition becomes q
m′−1
10

−1 > 167 and this

holds for m′ ≥ 19. Since m′ = 19 6= q−1
3

for any q = 2k, we may leave this case.
Next, we investigate all cases with m′ < 19. In the next part, we set d = qm − 1, g = 1

unless mentioned otherwise.

Case 1, m′ = 1: Then m = 2j. Initially we take j ≥ 2. To check the condition we take
g = X + 1. In that case ϑ = 1 and S = 1. Then the inequality becomes

q
2j

10 > 334.

For q = 2, the condition holds for j ≥ 7. Again for q = 4, j ≥ 6; for 8 ≤ q ≤ 32,
j ≥ 5; for 64 ≤ q ≤ 210, j ≥ 4; for 211 ≤ q ≤ 220, j ≥ 3 and for q ≥ 221 the
condition holds for j ≥ 2. So we calculate the rest of the pairs (q,m) by calculat-
ing ω = ω(qm − 1), i.e., the number of distinct prime divisors of qm − 1. Hence it
suffices to check that qm/2 > 4 ·W (qm − 1)2 · 22, where W (qm − 1) = 2ω. The pairs
(2, 4), (2, 8), (2, 16), (4, 4), (4, 8), (8, 4), (8, 8), (16, 4), (32, 4), (64, 4), (128, 4), (512, 4)do
not satisfy the condition. We take taking g = 1 and appropriate value of d and we
apply the sieve condition 4.2 to verify (128, 4), (512, 4) as primitive normal pairs and
declare the rest as possibly exceptional pairs.

Now we discuss the case when m = 2. Then any pair (q, 2) is primitive normal
pair if and only if it is a primitive pair, i.e., there exists α in Fq2 such that both α
and f(α) are simultaneously primitive elements of Fq2. For all q such that q2− 1 is a
Mersenne prime (the primes which are of the form 2j − 1 for some positive integer j
are called Mersenne primes) except (2, 2), all the elements of F∗

q2 are primitive except

the identity and hence pairs (q, 2) are primitive normal pairs. However, (2, 2) does

not fit into this category as F4
∼=

Z2[x]
<x2+x+1>

and the primitive elements of F4 are roots

of f(x) = x2 + x+ 1, i.e., f(α) = 0 is not primitive when α is primitive.
Next, we employ the sufficient condition q1/5 > 668, which holds for q ≥ 247 and for

the remaining pairs we use sieve condition (4.2) to test the existence of the property.
When d = q2 − 1 and g = x+ 1, the condition holds for all q = 2k, where k = 13, 17
and k ≥ 19. Again choosing appropriate d as in Table 1, we conclude that among
the above pairs; (211, 2), (212, 2), (214, 2), (215, 2), (216, 2), (218, 2) are primitive normal
pairs and the rest are possible exceptions.

Summing up, we have the following possibly exceptional pairs: (2, 2), (2, 4), (2, 8),
(2, 16), (4, 2), (4, 4), (4, 8), (8, 2), (8, 4), (8, 8), (16, 2), (16, 4), (32, 2), (64, 2), (64, 4),
(128, 2), (256, 2), (512, 2) and (1024, 2).

Case 2, m′ = 3: In this case, m is of the form m = 3 · 2j, where j is a positive integer
and q = 22k for some k ≥ 1. For q = 4, take g = xm

′
− 1 so that S = 1 and the

sufficient condition is 4
3.2j

10 > 167× (23)2 , which holds for j ≥ 5. Hence the pairs un-
der the above condition are primitive normal pairs except (4, 3), (4, 6), (4, 12), (4, 24)
and (4, 48). After employing the sieving condition (4.2), see Table 1, we conclude
that (4, 24), (4, 48) are primitive normal pairs and (4, 3), (4, 6), (4, 12) are possible
exceptional pairs.

13



Then we take g = 1. For q = 16, S ≤ 22 the sufficient condition is q
3.2j

10 > 3672.8,
which holds for j ≥ 4.

For q = 64, 256, S < 7.51 and m′|q − 1, the condition holds for j ≥ 3. Again for

1024 ≤ q ≤ 216, S < 7.029 and we need to check q
3.2j

10 > 1251.95, which holds when
j ≥ 2. For 218 ≤ q ≤ 234, S < 7.0001 and the condition holds for j ≥ 1; and for
q ≥ 235 such that m′|q − 1 the condition holds for j ≥ 0.

We calculate the remaining pairs by taking g = x3 − 1 and using W (qm − 1),
Ω(x3 − 1). So the condition is qm/2 > 4 ·W (qm − 1)2 · (23)2, which all but the pairs
(16, 3), (16, 6), (64, 3), (64, 6), (256, 3), (1024, 3), (212, 3), (216, 3), (220, 3) fail to satisfy.
Now we choose suitable values of g and d to declare (16, 12), (16, 24), (64, 3), (256, 3),
(1024, 3), (212, 3), (216, 3) and (220, 3) as primitive normal pairs, as shown in Table 1.

