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Abstract

The object of the present paper is to study some properties of Kenmotsu mani-
fold whose metric is conformal n-Einstein soliton. We have studied some certain
properties of Kenmotsu manifold admitting conformal 7n-Einstein soliton. We
have also constructed a 3-dimensional Kenmotsu manifold satisfying conformal
n-Einstein soliton.
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1. Introduction

The notion of Einstein soliton was introduced by G. Catino and L. Mazzieri
[3] in 2016, which generates self-similar solutions to Einstein flow,

dg r

— =-2(5—= 1.1

0 =25~ 59) (1)
where S' is Ricci tensor, g is Riemannian metric and r is the scalar curvature.
The equation of the n-Einstein soliton [2] is given by,

Leg+25+ 2N —1)g+2un®n =0, (1.2)

where £ is the Lie derivative along the vector field &, S is the Ricci tensor, 7 is
the scalar curvature of the Riemannian metric g, and A and p are real constants.
For p = 0, the data (g,&, \) is called Einstein soliton.

In 2018, Mohd Danish Siddiqgi [5] introduced the notion of conformal n-Ricci
soliton [7] as:

2
Leg+29+ A= (p+ g+ 2um@n =0, (1.3)

where £¢ is the Lie derivative along the vector field £ , S is the Ricci tensor, A, p
are constants, p is a scalar non-dynamical field(time dependent scalar field)and
n is the dimension of manifold. For p = 0, conformal 7-Ricci soliton becomes
conformal Ricci soliton [6].
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In [8], Roy, Dey and Bhattacharyya have defined conformal Einstein soliton,
which can be written as:

2
£Vg+25+[2)\—r+(p+g)]g=0, (1.4)

where £y is the Lie derivative along the vector field V' | S is the Ricci tensor,
r is the scalar curvature of the Riemannian metric g, A is real constant, p is a
scalar non-dynamical field(time dependent scalar field)and n is the dimension of
manifold.

So we introduce the notion of conformal n-Einstein soliton as:

Definition 1.1: A Riemannian manifold (M, g) of dimension n is said to admit
conformal 7-Einstein soliton if

2
Leg+25+2A—r+(p+ )l +2um @0 =0, (1.5)

where £ is the Lie derivative along the vector field £ |\, i are real contants and
S, r, p, n are same as defined in (1.4).

In the present paper we study conformal n-Einstein soliton on Kenmotsu mani-
fold. The paper is organized as follows:

After introduction, section 2 is devoted for preliminaries on (2n+1) dimensional
Kenmotsu manifold. In section 3, we have studied conformal n-Einstein soliton
on Kenmotsu manifold. Here we proved if a (2n+1) dimensional Kenmotsu man-
ifold admits conformal n-Einstein soliton then the manifold becomes n-Einstein.
We have also characterized the nature of the manifold if the manifold is Ricci
symmetric and the Ricci tensor is n-recurrent. Also we have discussed about
the condition when the manifold has cyclic Ricci tensor. Then we have obtained
the conditons in a (2n+1) dimensional Kenmotsu manifold admitting Conformal
n-Einstein soliton when a vector field V' is pointwise co-linear with £ and a (0,2)
tensor field A is parallel with respect to the Levi-Civita connection associated to
g. We have also examined the nature of a Ricci-recurrent Kenmotsu manifold
admitting conformal 7-Einstein soliton.

In last section we have given an example of a 3-dimensional Kenmotsu manifold
satisfying conformal n-Einstein soliton.

2. Preliminaries

Let M be a (2n+1) dimensional connected almost contact metric manifold with
an almost contact metric structure (¢, &, 1, g) where ¢ is a (1,1) tensor field, &
is a vector field, n is a 1-form and ¢ is the compatible Riemannian metric such that

P*(X) ==X +n(X)EnE)=1nodp =005 =0, (2.1)

90X, 9Y) = g(X,Y) = n(X)n(Y), (2.2)



9(X,0Y) = —g(¢X,Y), (2.3)

9(X, &) = n(X), (2.4)

for all vector fields X, Y € x(M).
An almost contact metric manifold is said to be a Kenmotsu manifold [4] if

(Vx0)Y = —g(X,¢Y)§ —n(Y)oX, (2.5)
Vx§ =X —n(X)g, (2.6)

where V denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [1]:

n(R(X,Y)2) = g(X, Z)n(Y) = g(Y, Z)n(X), (2.7)
R(X,Y)E = n(X)Y —n(Y)X, (2.8)
R(X, QY = g(X,Y)§ = n(Y)X,

where R is the Riemannian curvature tensor.

