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ON HIGHER-RANK KHOVANSKII-TEISSIER INEQUALITIES

YASHAN ZHANG

Abstract. We shall discuss a higher-rank Khovanskii-Teissier inequality, generalizing a
theorem of Li in [14]. In the course of the proof, we develop new Hodge-Riemann bilinear
relations in certain mixed and degenerate settings, which in themselves slightly extend
the existing results and imply new Khovanskii-Teissier type inequalities and log-concavity
results.

1. Introduction

1.1. Backgrounds. Around the year 1979, Khovanskii and Teissier independently dis-
covered deep inequalities in algebraic geometry, which are profound analogs of Alexandrov-
Fenchel inequalities in convex geometry. There are many remarkable further developments
on Khovanskii-Teissier type inequalities (see e.g. [1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 20]
and references therein), among which we may recall the following one on an n-dimensional
compact Kähler manifold X as an example (see [4, 5, 9]). If ω1, ..., ωn−1 are Kähler metrics
on X and arbitrarily take [α] ∈ H1,1(X,R), then we have
(
∫

X

ω1 ∧ ... ∧ ωn−2 ∧ ωn−1 ∧ α
)2

≥
(
∫

X

ω1 ∧ ... ∧ ωn−2 ∧ ω2
n−1

)(
∫

X

ω1 ∧ ... ∧ ωn−2 ∧ α2

)

,

and the equality holds if and only if [α] and [ωn−1] are proportional.
Given the above inequality, as proposed in [13, 14], it is natural to ask whether some

similar inequalities hold for elements in Hp,p(X,R) for p ≥ 2, which may be called higher-
rank Khovanskii-Teissier inequalities (see [16]).

In the remaining part of this note, X is an n-dimensional compact Kähler manifold with
a fixed background Kähler metric ωX , and h

p,q := dimHp,q(X,C) is the Hodge number of
X .
Our study here is mainly motivated by Li’s works [13, 14], which gave a very natural

higher-rank generalization of the Khovanskii-Teissier inequality recalled above. More
precisely, given 2 ≤ p ≤ [n/2] and Kähler metrics ω, ω1, ..., ωn−2p on X , and denote
Ω := ω1 ∧ ... ∧ ωn−2p, then [14, Theorem 1.3(3)] states that the followings are equivalent:

(i) For every [γ] ∈ Hp,p(X,C), there holds
(
∫

X

Ω ∧ ωp ∧ γ
)(

∫

X

Ω ∧ ωp ∧ γ̄
)

≥
(
∫

X

Ω ∧ ω2p

)(
∫

X

Ω ∧ γ ∧ γ̄
)

; (1.1)

(ii) For all 1 ≤ l ≤ [p/2], h2l−1,2l−1 = h2l,2l;

moreover, if condition (ii) holds, then a [γ] ∈ Hp,p(X,C) satisfies the equality in (1.1) if
and only if [γ] is proportional to [ωp].
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One can find more recent progresses on higher-rank Khovanskii-Teissier inequalities on
certain Schur classes of ample vector bundles in Ross-Toma’s work [16].

1.2. A generalized m-positivity and statements of results. In this note, we shall ex-
tend Li’s above-recalled result to a more general setting, in which the involved forms/classes
are no longer required to be positive. To state the results, let’s firstly give some necessary
preparations, particularly including a notion called generalized m-positivity.

1.2.1. A generalized m-positivity. We first introduce the positivity condition used in the
discussions.

Definition 1.1. Let Φ be a (strictly) positive (m,m)-form on X and φ a real (1, 1)-form
on X . We say a real (1, 1)-form α on X is (n−m)-positive with respect to (Φ, φ) if

Φ ∧ φn−m−k ∧ αk > 0

for any 1 ≤ k ≤ n−m. In particular, the case that (Φ, φ) = (ωm
X , ωX) gives the original

(n−m)-positivity with respect to a fixed Kähler metric ωX , and in this case we say α is
(n−m)-positive with respect to ωX .

It will be seen from the following discussions (particularly Lemma 2.3) that the above
generalized m-positivity notion naturally appears as the characterization of the G̊arding
cone of certain hyperbolic polynomial. Moreover, comparing with the originalm-positivity
with respect to one fixed Kähler metric, one of the important advantages of the above
generalizedm-positivity is that it is very flexible when the induction or iteration arguments
are involved. We should mention that a version of (n −m)-positivity with respect to m
Kähler metrics ω1, ..., ωm has been proposed in [20, Remark 2.12], which seems slightly
stronger than the one defined above.

1.2.2. Higher-rank Khovanskii-Teissier inequalities. The following is our first result, which
extends previous results of Li [13, 14] to a degenerate setting.

Theorem 1.2. Assume λ0 = 0 and λ1, ..., λN ∈ Z≥1 with
∑N

i=1 λi = n−2p, p ∈ Z≥1. As-
sume αiji, 1 ≤ i ≤ N and 1 ≤ ji ≤ λi, be semi-positive closed real (1, 1)-forms on X such

that αiji has at least (n−
∑i−1

s=0 λs) positive eigenvalues. Denote Ω :=
∧

1≤i≤N,1≤ji≤λi
αiji.

Assume η is a semi-positive closed real (1, 1)-forms on X of at least (n−∑N
s=1 λs) posi-

tive eigenvalues, and α a closed real (1, 1)-forms on X which is 2-positive with respect to

(Ω ∧ ηn−2−
∑N

s=1 λs, η). Assume p ≥ 2. Then the followings are equivalent:

(i) For every [γ] ∈ Hp,p(X,C), there holds
(
∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ
)(

∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ̄
)

≥
(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)(

∫

X

Ω ∧ γ ∧ γ̄
)

;

(1.2)

(ii) For all 1 ≤ l ≤ [p/2], h2l−1,2l−1 = h2l,2l.

Moreover, if condition (ii) holds, then a [γ] ∈ Hp,p(X,C) satisfies the equality in (1.2) if
and only if [γ] is proportional to [ηp−1 ∧ α].
Remark 1.3. (1) We may point out that the above involved (1, 1)-forms αiji, i ≥ 2, η and
α could be degenerate in some directions, while α could be negative in some directions;
moreover, the (p, p)-form ηp−1 ∧ α is partially mixed/polarized (compare with (1.1)).
(2) The condition (ii) in Theorem 1.2 is satisfied by a variety of examples, see [13, Example
1.7].
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Example 1.4. Let’s look at a special case of Theorem 1.2 that p = 2 and h2,2 = h1,1.
Assume there exists a holomorphic submersion f : X → Y with Y a 4-dimensional
compact Kähler manifold. Let ω1, ..., ωn−4 be Kähler metrics on X , χ a Kähler metric on
Y and β a closed real (1, 1)-form on Y which is 2-positive with respect to χ on Y . Denote
Ω := ω1 ∧ ... ∧ ωn−4. Then for any [γ] ∈ H2,2(X,C) we have
(
∫

X

Ω ∧ f ∗χ ∧ f ∗β ∧ γ
)(

∫

X

Ω ∧ f ∗χ ∧ f ∗β ∧ γ̄
)

≥
(
∫

X

Ω ∧ f ∗χ2 ∧ f ∗β2

)(
∫

X

Ω ∧ γ ∧ γ̄
)

.

and the equality holds if and only if [γ] is proportional to [f ∗χ ∧ f ∗β].

Similar to [14], our Theorem 1.2 will be proved by making use of the Hodge-Riemann
bilinear relations. To this end, however, we have to first develop the Hodge-Riemann bilin-
ear relations in the corresponding mixed and degenerate setting, which we now intruduce
as follows.

1.2.3. Hodge index theorem. Let’s begin with a particular piece of Hodge-Riemann bilinear
relation, namely, the Hodge index theorem (i.e. Hodge-Riemann bilinear relation on H1,1

level).