So, we have the following pairs as possible exceptional pairs: (4, 3), (4, 6), (4, 12),
(16, 3) and (16, 6).

From now on assume m = m′2j with j ≥ 0.
Case 3, m′ = 5: Here m = 5 · 2j, with non-negative integer j. As there are 5 distinct

factors of xm
′
−1, so by calculation we have ϑ > 0 if q ≥ 16. Then S < 26 for q = 16

and the sufficient condition is q
5.2j

10 > 4340.09 which holds for j ≥ 3.

For q = 256, S ≤ 11.7627, and sufficient condition is q
5.2j

10 > 1963. This holds

when j ≥ 2. Again, 4096 ≤ q ≤ 220 and m′|q − 1, the condition is q
5.2j

10 > 1843.57
and holds for j ≥ 1. When q ≥ 221 and m′|q − 1 the condition holds for j ≥ 0.

Taking g = x5−1, we check the remaining pairs for the inequality qm/2 > 4·22ω·(25)2

and have the following as possible exceptional pairs (16, 5), (16, 10), (256, 5), (212, 5).
Then we choose proper d and g, and verify condition (4.2) and have (16, 10), (256, 5), (212, 5)
are primitive normal pairs. Then the pair (16, 5) is a possible exception.

Case 4, m′ = 7: Here m = 7 · 2j, with non-negative integer j. Let g = xm
′
− 1 for

q = 8, then ϑ = 1 and S = 1. Then the sufficient condition is q
7.2j

10 > 2736128 which
holds for j ≥ 4.

For q = 64, take g = 1 and S ≤ 18.64, then sufficient condition q
7.2j

10 > 3112.8
holds for j ≥ 2. Again, q = 512, 212, 215, S < 15.3655 and the condition holds for
j ≥ 1. For q ≥ 216, whenever m′|q − 1 the condition holds for j ≥ 0.

Taking g = x7 − 1, we check the remaining pairs for the inequality qm/2 > 4 · 22ω ·
(27)2. After a calculation, we conclude that all the pairs are primitive normal pairs
except the pairs (8, 7) (8, 14).

Case 5, m′ = 9: Here m = 9 · 2j, with non-negative integer j. As m′ = 9, there are 9
distinct factors of xm

′
− 1. When g = 1 we have ϑ > 0 if q ≥ 32. Then S < 38.2667

for q = 64 and the sufficient condition is q
9.2j

10 > 6387.72 which holds for j ≥ 2.
For q = 212, sufficient condition holds for j ≥ 1. When q ≥ 213 and m′|q − 1 the

condition holds for j ≥ 0.
Taking g = x9−1, we check the remaining pairs for the inequality qm/2 > 4·22ω·(29)2

and take pair (64, 9), which does not satisfy the inequality. After calculating with
suitable values of d and g, as shown in Table 1, we conclude that (64, 9) is also a
primitive normal pair, i.e., all the pairs are primitive normal.
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Case 6, m′ = 11: Here m = 11·2j, with non-negative integer j. As there are 11 distinct
factors of xm

′
− 1, so by calculation for g = 1 we have ϑ > 0 if q ≥ 32.

For q = 210, S < 27.3585 and sufficient condition q
11.2j

10 > 4566.86 holds for j ≥ 1.
When q ≥ 211 and m′|q − 1 the condition holds for j ≥ 0.

Taking g = x11 − 1, we check the remaining pairs for the inequality qm/2 > 4 · 22ω ·
(211)2, then we have 3 possible exceptional pairs. By calculating with suitable values
of d and g = xm

′
− 1, we conclude that all the pairs are primitive normal.

Case 7, m′ = 13: Here m = 13 · 2j, with non-negative integer j. As there are 13
distinct factors of xm

′
− 1, by calculation, we have ϑ > 0 if q ≥ 32. For q ≥ 64 and

m′|q − 1, take g = 1 then S < 44.1053 and the sufficient condition holds for j ≥ 0.
We conclude that all the pairs are primitive normal.

Case 8, m′ = 15: Here m = 15 · 2j , with non-negative integer j. As m′ = 15, there are
15 distinct factors of g = xm

′
− 1. For q = 16, the sufficient condition for existence

of primitive normal element is q15.2
j/10 > 167 · (215)2. This condition holds for j ≥ 3.

For q = 256, and g = 1 we have S < 56.882 and the sufficient condition q
15.2j

10 >
9446.06 holds for j ≥ 1. When q > 256 and m′|q − 1 the condition holds for j ≥ 0.

Taking g = x15 − 1, we check the remaining pairs on the inequality qm/2 > 4 ·
22ω · (215)2 and we obtain (16, 15), (16, 30), (256, 15) as possible exceptional pairs. By
calculating with compatible values of d, g in the prime sieve condition (4.2), we get
that (16, 30), (256, 15) are primitive normal pairs. Hence we declare (16, 15) as an
exceptional pair.

Case 9, m′ = 17: Here m = 17·2j, with non-negative integer j. As there are 17 distinct
factors of xm

′
− 1, by calculation, for g = 1, we have ϑ > 0 if q ≥ 64.