S(X,¢&) = —2nn(X), (2.10)
S(pX,0Y) = S(X,Y) 4+ 2nn(X)n(Y), (2.11)
(Vxn)Y = g(X,Y) = n(X)n(Y), (2.12)
for all vector fields X,Y, Z € x(M).
Now we know,
for all vector fields X, Y, € x(M).
Then using (2.6) and (2.13), we get,
(£eg)(X,Y) = 2[g(X,Y) = n(X)n(Y)]. (2.14)

3. Conformal 7n-Einstein soliton on Kenmotsu manifold

Let M be a (2n+1) dimensional Kenmotsu manifold. Consider the conformal
n-Einstein soliton (1.5) on M as:

(£eg) (X, V) +25(X, V) +[2A—r+(p+ Ng(X,Y)+2pm(X)n(Y) = 0, (3.1)

2n+1
for all vector fields X, Y, € x(M).

Then using (2.14),the above equation becomes,
ro (p+ 2n2+1)

S(XY) = == £+ T2 L 1g(X,Y) — (= Dn(X)n(Y).  (32)
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Taking Y = ¢ in the above equation and using (2.10), we get,

r=(p+ ) —4n 42X\ + 2y, (3.3)

2n+1
since n(X) # 0, for all X € x(M).
Also from (3.2), it follows that the manifold is n- Einstein.
This leads to the following:

Theorem 3.1. If the metric of a (2n+1) dimensional Kenmotsu manifold is
a conformal n-Einstein soliton then the manifold becomes n- Einstein and the
scalar curvature is (p + 52=) — 4n + 2\ + 2.

2n+1
We know,

(VxS)(Y.2) = X(S(Y 2)) ~ S(VxY.2) = S(V,VxZ),  (3.4)
for all vector fields X, Y, Z on M and V is the Levi-Civita connection associated
with g.

Now replacing the expression of S from (3.2), we obtain,
(VxS)(Y, Z2) = =(n = 1)[n(Z2)(Vxn)Y +n(Y)(Vxn)Z]. (3.5)

for all vector fields X,Y, Z on M.

Let the manifold M be Ricci symmetric i.e V.S = 0.
Then from (3.5), we get,

—(p=DM(Z2)(Vxn)Y +n(Y)(Vxn)Z] =0, (3.6)

for all vector fields X,Y, Z € x(M).
Taking Z = ¢ in the above equation and using (2.12), (2.1), we obtain,

pw=1. (3.7)
Then from (3.3), we get,

r=(@+

o) Ant 22 (3.8)

So we can state the following theorem:

Theorem 3.2. If the metric of a (2n+1) dimensional Ricci symmteric Kenmotsu
manifold is a conformal n-Finstein soliton then pu = 1 and the scalar curvature
is (p+ 527) —4n + 21+ 2.

Now if the Ricci tensor S is n-recurrent, then we have,
VS=n®S:, (3.9)
which implies that,
(VxS)I(Y, Z) =n(X)S(Y, Z), (3.10)
for all vector fields X,Y, Z on M.
Using (3.5), the above equation reduces to,

— (p=DM2)(Vxn)Y +n(Y)(Vxn)Z] = n(X)S(Y, Z). (3.11)



Taking Y = &, Z = £ in the above equation and using (2.12),(3.2), we get,

+ 2
A+ — g + pig”“ Jn(X) =0, (3.12)
which implies that,
=2\ +2 . 1
r=2A 2t () (3.13)

Then we can state the following:

Theorem 3.3 If the metric of a (2n+1) dimensional Kenmotsu manifold is a
conformal n-Finstein soliton and the Ricci tensor S is n- Recurrent, then the

scalar curvature is 2\ + 2 + (p + 527)-

Similarly from (3.5), we get,

(Vy9)(Z, X) = =(p = DIn(X)(Vyn)Z +0(Z)(Vxn)Y], (3.14)
and

(Vz9)(X,Y) = —=(p = DY) (Vzn) X +n(X)(Vzn)Y]. (3.15)

for all vector fields X,Y, Z on M.
Then adding (3.5),(3.14), (3.15) and using (2.12), (2.2), we obtain,

(VxS)(Y, Z) + (VySIZ, X) + (V29)(X,Y) = =2(u—1)[n(X)g(eY,0Z)
+ n(Y)g(9Z, ¢X)
+ n(Z2)g(e X, oY)]. (3.16)

Now if the manifold M has cyclic Ricci tensor i.e (VxS)(Y,Z) + (VyS)(Z,X)+
(VzS9)(X,Y) =0, then from (3.16), we have,

(n=D[n(X)g(eY,0Z) +n(Y)g(9Z, ¢X) + n(Z)g(¢X, Y )] =0.  (3.17)
Taking X = ¢ in the above equation and using (2.1), we get,
pu=1. (3.18)

Again if we take p = 1 in (3.16), we obtaion (VxS)(Y,Z) + (VyS)(Z,X) +
(V29)(X,Y) =0, i.e the manifold M has cyclic Ricci tensor.
Hence we can state the following:

Theorem 3.4 Let the metric of a (2n+1) dimensional Kenmotsu manifold M is
a conformal n-Einstein soliton. Then M has cyclic Ricci tensor iff = 1.