Definition 1.5. ([5, Section 4]) For any [Ω] ∈ Hn−2,n−2(X,R) := Hn−2,n−2(X,C) ∩
H2n−4(X,R) and [η] ∈ H1,1(X,R), we define the primitive space with respect to ([Ω], [η])
by

P 1,1(X,C) :=
{

[γ] ∈ H1,1(X,C)|[Ω] ∧ [η] ∧ [γ] = 0
}

.

Then we say ([Ω], [η]) satisfies the Hodge index theorem if the quadratic form

Q([β], [γ]) :=

∫

X

Ω ∧ β ∧ γ

is negative definite on P 1,1(X,C).
Let H be the set of pair ([Ω], [η]) ∈ Hn−2,n−2(X,R)×H1,1(X,R) satisfying the Hodge

index theorem.

A fundamental question is to determine H .
The classical Hodge index theorem (see e.g. [19, Chapter 6]) equivalently says that

([ωn−2], [ω]) ∈ H for any Kähler metric ω. A theorem of Gromov [9] (also see [5, The-
orem 1.2]) extended Hodge index theorem to a mixed setting, proving that ([ω1 ∧ ... ∧
ωn−2], [ωn−1]) ∈ H for any Kähler metrics ω1, ..., ωn−1. More recently, Xiao [20, The-
orem A] further proved that if ω is a Kähler metric and α1, ..., αn−m−1 are closed real
(1, 1)-forms such that every αj is (n −m)-positive (n −m ≥ 2) with respect to ω, then
([ωm ∧ α1 ∧ ... ∧ αn−m−2], [αn−m−1]) ∈ H . Moreover, Ross-Toma [16] proved that certain
Schur classes of ample vector bundle are contained in H .
Comparing Xiao’s result [20] with the above-mentioned theorem of Gromov [9], it seems

very natural to ask that can we further mix the term ωm in Xiao’s result, e.g. can we
replace it by ω1 ∧ ... ∧ ωm? We shall answer this in the following

Theorem 1.6. Fix an integer m ≤ n − 2. Assume ω1, ..., ωm are Kähler metrics on X,
and α1, ..., αn−m−1 closed real (1, 1)-forms on X such that every αj is (n − m)-positive
with respect to (ω1 ∧ ... ∧ ωm, ωX). Then

([ω1 ∧ ... ∧ ωm ∧ α1 ∧ ... ∧ αn−m−2], [αn−m−1]) ∈ H .

Indeed, we shall prove the following more general Hodge index theorem in a setting
related to Theorem 1.2, which contains Theorem 1.6 as a very special case and will be
used in the proof of the main result Theorem 1.2.
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Theorem 1.7. Assume λ1, ..., λN , λN+1 ∈ Z≥1 with
∑N+1

i=1 λs = n − 2. Assume αiji, 1 ≤
i ≤ N + 1 and 1 ≤ ji ≤ λi + 1, are closed real (1, 1)-forms on X such that α1j1’s are

Kähler metrics, and when i ≥ 2, αiji is (n−
∑i−1

s=1 λs)-positive with respect to
(
∧

1≤s≤i−1,1≤js≤λs
αsjs, αi−1,λi−1+1). Denote Ω :=

∧

1≤i≤N+1,1≤ji≤λi
αiji. Assume η is a

closed real (1, 1)-forms on X which is 2-positive with respect to (Ω, αN+1,λN+1+1). Then
we have

([Ω], [η]) ∈ H .

Remark 1.8. We should point out that, in Theorem 1.7, the case that α11 = ... = α1,λ1 =:
ωX and all αiji’s, 2 ≤ i ≤ N +1 and 1 ≤ ji ≤ λi, and η are (n− λ1)-positive with respect
to ωX is exactly Xiao’s result [20, Theorem A]. Our result here extends it to a more mixed
setting and partially weakens the positivity assumption simultaneously, in which we may
in particular mention that some factor αiji is no longer required to have at least (n− λ1)
positive eigenvalues, e.g. they may only have 3 positive eigenvalues, while η may only
have 2 positive eigenvalues.

To prove Theorem 1.7, we will mainly follow Xiao’s strategy in [20]. One of the crucial
steps in [20] is applying G̊arding inequality to the elementary symmetric polynomial. In
this note, we shall consider some hyperbolic polynomials which are more general than the
elementary symmetric polynomial, and then apply G̊arding’s theory iteratively. Details
will be presented in Section 2.

1.2.4. Hodge-Riemann bilinear relations. Our Theorem 1.7 motivates some general Hodge-
Riemann bilinear relations in the mixed settings. Similar to Definition 1.5 we first intro-
duce

Definition 1.9. ([5, Section 4]) For any [Ω] ∈ Hn−k,n−k(X,R) := Hn−k,n−k(X,C) ∩
H2(n−k)(X,R), [η] ∈ H1,1(X,R), and for (p, q) with 0 ≤ p, q ≤ p + q ≤ n and p + q = k,
we define the primitive space with respect to ([Ω], [η]) in Hp,q(X,C) by

P p,q(X,C) = P p,q
([Ω],[η])(X,C) := {[γ] ∈ Hp,q(X,C)|[Ω] ∧ [η] ∧ [γ] = 0} .

Then we say ([Ω], [η]) satisfies the Hodge-Riemann bilinear relation on Hp,q(X,C) if the
quadratic form

Q([β], [γ]) :=
√
−1

q−p
(−1)

(p+q)(p+q+1)
2

∫

X

Ω ∧ β ∧ γ

is positive definite on P p,q(X,C).
Let H n−k,n−k be the set of pair ([Ω], [η]) ∈ Hn−k,n−k(X,R)×H1,1(X,R) satisfying the

Hodge-Riemann bilinear relation on Hp,q(X,C) for any (p, q) with p+ q = k.

The classical Hodge-Riemann bilinear relation (see e.g. [19, Chapter 6]) equivalently
says ([ωn−k], [ω]) ∈ H n−k,n−k for any Kähler metric ω. A theorem of Dinh-Nguyên [5,
Theorem A] and Cattani [2] extended Hodge-Riemann bilinear relation to a mixed setting,
proving that ([ω1 ∧ ...∧ωn−k], [ωn−k+1]) ∈ H n−k,n−k for any Kähler metrics ω1, ..., ωn−k+1

(also see [9, 18] for some special cases). More recently, Xiao [21, Theorem A, Remarks
2.2 and 3.9] further proved that for any fixed positive integer m with k ≤ m ≤ n,
if ω1, ..., ωn−m are Kähler metrics on X and α1, ..., αm−k+1 are closed real (1, 1)-forms
on X such that every αj is semi-positive and of at least m positive eigenvalues, then
([ω1 ∧ ... ∧ ωn−m ∧ α1 ∧ ... ∧ αm−k], [αm−k+1]) ∈ H

n−k,n−k.
Motivated by Theorem 1.7, we shall extend Xiao’s result [21, Theorem A, Remarks 2.2

and 3.9] to the following
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Theorem 1.10. Given N ∈ Z≥0. Assume λ0 = 0 and λ1, ..., λN ∈ Z≥1 with
∑N

i=0 λi =
n− (p+ q), p, q ∈ Z≥1. For 1 ≤ i ≤ N , assume αiji, 1 ≤ ji ≤ λi, are semi-positive closed

real (1, 1)-forms on X such that αiji has at least (n−
∑i−1

s=0 λs) positive eigenvalues. Denote
Ω :=

∧

1≤i≤N,1≤ji≤λi
αiji if N ≥ 1 and Ω = 1 ∈ R if N = 0. Assume η1, ..., ηp+q−2, ηp+q−1

are semi-positive closed real (1, 1)-forms on X of at least (n−
∑N

s=0 λs) positive eigenvalues

(note that p+ q − 2 = n− 2−
∑N

i=1 λs). Then for 0 ≤ d ≤ [(p+ q)/2]− 1,

([Ω ∧ η1 ∧ ... ∧ η2d], [η2d+1]) ∈ H
n−p−q+2d,n−p−q+2d.