When q ≥ 64, the sufficient condition is q
17.2j

10 > 12085.5 which holds for j ≥ 0
whenever m′|q−1. Hence we have that all the pairs of this case are primitive normal.

For each of the individual pairs (q,m) listed above that do not satisfy the sufficient condi-
tion based on Lemma 5.2, we can test them further by means of the sufficient condition (4.2)
after factorising completely xm − 1 and qm − 1 and making a choice of polynomial divisor
g of xm − 1 and factor d of qm − 1. In practice, the best choice is to choose p1, . . . , pn and
sometimes, the “largest” irreducible factors g1, . . . , gk of xm − 1 to ensure that ϑ is positive
(and not too small). Here the multiplicative aspect of the sieve is more significant. Table 1
summarizes the pairs in which the test yielded some positive conclusion. This concludes the
proof.

5.2. Proof of Theorem 1.7. For our next main theorem, we need the following well-known
facts, see [12, Theorem 2.47]. Let u be the order of q mod m′. Then xm

′
− 1 is a product of

irreducible polynomial factors of degree less than or equal to u in Fq[x]; in particular, u ≥ 2
if m′ ∤ q − 1. Let M be the number of distinct irreducible polynomials of xm − 1 over Fq of
degree less than u. Let σ(q,m) denotes the ratio

σ(q,m) :=
M

m
,

where mσ(q,m) = m′σ(q,m′).
From Proposition 5.3 of [5], we deduce the following bounds.

Lemma 5.4. Suppose q = 2k. Then the following hold.
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(q,m) d n g k S qm/2 4W (d)2Ω2(g)Λ
(128,4) 3 5 x+ 1 0 21.9523 16384 1404.95
(512,4) 15 6 x+ 1 0 32.9531 262144 8435.99
(211, 2) 3 3 x+ 1 0 7.6329 2048 488.506
(212, 2) 15 4 x+ 1 0 18.1107 4096 1159.08
(214, 2) 3 5 x+ 1 0 21.9523 16384 1404.95
(215, 2) 3 5 x+ 1 0 22.0596 32768 1411.81
(216, 2) 3 4 x+ 1 0 16.7511 65536 1072.07
(218, 2) 15 6 x+ 1 0 32.9531 262144 8435.99
(4,24) 15 7 x3 − 1 0 34.2484 1.6777× 107 140283
(4,48) 15 10 x3 − 1 0 50.3795 2.81475× 1014 206354
(16,12) 15 7 x3 − 1 0 34.2484 1.6777× 107 140283
(16,24) 15 10 x3 − 1 0 50.3795 2.81475× 1014 206354
(64,3) 3 3 x+ 1 2 19.3369 512 309.39
(256,3) 15 4 x+ 1 2 28.2612 4096 452.179
(1024,3) 3 5 x3 − 1 0 22.0596 32768 22589
(212, 3) 15 6 x3 − 1 0 32.9531 262144 134976
(216, 3) 15 7 x3 − 1 0 34.2484 1.67772× 107 140281
(220, 3) 15 9 x3 − 1 0 82.2883 1.07374× 109 337053
(16,10) 3 6 x5 − 1 0 60.7588 1.04858× 106 995472
(256,5) 3 6 x5 − 1 0 60.7588 1.04858× 106 995472
(212, 5) 15 9 x5 − 1 0 87.8157 1.07374× 109 5.75509× 106

(8,28) 15 10 x7 − 1 0 49.0678 4.39805× 108 5.14313× 107

(8,56) 15 15 x7 − 1 0 106.643 1.93428× 1025 1.11828× 108

(64,9) 3 5 x9 − 1 0 17.4747 1.34218× 108 7.32942× 107

(16,30) 15 13 x15 − 1 0 293.517 1.15292× 1018 2.01703× 1013

(256,15) 15 13 x15 − 1 0 293.517 1.15292× 1018 2.01703× 1013

Table 1. Pairs (q,m) appearing in the proof of Theorem 1.6, in which the
corresponding test yielded a positive conclusion.

• σ(2, 3) = 1
3
; σ(2, 5) = 1

5
; σ(2, 9) = 2

9
; σ(2, 21) = 4

21
otherwise σ(2, m) ≤ 1

6
.

• σ(4, 9) = 1
3
; σ(4, 45) = 11

45
; otherwise σ(4, m) ≤ 1

5
.

• σ(8, 3) = σ(8, 21) = 1
3
; otherwise σ(8, m) ≤ 1

5
.

• If q ≥ 16, then σ(q,m) ≤ 1
3
.

In, to develop suitable sufficient conditions, we need Lemma 7.2 from [4].

Lemma 5.5. Assume that q = 2k and m is a positive integer such that m′ ∤ q − 1. Let
u(> 1) stand for the order of q mod m′. Let g be the product of the irreducible factors of
xm

′
− 1 of degree less than u. Then, in the notation of Lemma 5.1, we have S ≤ m′.

We need few more conditions, which we can derive from Lemma 4.2 of [8].

