
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 062, 39 pages

Positive Scalar Curvature on Spin Pseudomanifolds:

the Fundamental Group and Secondary Invariants

Boris BOTVINNIK a, Paolo PIAZZA b and Jonathan ROSENBERG c

a) Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA

E-mail: botvinn@uoregon.edu

URL: http://pages.uoregon.edu/botvinn/

b) Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Università di Roma,
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Abstract. In this paper we continue the study of positive scalar curvature (psc) metrics
on a depth-1 Thom–Mather stratified space MΣ with singular stratum βM (a closed man-
ifold of positive codimension) and associated link equal to L, a smooth compact manifold.
We briefly call such spaces manifolds with L-fibered singularities. Under suitable spin as-
sumptions we give necessary index-theoretic conditions for the existence of wedge metrics of
positive scalar curvature. Assuming in addition that L is a simply connected homogeneous
space of positive scalar curvature, L = G/H, with the semisimple compact Lie group G
acting transitively on L by isometries, we investigate when these necessary conditions are
also sufficient. Our main result is that our conditions are indeed sufficient for large classes
of examples, even when MΣ and βM are not simply connected. We also investigate the
space of such psc metrics and show that it often splits into many cobordism classes.
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1 Introduction

This paper continues a program begun in [10, 15], and our previous paper [14] (hereafter called
Part I ), to understand obstructions to positive scalar curvature on manifolds with fibered sin-
gularities, for metrics that are well adapted to the singularity structure.

As in [14], the stratified spaces (or singular manifolds) MΣ that we study are Thom–Mather
pseudomanifolds of depth one, where we take the two strata to be spin. Topologically, MΣ is
homeomorphic to a quotient space of a compact smooth manifold M with boundary ∂M .
The manifold M is called the resolution of MΣ, and the quotient map M →MΣ is the identity
on the interior M̊ of M , and on ∂M , collapses the fibers of a fiber bundle φ : ∂M → βM , with
fibers all diffeomorphic to a fixed manifold L, called the link of the singularity, and with base βM
sometimes called the Bockstein of M (by analogy with other cases in topology). While we do
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treat the general case for some of our results, we shall eventually adopt the main geometric
assumptions from [14], namely that the bundle φ comes from a principal G-bundle p : P → βM ,
for some connected semisimple compact Lie group G that acts transitively on L by isometries
for some fixed metric gL, and thus ∂M = P ×G L. The transitivity of the action of G on L
means that L = G/H is a homogeneous space which comes with a metric gL with constant pos-
itive scalar curvature, which we normalize to be the same as that of a sphere of the dimension
` = dimL.

Given a Lie group G and a link L = G/H as above, we say that a fiber bundle E → B with
a fiber L is a geometric (L,G)-bundle if its structure group is G, where G acts on L by isometries
of the metric gL.

An adapted metric g on MΣ will be defined by the following data: a Riemannian metric gM
on M , which is a product metric dt2 + g∂M in a small collar neighborhood ∂M × [0, ε) of the
boundary ∂M , a connection ∇p on the principal G-bundle p, and a Riemannian metric gβM
on βM . We require the metrics gL, g∂M and gβM to be compatible in the sense that the
bundle projection φ : (∂M, g∂M )→ (βM, gβM ) is a Riemannian submersion with fibers (L, gL).
Furthermore, since the structure group G of the bundle φ : ∂M → βM acts by isometries of
the metric gL, we can make the special metric gL on the fibers orthogonal to the metric gβM
lifted up to the horizontal spaces for the connection ∇p. Then MΣ is the result of gluing
together the Riemannian manifold M and a tubular neighborhood N of βM along their common
boundary ∂M . The complement of βM in N will look like a fiber bundle over βM whose fibers
are open cones (0, R) × L, where R is the radius of the cones. We require these fibers to be
actual metric cones with the metric dr2 + r2gL (which is actually a warped product metric on
the product of L with the interval (0, R)), transitioning smoothly near r = R to a product
metric dr2 + CgL for a suitable positive constant C. In this paper, we allow for M and βM to
have non-trivial fundamental groups; the simply-connected case was considered in Part I [14].
Throughout this paper we assume that the link L = G/H is a simply connected homogeneous
space, where G is a compact semisimple Lie group acting on L by isometries of the metric gL,
and where

scalgL = scalS` = `(`− 1). (1.1)

This normalization makes the cone on L scalar-flat with respect to the metric dr2 + r2gL. This
will be important for our eventual existence results since this will guarantee that if gβM has
positive scalar curvature, then we can make the scalar curvature uniformly positive on the
tubular neighborhood of βM . In this setting, it is easy to see (since L is simply connected) that
π1(∂M) = π1(βM), and then Van Kampen implies that π1(MΣ) = π1(M).