Remark 1.11. Note that in Theorem 1.10, the N = 0 case is exactly the mixed Hodge-
Riemann bilinear relations of Dinh-Nguyên [5, Theorem A] and Cattani [2], as in this case
Ω is the constant 1 ∈ R and ηi’s are all Kähler, while the N = 1 case is Xiao’s result [21,
Theorem A, Remarks 2.2 and 3.9].

Remark 1.12. Consequently, by standard arguments (see e.g. [5, 6, 18, 21]) we also
have the Hard Lefschetz Theorem and Lefschetz Decomposition Theorem (with respect
to ([Ω ∧ η1 ∧ ... ∧ η2d], [η2d+1])) as follows.
Assume the same setting and notations as in Theorem 1.10, then

(a) The map [Ω ∧ η1 ∧ ... ∧ η2d] : Hp−d,q−d(X,C) → Hn−q+d,n−p+d(X,C) is an isomor-
phism;

(b) The space Hp−d,q−d(X,C) has a Q-orthogonal direct sum decomposition

Hp−d,q−d(X,C) = P p−d,q−d(X,C)⊕ [η2d+1] ∧Hp−d−1,q−d−1(X,C).

(c) dimP p−d,q−d(X,C) = hp−d,q−d − hp−d−1,q−d−1.

Remark 1.13. In Theorem 1.10, the case that p = q = 1 and d = 0 gives a Hodge index
theorem, which is weaker than the one proved in Theorem 1.7, as being k-positive (in the
general sense of Definition 1.1) is more general than being semi-positive and of at least k
positive eigenvalues. The better one in Theorem 1.7 is the reason that the α in the main
Theorem 1.2 can be assumed to be only 2-positive.

2. Hodge index Theorem: Proof of Theorem 1.7

2.1. Hyperbolic polynomials. For the proof of Theorem 1.7, we first collect some useful
properties of hyperbolic polynomials, closely following [8], [10, Chapter 2] and [20, Section
2.1].
Let V be an N -dimensional complex vector space and P = P (x) a homogeneous poly-

nomial of degree n on V . For a real vector a ∈ V we say that P is hyperbolic at a
if the equation P (sa + x) = 0 has n real zeroes for every real x ∈ V . In particular,
P (a) 6= 0 and the polynomial P (x)/P (a) is real when x is real. Then we may without loss
of generality assume that P is a real polynomial. We say P is complete if the condition
P (sx+ y) = P (y) for all s, y implies x = 0. If P is hyperbolic at a, let C(P, a) be the set
of all x such that P (sa+ x) 6= 0 when s ≥ 0, and we call it the G̊arding cone of P .

Theorem 2.1. [8, 10] If P is hyperbolic at a, then
(1) C(P, a) is an open convex cone;
(2) For any b ∈ C(P, a), P is hyperbolic at b and C(P, b) = C(P, a). In this case we
denote C(P ) = C(P, a);

(3) P (x)/P (a) > 0 on C(P, a) and (P (x)/P (a))1/n is concave on C(P, a).
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Let P̃ (x1, ..., xn) be the completely polarized form of P , which can be explicitly obtained
by differentiation:

P̃ (x1, ..., xn) =
1

n!

n
∏

k=1

(

N
∑

j=1

xjk
∂

∂xj

)

P (x),

where x = (x1, ..., xN) and xk = (x1k, ..., x
N
k ).

Theorem 2.2. [8, 10] If P is hyperbolic at a with P (a) > 0 and complete, then
(1) For any 2 ≤ m ≤ n−1 and any b1, ..., bn−m ∈ C(P, a), Pm(x) = P̃ (b1, ..., bn−m, x, ..., x)

is hyperbolic at a and complete, and C(P, a) ⊂ C(Pm, a). In particular, P̃ (x1, x2, ..., xn) >

0 for any x1, ..., xn−1 ∈ C(P, a) and xn ∈ C(P, a) \ {0};
(2) P̃ (x1, x2, ..., xn) ≥ P (x1)

1/n · ... ·P (xn)1/n for any x1, ..., xn ∈ C(P, a), and the equality
holds if and only if xj’s are pairwise proportional.

2.2. Proof. We now prove Theorem 1.7. As in [20] and [18, 5], we shall first deal with
the linear setting on Cn. However, unlike [20] (in which the discussions began with the
elementary symmetric polynomial σm), here we will begin with the determinant function
defined on n × n Hermitian matrices (see e.g. [8, Example 4]), which provides us some
more freedoms to mix the arguments involved.
That is equivalent to consider the real (1, 1)-forms of constant coefficients on Cn which

we do now. Precisely, if we denote Λ1,1
R (Cn) be the space of real (1, 1)-forms of constant

coefficients on Cn, then for any x ∈ Λ1,1
R (Cn) we define

P (x) := xn = x ∧ ... ∧ x,

which is a homogenous polynomial of degree n and is hyperbolic at any positive real
(1, 1)-forms in Λ1,1

R (Cn) and is complete. Precisely, for any fixed positive real (1, 1)-forms

ω ∈ Λ1,1
R (Cn), the cone C(P, ω) consists of all positive real (1, 1)-forms in Λ1,1

R (Cn). Note
that the completely polarized form of P is given by

P̃ (x1, ..., xn) := x1 ∧ ... ∧ xn

for any x1, ..., xn ∈ Λ1,1
R (Cn). Fix a Kähler metric ω0 ∈ Λ1,1

R (Cn). Then for any fixed

integer λ1 ≤ n− 2 and any Kähler metrics α11, ..., α1λ1 ∈ Λ1,1
R (Cn), the polynomial

P1(x) := P̃ (α11, ..., α1λ1 , x, ..., x) = α11 ∧ ... ∧ α1λ1 ∧ xn−λ1 (2.1)

is hyperbolic at ω0 and complete, thanks to Theorem 2.2(1).
Denote α1,λ1+1 := ω0. Next we need to understand the cone C(P1, α1,λ1+1). By Theorem

2.2(1) we know that C(P, α1,λ1+1) ⊂ C(P1, α1,λ1+1), i.e. C(P1, α1,λ1+1) contains all positive

real (1, 1)-forms in Λ1,1
R (Cn). More generally, we have

Lemma 2.3. C(P1, α1,λ1+1) = {x ∈ Λ1,1
R (Cn)|x is (n− λ1)-positive with respect to (α11 ∧

... ∧ α1λ1 , α1,λ1+1)}.

Proof. For convenience, set C1 := {x ∈ Λ1,1
R (Cn)|x is (n − λ1)-positive with respect to

(α1,λ1+1, α11∧ ...∧α1λ1)}, and Φ := α11∧ ...∧α1λ1 . In this case, since P1(α1,λ1+1) > 0, it is

easy to see that C(P1, α1,λ1+1) consists of all x ∈ Λ1,1
R (Cn) such that P1(sα1,λ1+1 + x) > 0
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whenever s ≥ 0. On the other hand, by definition (2.1),

P1(sα1,λ1+1 + x) = Φ ∧ (sα1,λ1+1 + x)n−λ1

=

n−λ1
∑

k=0

((

n− λ1
k

)

Φ ∧ αn−λ1−k
1,λ1+1 ∧ xk

)

sn−λ1−k

=

n−λ1
∑

k=0

µk · sn−λ1−k, (2.2)

where we have denoted

µk :=

(

n− λ1
k

)

Φ ∧ αn−λ1−k
1,λ1+1 ∧ xk. (2.3)

Using (2.2) one easily sees that if x ∈ C1, i.e. x is (n − λ1)-positive with respect to
(α1,λ1+1,Φ), then every coefficient µk, 0 ≤ k ≤ n−λ1, of P1(sα1,λ1+1+x) (as a polynomial
of s) is positive and hence P1(sα1,λ1+1 + x) > 0 whenever s ≥ 0, i.e. x ∈ C(P1, α1,λ1+1).
This proves C1 ⊂ C(P1, α1,λ1+1).
To see the converse, we assume x ∈ C(P1, α1,λ1+1), i.e.