Lemma 5.6. For any n, α ∈ N, W (n) ≤ bα,nn
1/α, where bα,n = 2s

(p1p2···ps)1/α
and p1, p2, . . . , ps

are the primes ≤ 2α that divide n and W has the same meaning as before.
16



From these we immediately derive the lemma below.

Lemma 5.7. For n ∈ N and

(i) α = 6, W (n) < 37.4683n1/6,
(ii) α = 8, W (n) < 4514.7n1/8,
(iii) α = 14, W (n) < (5.09811× 1067)n1/14,

where W has the same meaning as earlier.

Lemma 5.8. Let q = 2, M 6=

(
1 1 0
0 1 0

)
and m′ ∤ q − 1, then there exists an element

α ∈ Fqm such that α, f(α) are simultaneously primitive and normal over Fq, i.e., (q,m) are
primitive normal pairs except, possibly, the pairs (2, 3), (2, 5), (2, 6), (2, 7), (2, 9), (2, 10),
(2, 11), (2, 12), (2, 14), (2, 15), (2, 18), (2, 21), (2, 24), (2, 30).

Proof. First, let m′ = 3. Then x′ − 1 can be factorised into one linear and one quadratic
factor. Then the condition becomes 2m/10 > 2672, which holds for m ≥ 114. Next let
m = 96. Then ω = 12 and the condition is qm/2 > 22ω+6, which holds. But the re-
maining pairs (2, 3), (2, 6), (2, 12), (2, 24), (2, 48) do not satisfy the above condition. We per-
form further research on these pairs by taking compatible d and g in the sieve condition
(4.2) as demonstrated in Table 2 and conclude that (2, 48) is primitive normal pair and
(2, 3), (2, 6), (2, 12), (2, 24) are possible exceptional pairs.

Again, if m′ = 5, then x′ − 1 can be factorised into one linear and one fourth degree
polynomial. Then the condition becomes 2m/10 > 2672, which holds for m ≥ 114. Thus,
for the remaining pairs a condition is qm/2 > 22ω+6 and by calculating ω(qm − 1) = ω, we
have the following exceptional pairs (2, 5), (2, 10), (2, 20), (2, 40). Again from Table 2 we can
conclude that the only possible exceptional pairs are (2, 5), (2, 10), (2, 20).

For m′ = 9, x′ − 1 is a product of one linear, one quadratic and one sextic polynomial
and the condition is 2m/10 > 10688, which holds for m ≥ 134. For the remaining the
pairs we use the condition qm/2 > 22ω+8 and by calculating the value of ω, we have the
following exceptional pairs (2, 9), (2, 18), (2, 36). From Table 2, we can conclude that (2, 36)
is a primitive normal pair and hence final possible exceptional pairs are (2, 9) and (2, 18).

Now, for m′ = 21, x′ − 1 is a product of one linear, one quadratic, two cubic and two
distinct sextic polynomials. Then the condition is 2m/10 > 684032 and the condition holds
for m ≥ 194. For the remaining pairs we use the condition qm/2 > 22ω+14 and by calculating
the value of ω(qm − 1) = ω, we have the following exceptional pairs (2, 21), (2, 42), from
which we can declare the pair (2, 42) as primitive normal pair from Table 2. Hence the ony
possible exceptional pair is (2, 21).

For the remaining pairs i.e. q = 2, m′ ∤ q − 1 and m′ 6= 3, 5, 9, 21, we consider two cases,
viz. (i) m is odd and (ii) m is even.

Case (i): m is odd. We apply Lemma 5.5 to obtain the condition qm/2 > 4·22ω ·22mσ(q,m) ·
m. Then by Lemmas 5.4 and 5.7, the condition transforms to 2m/42 > 1.03991 · 10136.m,
which holds for m ≥ 19577. Let m ≤ 19576, then ω ≤ 1620, and, by applying these on the
condition 2m/6 > m22ω+2, we conclude that the condition holds for m ≥ 19538. Maintaining
the flow we have that the condition holds for m ≥ 19333.

For the remaining pairs we calculate the exact value of ω and able to detect 37 pairs where
m = 7, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 65,
67, 69, 71, 73, 75, 77, 79, 81, 135, 165 and 225; which don’t satisfy the condition. Again for
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d = qm−1 and g = xm
′
−1, applying the prime sieve we are able to declare 20 of them as prim-

itive normal pairs. Then by choosing compatible d and g (as shown in Table 2) we are able to
determine another 13 pairs (2, 17), (2, 19), (2, 23), (2, 25), (2, 27), (2, 29), (2, 31), (2, 33), (2, 35),
(2, 39), (2, 45), (2, 51) as primitive normal pairs. Hence, we conclude that following are the
possible exceptional pairs (2, 7), (2, 11), (2, 13), (2, 15).

Case (ii): m is even. Once again, we shall break this discussion into two parts.