Theorem 1.1 (obstruction theorem). Let MΣ be an n-dimensional compact pseudomanifold
with resolution M , a spin manifold with boundary ∂M . Assume the following:

(1) M is a spin manifold with boundary ∂M fibered over a connected spin manifold βM ,

(2) the fiber bundle φ : ∂M → βM is a geometric (L,G)-bundle.

Let Γ = π1(M), Γβ = π1(βM). Assume g is an adapted Riemannian metric on MΣ and let gM be
the restriction of g to M . Then there are two “alpha invariants”, generalized indices of Clifford
algebra-linear Dirac operators,

αΓ
cyl(M, gM ) ∈ KOn

(
C∗r,R(Γ)

)
and αΓβ (βM) ∈ KOn

(
C∗r,R(Γβ)

)
.

The indices αΓ
cyl(M, gM ) and αΓβ (βM) do not depend on a choice of adapted metric g, and they

both vanish if there exists an adapted psc metric on MΣ.
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Remark 1.2. In our case we fix the metric gL on L and the connection on the bundle
φ : ∂M → βM coming from a connection ∇p on the principal bundle p : P → βM . (This is
harmless since the space of such connections is contractible.) Then an adapted wedge metric g
on MΣ is determined (up to contractible choices) by a metric gβM (which then determines the
metric g∂M ) and by an extension g of g∂M to M . Thus the space of adapted wedge metrics
on MΣ is contractible, and from the analytic properties of Dirac operators we then obtain that
the cylindrical α-class αcyl(M, gM ) is independent of g (once the metric gβM has been fixed).
Hereafter, we will omit the metric g from the notation. Notice that there is also a wedge α-class
αΓ
w(MΣ, g) defined by considering the Dirac operator on the regular part of the pseudomani-

fold MΣ. This is also independent of g for (L,G)-fibered pseudomanifolds. The two classes
αΓ

cyl(M) and αΓ
w(MΣ) are equal if the metric gβM is psc. However, in more general situations,

the wedge α-class αΓ
w(MΣ, g) and the cylindrical α-class αΓ

cyl(M, gM ) both depend on the choice
of metric g and they are in general different. We shall make all this very precise in the next
section.

Now we are ready for the existence result.

Theorem 1.3 (existence theorem). Let MΣ be an n-dimensional compact pseudomanifold with
resolution M , a spin manifold with boundary ∂M . Assume the following:

(1) M is a spin manifold with boundary ∂M fibered over a connected spin manifold βM ,

(2) the fiber bundle φ : ∂M → βM is a geometric (L,G)-bundle.

Let Γ = π1(M), Γβ = π1(βM). Furthermore, assume n ≥ `+ 6, where ` = dimL, and that one
of the following condition holds:

(i) either L is the boundary of a spin G-manifold L̄ equipped with a G-invariant psc metric gL̄,
which is a product near the boundary and satisfies gL̄|L = gL,

(ii) or the embedding ∂M →M induces an isomorphism on π1, and moreover, ∂M = βM×L,
where L is an even quaternionic projective space, and Ωspin

∗ (BΓ) is free as an Ωspin
∗ -module.

Then, provided the Gromov–Lawson–Rosenberg conjecture holds for the groups Γ and Γβ, the
vanishing of the invariants

αΓ
cyl(MΣ) ∈ KOn

(
C∗r,R(Γ)

)
and αΓβ (βM) ∈ KOn

(
C∗r,R(Γβ)

)
implies that MΣ admits an adapted psc metric.

Remark 1.4. We notice that the condition (i) holds when L is a sphere, an odd complex
projective space, or when L = G.

In the last part of this paper, Section 6, we begin to analyze the homotopy type of the
space R+

w(MΣ) of adapted metrics of positive scalar curvature on MΣ, in the case where this
space is non-empty. One of the key results is the following.