Now if u = 1, then from (3.3) we obtain,

r=(p+

o) A+ 2242 (3.19)

Then we have,
Corollary 3.5. If a (2n+1) dimensional Kenmotsu manifold M has a cyclic
Ricci tensor and the metric is a conformal n-FEinstein soliton then the scalar cur-

vature is (p + 5=5) — 4n + 2X + 2.



Let a conformal n-Einstein soliton is defined on a (2n+1) dimensional Kenmotsu
manifold M as,

Lyvg+2S+22—r+(p+

9 — 20
2n+1)]9+ pn @mn =0, (3.20)

where £y, is the Lie derivative along the vector field V' , S is the Ricci tensor, r
is the scalar curvature of the Riemannian metric g, A, 1 are real contants, p is a
scalar non-dynamical field(time dependent scalar field).

Let V' be pointwise co-linear with &, i.e V = b, where b is a function on M.
Then (3.20) becomes,

(Loeg)(X,Y)+25(X,)Y)+ 2 —r+ (p+

)]g(X.Y) + 2um(X)n(Y) = 0,
(3.21)

2n+1

for all vector fields X,Y on M.
Applying the property of Lie derivative and Levi-Civita connection we have,

bg(Vx&,Y) + (X0)n(Y) + bg(Vy&, X) + (Yb)n(X) +25(X,Y)

+2A—r+(p+

59X Y )+ 2un(X)n(Y) = 0. (3.22)

Now using (2.6), we get,
20g(X,Y) = 2bn(X)n(Y) + (Xb)n(Y) + (Yb)n(X) +2S5(X,Y)

+2A—r+(p+ Ng(X,Y) + 2un(X)n(Y) =0. (3.23)

2n+1
Taking Y = ¢ in the above equation and using (2.1),(2.4),(2.10), we obtain,

(X0) + (€0)n(X) — dnn(X) + [2A =7+ (p+ )In(X) +2pum(X) = 0. (3.24)

2n+1
Then by putting X = &, the above equation reduces to,
L2
gb:2n+g—A—u—%. (3.25)
Using (3.25), (3.24) becomes,
42
(Xb)+[)\+u—|—(p2$+l)—2n—%]n(X) = 0. (3.26)
Applying exterior differentiation in (3.26), we have,
42
A+ p+ w —2n — g]dn = 0. (3.27)
Now we know,
1
dn(X,Y) = S[(Van)Y — (Vyn) X, (3.28)

for all vector fields X,Y on M.
Using (2.12),the above equation becomes,

dn = 0. (3.29)



Hence the 1-form 7 is closed.

So from (3.27), either r = 2)\+2u+(p—|—2n2+1)—4n orr # 2)\+2u+(p—|—2n2+1)—4n.

If 7 =2\ + 20+ (p + 527) — 4n, (3.26) reduces to,
(Xb) = 0. (3.30)

This implies that b is constant.
So we can state the following theorem:

Theorem 3.6. Let M be a (2n+1) dimensional Kenmotsu manifold admitting a
conformal n-Finstein soliton (g,V'), V being a vector field on M. If V is point-
wise co-linear with &, a vector field on M, then V is a constant multiple of &,
provided the scalar curvature is 2\ + 2+ (p + 525) — 4n.

Let h be a symmetric tensor field of (0,2) type which we suppose to be par-
allel with respect to the Levi-Civita connection V i.e Vh = 0.

Applying the Ricci commutation identity, we have,

V2h(X,Y; Z, W) = V2h(X,Y: W, Z) = 0. (3.31)

for all vector fields X,Y, Z, W on M.
From (3.31), we obtain the relation,

h(R(X,Y)Z, W)+ h(Z, R(X,Y)W) = 0. (3.32)
Replacing Z = W = ¢ in the above equation and using (2.8), we get,
n(X)h(Y, &) —n(Y)h(X,§) =0. (3.33)
Replacing X = ¢ and using (2.1), the above equation reduces to,
hY, &) = n(Y)h(&, §), (3.34)

for all vector fields Y on M.
Differentiating the above equation covariantly with respect to X, we get,

Vx (bY€) = Vx(n(Y)h(&, £)). (3.35)

