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A Kenmotsu metric as a conformal η-Einstein soliton
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Abstract

The object of the present paper is to study some properties of Kenmotsu mani-
fold whose metric is conformal η-Einstein soliton. We have studied some certain
properties of Kenmotsu manifold admitting conformal η-Einstein soliton. We
have also constructed a 3-dimensional Kenmotsu manifold satisfying conformal
η-Einstein soliton.
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1. Introduction

The notion of Einstein soliton was introduced by G. Catino and L. Mazzieri
[3] in 2016, which generates self-similar solutions to Einstein flow,

∂g

∂t
= −2(S −

r

2
g), (1.1)

where S is Ricci tensor, g is Riemannian metric and r is the scalar curvature.
The equation of the η-Einstein soliton [2] is given by,

£ξg + 2S + (2λ− r)g + 2µη ⊗ η = 0, (1.2)

where £ξ is the Lie derivative along the vector field ξ, S is the Ricci tensor, r is
the scalar curvature of the Riemannian metric g, and λ and µ are real constants.
For µ = 0, the data (g, ξ, λ) is called Einstein soliton.
In 2018, Mohd Danish Siddiqi [5] introduced the notion of conformal η-Ricci
soliton [7] as:

£ξg + 2S + [2λ− (p+
2

n
)]g + 2µη ⊗ η = 0, (1.3)

where £ξ is the Lie derivative along the vector field ξ , S is the Ricci tensor, λ, µ
are constants, p is a scalar non-dynamical field(time dependent scalar field)and
n is the dimension of manifold. For µ = 0, conformal η-Ricci soliton becomes
conformal Ricci soliton [6].

1The first author is the corresponding author, supported by Swami Vivekananda Merit Cum
Means Scholarship, Government of West Bengal, India.
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In [8], Roy, Dey and Bhattacharyya have defined conformal Einstein soliton,
which can be written as:

£V g + 2S + [2λ− r + (p+
2

n
)]g = 0, (1.4)

where £V is the Lie derivative along the vector field V , S is the Ricci tensor,
r is the scalar curvature of the Riemannian metric g, λ is real constant, p is a
scalar non-dynamical field(time dependent scalar field)and n is the dimension of
manifold.
So we introduce the notion of conformal η-Einstein soliton as:
Definition 1.1: A Riemannian manifold (M, g) of dimension n is said to admit
conformal η-Einstein soliton if

£ξg + 2S + [2λ− r + (p+
2

n
)]g + 2µη ⊗ η = 0, (1.5)

where £ξ is the Lie derivative along the vector field ξ ,λ, µ are real contants and
S, r, p, n are same as defined in (1.4).

In the present paper we study conformal η-Einstein soliton on Kenmotsu mani-
fold. The paper is organized as follows:
After introduction, section 2 is devoted for preliminaries on (2n+1) dimensional
Kenmotsu manifold. In section 3, we have studied conformal η-Einstein soliton
on Kenmotsu manifold. Here we proved if a (2n+1) dimensional Kenmotsu man-
ifold admits conformal η-Einstein soliton then the manifold becomes η-Einstein.
We have also characterized the nature of the manifold if the manifold is Ricci
symmetric and the Ricci tensor is η-recurrent. Also we have discussed about
the condition when the manifold has cyclic Ricci tensor. Then we have obtained
the conditons in a (2n+1) dimensional Kenmotsu manifold admitting Conformal
η-Einstein soliton when a vector field V is pointwise co-linear with ξ and a (0,2)
tensor field h is parallel with respect to the Levi-Civita connection associated to
g. We have also examined the nature of a Ricci-recurrent Kenmotsu manifold
admitting conformal η-Einstein soliton.
In last section we have given an example of a 3-dimensional Kenmotsu manifold
satisfying conformal η-Einstein soliton.

2. Preliminaries

LetM be a (2n+1) dimensional connected almost contact metric manifold with
an almost contact metric structure (φ, ξ, η, g) where φ is a (1, 1) tensor field, ξ
is a vector field, η is a 1-form and g is the compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)
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g(X, φY ) = −g(φX, Y ), (2.3)

g(X, ξ) = η(X), (2.4)

for all vector fields X, Y ∈ χ(M).
An almost contact metric manifold is said to be a Kenmotsu manifold [4] if

(∇Xφ)Y = −g(X, φY )ξ − η(Y )φX, (2.5)

∇Xξ = X − η(X)ξ, (2.6)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [1]:

η(R(X, Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (2.7)

R(X, Y )ξ = η(X)Y − η(Y )X, (2.8)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X, (2.9)

where R is the Riemannian curvature tensor.