Theorem 1.5. Let MΣ be an (L,G)-fibered spin pseudomanifold, and assume that MΣ admits
an adapted psc metric. Fix a connection ∇p on the associated principal G-bundle over βM .
Let resΣ : R+

w(MΣ)→ R+(βM) be the forgetful map sending a psc metric g on MΣ, interpreted
as a pair (gM , gβM ), to the metric gβM on βM . Then resΣ is surjective onto R+(βM), and it
has a (non-canonical) section. In particular, there is a split injection of the homotopy groups
of R+(βM) into those of R+

w(MΣ).
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We use this result to detect non-trivial homotopy groups of the space R+
w(MΣ). Namely,

we let MΣ = M ∪ −N(βM), as before. Once we fix a base point, a metric g0 ∈ R+
w(MΣ),

it determines corresponding metrics gβM,0 ∈ R+(βM) and gM,0 ∈ R+(M)g∂M,0 (where g∂M,0 is
given by the metric gβM,0 and gL). Then we have index-difference homomorphisms:

inddiffgβM,0 : πq
(
R+(βM)

)
→ KOq+n−`

and

inddiffg∂M,0 : πq
(
R+(M)g∂M,0

)
→ KOq+n+1,

where KOk is the k-th coefficient group for real K-theory (equal to Z for k a multiple of 4
and Z/2 for k ≡ 1, 2 mod 8); see Section 6 and [11, 24]. According to Theorem 1.5, we can
choose a splitting

πq
(
R+
w(MΣ)

)
= πq

(
R+(M)g∂M

)
⊕ πq

(
R+(βM)

)
.

(For q = 1 one might get a semidirect product instead of a direct sum, as there is no obvious
reason why the fundamental group should be abelian.) In particular, we prove the following
result (see Corollary 6.7 for more details):

Theorem 1.6. Let MΣ be a spin (L,G)-fibered compact pseudomanifold with L a simply con-
nected homogeneous space of a compact semisimple Lie group, and n − ` − 1 ≥ 5, where
dimM = n, dimL = `. Assume that MΣ admits an adapted psc metric. Then the compo-
sition

πq
(
R+
w(MΣ)

) ∼= //

inddiffg0 **

πq
(
R+(M)g∂M

)
⊕ πq

(
R+(βM)

)
inddiffg∂M,0⊕inddiffgβM,0
��

KOq+n+1 ⊕KOq+n−`

is surjective rationally and onto the 2-torsion.

We address the more general case when MΣ has non-trivial fundamental group in Corolla-
ries 6.8 and 6.9.

2 KO-obstructions on L-fibered pseudomanifolds

2.1 KOn-classes on L-fibered pseudomanifolds

Let (MΣ, g) be a Thom–Mather space of depth one, endowed with an adapted wedge metric g.
We denote as usual by βM the singular locus of MΣ and by L the link. The resolved manifold,
a manifold with fibered boundary, will be denoted by M .

Remark 2.1. We emphasize that for now the fibration φ : ∂M → βM is assumed to be just
a smooth fiber bundle with a fiber L, without any restriction on the structure group of that
fibration. Then we say that (MΣ, g) is an L-fibered pseudomanifold, as opposed to an (L,G)-
fibered pseudomanifold, which is the special case when the structure group G of the fibration
φ : ∂M → βM acts on L by isometries of a certain metric gL. However, the relevant ana-
lytical constructions and results concerning the Dirac operators we need are well-studied and
understood even for the general case of L-fibered pseudomanifolds.
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Recall that MΣ = M ∪∂M (−N(βM)), where N(βM) is the tubular neighborhood of the
singular locus, which is also the total space of a fiber bundle

c(L)→ N(βM) −→ βM (2.1)

with fiber equal to the cone over the link L. This also determines a smooth fiber bundle φ : ∂M →
βM which is a restriction of the bundle (2.1) to the link L. We denote by T (∂M/βM) → βM
the corresponding vertical tangent bundle. As in [14, Section 2.3] (to which we refer for further

details) we fix a connection on the fiber bundle L→ ∂M
φ−→ βM . The metric g on MΣ restricted

to the regular part of N(βM) is assumed to have the following structure:

g = dr2 + r2g∂M/βM + φ∗gβM +O(r)

with r denoting the radial variable along the cone and where the isomorphism between the
horizontal bundle H of the chosen connection and φ∗T (βM) has been used. (In this general
setting we employ the notation gX/B for a metric on the vertical tangent bundle of a smooth
fiber bundle X → B.)

