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REAL HYPERSURFACES IN THE COMPLEX PROJECTIVE

PLANE SATISFYING AN EQUALITY INVOLVING δ(2)

TORU SASAHARA

Abstract. It was proved in Chen’s paper [3] that every real hypersurface in the

complex projective plane of constant holomorphic sectional curvature 4 satisfies

δ(2) ≤
9

4
H

2 + 5,

where H is the mean curvature and δ(2) is a δ-invariant introduced by him. In

this paper, we study non-Hopf real hypersurfaces satisfying the equality case of

the inequality under the condition that the mean curvature is constant along

each integral curve of the Reeb vector field. We describe how to obtain all such

hypersurfaces.

1. Introduction

For a Riemannian m-manifold M with m > 2, Chen [2] introduced in the early

1990s the following invariant:

δ(2)(p) = τ(p)− inf{K(π) | π is a plane in TpM},
where τ is the scalar curvature and K(π) is the sectional curvature of π. If m = 3,

then δ(2)(p) is equal to the maximum Ricci curvature function Ric on M defined
by Ric(p) = max{S(X,X) | X ∈ TpM, ||X|| = 1}, where S is the Ricci tensor. For
general δ-invariants, see [4] for details.

It was proved in [3] that every real hypersurface in the complex projective space
CPn of complex dimension n and constant holomorphic sectional curvature 4 satisfies

(1.1) δ(2) ≤ (2n − 1)2(2n− 3)

4(n − 1)
H2 + 2n2 − 3,

where H denotes the mean curvature. A real hypersurface in CPn is said to be
δ(2)-ideal if it attains equality in (1.1) at each point. Chen [3] completely classified
δ(2)-ideal Hopf real hypersurfaces in CPn. In [7], the author proved that a non-Hopf

real hypersurface with constant mean curvature in CP 2 is δ(2)-ideal if and only if it
is a minimal ruled real hypersurface. In this paper, we classify δ(2)-ideal non-Hopf
real hypersurfaces in CP 2 whose mean curvature is constant along each integral

curve of the Reeb vector field.

2. Preliminaries

Let M be a real hypersurface in the complex projective space CPn. We denote by
J the almost complex structure of CPn. For a unit normal vector field N , the vector
field on M defined by ξ = −JN is called the Reeb vector field. If ξ is a principal

curvature vector at every point of M , then M is said to be Hopf.
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LetH be the holomorphic distribution defined byH =
⋃

p∈M{X ∈ TpM | 〈X, ξ〉 =
0}, where 〈·, ·〉 denotes the metric of CPn. If H is integrable and each leaf of its
maximal integral manifolds is a totally geodesic complex hypersurface, then M is
said to be ruled.

Denote by ∇ and ∇̃ the Levi-Civita connections on M and CPn, respectively.
The Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + 〈AX,Y 〉N,

∇̃XN = −AX

for tangent vector fields X, Y and a unit normal vector field N , where A is the
shape operator with respect to N . The function H = trA/(2n − 1) is called the
mean curvature. If it vanishes identically, then M is said to be minimal.

For any vector field X tangent to M , we denote the tangential component of JX
by φX. Then by the Gauss and Weingarten formulas, we have

(2.1) ∇Xξ = φAX.

We denote by R the Riemannian curvature tensor of M . Then, the equations of
Gauss and Codazzi are respectively given by

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y + 〈φY,Z〉φX − 〈φX,Z〉φY(2.2)

− 2 〈φX, Y 〉φZ + 〈AY,Z〉AX − 〈AX,Z〉AY,
(∇XA)Y − (∇Y A)X = 〈X, ξ〉 φY − 〈Y, ξ〉φX − 2 〈φX, Y 〉 ξ.(2.3)

3. δ(2)-ideal real hypersurfaces

Applying [3, Theorem 5] to real hypersurfaces in CPn, we have the following

general inequality.