h(s) := P1(sα1,λ1+1 + x) =

n−λ1
∑

k=0

µk · sn−λ1−k

has (n − λ1) negative zeroes. In particular, µn−λ1 = h(0) > 0. To proceed we take the
derivative of h(s),

h′(s) =
n−λ1−1
∑

k=0

(n− λ1 − k)µk · sn−λ1−1−k,

which by Rolle’s Theorem has (n−λ1−1) negative zeroes. In particular, µn−λ1−1 = h′(0) >
0. Iterating this argument, we finally conclude that µk > 0 for every 1 ≤ k ≤ n − λ1,
which, by the definition of µk in (2.3), means x ∈ C1. This proves C(P1, α1,λ1+1) ⊂ C1. �

Remark 2.4. For any other Kähler metric ω̃ onX , by Theorem 2.1(2) we know C(P1, ω̃) =
C(P1, α1,λ1+1). Therefore, as a consequence of Lemma 2.3, x ∈ Λ1,1

R (Cn) is (n−λ1)-positive
with respect to (α11 ∧ ... ∧ α1λ1 , α1,λ1+1) if and only if x is (n− λ1)-positive with respect
to (α11 ∧ ... ∧ α1λ1 , ω̃).

Given Lemma 2.3, we may apply Theorem 2.2(1) one more time to conclude that, for
any real (1, 1)-forms α21, α22, ..., α2λ2 , α2,λ2+1 ∈ Λ1,1

R (Cn) such that every α2j is (n − λ1)-
positive with respect to (α11 ∧ ... ∧ α1λ1 , α1,λ1+1), the polynomial

P2(x) : = P̃1(α21, α22, ..., α2λ2 , x, ..., x)

= α11 ∧ ... ∧ α1λ1 ∧ α21 ∧ ... ∧ α2λ2 ∧ xn−λ1−λ2 (2.4)

is hyperbolic at α2,λ2+1 and complete.

Similar to Lemma 2.3, we have

Lemma 2.5. C(P2, α2,λ2+1) = {x ∈ Λ1,1
R (Cn)|x is (n − λ1 − λ2)-positive with respect to

(α11 ∧ ... ∧ α1λ1 ∧ α21 ∧ ... ∧ α2λ2 , α2,λ2+1)}.
Proof. This follows by the same arguments in Lemma 2.3. �

Working iteratively, we easily arrive at the following
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Lemma 2.6. Assume λ1, ..., λN , λN+1 ∈ Z≥1 with
∑N+1

i=1 λs = n − 2. Assume αiji ∈
Λ1,1

R (Cn), 1 ≤ i ≤ N + 1 and 1 ≤ ji ≤ λi + 1, be closed real (1, 1)-forms on Cn such that

α1j1’s are Kähler metrics, and when i ≥ 2, αiji is (n −
∑i−1

s=1 λs)-positive with respect to
(
∧

1≤s≤i−1,1≤js≤λs
αsjs, αi−1,λi−1+1). Denote Ω :=

∧

1≤i≤N+1,1≤ji≤λi
αiji. Then

(1) the polynomial PN+1 := Ω ∧ x2 is hyperbolic at αN+1,λN+1+1 and complete;

(2) C(PN+1, αN+1,λN+1+1) = {x ∈ Λ1,1
R (Cn)|x is 2-positive with respect to (Ω, αN+1,λN+1+1)}.

Having the above preparations, similar to [20, Lemmas 3.8, 3.9] we have

Lemma 2.7. Assume the same setting and notions as in Lemma 2.6, and let η ∈ Λ1,1
R (Cn)

be a real (1, 1)-forms on Cn which is 2-positive with respect to (Ω, αN+1,λN+1+1).

(1) The (n− 1, n− 1)-form Ω ∧ η is strictly positive on Cn.
(2) If x ∈ Λ1,1

R (Cn) satisfies Ω ∧ η ∧ x = 0, then

Ω ∧ x2 ≤ 0,

and the equality holds if and only if x = 0.

Proof. Item (1) is a consequence of Theorem 2.2(1). To see this we first note that the
given η ∈ C(PN+1, αN+1,λN+1+1) by Lemma 2.6(2). Moreover, for any non-zero semi-

positive real (1, 1)-form x0 ∈ Λ1,1
R (Cn), we have x0 ∈ C(PN+1, αN+1,λN+1+1) \ {0}, as x0

belongs to the closure of the set C ⊂ Λ1,1
R (Cn) of all Kähler metrics and C ⊂ C(P1, ω0) ⊂

C(PN+1, ω0) = C(PN+1, αN+1,λN+1+1) by Theorem 2.2(1). Therefore, again by Theorem
2.2(1),

Ω ∧ η ∧ x0 = PN+1(η, x0) > 0. (2.5)

Item (2) is a consequence of G̊arding inequality in Theorem 2.2(2). Let’s consider
PN+1, which, by Lemma 2.6(1), is hyperbolic at αN+1,λN+1+1 and complete. Since η ∈
C(PN+1, αN+1,λN+1+1) and C(PN+1, αN+1,λN+1+1) is an open convex cone in Λ1,1

R (Cn) by
Theorem 2.1(1), we know that, for sufficiently large number s, x+sη ∈ C(PN+1, αN+1,λN+1+1).
Then by Theorem 2.2(2) there holds

P̃N+1(η, x+ sη)2 ≥ PN+1(η) · PN+1(x+ sη),

which, as can be checked directly, is equivalent to

P̃N+1(η, x)
2 ≥ PN+1(η) · PN+1(x),

from which the desired inequality follows, since by assumption P̃N+1(η, x) = 0 and by
Theorem 2.2(2) (or the above item (1)) PN+1(η) > 0. Moreover, the equality holds if and
only if η and x are proportional, which, by using again PN+1(η, x) = 0 and PN+1(η) > 0,
in turn implies x = 0. �

End of the proof of Theorem 1.7. Given the above preparations, we can easily carry out
the global case on a compact Kähler manifold X and finish the proof of Theorem 1.7 by
applying an identical arguments in [20, Section 3.2]. To make this note more complete
and readable, let’s give a sketch.
Now assume we are given the setting and notations in Theorem 1.7. It suffices to

check the result for elements in P 1,1(X,R) := P 1,1(X,C) ∩ H2(X,R). Arbitrarily take
[α] ∈ P 1,1(X,R) with a smooth representative α, i.e. [Ω]∧[η]∧[α] = 0. Then we obviously
have

∫

X

Ω ∧ η ∧ α = 0. (2.6)
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On the other hand, Lemma 2.7(1) implies that the following is a second order elliptic
equation of φ:

Ω ∧ η ∧
√
−1∂∂̄φ = −Ω ∧ η ∧ α. (2.7)

Since both Ω and η are closed, the compatibility condition of (2.7) is exactly (2.6). Then
by standard elliptic theory one obtains a smooth solution φ ∈ C∞(X,R) to the above
equation (2.7), i.e.

Ω ∧ η ∧ (α +
√
−1∂∂̄φ) = 0.

Then Lemma 2.7(2) implies

Ω ∧ (α+
√
−1∂∂̄φ)2 ≤ 0 (2.8)

on X , and the equality holds at some p ∈ X if and only if α +
√
−1∂∂̄φ = 0 at p.