Now expanding the above eqution by using (3.34), (2.6),(2.12) and the property
that Vh = 0, we obtain,

hMX,Y) =h(E &g(X,Y), (3.36)
for all vector fields X,Y on M.
Let us take,
h=ZLeg+2542unm. (3.37)
Then from (2.14),(3.2), we get,
h(, &) =—-2\—(p+ 2n+1)+r. (3.38)

Then using (3.37), (3.36) becomes,

(£eg)(X,Y)+25(X,Y)+2A—r+(p+

579X Y )+ 2um(X)n(Y) =0, (3.39)
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which is the Conformal n-Einstein soliton. This leads to,

Theorem 3.7. In a (2n+1) dimensional Kenmotsu manifold assume that a
symmetric (0,2) tensor field h = £¢g+2S +2un®n is parallel with respect to the
Levi-Civita connection associated to g. Then (g, &) yields a conformal n-Einstein
soliton.

Definition 3.8 A Kenmotsu manifold is said to be Ricci-recurrent manifold if
there exists a non-zero 1-form A such that

(VwS)(Y, Z) = AW)S(Y, Z), (3.40)
for any vector fields W, Y, Z on M.
Replacing Z by £ in the above equation and using (2.10), we get,

(VwS)(Y,§) = =2nA(W)n(Y), (3.41)
which implies that,
WS(Y,§) = S(VwY,§) = S(Y, Vw§) = =2nA(W)n(Y). (3.42)
Using (2.10) and (2.6), the above equation becomes,
20(Vwn)Y + 2np(W)n(Y) + S(Y, W) = 2nA(W)n(Y). (3.43)
Again using (2.12), the above equation reduces to,
2ngW,Y) + S(Y, W) = 2nA(W)n(Y). (3.44)
Taking W = ¢ in the above equation and using (3.2), we obtain,
r=2\A+2u+ (p+ 2n+1) +4n(A(E) — 1). (3.45)

So we can state,

Theorem 3.9. If the metric of a (2n+1) dimensional Ricci-recurrent Kenmotsu
manifold is a conformal n-Einstein soliton with the 1-form A, then the scalar

curvature becomes 2\ + 2p + (p + 557) + 4n(A(E) — 1).

4. Example of a 3-dimensional Kenmotsu manifold admitting
conformal 7n-Einstein soliton:

We consider the three-dimensional manifold M = {(z,y,2) € R3 (z,y,2) #

(0,0,0)}, where (z,y, 2) are standard coordinates in R3. The vector fields
0 0 0
€l =2~—, €Ey=Z2-—, €3=—Z—

Ox oy 0z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

(ea, €3)

(ea, €2)

9(61, €2>

(63761) =0,
9(61761) =1.

=g =g
=4g 29(63763)
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Let n be the 1-form defined by n(Z) = g(Z, e3), for any Z € x(M),where x(M)
is the set of all differentiable vector fields on M and ¢ be the (1, 1)-tensor field
defined by,

per = —ez, ey =e1, ez = 0.
Then using the linearity of ¢ and g, we have,

for any Z,W € x(M). Thus for e3 = &, (¢,&,1m,g) defines an almost contact
metric structure on M.

Let V be the Levi-Civita connection with respect to the Riemannian metric g.
Then we have,

le1,e2] =0, [er,es] =e1,  [ea, e3] = ea.
The connection V of the metric g is given by,
- g(X> [K Z]) - g(Y> [X> Z]) + g(Z> [X> Y])>

which is known as Koszuls formula.
Using Koszuls formula, we can easily calculate,

V6161 = —é€s3, V6162 = 07 velei’) = €,
V6261 = 07 v6262 = —é€s, v6263 = €9,
v63€1 = O, v63€2 = 0, V63€3 =0.

From the above it follows that the manifold satisfies Vx& = X — n(X)¢&, for
¢ = e3. Hence the manifold is a Kenmotsu Manifold.
Also, the Riemannian curvature tensor R is given by,

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.
Hence,
R(ey,ez)es = —ey,  R(ep,e3)es = —eq, R(ea,e1)er = —ea,
R(ey, e3)es = —eo,  R(es,e1)e; = —es,  R(es, e2)es = —es,
R(ey,e3)es =0, R(eg,e3)e; =0, R(es,er)es =0.
Then, the Ricci tensor S is given by,
S(ey,e1) = =2, S(eg,e9) = =2, Ses, e3) = —2.

From (3.2), we have,

4+ 2
S(esoes) =D+ — £+ EEI) (1.1
which implies that,
2
r:2>\+2,u—4+(p+§). (4.2)

Hence A and p satisfies equation (3.3) and so g defines a conformal n-Einstein
soliton on the 3-dimensional Kenmotsu manifold M.
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