Theorem 3.1. Let M be a real hypersurface in CPn. For any point p ∈ M and

any plane π ⊂ TpM , we have

(3.1) τ −K(π) ≤ (2n − 1)2(2n − 3)

4(n− 1)
H2 + 2n2 − 3− 3 〈Je1, e2〉2 ,

where {e1, e2} is an orthonormal basis of π. The equality sign in (3.1) holds at a

point p ∈ M if and only if there exists an orthonormal basis {e1, e2, . . . , e2n−1} at p
such that the shape operator at p is represented by a matrix

(3.2) A =















α β 0 . . . 0
β γ 0 . . . 0

0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 . . . µ















,

where α+ γ = µ.

The following Corollary immediately follows from Theorem 3.1.

Corollary 3.1 ([3]). Let M be a real hypersurface in CPn. Then, we have

(3.3) δ(2) ≤ (2n− 1)2(2n − 3)

4(n − 1)
H2 + 2n2 − 3
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at each point of M . The equality sign in (3.3) holds at a point p ∈ M if and only if

there exists an orthonormal basis {e1, e2, . . . , e2n−1} at p such that

(1) 〈Je1, e2〉 = 0,
(2) K(e1 ∧ e2) = infK,

(3) the shape operator at p is represented by a matrix (3.2) with α+ γ = µ.

Remark 3.1. It follows from (3.1) that if (1) and (3) in Corollary 3.1 hold, then

(2) is automatically satisfied.

A real hypersurface in CPn is said to be δ(2)-ideal if it attains equality in (3.3)
at each point. In [3], Chen proved that a Hopf real hypersurface in CPn is δ(2)-

ideal if and only if it is an open part of one of the following hypersurfaces: (i) a
geodesic sphere with radius π/4 in CPn, (ii) a tubular hypersurface with radius

r = tan−1((1 +
√
5−

√

2 + 2
√
5)/2) over a complex quadric curve Q1 in CP 2.

We now present a class of δ(2)-ideal non-Hopf hypersurfaces in CP 2.

Example 3.1. Suppose that α(s), β(s), γ(s) and µ(s) satisfy

α′ = β(α+ γ − 3µ),

β′ = β2 + γ2 + µ(α− 2γ) + 1,

γ′ =
(γ − µ)(γ2 − αγ − 1)

β
+ β(2γ + µ),

(3.4)

on an open interval I ⊂ R, where β(s) are nowhere zero. According to Theorem 5

in [5], there exists a smooth immersion Φ : I × R
2 → CP 2 determining a non-Hopf

real hypersurface in CP 2, such that the shape operator A is represented by (3.2)
with respect to an orthonormal frame field {ξ,X, φX}, where φX = ∂/∂s. The

distribution D spanned by ξ and X is integrable, and Φ maps the R
2-factors onto

the D-leaves. Clearly, the mean curvature of the hypersurface is constant along each
integral curve of the Reeb vector field.

If α+ γ = µ on I, then Corollary 3.1 and Remark 3.1 imply that Φ is δ(2)-ideal.
In particular, if α = γ = µ = 0 on I, then trA = 0 and 〈AX,Y 〉 = 0 for any tangent
vector field X, Y on M orthogonal to ξ, and hence Φ is minimal ruled (see [1, p.445]

and [6]).

Remark 3.2. Substitution of α + γ = µ into (3.4) gives a autonomous system. It
follows from Picard’s theorem that for given initial values α(s0) = α0, β(s0) = β0,

γ(s0) = γ0 with β0 6= 0 and α0 + γ0 6= 0, the initial value problem of (3.4) with
α+γ = µ has a unique solution satisfying β 6= 0 and α+γ 6= 0 on some open interval
containing s0. Therefore, there exist infinity many δ(2)-ideal real hypersurfaces in

CP 2 which are non-Hopf and non-minimal.

Remark 3.3. Let M be a real hypersurface in the complex hyperbolic space CHn

of constant holomorphic sectional curvature −4. Then we have

δ(2) ≤ (2n − 1)2(2n− 3)

4(n − 1)
H2 + 6− 2n2.