Integrating (2.8) gives

Q([α], [α]) =

∫

X

Ω ∧ (α+
√
−1∂∂̄φ)2 ≤ 0,

and the equality holds if and only if α +
√
−1∂∂̄φ = 0 everywhere on X , i.e. [α] = 0 in

H1,1(X,R).
The proof is completed. �

Remark 2.8. (1) From the above discussions, to obtain general abstract elements in H ,
a natural approach may be characterizing the positive (m,m)-forms, say Φ ∈ Λm,m

R (Cn),

with the property that the following homogeneous polynomial defined on Λ1,1
R (Cn),

PΦ(x) := Φ ∧ xn−m,

is hyperbolic (and complete). Such a Φ, together with n−m−1 elements in C(PΦ), could
produce general abstract elements in H .
(2) Relating to the above problem, it is also natural to consider the following equation

on a compact Kähler manifold X :

Φ ∧ (α +
√
−1∂∂̄φ)n−m = Ψ, (2.9)

where Ψ is a smooth volume from on X , and α may be assumed to be (n −m)-positive
with respect to (ωX ,Φ). The case that Φ = ωm

X is just the complex Hessian equation,
and the case that Φ = ω1 ∧ ... ∧ ωm with ωj’s Kähler metrics on X has been proposed
in [20, Remark 2.12]. It seems interesting to explore the relations between the solvability
of (2.9) and the hyperbolicity of PΦ, which may have applications in understanding the
structure of H .

2.3. Khovanskii-Teissier type inequalities.

Remark 2.9. We remark some consequences of the Hodge index theorem, which should
be well-known (see e.g. [5, 20]).

(1) For any ([Ω], [η]) ∈ H with [Ω∧η] 6= 0, we have the Hard Lefschetz and Lefschetz
Decomposition Theorems (with respect to ([Ω], [η])) as follows:
(a) The map [Ω] : H1,1(X,C) → Hn−1,n−1(X,C) is an isomorphism;
(b) The space H1,1(X,C) has a Q-orthogonal direct sum decomposition

H1,1(X,C) = P 1,1(X,C)⊕ C[η].
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For (a) it suffices to check that it is injective. Assume [α] ∈ H1,1(X,C) with
[Ω] ∧ [α] = 0, then obviously there hold [α] ∈ P 1,1(X,C) and Q([α], [α]) = 0, and
hence by Hodge index theorem [α] = 0. This proves (a).
For (b) we consider the map [Ω] ∧ [η] : H1,1(X,C) → Hn,n(X,C), whose kernel is
exactly P 1,1(X,C). Moreover, restricting to the subspace C[η] this map specifies
an isomorphism between C[η] and Hn,n(X,C), as Hn,n(X,C) ∼= C and we can
check that [Ω] ∧ [η]∧ [η] 6= 0. Therefore, H1,1(X,C) = P 1,1(X,C)⊕C[η], which is
obviously Q-orthogonal. This proves (b).

(2) For any ([Ω], [η]) ∈ H with [Ω ∧ η] 6= 0, we have the Khovanskii-Teissier type
inequalities as follows.
(c) For any closed real (1, 1)-forms φ, ψ ∈ H1,1(X,R) with φ 2-positive with

respect to (Ω, η), then
(
∫

X

Ω ∧ φ ∧ ψ
)2

≥
(
∫

X

Ω ∧ φ2

)(
∫

X

Ω ∧ ψ2

)

with equality if and only if [φ] and [ψ] are proportional.
Indeed, using Hodge index theorem for ([Ω], [η]), one can easily check that the
polynomial P ([φ]) :=

∫

X
Ω ∧ φ2 defined on H1,1(X,R) is hyperbolic at [η] and

complete, with P ([η]) > 0. Then if φ is 2-positive with respect to (Ω, η), we have
[φ] ∈ C(P, [η]). Now the desired conclusion follows from G̊arding inequality and
the similar arguments in Lemma 2.7(2).

Combining Theorem 1.7 and Remark 2.9(2), we immediately conclude the following
Khovanskii-Teissier type inequality.

Theorem 2.10. Assume λ1, ..., λN , λN+1 ∈ Z≥1 with
∑N+1

i=1 λs = n− 2. Assume αiji, 1 ≤
i ≤ N +1 and 1 ≤ ji ≤ λi+1, be closed real (1, 1)-forms on X such that α1j1’s are Kähler

metrics, and when 2 ≤ i ≤ N + 1, αiji is (n−
∑i−1

s=1 λs)-positive with respect to
(
∧

1≤s≤i−1,1≤js≤λs
αsjs, αi−1,λi−1+1). Denote Ω :=

∧

1≤i≤N+1,1≤ji≤λi
αiji. Assume η be a

closed real (1, 1)-forms on X which is 2-positive with respect to (Ω, αN+1,λN+1+1). Then
for any [α] ∈ H1,1(X,R), we have

(
∫

X

Ω ∧ η ∧ α
)2

≥
(
∫

X

Ω ∧ η2
)(

∫

X

Ω ∧ α2

)

,

and the equality holds if and only if [η] and [α] are proportional.

Example 2.11. Let’s look at the special case corresponding to Theorem 1.6. Fix an
integer m ≤ n − 2. Assume ω1, ..., ωm are Kähler metrics and α1, ..., αn−m−1 closed real
(1, 1)-forms on X such that every αj is (n−m)-positive with respect to (ω1∧ ...∧ωm, ωX).
Set Ω := ω1 ∧ ... ∧ ωm ∧ α1 ∧ ... ∧ αn−m−2. Then for any [α] ∈ H1,1(X,R),

(
∫

X

Ω ∧ αn−m−1 ∧ α
)2

≥
(
∫

X

Ω ∧ α2
n−m−1

)(
∫

X

Ω ∧ α2

)

,

and the equality holds if and only if [αn−m−1] and [α] are proportional.

Similarly, we have the following log-convavity, which generalizes [20, Theorem B] and
[3, Corollary 2.16] to a more mixed/polarized and degenerate setting.

Theorem 2.12. Assume λ1, ..., λN , λN+1 ∈ Z≥1 with
∑N+1

i=1 λs = n− 2. Assume αiji, 1 ≤
i ≤ N and 1 ≤ ji ≤ λi + 1, be closed real (1, 1)-forms on X such that α1j1’s are Kähler

metrics, and when 2 ≤ i ≤ N , αiji is (n−
∑i−1

s=1 λs)-positive with respect to
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(
∧

1≤s≤i−1,1≤js≤λs
αsjs, αi−1,λi−1+1). Denote Ω̃ :=

∧

1≤i≤N,1≤ji≤λi
αiji. Assume α, β be two

closed real (1, 1)-forms on X which is (λN+1+2)-positive with respect to (Ω̃, αN,λN+1) (note

that λN+1 + 2 = n −
∑N

s=1 λs), and set ak :=
∫

X
Ω̃ ∧ αk ∧ βλN+1+2−k, 0 ≤ k ≤ λN+1 + 2.

Then for any 1 ≤ k ≤ λN+1 + 1 we have

a2k ≥ ak−1ak+1

with equality holding for some k if and only if [α] and [β] are proportional.

Proof. Note that if α, β are (λN+1 + 2)-positive with respect to (Ω̃, αN,λN+1), then by

Lemma 2.2(1), both α, β are 2-positive with respect to (Ω̃∧αk−1∧ βλN+1+1−k, α) for each
1 ≤ k ≤ λN+1 + 1. Therefore, the result follows from Theorem 2.10 immediately. �

Example 2.13. Let’s consider N = 1 case in Theorem 2.11, and denote λ1 = m (then
λ2 = n−m−2). Write α1j =: ωj, j = 1, ..., m, which are Kahler metrics; and assume α, β
are closed real (1, 1)-forms which are (n−m)-positive with respect to (ω1 ∧ ... ∧ ωm, ωX).
Then Theorem 2.11 reads, after setting ak :=

∫

X
ω1 ∧ ... ∧ ωm ∧ αk ∧ βn−m−k,

a2k ≥ ak−1ak+1 for each k = 1, 2, ..., n−m− 1.

These log-concavity results generalize the ones in [20, Theorem B] and [3, Corollary 2.16],
in which the case when ω1 = ... = ωm = ωX and α, β are (n−m)-positive with respect to
ωX is settled.