4 | m: Then by Lemma 5.7, W (qm − 1) < 37.4683 qm/6 and for 4|m, σ(q,m) ≤ m/24. Then
to show M(qm−1, qm−1, xm−1, xm−1) > 0 it is sufficient to show 2m/12 > 5615.49m,
which holds for m ≥ 248. Then we calculate the exact value of ω and check the condi-
tion 25m/12 > 22ω+2, form ≤ 143 and identify the pairs (2, 28), (2, 44), (2, 52), (2, 56), (2, 60)
which do not satisfy the condition. But from Table 2, we can conclude that all of
them are primitive normal pairs. Hence in this particular case all pairs (q,m) are
primitive normal pairs.

4 ∤ m: From Lemma 5.7, W (qm−1) < 4514.7 qm/8 and in this case σ(q,m) ≤ m/12. Now, a
sufficient condition for the existence of a primitive normal pair is 2m/12 > 8.153×107,
which holds for m ≥ 420. For the remaining pairs we use the prime sieve condition
(4.2) for d = qm−1 and g = xm

′
−1 and identify the pairs (2, 14), (2, 22), (2, 30), (2, 70)

which fail to satisfy the condition. Again, by observing the condition (4.2) for appro-
priate values of d and g we are able to identify the pairs (2, 22), (2, 70) as primitive
normal pairs; the calculations are listed in Table 2. Hence the only possible excep-
tional pairs are (2, 14) and (2, 30).

The proof is now complete. �

The following lemma is derived from Lemma 5.6.

Lemma 5.9. For n ∈ N, W (n) < 1.10992 · 109 n1/10 and W (n) < 4.24455 · 1014 n1/11.

Lemma 5.10. For q = 4 and m′ ∤ q − 1, all the pairs (q,m) are primitive normal pairs,
except for the possible exceptional pairs (4, 5), (4, 7), (4, 9), (4, 10).

Proof. We shall start this discussion with the case m′ = 45. In this case xm
′

is a product
of 3 linear, 6 quadratic, 2 cubic and 4 sextic factors. Let g be the product of the linear
factors, then ϑ = 0.5927 and S = 20.56. After this, the sufficient condition becomes
4m/10 > 167 · (23)2 · 20.56, which holds for m ≥ 90. When m = 45, then ω = ω(4m− 1) = 11
and the pair (4, 45) satisfies the condition 4m/2 > 22ω+8 · 20.56. Hence (4, 45) is also a
primitive normal pair.

Now we are heading towards the next case, which is m′ = 9. Then xm
′
− 1 is a product

of 3 linear and 2 cubic factors. Now we take g as the product of three linear factors, then
ϑ = 0.9375 and S = 5.5. These yield the condition 4m/10 > 167 · (23)2 · 5.5, which holds for
m ≥ 144.

For the remaining pairs we verify the sufficient condition 4m/2 > 22ω+8 · 5.5 by calculating
the exact value of ω. After this, we can conclude that the pairs (4, 36), (4, 72) are primitive
normal. From Table 2, we conclude that (4, 18) is also a primitive normal pair, thus the only
possible exceptional pair is (4, 9).

Next we have the case q = 4, m′ ∤ q − 1 and m′ 6= 9, 45. At first we consider m even.
In this case σ(q,m) ≤ m/10 and by Lemma 5.9, W (qm − 1) < 1.10992 · 109 qm/10. Hence a
sufficient condition for our purpose is 4m/5 > 4.83296 · 1018m, which holds for m ≥ 174. For
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the remaining pairs we use the condition 42m/5 > 22ω+2m and calculate ω = ω(4m−1) explic-
itly. Among the remaining pairs, (4, 10), (4, 14), (4, 20), (4, 22), (4, 28), (4, 30) do not satisfy
the condition. Again for appropriate values of d and g, (4, 14), (4, 20), (4, 22), (4, 28), (4, 30)
satisfy the sieve condition as given in Table 2. Hence the only possible exceptional pair is
(4, 10).

Now, we consider the case m odd. Here σ(q,m) = 1/5 and from Lemma 5.9 we have
W (qm − 1) < 4.24455 · 1014 qm/11. Then the sufficient condition is 4m/11 > 7.20647 · 1029m,
which holds for m ≥ 597. Afterwards, we use the condition 43m/10 > 22ω+2m to test
the remaining pairs by calculating the ω = ω(qm − 1). The pairs (4, 5), (4, 7), (4, 11),
(4, 13), (4, 15), (4, 25), (4, 27), (4, 29), (4, 33), (4, 35) and (4, 39) do not satisfy the condition.
Now we take d = qm − 1 and g = xm − 1 in the prime sieve condition (4.2) and detect
(4, 27), (4, 29), (4, 33) and (4, 39) as primitive normal pairs. Again, by choosing compatible
values of d and g in condition (4.2) (as shown in Table 2) we conclude that all of the remaining
pairs are primitive normal pairs. This concludes the proof. �

Lemma 5.11. Let q = 8 and m′ ∤ q−1, then all the pairs (q,m) are primitive normal pairs,
unless (q,m) is one of the pairs (8, 3), (8, 5) and (8, 7).