S(X, ξ) = −2nη(X), (2.10)

S(φX, φY ) = S(X, Y ) + 2nη(X)η(Y ), (2.11)

(∇Xη)Y = g(X, Y )− η(X)η(Y ), (2.12)

for all vector fields X, Y, Z ∈ χ(M).
Now we know,

(£ξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ), (2.13)

for all vector fields X, Y,∈ χ(M).
Then using (2.6) and (2.13), we get,

(£ξg)(X, Y ) = 2[g(X, Y )− η(X)η(Y )]. (2.14)

3. Conformal η-Einstein soliton on Kenmotsu manifold

Let M be a (2n+1) dimensional Kenmotsu manifold. Consider the conformal
η-Einstein soliton (1.5) on M as:

(£ξg)(X, Y )+2S(X, Y )+[2λ−r+(p+
2

2n+ 1
)]g(X, Y )+2µη(X)η(Y ) = 0, (3.1)

for all vector fields X, Y,∈ χ(M).
Then using (2.14),the above equation becomes,

S(X, Y ) = −[λ−
r

2
+

(p+ 2
2n+1

)

2
+ 1]g(X, Y )− (µ− 1)η(X)η(Y ). (3.2)
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Taking Y = ξ in the above equation and using (2.10), we get,

r = (p +
2

2n + 1
)− 4n+ 2λ+ 2µ, (3.3)

since η(X) 6= 0, for all X ∈ χ(M).
Also from (3.2), it follows that the manifold is η- Einstein.
This leads to the following:

Theorem 3.1. If the metric of a (2n+1) dimensional Kenmotsu manifold is
a conformal η-Einstein soliton then the manifold becomes η- Einstein and the
scalar curvature is (p+ 2

2n+1
)− 4n+ 2λ+ 2µ.

We know,

(∇XS)(Y, Z) = X(S(Y, Z))− S(∇XY, Z)− S(Y,∇XZ), (3.4)

for all vector fields X, Y, Z on M and ∇ is the Levi-Civita connection associated
with g.
Now replacing the expression of S from (3.2), we obtain,

(∇XS)(Y, Z) = −(µ− 1)[η(Z)(∇Xη)Y + η(Y )(∇Xη)Z]. (3.5)

for all vector fields X, Y, Z on M .

Let the manifold M be Ricci symmetric i.e ∇S = 0.
Then from (3.5), we get,

− (µ− 1)[η(Z)(∇Xη)Y + η(Y )(∇Xη)Z] = 0, (3.6)

for all vector fields X, Y, Z ∈ χ(M).
Taking Z = ξ in the above equation and using (2.12), (2.1), we obtain,

µ = 1. (3.7)

Then from (3.3), we get,

r = (p+
2

2n+ 1
)− 4n + 2λ+ 2. (3.8)

So we can state the following theorem:

Theorem 3.2. If the metric of a (2n+1) dimensional Ricci symmteric Kenmotsu
manifold is a conformal η-Einstein soliton then µ = 1 and the scalar curvature
is (p+ 2

2n+1
)− 4n+ 2λ+ 2.

Now if the Ricci tensor S is η-recurrent, then we have,

∇S = η ⊗ S, (3.9)

which implies that,
(∇XS)(Y, Z) = η(X)S(Y, Z), (3.10)

for all vector fields X, Y, Z on M .
Using (3.5), the above equation reduces to,

− (µ− 1)[η(Z)(∇Xη)Y + η(Y )(∇Xη)Z] = η(X)S(Y, Z). (3.11)
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Taking Y = ξ, Z = ξ in the above equation and using (2.12),(3.2), we get,

[λ+ µ−
r

2
+

p+ 2
2n+1

2
]η(X) = 0, (3.12)

which implies that,

r = 2λ+ 2µ+ (p+
2

2n+ 1
). (3.13)

Then we can state the following:

Theorem 3.3 If the metric of a (2n+1) dimensional Kenmotsu manifold is a
conformal η-Einstein soliton and the Ricci tensor S is η- Recurrent, then the
scalar curvature is 2λ+ 2µ+ (p+ 2

2n+1
).