3. Hodeg-Riemann bilinear relation: Proof of Theorem 1.10

3.1. A linear version of Theorem 1.10. A proof for Theorem 1.10 can be achieved
by adapting the arguments [18, 5, 6, 21]. The first step is to prove a linear/local version
of Theorem 1.10 on Cn (see Proposition 3.1 below). To work with Cn, similar to the
previous sections, we denote Λp,q(Cn) be the space of (p, q)-forms of constant coefficients
on Cn and Λp,p

R (Cn) be the space of real (p, p)-forms of constant coefficients on Cn; for

a given pair (Ω, η) ∈ Λn−k,n−k
R (Cn) × Λ1,1

R (Cn) and (p, q) with 0 ≤ p, q ≤ p + q ≤ n and
p+ q = k, we define the primitive space with respect to (Ω, η) in Λp,q(Cn) by

P p,q = P p,q
(Ω,η) := {γ ∈ Λp,q(Cn)|Ω ∧ η ∧ γ = 0 on Cn},

and we say that (Ω, η) satisfies the Hodge-Riemann bilinear relation on Λp,q(Cn) if the
quadratic form

Q(β, η) :=
√
−1

q−p
(−1)

(p+q)(p+q+1)
2 Ω ∧ β ∧ η̄

is positive definite on P p,q
(Ω,η). Let H n−k,n−k be the set of pair (Ω, η) ∈ Λn−k,n−k

R (Cn) ×
Λ1,1

R (Cn) satifying the Hodge-Riemann bilinear relation on Λp,q(Cn) for any (p, q) with
0 ≤ p, q ≤ p + q ≤ n and p+ q = k.
The following is a linear version of Theorem 1.10 that we need later.

Proposition 3.1. Given N ∈ Z≥0. Assume λ0 = 0 and λ1, ..., λN ∈ Z≥1 with
∑N

i=0 λi =

n − (p + q), p, q ∈ Z≥1. For 1 ≤ i ≤ N , assume αiji ∈ Λ1,1
R (Cn), 1 ≤ ji ≤ λi, be

semi-positive real (1, 1)-form on Cn such that αiji has at least (n −
∑i−1

s=0 λs) positive
eigenvalues. Denote Ω :=

∧

1≤i≤N,1≤ji≤λi
αiji if N ≥ 1 and Ω = 1 ∈ R if N = 0.

Assume η1, ..., ηp+q−2, ηp+q−1 ∈ Λ1,1
R (Cn) are semi-positive real (1, 1)-forms on Cn of at

least (n −
∑N

s=0 λs) positive eigenvalues (note that p + q − 2 = n − 2 −
∑N

i=1 λs). Then
for 0 ≤ d ≤ [(p+ q)/2]− 1,

(Ω ∧ η1 ∧ ... ∧ η2d, η2d+1) ∈ H
n−p−q+2d,n−p−q+2d.
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In fact, the N = 0 case is exactly Timorin’s work [18], while N = 1 case is (implicitly)
Xiao’s [21, Theorem 3.1,Remarks 2.2 and 3.9].
Basing on the N = 0 case, we can take an induction argument similar to [18] to prove

the general case. We particularly remark that we will do induction with respect to the
number N , while the original reduction argument in [18] (and the modified one in [21])
was made with respect to the dimension of manifolds. It seems that our argument gives
a slightly different proof for [21, Theorem 3.1].
First of all, let’s collect two useful linear algebra lemmas from [21] as follows.
For any v ∈ Cn \ {0}, Hv is the hyperplane defined by

Hv := {x ∈ Cn|v · x = 0}. (3.1)

Lemma 3.2. [21, Lemma 2.1] For any positive integral r < n and β ∈ Λ1,1
R (Cn), which

is semi-positive and has at least r positive eigenvalues, there is a proper subspace S(β) of
Cn such that for any v ∈ Cn \ S(β), β|Hv

, the restriction of β to Hv, is semi-positive and
has at least r positive eigenvalues.

Proof. This can be checked by the argument in [21, Lemma 2.1] by using hyperbolicity of
the homogeneous polynomial Pm defined in subsection 2.2. Alternatively, one may check
this lemma directly as β is semi-positive. �

Lemma 3.3. [21, Lemma 2.1] Given any finitely many hyperplanes Hv1 , ..., Hvd in Cn,
there exists an orthonormal basis {e1, ..., en} of Cn such that

ei ∈ Cn \ ∪d
λ=1Hvλ

Next step is to show that Proposition 3.1 for N = k − 1 implies Hard Lefschetz and
Lefschetz Decomposition Theorems for N = k.

Proposition 3.4. (compare [18, Proposition 1] and [21, Lemma 3.3]) Given k ≥ 1.
Assume Proposition 3.1 hold for N = k− 1 in any dimensions. Given the same data and
conditions in Proposition 3.1 for N = k, then the corresponding Hard Lefschetz Theorem
holds for Ω ∧ η1 ∧ ... ∧ η2d, i.e.

Ω ∧ η1 ∧ ... ∧ η2d : Λp−d,q−d(Cn) → Λn−q+d,n−p+d(Cn)

is an isomorphism.

Proof. It suffices to check the injectivity due to the dimension reason. Let Φ ∈ Λp−d,q−d(Cn)
satisfying

Ω ∧ η1 ∧ ... ∧ η2d ∧ Φ = α11 ∧ ... ∧ α1λ1 ∧ α21 ∧ ... ∧ αkλk
∧ η1... ∧ η2d ∧ Φ = 0. (3.2)

The goal is to show that Φ = 0. Loosely speaking, the idea to achieve this goal is to
“increase” the positivity of the involved (1, 1)-forms by decreasing the dimension of the
ambient space and hence Proposition 3.1 for N = k − 1 case could be applied. The
followings are the details.
Firstly, since λ1 ≥ 1, we apply Lemma 3.2 to see that for a generic (n− 1)-dimensional

subspaceHn−1 = Hn−1
v of Cn (here being generic means v can be arbitrarily chosen outside

finitely many proper subspaces in Cn), for 2 ≤ i ≤ k, αi·|H is semi-positive and has at

least (n−∑i−1
s=1 λs) positive eigenvalues, here · ranges from 1 to λi, and η1|H , ..., ηp+q−1|H

is semi-positive and has at least (n−∑k
s=1 λs) positive eigenvalues. Of course α1·|H keeps

positive on H . Also we have, on H ,

α11|H ∧ ... ∧ α1λ1|H ∧ α21|H ∧ ... ∧ αkλk|H ∧ η1|H ... ∧ η2d|H ∧ Φ|H = 0. (3.3)
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Repeating the above procedure λ1 times, we see that for a generic (n − λ1)-dimensional
subspace Ln−λ1 of Cn, for i = 1, 2, αi·|L is positive on L, and for 3 ≤ i ≤ k, αi·|L is

semi-positive and has at least (n−
∑i−1

s=1 λs) positive eigenvalues, and η1|L, ..., ηp+q−1|L is

semi-positive and has at least (n−
∑k

s=1 λs) positive eigenvalues. Also we have, on L,

α11|L ∧ ... ∧ α1λ1|L ∧ α21|L ∧ ... ∧ αkλk|L ∧ η1|L... ∧ η2d|L ∧ Φ|L = 0. (3.4)

Set Θ|L := α̂11|L ∧ ...∧ α1λ1|L ∧ α21|L ∧ ...∧ αkλk|L ∧ η1|L...∧ η2d|L, i,e, removing α11|L, then
Φ|L is primitive with respect to (Θ|L, α11|L). Since both α1·|L, α2·|L are positive on L, and
for i ≥ 3,

n−
i−1
∑

s=1

λs = (n−λ1)−((λ1−1+λ2)+...+λi−1)+(λ1−1) ≥ (n−λ1)−((λ1−1+λ2)+...+λi−1),

we can apply Proposition 3.1 for N = k − 1 case in dimension n− λ1 to conclude that

cd ·Θ|L ∧ Φ|L ∧ Φ|L ≥ 0. (3.5)

where cd :=
√
−1

q−p
(−1)