Proof. We begin our discussion with m′ = 3. Then xm
′
− 1 is a product of a linear and

a quadratic polynomial. If we take g to be the linear polynomial, then ϑ = 0.96875 and
S < 3.04. It follows that a sufficient condition for the existence of primitive normal pair
is 8m/10 > 167 · 22 · 3.04 and this holds for all m ≥ 48. For the remaining pairs we use
the condition 8m/2 > 22ω+4 · 3.04 by explicitly calculating the value of ω. Then the pairs
(8, 3), (8, 6), (8, 12) are the ones which fail to satisfy the inequality. By choosing appropriate
values of d and g in condition (4.2), as shown in Table 2, we conclude that (8, 3) is the only
possible exceptional pair.

For the next stage we choosem′ = 21, that is, xm
′
−1 is product of one linear, one quadratic,

two cubic and two sextic polynomials. We choose g as the product of the linear and the
quadratic factor. Then ϑ = 0.992172 and S < 9.06 which yields the sufficient condition
8m/10 > 167 · (24)2 · 9.06, which holds for m ≥ 84. Then the condition 8m/2 > 22ω+10 · 9.06
comes into play to detect the primitive normal pairs by taking the exact value of ω. From
this, we declare that the remaining pairs (8, 21), (8, 42) are also primitive normal pairs.

Now, we are heading for the final stage, i.e., q = 8, m′ ∤ q − 1 and m′ 6= 3, 21. Form
Lemmas 5.4 and 5.6, we have σ(q,m) ≤ 1/5 and W (qm − 1) < 37.4683qm/6. It follows that
for the existence of primitive normal pairs, a sufficient condition is 8m/30 > 5616m, which
holds for m ≥ 202.

For the remaining pairs, we use the condition 811m/30 > 22ω+2m by determining the value of
ω. For m ≤ 201, ω ≤ 85 this holds for m ≥ 164. Next we take m ≤ 163 and then ω ≤ 72. For
these the condition holds for m ≥ 140. Now repeating the above process we get that the con-
dition holds form ≥ 92 and among the remaining pairs (8, 5), (8, 9), (8, 10), (8, 11), (8, 15), (8, 20)
are the ones which fail to satisfy the condition. Then choosing appropriate value of l and
g = xm

′
−1 in condition (4.2) we are able to declare all but the pair (8, 5) as primitive normal

pairs.
Our proof is now complete. �

Lemma 5.12. Let q ≥ 16 and m′ ∤ q − 1, then all the pairs (q,m) are primitive normal
pairs, unless (q,m) = (32, 3).
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Proof. We shall break the discussion into 4 cases (I–IV). Lemma 5.4 implies, that ϑ(q,m) ≤ 1
3

in all four cases. Furthermore, we take g to be the product of irreducible polynomials dividing
xm − 1 of degree less than u.

Case I: q = 16; For this case we apply Lemma 5.7 i.e. W (qm− 1) < 4514.7qm/8. Then to
show M(qm−1, qm−1, xm−1, xm−1) > 0 it is sufficient to show that 16m/12 > 8.15265·107m,
which holds for m ≥ 110. We use the condition 16m/2 > 22ω+2m to test the remaining pairs
by plotting value of ω and conclude that the pairs (16, 7), (16, 9), (16, 11), (16, 13), (16, 14),
(16, 18) and (16, 21) fail to satisfy the condition. Further, we choose compatible l and
g = xm

′
− 1 in condition (4.2) and conclude that all of them, except (16, 7), are primitive

normal pairs. Finally, from Table 2, we obtain (16, 7) is also a primitive normal pair.
Case II: q = 32; From Lemma 5.7 we have W (qm − 1) < 37.4683qm/2 and proceeding as

above with the sufficient condition 32m/30 > 1403.87m, which is true for allm ≥ 103. For rest
of the pairs we use the condition 3211m/30 > 22ω+2m, which proves that all the pairs (q,m) are
primitive normal pairs unless (q,m) is one of the pairs (32, 3), (32, 5), (32, 6), (32, 9), (32, 10),
(32, 12). Furthermore applying the prime sieve condition (4.2) for compatible l and g =
xm

′
− 1, we confirm that all of them are primitive normal pairs except (32, 3).

Case III: q = 64; Using Lemma 5.7 we have W (qm − 1) < 37.4683qm/2 and for
M(qm − 1, qm − 1, xm − 1, xm − 1) > 0 the sufficient condition is 64m/18 > 5601.03m, which
is true for all m ≥ 49. We use the condition 647m/18 > 22ω+2m, to investigate the existence
of the property in the rest of the pairs and conclude that all the pairs (q,m) are primitive
normal pairs unless (q,m) is (64, 5) or (64, 10). Later applying the prime sieve condition
(4.2) for compatible l and g = xm

′
− 1, we confirm that all of them are primitive normal

pairs.
Case IV: q ≥ 128; Lemma 5.7 yields W (qm − 1) < 37.4683qm/2 and for

M(qm − 1, qm − 1, xm − 1, xm − 1) > 0 it is sufficient to show that qm/6 > 1403.87 · 22m/3m,
which is true for all q ≥ 128 and m ≥ 18. We use the condition qm/2 > 22ω+2+2m/3m, to test
the existence of the property in rest of the pairs (149 in total) and all the pairs (q,m) are
primitive normal pairs except (128, 3). Then, from Table 2, we confirm that all of them are
primitive normal pairs. This concludes our proof. �

As an immediate consequence of the above results, we obtain Theorem 1.7.