The equality sign of the inequality holds identically if and only if M is an open part
of the horosphere in CH2 (see [3]).
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4. Main result

The following theorem is the main result of this paper.

Theorem 4.1. Let M be a δ(2)-ideal non-Hopf real hypersurface in CP 2. If the

mean curvature is constant along each integral curve of the Reeb vector field, then

M is locally obtained by the construction described in Example 3.1.

Proof. LetM be a δ(2)-ideal non-Hopf real hypersurface in CP 2. Let {e1, e2, e3} be a
local orthonormal frame field described in Corollary 3.1. We put ξ = pe1+ qe2+ re3
for some functions p, q and r. It follows from 〈Je1, e2〉 = 0 that r 〈Je3, e1〉 =
r 〈Je3, e2〉 = 0. If r 6= 0, then ξ = e3. However, this contradicts 〈Je1, e2〉 = 0.
Hence, r = 0 holds, that is, ξ lies in Span{e1, e2}. We may assume that e1 = ξ and

Je2 = e3. From (3) of Corollary 3.1, we see that the shape operator satisfies the
following:

Aξ = (µ− γ)ξ + βe2, Ae2 = γe2 + βξ, Ae3 = µe3.(4.1)

Let Ω be an open set where β 6= 0. We work in Ω. Using (2.1) and (4.1), we get

(4.2) ∇e2ξ = γe3, ∇e3ξ = −µe2, ∇ξξ = βe3.

Since 〈∇ei, ej〉 = −〈∇ej , ei〉 holds, by (4.2) we have

∇e2e2 = κ1e3, ∇e3e2 = κ2e3 + µξ, ∇ξe2 = κ3e3,

∇e2e3 = −κ1e2 − γξ, ∇e3e3 = −κ2e2, ∇ξe3 = −κ3e2 − βξ
(4.3)

for some functions κ1, κ2 and κ3.

Assume that the mean curvature H = µ/3 is constant along each integral curve
of the Reeb vector field ξ, that is,

(4.4) ξµ = 0.

From (4.1), (4.2), (4.3) and the equation (2.3) of Codazzi, it follows that

e2µ = 0,(4.5)

e3γ = (γ − µ)κ1 + β(γ + 2µ),(4.6)

e3β = −γ2 + βκ1 − 2γµ+ µ2 + 2,(4.7)

e2β = ξγ,(4.8)

e2γ = −ξβ,(4.9)

βκ1 + (µ − γ)κ3 = β2 + γ2 − 1,(4.10)

κ2 = 0,(4.11)

e3(µ − γ) = β(κ3 − 2µ− γ).(4.12)

Taking into account (4.11), the equation (2.2) of Gauss for 〈R(e2, e3)e3, e2〉 and
〈R(ξ, e2)e3, e2〉 yields

e3κ1 = 2µγ + κ21 + (γ + µ)κ3 + 4,(4.13)

ξκ1 = e2κ3.(4.14)

Using (4.2), (4.3), (4.4) and (4.5) we have

(4.15) 0 = [e2, ξ]µ = (∇e2ξ −∇ξe2)µ = (γ − κ3)e3µ.

Thus, we obtain that γ = κ3 or e3µ = 0.
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Case (a): e3µ = 0 on an open subset U ⊂ Ω. In this case, combining (4.4) and

(4.5) implies that µ is constant, that is, the mean curvature is constant on U . Hence,
by virtue of [7, Theorem 1.2], we conclude that U is minimal ruled.

Case (b): γ = κ3 on an open subset V ⊂ Ω. In this case, since ∇e2ξ −∇ξe2 = 0

holds, the distribution D spanned by ξ and e2 is integrable. Eliminating e3γ from
(4.6) and (4.12), we obtain

(4.16) e3µ = (γ − µ)κ1 + βγ.