(p+q−2d)(p+q−2d+1)
2 . This equivalently means that for a generic

(n− λ1 + 1)-dimensional subspace K of Cn and a generic (n− λ1)-dimensional subspace
L of K,

cd ·Θ|K ∧ Φ|K ∧ Φ|K ∧
√
−1dL ∧ dL̄ ≥ 0. (3.6)

Now by Lemma 3.3 we fix an orthonormal basis f1, ..., fn−λ1+1 of Kn−λ1+1 such that for
every 1 ≤ l ≤ n− λ1 + 1,

cd ·Θ|K ∧ Φ|K ∧ Φ|K ∧
√
−1dLfl ∧ dL̄fl ≥ 0, (3.7)

where Lfl is the hyperplane in K defined by fl ∈ K (see (3.1)). May assume α11|K =
∑n−λ1+1

l=1

√
−1dLfl ∧ dL̄fl , then summing up (3.7) over l gives

cd · α11|K ∧ ... ∧ α1λ1|K ∧ α21|K ∧ ... ∧ αkλk|K ∧ η1|K ... ∧ η2d|K ∧ Φ|K ∧ Φ|K ≥ 0. (3.8)

However, by assumption (3.2) the equality holds in (3.8), which forces (3.5) with L = Lfl

to be an equality. Therefore, by Proposition 3.1 for N = k − 1 case we obtain Φ|Lfl
= 0,

which, since p+ q−2d ≤ p+ q = n−∑k
i=1 λi ≤ n−λ1 < n−λ1+1, implies that Φ|K = 0,

and eventually we conclude that Φ = 0 on Cn.
Proposition 3.4 is proved. �

Given the Hard Lefschetz Theorem for N = k case, we immediately have the Lefschetz
Decomposition Theorem for N = k by the same arguments in [18, Corollaries 2 and 3]
(also see [21, Lemma 3.6]).

Proposition 3.5. Assume the same data and conditions in Proposition 3.1 for N = k,
and let the quadratic form Q and primitive space P p−d,q−d are defined with respect to
(Ω∧η1∧ ...∧η2d, η2d+1). Then the corresponding Lefschetz Decomposition Theorem holds,
i.e.

(1) Λp−d,q−d(Cn) has a Q-orthogonal direct sum decomposition

Λp−d,q−d(Cn) = P p−d,q−d(Cn)⊕ η2d+1 ∧ Λp−d−1,q−d−1(Cn).

(2) dimP p−d,q−d = dimΛp−d,q−d − dimΛp−d−1,q−d−1.

Given the above preparations, we now present a proof for Proposition 3.1 by adapting
the homotopy argument in [18, Section 6].
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Proof of Proposition 3.1. The N = 0 case is exactly [18]. Assume Proposition 3.1 holds
for N = k − 1 in any dimensions. Given the data and conditions in N = k case, we
consider the deformation

Θt :=

{

α11 ∧ ... ∧ α1λ1 ∧ ηt1... ∧ ηt2d, k = 1;
α11 ∧ ... ∧ α1λ1 ∧ αt

21 ∧ ... ∧ αt
2λ2

∧ α31 ∧ ... ∧ αkλk
∧ η1... ∧ η2d, k ≥ 2,

where ηtj := (1 − t)ηj + tα11, 1 ≤ j ≤ 2d, and αt
2j2 := (1 − t)α2j2 + tα11, 1 ≤ j2 ≤ λ2,

and t ∈ [0, 1]. Let P p−d,q−d
t be the primitive space with respect to (Θt, η2d+1) and Qt

the quadratic form defined by Θt. By Proposition 3.4 we know Qt is non-degenerate for
t ∈ [0, 1], while by Proposition 3.5, dimP p−d,q−d

t keeps the same for t ∈ [0, 1]. Moreover,

applying the result for N = k− 1 case gives that Q1 is positive definite on P p−d,q−d
1 (note

that η1j = α11 is a positive real (1, 1)-form for every j = 1, ..., 2d, and α1
2j2

= α11 is also a
positive real (1, 1)-form for every 1 ≤ j2 ≤ λ2), therefore, we conclude that Q0 is positive

definite on P p−d,q−d
0 , which is exactly the required result.

Proposition 3.1 is proved. �

Using Propositions 3.1, 3.4 and 3.5 and the same arguments in [5, Proposition 2.2], we
also have the following.

Lemma 3.6. Given the same data and conditions in Proposition 3.1, there exists a pos-
itive number C ≥ 1 such that

‖Ω ∧ η1 ∧ ... ∧ η2d ∧ η2d+1 ∧ Φ‖2 +Q(Φ,Φ) ≥ C−1‖Φ‖2, Φ ∈ Λp−d,q−d(Cn).

3.2. Proof of Theorem 1.10. Given the results in the above subsection 3.1 (including
Proposition 3.1 and Lemma 3.6), Theorem 1.10 can be proved by the similar arguments
in [5, Propositions 2.3 and 2.4, Section 3] (also see [21, Section 3.2]). For the sake of
completeness we present a proof here.

Proof of Theorem 1.10. Given [Φ] ∈ P p−d,q−d with Φ a smooth representative, by Lemma
3.6 and the same L2-method arguments in [5, Propositions 2.3 and 2.4] (Lemma 3.6
provides, after an integration over X , the key L2-estimate which makes the L2-method
applicable in solving (3.9) below), we can find a v ∈ Λp−d−1,q−d−1(X,C) satisfying

Ω ∧ η1 ∧ ... ∧ η2d ∧ η2d+1 ∧ (Φ−
√
−1∂∂̄v) = 0 on X. (3.9)

In case p− d = 0 or q − d = 0 we replace
√
−1∂∂̄v by 0. Then by Proposition 3.1 we see

that

cd · Ω ∧ η1 ∧ ... ∧ η2d ∧ (Φ−
√
−1∂∂̄v) ∧ (Φ−

√
−1∂∂̄v) ≥ 0 (3.10)

holds pointwise on X, integrating which and applying Stokes Formula immediately give

Q([Φ], [Φ]) =

∫

X

cd · Ω ∧ η1 ∧ ... ∧ η2d ∧ (Φ−
√
−1∂∂̄v) ∧ (Φ−

√
−1∂∂̄v) ≥ 0.

Moreover, the equality holds if and only if (3.10) is an equality everywhere on X , and
hence by Proposition 3.1 if and only if Φ =

√
−1∂∂̄v on X , i.e. [Φ] = 0 in Hp−d,q−d.

Theorem 1.10 is proved. �

Remark 3.7. We can also slightly generalize the abstract versions of the mixed Hodge-
Riemann bilinear relations in [6, Theorem 1.1] and [21, Theorem 4.3] to the setting of
Theorem 1.10.
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4. Higher-rank Khovanskii-Teissier inequality

Given results in Sections 2 and 3, we can now prove the higher-rank Khovanskii-Teissier
inequality in Theorem 1.2 by carefully adapting Li’s arguments in [14, Section 2.2].

Lemma 4.1. Assume λ0 = 0 and λ1, ..., λN ∈ Z≥1 with
∑N

i=1 λs = n− 2p, p ∈ Z≥1. As-
sume αiji, 1 ≤ i ≤ N and 1 ≤ ji ≤ λi, be semi-positive closed real (1, 1)-forms on X such

that αiji has at least (n−
∑i−1

s=0 λs) positive eigenvalues. Denote Ω :=
∧

1≤i≤N,1≤ji≤λi
αiji.