6. A few computational results

In this section we comment on the situation with the possible exceptional pairs that appear
in Theorems 1.6 and 1.7. In particular, we wrote a script in SageMath, with the purpose
of explicitly verifying whether the pairs in question are, in fact, genuine exceptions.

For every pair (q,m), our script first fixes a primitive element α ∈ Fqm and then for every
quintuple a, b, c, d, e ∈ Fqm with a 6= 0 and dx + e 6= 0, it checks whether there exists some
power αi with gcd(i, qm − 1) = 1 of α (hence a primitive element), such that αi is normal

over Fq and
aα2 + bα + c

dα + e
is primitive and normal over Fq. For the primitivity check, we

just compute the corresponding multiplicative order and for the normality check, we use [12,
Theorem 2.39]. If this search is successful for every valid quintuple, then the pair (q,m) is
not an exception, while if it fails, even for one valid quintuple, the pair (q,m) is a genuine
exception.
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(q,m) d n g k Λ qm/2 3W (d)2Ω(g)Λ
(2,48) 105 6 x+ 1 1 70.8428 1.677727 72543
(2,40) 3 6 1 2 82.1256 1.04858× 106 21031.1
(2,36) 15 6 x9 − 1 0 32.9531 262144 134976
(2,42) 3 5 x21 − 1 0 15.9379 2.09751× 106 16320.4
(2,17) qm − 1 0 x+ 1 2 5.04762 362.039 323.048
(2,19) qm − 1 0 x+ 1 1 3.00001 724.077 192.001
(2,23) 47 1 x+ 1 2 7.00984 2896.31 448.63
(2,25) 31 2 x+ 1 2 10.0408 5792.62 642.611
(2,27) 7 2 x+ 1 3 22.3926 11585.2 1433.13
(2,29) 233 2 x29 − 1 0 5.00834 23170.5 1282.14
(2,31) qm − 1 0 x+ 1 6 19.6 46341 1254.4
(2,33) 7 2 x+ 1 4 35.7918 92681.9 2290.68
(2,35) 31 3 x+ 1 5 47.4422 185364 3036.3
(2,39) 7 3 (x+ 1)(x2 + x+ 1) 3 13.3057 741455 3406.26
(2,45) 7 5 (x+ 1)(x2 + x+ 1) 6 32.9687 5.93164× 106 8439.99
(2,51) 7 4 x51 − 1 0 9.14684 4.74531× 107 9.59166× 106

(2,28) 3 5 x+ 1 2 66.6522 16384 4265.74
(2,44) 3 6 x11 − 1 0 24.8377 4.1943× 106 6358.45
(2,52) 3 6 x13 − 1 0 22.0983 6.71089× 107 5657.16
(2,56) 15 6 x7 − 1 0 16.988 2.68435× 108 17395.6
(2,60) 15 9 x15 − 1 0 82.2883 1.07374× 109 5.392856

(2,22) 3 3 x11 − 1 0 7.6329 2048 1954.02
(2,70) 3 8 x35 − 1 0 24.8631 3.43597× 1010 1.62943× 106

(4,18) 15 6 (x+ 1)(x2 + x+ 1) 1 42.1079 262144 42.1079
(4,14) 3 5 x+ 1 2 35.4555 16384 2269.15
(4,20) 3 6 x5 − 1 0 60.7588 1.04858× 106 15554.3
(4,22) 3 6 x11 − 1 0 24.8377 4.1943× 106 6358.45
(4,28) 3 7 x7 − 1 0 40.9888 2.68435× 108 41972.5
(4,30) 15 9 x15 − 1 0 82.2883 1.07374× 109 5.39285× 106

(4,11) 3 3 x11 − 1 0 7.6329 2048 1954.02
(4,13) 3 2 x13 − 1 0 5.00293 8192 1280.75
(4,15) 3 5 (x+ 1)(x2 + x+ 1) 3 44.2638 32768 11332.7
(4,25) 3 6 x25 − 1 0 16.8495 3.35544× 107 17253.9
(4,35) 33 7 x+ 1 5 31.9641 3.43596× 1010 2045.7
(8,6) 3 3 x+ 1 1 14.7186 512 235.498
(8,12) 15 6 x3 − 1 0 32.9531 262144 33744
(16,7) 3 5 x+ 1 2 30.8825 16384 1976.48
(128,3) 7 2 x3 − 1 0 5.06649 1448.15 1297.02

Table 2. Pairs (q,m) appearing in the proof of Theorem 1.7, in which the
corresponding test yielded a positive conclusion.
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Unfortunately, the extremely high number of such quintuples, even for “small” numbers,
seems to create an impenetrable obstacle for a complete solution, with the exception of the
pairs (2, 2) and (2, 3). On the other hand we managed to examine a respectable number of
quintuples for all the other pairs and collected useful data.