Equations (4.10) and (4.13) become

βκ1 = β2 + 2γ2 − µγ − 1,(4.17)

e3κ1 = κ21 + γ2 + 3γµ+ 4,(4.18)

respectively. From (4.9) and (4.14), it follows that

(4.19) ξκ1 = −ξβ.

Elimination of κ1 from (4.7) and (4.17) leads to

(4.20) e3β = β2 + γ2 − 3γµ + µ2 + 1.

Using (4.2), (4.3), (4.6), (4.8), (4.11), (4.19) and (4.20), we have the following:

e3(ξβ) = (∇e3ξ −∇ξe3)β + ξ(e3β)

= (γ − µ)ξγ + β(ξβ) + ξ(β2 + γ2 − 3γµ + µ2 + 1)

= 3β(ξβ) + (3γ − 4µ)ξγ,(4.21)

e3(ξγ) = (∇e3ξ −∇ξe3)γ + ξ(e3γ)

= (µ − γ)ξβ + β(ξγ) + ξ[(γ − µ)κ1 + β(γ + 2µ)]

= (4µ − γ)ξβ + (2β + κ1)ξγ.(4.22)

Differentiating (4.17) with respect to ξ, and using (4.4) and (4.19), we obtain

(4.23) (κ1 − 3β)ξβ + (µ− 4γ)ξγ = 0.

Moreover, differentiating (4.23) with respect to e3, we have

(4.24) (e3κ1 − 3e3β)ξβ + (κ1 − 3β)e3(ξβ) + (e3µ− 4e3γ)ξγ + (µ− 4γ)e3(ξγ) = 0.

Substitution of (4.6), (4.16), (4.18), (4.20), (4.21) and (4.22) into (4.24) gives

(4.25) (κ21 − 12β2 + 2γ2 + µ2 − 5µγ + 3βκ1 + 1)ξβ + (6βµ − 20βγ − 4γκ1)ξγ = 0.

Equations (4.23) and (4.25) could be rewritten as

(4.26)

(

a11 a12
a21 a22

)(

ξβ
ξγ

)

=

(

0
0

)

,

where the components of the square matrix are given by

a11 = κ1 − 3β,

a12 = µ− 4γ,

a21 = κ21 − 12β2 + 2γ2 + µ2 − 5µγ + 3βκ1 + 1,

a22 = 6βµ − 20βγ − 4γκ1.

We divide Case (b) into two subcases.
Case (b.1): a11a22 − a21a12 6= 0 on an open neighborhood V1 of a point p ∈ V .

In this case, by (4.26), we have ξβ = ξγ = 0. It follows from (4.8) and (4.9) that
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e2β = e2γ = 0. This, together with (4.4) and (4.5), implies that all the components

of the shape operator A are constant along the D-leaves. Moreover, equations (4.6),
(4.7) and (4.12) imply that (3.4) with α+γ = µ, where d/ds stands for the derivative
with respect to e3. Note that the existence of such a hypersurface is guaranteed by

Example 3.1.
Case (b.2): a11a22 − a21a12 = 0 on an open neighborhood V2 of a point p ∈ V .

In this case, eliminating κ1 from this condition and (4.17) yields

(4.27) p1(γ, µ)ω
2 + p2(γ, µ)ω + p3(γ, µ) = 0,

where ω = β2, and pi are polynomials given by

p1 = 16γ − 4µ,

p2 = 16γ3 − 24γ2µ+ 8γµ2 − µ3 − 2µ,

p3 = −µ(2γ2 − γµ− 1)2.