Assume η is a semi-positive closed real (1, 1)-forms on X of at least (n−
∑N

s=0 λs) posi-
tive eigenvalues, and α a closed real (1, 1)-forms on X which is 2-positive with respect to
(Ω ∧ η2p−2, αN,λN

). Assume p ≥ 2. Then for any given [γ] ∈ Hp,p(X,C), there holds

[γ] = [γp] + [η] ∧ [γp−1] + [η2] ∧ [γp−2] + ...+ [ηp−1] ∧ [γ1] + µ · [ηp−1] ∧ [α], (4.1)

where [γs] ∈ P s,s

([Ω∧η2(p−s)],[η])
(X,C) for 2 ≤ s ≤ p, [γ1] ∈ P 1,1

([Ω∧η2(p−1) ],[α])
(X,C), and µ ∈ C.

Proof. In Theorem 1.10 and Remark 1.12, we choose η1 = ... = η2p−2 = η, then Remark
1.12(b) immediately implies

[γ] = [γp] + [η] ∧ [γ̃p−1]

= [γp] + [η] ∧ ([γp−1] + [η] ∧ [γ̃p−2])

= [γp] + [η] ∧ [γp−1] + [η2] ∧ [γ̃p−2]

= ...

= [γp] + [η] ∧ [γp−1] + [η2] ∧ [γp−2] + ... + [ηp−2] ∧ [γ2] + [ηp−1] ∧ [γ̃1]. (4.2)

with [γs] ∈ P p,p

([Ω∧η2(p−s)],[η])
(X,C), 2 ≤ s ≤ p and [γ̃1] ∈ H1,1(X,C).

To proceed, we apply Theorem 1.7 to see that ([Ω ∧ η2(p−1)], [α]) satisfies the Hodge
index theorem, and hence by Remark 2.9(b), we can decompose [γ̃1] as

[γ̃1] = [γ1] + µ[α] (4.3)

with [γ1] ∈ P 1,1

([Ω∧η2(p−1)],[α])
(X,C) and µ ∈ C.

Plugging (4.3) into (4.2) gives the required decomposition (4.1). �

Then we may express the integrands involved in (1.2) as follows.

Lemma 4.2. The followings hold.

(1) [Ω] ∧ [ηp−1] ∧ [α] ∧ [γ] = µ · [Ω] ∧ [η2(p−1)] ∧ [α2].
(2) [Ω] ∧ [γ] ∧ [γ̄] = |µ|2 · [Ω] ∧ [η2(p−1)] ∧ [α2] +

∑p
s=1[Ω] ∧ [η2(p−s)] ∧ [γs] ∧ [γ̄s].

Proof. These are consequences of the decomposition of [γ] in (4.1).
For (1), we compute

[Ω] ∧ [ηp−1] ∧ [α] ∧ [γ]

= [Ω] ∧ [ηp−1] ∧ [α] ∧
(

[γp] + [η] ∧ [γp−1] + ...+ [ηp−1] ∧ [γ1] + µ[ηp−1] ∧ [α]
)

= µ[Ω] ∧ [η2(p−1)] ∧ [α2] +

p
∑

s=1

[Ω] ∧ [η2p−s−1] ∧ [α] ∧ [γs]

= µ[Ω] ∧ [η2(p−1)] ∧ [α2] + [Ω] ∧ [η2(p−1)] ∧ [α] ∧ [γ1] +

p
∑

s=2

[Ω] ∧ [η2(p−s)+1] ∧ [γs] ∧ [α] ∧ [ηs−2]

= µ[Ω] ∧ [η2(p−1)] ∧ [α2],
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where we have used [Ω] ∧ [η2(p−1)] ∧ [α] ∧ [γ1] = 0 and [Ω] ∧ [η2(p−s)+1] ∧ [γs] = 0 for any
2 ≤ s ≤ p.
The item (2) can be checked similarly. �

As an application, we have

Lemma 4.3.
(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)(

∫

X

Ω ∧ γ ∧ γ̄
)

−
(
∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ
)(

∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ̄
)

=

(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)

(

p
∑

s=1

∫

X

[Ω] ∧ [η2(p−s)] ∧ [γs] ∧ [γ̄s]

)

.

Proof. Applying Lemma 4.2(1) and (2), the result follows immediately. �

Now we are ready to give an

End of the proof of Theorem 1.2. Since [γs] ∈ P s,s

([Ω∧η2(p−s)],[η])
(X,C) for 2 ≤ s ≤ p, and

[γ1] ∈ P 1,1

([Ω∧η2(p−1)],[α])
(X,C), by Theorems 1.7 and 1.10 we have, for every for 1 ≤ s ≤ p,

(−1)s
∫

X

[Ω] ∧ [η2(p−s)] ∧ [γs] ∧ [γ̄s] ≥ 0 (4.4)

with equality holds if and only if [γs] = 0. On the other hand, by assumption we also
have Ω ∧ (ηp−1 ∧ α)2 > 0 on X , implying

∫

X

Ω ∧ (ηp−1 ∧ α)2 > 0. (4.5)

(ii)⇒(i): If the condition (ii) holds, then by Remark 1.12 (c), [γ2d] = 0 for 1 ≤ d ≤ [p/2],
and hence

p
∑

s=1

∫

X

[Ω] ∧ [η2(p−s)] ∧ [γs] ∧ [γ̄s] =
∑

1≤d≤[(p+1)/2]

∫

X

[Ω] ∧ [η2(p−(2d−1))] ∧ [γ2d−1] ∧ [γ̄2d−1]

≤ 0,

with equality holds if and only if [γ2d−1] = 0 for every 1 ≤ d ≤ [(p+ 1)/2].
Therefore, the inequality (1.2) is proved for every [γ] ∈ Hp,p(X,C), with equality holds

for some [γ] if and only if [γ] is proportional to [ηp−1 ∧ α].

(i)⇒(ii): Assume a contradiction that there is a 1 ≤ d′ ≤ [p/2] with h2d
′−1,2d′−1 <

h2d
′,2d′, then we choose [β] ∈ P 2d′,2d′

([Ω∧η2(p−2d′)],[η])
(X,C) \ {0} and consider

[γ′] := [ηp−1 ∧ α] + [ηp−2d′ ] ∧ [β].

By the above discussions, it is easy to see that
(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)(

∫

X

Ω ∧ γ′ ∧ γ′
)

−
(
∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ′
)(

∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ′
)

=

(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)(

∫

X

[Ω] ∧ [η2(p−2d′)] ∧ [β] ∧ [β]

)

> 0,

which contradicts to condition (i).
Theorem 1.2 is proved. �
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Remark 4.4. One can extract from the above proof a general result that the higher-
rank Khovanskii-Teissier inequality actually holds with respect to general cohomology
classes satisfying certain Hodge-Riemann bilinear relations (we thank an anonymous
referee for pointing out this). Precisely, given [Ω] ∈ Hn−2p,n−2p(X,R), p ≥ 2, and
[η], [α] ∈ H1,1(X,R), assume that ([Ω ∧ η2p−2s], [η]) satisfies the Hodge-Riemann bilin-
ear relation for each 2 ≤ s ≤ p, and ([Ω ∧ η2p−2], [α]) satisfies the Hodge index theorem,
then the followings are equivalent:

(i) For every [γ] ∈ Hp,p(X,C), there holds
(
∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ
)(

∫

X

Ω ∧ (ηp−1 ∧ α) ∧ γ̄
)

≥
(
∫

X

Ω ∧ (ηp−1 ∧ α)2
)(

∫

X

Ω ∧ γ ∧ γ̄
)

;

(4.6)

(ii) For all 1 ≤ l ≤ [p/2], h2l−1,2l−1 = h2l,2l.

Moreover, if condition (ii) holds, then a [γ] ∈ Hp,p(X,C) satisfies the equality in (4.6) if
and only if [γ] is proportional to [ηp−1 ∧ α].
Remark 4.5. Given Theorems 1.7 and 1.10, one can also use the similar arguments to
extend [14, Theorem 1.3(1)] to our current setting.
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