Similarly from (3.5), we get,

(∇Y S)(Z,X) = −(µ− 1)[η(X)(∇Y η)Z + η(Z)(∇Xη)Y ], (3.14)

and
(∇ZS)(X, Y ) = −(µ− 1)[η(Y )(∇Zη)X + η(X)(∇Zη)Y ]. (3.15)

for all vector fields X, Y, Z on M .
Then adding (3.5),(3.14), (3.15) and using (2.12), (2.2), we obtain,

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = −2(µ− 1)[η(X)g(φY, φZ)

+ η(Y )g(φZ, φX)

+ η(Z)g(φX, φY )]. (3.16)

Now if the manifold M has cyclic Ricci tensor i.e (∇XS)(Y, Z) + (∇Y S)(Z,X)+
(∇ZS)(X, Y ) = 0, then from (3.16), we have,

(µ− 1)[η(X)g(φY, φZ) + η(Y )g(φZ, φX) + η(Z)g(φX, φY )] = 0. (3.17)

Taking X = ξ in the above equation and using (2.1), we get,

µ = 1. (3.18)

Again if we take µ = 1 in (3.16), we obtaion (∇XS)(Y, Z) + (∇Y S)(Z,X) +
(∇ZS)(X, Y ) = 0, i.e the manifold M has cyclic Ricci tensor.
Hence we can state the following:

Theorem 3.4 Let the metric of a (2n+1) dimensional Kenmotsu manifold M is
a conformal η-Einstein soliton. Then M has cyclic Ricci tensor iff µ = 1.

Now if µ = 1, then from (3.3) we obtain,

r = (p+
2

2n+ 1
)− 4n + 2λ+ 2. (3.19)

Then we have,
Corollary 3.5. If a (2n+1) dimensional Kenmotsu manifold M has a cyclic
Ricci tensor and the metric is a conformal η-Einstein soliton then the scalar cur-
vature is (p+ 2

2n+1
)− 4n+ 2λ+ 2.
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Let a conformal η-Einstein soliton is defined on a (2n+1) dimensional Kenmotsu
manifold M as,

£V g + 2S + [2λ− r + (p+
2

2n+ 1
)]g + 2µη ⊗ η = 0, (3.20)

where £V is the Lie derivative along the vector field V , S is the Ricci tensor, r
is the scalar curvature of the Riemannian metric g, λ, µ are real contants, p is a
scalar non-dynamical field(time dependent scalar field).
Let V be pointwise co-linear with ξ, i.e V = bξ, where b is a function on M .
Then (3.20) becomes,

(£bξg)(X, Y ) + 2S(X, Y ) + [2λ− r + (p+
2

2n + 1
)]g(X, Y ) + 2µη(X)η(Y ) = 0,

(3.21)
for all vector fields X, Y on M .
Applying the property of Lie derivative and Levi-Civita connection we have,

bg(∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X) + 2S(X, Y )

+ [2λ− r + (p+
2

2n+ 1
)]g(X, Y ) + 2µη(X)η(Y ) = 0. (3.22)

Now using (2.6), we get,

2bg(X, Y )− 2bη(X)η(Y ) + (Xb)η(Y ) + (Y b)η(X) + 2S(X, Y )

+ [2λ− r + (p+
2

2n+ 1
)]g(X, Y ) + 2µη(X)η(Y ) = 0. (3.23)

Taking Y = ξ in the above equation and using (2.1),(2.4),(2.10), we obtain,

(Xb) + (ξb)η(X)− 4nη(X) + [2λ− r+ (p+
2

2n+ 1
)]η(X) + 2µη(X) = 0. (3.24)

Then by putting X = ξ, the above equation reduces to,

ξb = 2n+
r

2
− λ− µ−

(p+ 2
2n+1

)

2
. (3.25)

Using (3.25), (3.24) becomes,

(Xb) + [λ+ µ+
(p+ 2

2n+1
)

2
− 2n−

r

2
]η(X) = 0. (3.26)

Applying exterior differentiation in (3.26), we have,

[λ+ µ+
(p+ 2

2n+1
)

2
− 2n−

r

2
]dη = 0. (3.27)

Now we know,

dη(X, Y ) =
1

2
[(∇Xη)Y − (∇Y η)X ], (3.28)

for all vector fields X, Y on M .
Using (2.12),the above equation becomes,

dη = 0. (3.29)
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Hence the 1-form η is closed.
So from (3.27), either r = 2λ+2µ+(p+ 2

2n+1
)−4n or r 6= 2λ+2µ+(p+ 2

2n+1
)−4n.

If r = 2λ+ 2µ+ (p+ 2
2n+1

)− 4n, (3.26) reduces to,

(Xb) = 0. (3.30)

This implies that b is constant.

So we can state the following theorem:

Theorem 3.6. Let M be a (2n+1) dimensional Kenmotsu manifold admitting a
conformal η-Einstein soliton (g, V ), V being a vector field on M . If V is point-
wise co-linear with ξ, a vector field on M , then V is a constant multiple of ξ,
provided the scalar curvature is 2λ+ 2µ+ (p+ 2

2n+1
)− 4n.