Differentiating (4.27) with respect to e3, and using (4.6), (4.16) and (4.20), we obtain

κ1(12β
4 − 12β4µ+ 24β2γ3 − 56β2γ2µ+ 37β2γµ2 − 2β2γ

− 5β2µ3 + 2β2µ− 4γ5 − 4γ4µ+ 17γ3µ2 + 4γ3

− 11γ2µ3 + 2γµ4 − 6γµ2 − γ + 2µ3 + µ)

+ 76β5γ + 16β5µ+ 120β3γ3 − 192β3γ2µ+ 37β3γµ2

+ 62β3γ − 2β3µ3 − 20β3µ+ 28βγ5 − 152βγ4µ

+ 169βγ3µ2 + 36βγ3 − 76βγ2µ3 − 48βγ2µ+ 18βγµ4

+ 42βγµ2 − βγ − 2βµ5 − 10βµ3 − 4βµ

(4.28)

Eliminating κ1 from (4.28) and (4.17), we get

(4.29) q1(γ, µ)ω
3 + q2(γ, µ)ω

2 + q3(γ, µ)ω + q4(γ, µ) = 0,

where ω = β2, and qi are polynomials given by

q1 =88γ + 4µ,

q2 =168γ3 − 284γ2µ+ 86γµ2 + 48γ − 7µ3 − 6µ,

q3 =72γ5 − 292γ4µ+ 316γ3µ2 + 12γ3 − 134γ2µ3

+ 14γ2µ+ 25γµ4 − 3γµ2 − 2µ5 − 3µ3 − 5µ,

q4 =(µ− γ)(2γ2 − γµ− 1)2(2γ2 + 5γµ− 2µ2 − 1).

The resultant R1(γ, µ) of the left-hand sides of (4.27) and (4.29) with respect to ω
is found to be the following polynomial:

R1(γ, µ) = 32(4γ − µ)(2γ2 − γµ− 1)3
(

1536γ8 +

7
∑

i=0

gi(µ)γ
i
)

,
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where gi are polynomials given by

g0 = 3µ8 − 8µ6 + 6µ4,

g1 = −78µ7 + 60µ5 + 52µ3,

g2 = 720µ6 + 204µ4 + 160µ2,

g3 = −3040µ5 − 1016µ3 + 112µ,

g4 = 6752µ4 + 576µ2 + 32,

g5 = −9152µ3 − 608µ,

g6 = 8256µ2 − 192,

g7 = −4480µ.

Case (b.2.i): 4γ − µ = 0 on an open subset V21 ⊂ V2. Differentiating this
condition with respect to e3, and using (4.6), (4.16) and (4.17), we obtain

6γ3 − 9γ2µ+ 3(µ2 + 2β2 − 1)γ + (5β2 + 3)µ = 0.

Eliminating γ from this equation and 4γ − µ = 0 yields

µ(9µ2 + 208β2 + 72) = 0,

which shows that µ = γ = 0 and hence V21 is minimal ruled.
Case (b.2.ii): 2γ2 − γµ− 1 = 0 on an open subset V22 ⊂ V2. Differentiating this

condition with respect to e3, and using (4.6), (4.16) and (4.17), we get

6γ4 − 11γ3µ+ (6µ2 + 6β2 − 3)γ2 + (4µ + 3β2µ− µ3)γ − µ2 − β2µ2 = 0.

Eliminating γ from this equation and 2γ2 − γµ− 1 = 0, we have

β2(2µ4 + 15µ2 − 9) = 0,

which implies that µ is a non-zero constant because of β 6= 0. However, this contra-
dicts [7, Theorem 1.2]. Therefore, V22 is an empty set.

Case (b.2.iii): f(γ, µ) := 1536γ8+
∑

7

i=0
gi(µ)γ

i = 0 on an open subset V23 ⊂ V2.
We differentiate this condition with respect to e3, and use (4.6), (4.16) and (4.17).