In Table 3 we present the pairs (q,m), for which we found counter examples, while in
Table 4, we present those for which we did not find counter examples.

(q,m) f counter-example checked/exceptional 5-ples
(2, 2) x2 + x+ 1 (α, 0, 0, α, α) 720/252
(2, 3) x3 + x+ 1 (α, 0, 0, α, α2 + α) 28224/8295
(2, 4) x4 + x+ 1 (α, 0, 0, 0, α3 + α2) 64513/22109
(2, 5) x5 + x2 + 1 (α, 0, α, 0, α) 53345/52
(2, 6) x6 + x4 + x3 + x+ 1 (α, 0, 0, α2, α5 + α4 + α + 1) 21857/77
(4, 2) x4 + x+ 1 (α, 0, α, α, α3 + α2) 266115/1985
(4, 3) x6 + x4 + x3 + x+ 1 (α, 0, 0, α, α) 47708/152

Notes:

(1) α is a root of f ∈ Fq[x].
(2) For the pairs (2, 2) and (2, 3) the search was exhaustive.

Table 3. Results of the computer test, where counter-examples were found.

Due to the large number of quintuples that we checked, without finding any counter-
example, for the pairs (q,m) that appear in Table 4, we believe that the only genuine
exceptions to the problem we considered in this paper are the pairs that appear in Table 3.
In other words, based on our computational evindence, we state the following.

Conjecture 6.1. Let Fqm be a finite field of even characteristic. Then there exists an element
α in Fqm, such that both α and f(α) are simultaneously primitive normal in Fqm over Fq,

where f(x) =
ax2 + bx + c

dx+ e
, with a, b, c, d, e ∈ Fqm, a 6= 0, and dx+e 6= 0 unless (q,m) is one

of the pairs (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 2) or (4, 6), with these pairs being genuine
exceptions.

7. Some conjectures on rational functions

The following conjectures are extensions of the theorems given by Cohen, H. Sharma and
R. Sharma in [15]. For a finite field Fqm and a rational function f(x) ∈ Fqm(x), we denote
by deg(f) the sum of the degrees of f1 and f2, if f(x) = f1/f2 and f1, f2 are relatively prime
polynomials. The following conjectures are based on the results obtained during various
experiments performed on similar rational forms as in this paper, some of which are studied
briefly and will be discussed extensively in our next papers. Due to significantly large number
of finite fields and very fragile behavior of its properties, a large scale analysis is required to
establish our claims and this will be the focus of our subsequent study.

Conjecture 7.1. Take f ∈ Fqm(x) and write f = f1/f2, where f1, f2 are relatively prime
polynomials over Fqm. Let n > 2 be the degree of f , such that n = n1 + n2, where n1, n2 are
degrees of f1 and f2 respectively. Then there exist an element α ∈ Fqm such that both α and
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(q,m) checked 5-ples (q,m) checked 5-ples
(2, 7) 11400 (2, 8) 9067
(2, 10) 12894 (2, 11) 6504
(2, 12) 1830 (2, 13) 4765
(2, 14) 2584 (2, 15) 2003
(2, 16) 2993 (2, 18) 1104
(2, 20) 1460 (2, 21) 575
(2, 24) 829 (2, 30) 371
(4, 4) 78278 (4, 5) 25982
(4, 6) 16072 (4, 7) 19732
(4, 8) 24391 (4, 9) 4892
(4, 10) 12001 (4, 12) 4399
(8, 2) 244944 (8, 3) 163528
(8, 4) 64654 (8, 5) 67844
(8, 6) 37279 (8, 7) 11706
(8, 8) 16416 (8, 14) 1177
(16, 2) 202189 (16, 3) 79012
(16, 4) 70934 (16, 5) 28604
(16, 6) 21965 (16, 15) 235
(32, 2) 189487 (32, 3) 126253
(64, 2) 133395 (64, 4) 42129
(128, 2) 163368 (256, 2) 141196
(512, 2) 135355 (1024, 2) 106349

Table 4. Results of the computer test, where counter-examples were not found.

f(α) are simultaneously primitive normal elements of Fqm over Fq if

qm/2 > (2n− 2)W (qm − 1)2Ω(xm − 1)2,

provided the followings hold:

(i) f(x) is not of the form axigh(x), where i is an integer, 1 6= h | qm − 1 and a ∈ F∗
qm.

(ii) If n1 6= n2, then p ∤ n2, where p is the characteristic of Fqm.

Further, one can apply the prime sieve, see Section 4, to improve the above bound, leading
to the next conjecture.

Conjecture 7.2. The sufficient condition for existence of an element α in Fqm such that
(q,m) is a primitive normal pair is qm/2 > (2n− 2)W (d)2Ω(g)2S.
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