Let h be a symmetric tensor field of (0,2) type which we suppose to be par-
allel with respect to the Levi-Civita connection ∇ i.e ∇h = 0.
Applying the Ricci commutation identity, we have,

∇2h(X, Y ;Z,W )−∇2h(X, Y ;W,Z) = 0. (3.31)

for all vector fields X, Y, Z,W on M .
From (3.31), we obtain the relation,

h(R(X, Y )Z,W ) + h(Z,R(X, Y )W ) = 0. (3.32)

Replacing Z = W = ξ in the above equation and using (2.8), we get,

η(X)h(Y, ξ)− η(Y )h(X, ξ) = 0. (3.33)

Replacing X = ξ and using (2.1), the above equation reduces to,

h(Y, ξ) = η(Y )h(ξ, ξ), (3.34)

for all vector fields Y on M .
Differentiating the above equation covariantly with respect to X , we get,

∇X(h(Y, ξ)) = ∇X(η(Y )h(ξ, ξ)). (3.35)

Now expanding the above eqution by using (3.34), (2.6),(2.12) and the property
that ∇h = 0, we obtain,

h(X, Y ) = h(ξ, ξ)g(X, Y ), (3.36)

for all vector fields X, Y on M .
Let us take,

h = £ξg + 2S + 2µη ⊗ η. (3.37)

Then from (2.14),(3.2), we get,

h(ξ, ξ) = −2λ− (p+
2

2n+ 1
) + r. (3.38)

Then using (3.37), (3.36) becomes,

(£ξg)(X, Y )+2S(X, Y )+[2λ−r+(p+
2

2n+ 1
)]g(X, Y )+2µη(X)η(Y ) = 0, (3.39)
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which is the Conformal η-Einstein soliton. This leads to,

Theorem 3.7. In a (2n+1) dimensional Kenmotsu manifold assume that a
symmetric (0,2) tensor field h = £ξg+2S+2µη⊗η is parallel with respect to the
Levi-Civita connection associated to g. Then (g, ξ) yields a conformal η-Einstein
soliton.

Definition 3.8 A Kenmotsu manifold is said to be Ricci-recurrent manifold if
there exists a non-zero 1-form A such that

(∇WS)(Y, Z) = A(W )S(Y, Z), (3.40)

for any vector fields W,Y, Z on M .
Replacing Z by ξ in the above equation and using (2.10), we get,

(∇WS)(Y, ξ) = −2nA(W )η(Y ), (3.41)

which implies that,

WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ) = −2nA(W )η(Y ). (3.42)

Using (2.10) and (2.6), the above equation becomes,

2n(∇Wη)Y + 2nη(W )η(Y ) + S(Y,W ) = 2nA(W )η(Y ). (3.43)

Again using (2.12), the above equation reduces to,

2ng(W,Y ) + S(Y,W ) = 2nA(W )η(Y ). (3.44)

Taking W = ξ in the above equation and using (3.2), we obtain,

r = 2λ+ 2µ+ (p+
2

2n+ 1
) + 4n(A(ξ)− 1). (3.45)

So we can state,

Theorem 3.9. If the metric of a (2n+1) dimensional Ricci-recurrent Kenmotsu
manifold is a conformal η-Einstein soliton with the 1-form A, then the scalar
curvature becomes 2λ+ 2µ+ (p+ 2

2n+1
) + 4n(A(ξ)− 1).

4. Example of a 3-dimensional Kenmotsu manifold admitting

conformal η-Einstein soliton:

We consider the three-dimensional manifold M = {(x, y, z) ∈ R
3, (x, y, z) 6=

(0, 0, 0)}, where (x, y, z) are standard coordinates in R
3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.
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Let η be the 1-form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M),where χ(M)
is the set of all differentiable vector fields on M and φ be the (1, 1)-tensor field
defined by,

φe1 = −e2, φe2 = e1, φe3 = 0.

Then using the linearity of φ and g, we have,

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M .
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g.
Then we have,

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The connection ∇ of the metric g is given by,

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]),

which is known as Koszuls formula.
Using Koszuls formula, we can easily calculate,

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above it follows that the manifold satisfies ∇Xξ = X − η(X)ξ, for
ξ = e3. Hence the manifold is a Kenmotsu Manifold.
Also, the Riemannian curvature tensor R is given by,

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Hence,

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

R(e1, e2)e3 = 0, R(e2, e3)e1 = 0, R(e3, e1)e2 = 0.

Then, the Ricci tensor S is given by,

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2.

From (3.2), we have,

S(e3, e3) = −[λ + µ−
r

2
+

(p+ 2
3
)

2
], (4.1)

which implies that,

r = 2λ+ 2µ− 4 + (p+
2

3
). (4.2)

Hence λ and µ satisfies equation (3.3) and so g defines a conformal η-Einstein
soliton on the 3-dimensional Kenmotsu manifold M .
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