Then, putting ω = β2, we obtain

ω(7808γ8 − 6464γ7µ− 1856γ6µ2 − 1760γ6 + 19744γ5µ3 − 2160γ5µ

− 24576γ4µ4 − 2840γ4µ2 + 240γ4 + 16304γ3µ5 + 444γ3µ3 + 664γ3µ

+ 444γ3µ3 + 664γ3µ− 5826γ2µ6 − 1224γ2µ4 + 484γ2µ2 + 939γµ7

+ 66γµ5 + 158γµ3 − 51µ8 + 54µ6 + 14µ4)

+ 7808γ10 − 26560γ9µ+ 48256γ8µ2 − 5664γ8 − 59296γ7µ3

+ 12080γ7µ+ 50976γ6µ4 − 17256γ6µ2 + 1120γ6 − 31888γ5µ5

+ 18356γ5µ3 + 360γ5µ+ 13998γ4µ6 − 11596γ4µ4 − 960γ4µ2

− 120γ4 − 3795γ3µ7 + 6138γ3µ5 + 434γ3µ3 − 208γ3µ

+ 528γ2µ8 − 2511γ2µ6 − 1346γ2µ4 + 90γ2µ2 − 27γµ9

+ 480γµ7 + 386γµ5 + 200γµ3 − 27µ8 + 6µ6 + 38µ4 = 0.

(4.30)
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Computing the resultant of the left hand sides of (4.27) and (4.30) with respect to

ω, we obtain

(2γ2 − γµ− 1)

18
∑

i=0

hi(µ)γ
i = 0,

where hi(µ) are polynomials given by

h0 =1377µ19 − 4527µ17 + 1284µ15 + 4728µ13

+ 1468µ11 − 4908µ9,

h1 =− 66060µ18 + 143388µ16 + 45504µ14 − 74376µ12

− 90176µ10 − 24512µ8,

h2 =1397709µ17 − 1823607µ15 − 1459380µ13 − 146496µ11

+ 289596µ9 + 119828µ7,

h3 =− 17308746µ16 + 11826810µ14 + 14566216µ12 + 6035952µ10

+ 2043336µ8 + 763816µ6,

h4 =140724708µ15 − 40031364µ13 − 73716152µ11 − 29812064µ9

− 6305728µ7 + 511024µ5,

h5 =− 801068376µ14 + 56606496µ12 + 232622128µ10 + 61803936µ8

− 3732032µ6 − 1748096µ4,

h6 =3336681024µ13 + 31432448µ11 − 555418672µ9 − 78779056µ7

+ 7995776µ5 − 2476096µ3,

h7 =− 10529445888µ12 − 118321664µ10 + 1089457312µ8 + 68763808µ6

+ 4847488µ4 − 430976µ2,

h8 =25909096832µ11 − 541759232µ9 − 1652978624µ7 + 6159040µ5

+ 14641152µ3 + 625920µ,

h9 =− 50856105728µ10 + 3160585216µ8 + 1852903808µ6 − 128791552µ4

+ 12595200µ2 + 230400,

h10 =80930532864µ9 − 8199388160µ7 − 1406354176µ5 + 71124736µ3

− 3322880µ,

h11 =− 105451162624µ8 + 14029552640µ6 + 551636480µ4 − 60403200µ2

− 3379200,

h12 =112905166848µ7 − 17520074752µ5 + 317690880µ3 − 40262656µ,

h13 =− 98991538176µ6 + 16388972544µ4 − 537110528µ2 + 27381760,

h14 =70233264128µ5 − 11463987200µ3 + 441262080µ,

h15 =− 39343300608µ4 + 5679833088µ2 − 109936640,

h16 =16633511936µ3 − 1843052544µ,

h17 =− 4831674368µ2 + 243859456,

h18 =767557632µ.
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Since Case (b.2.ii) does not occur, we have
∑

18

i=0
hi(µ)γ

i = 0. The resultant R2(µ)

of f(γ, µ) and
∑

18

i=0
hi(µ)γ

i with respect to γ is given by

R2(µ) = µ36k(µ),

where k(µ) is a polynomial in µ with constant coefficients of degree 116. Since the
explicit form of k(µ) is not important for the argument, we do not list it. Thus, we

deduce that µ is constant, that is, the mean curvature is constant. According to [7,
Theorem 1.2], we conclude that V23 is minimal ruled.

Consequently, M is locally obtained by the construction described in Example

3.1. The proof is finished.
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