The resolved manifold M inherits two metrics: the restriction of g to M , a Riemannian
metric of product type near the boundary, denoted gM , and the extension of the metric g
on M̊ ≡M reg

Σ to the wedge metric on the wedge tangent bundle wTM →M . (This was defined
in [4, Section 4] and in [2] under the alternate name incomplete edge tangent bundle; see again
Part I [14, Section 2.3] for a quick introduction to the wedge tangent bundle). We assume thatM ,
or equivalently M reg

Σ , is given a spin structure. This fixes a spin structure on (∂M, g∂M ) also.
Then we assume that βM is also spin and fix a spin structure for (βM, gβM ). This also fixes
a spin structure for the vertical tangent bundle T (∂M/βM) → βM endowed with the vertical
metric g∂M/βM .

Let us recall some basic facts in spin geometry. We refer to [31, Chapter II, Section 7] for
further details. Let C`n denote the Clifford algebra, and ` : Spinn → Hom(C`n, C`n) the repre-
sentation given by left multiplication. Then we denote by S/g(M) the bundle given by Pspin×`C`n
(here Pspin is the principal Spin(n)-bundle defined by the spin structure). There is a fiberwise
action of C`n on S/g(M) on the right which makes S/g(M) a bundle of rank one C`n-modules.
The bundle S/g(M) inherits a Levi-Civita connection ∇. Let D/g be the associated C`n-linear
Atiyah–Singer operator; thus, by definition, D/g = cl ◦ ∇. The operator D/g has the usual local
expression

D/g =
∑
j

cl
(
ej
)
∇ej

with {ej} a local orthonormal frame of vector fields and {ej} the dual basis defined by the
metric. D/g is a Z/2-graded odd formally self-adjoint operator of Dirac type commuting with the
right action of C`n. For this operator the Schrödinger–Lichnerowicz formula holds:

D/2
g = ∇∗∇+

1

4
κg,

with κg denoting the scalar curvature of g. See again [31, Chapter II, Section 7] and also [42]
for more details on this crucial point.

Notation. Unless absolutely necessary we shall omit the reference to the wedge metric g in the
bundle and the operator, thus denoting the C`n-linear Atiyah–Singer operator simply by

D/ : C∞
(
M,S/(M)

)
→ C∞

(
M,S/(M)

)
.

Moreover, we shall often use the shorter notation S/ instead of S/(M).
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As in Part I, we can regard D/ as a wedge differential operator of first order on L2(M,S/),
initially with domain equal to C∞c

(
M reg

Σ ,S/
)
⊂ L2(M,S/) (more on this below). We are looking

for self-adjoint C`n-linear extensions of this differential operator in L2(M,S/).

We are assuming that ∂M is a fiber bundle of spin manifolds, L → ∂M
ϕ−→ βM , and we

fix a connection on this bundle so as to have a well-defined notion of horizontal and vertical
subspaces. Consequently

S(∂M) ' S(∂M/βM)⊗̂ϕ∗S(βM),

where ⊗̂ denotes the graded tensor product. Extending work of Bismut and Cheeger on fib-
rations of spin manifolds, see [9, Section 4], Albin and Gell-Redman made a careful study of
the Levi-Civita connection near the singular stratum of a depth-one spin pseudomanifold – see
Sections 2.2 and 3.1 in [2]; this study implies the following structure of D/ near the singular
stratum:

D/ = cl(dr)∂r + cl(dr)
`

2r
+

1

r
D/∂M/βM ⊗̂ Id + Id ⊗̂ D̃/βM + B (2.2)

with ` = dimL, D/∂M/βM the vertical family of Atiyah–Singer operators on the fibration

L→ ∂M
ϕ−→ βM,

D̃/βM an explicit horizontal operator, and B a bundle endomorphism which isO(r). Formula (2.2)
can be rewritten as

D/ = r−1

(
cl(dr)r∂r + cl(dr)

`

2
+ D/∂M/βM ⊗̂Id + rId⊗̂D̃/βM + rB

)
and exhibits D/ as a wedge differential operator of order 1: D/ = r−1D/e, with D/e an edge differential
operator. See Part I and of course [2] for an introduction to edge and wedge operators. With
a small abuse of notation, widely used in family index theory, we denote by D/L the generic
operator of the vertical family D/∂M/βM and by specL2(D/L) its spectrum.

The following result has been discussed in Part I:

Theorem 2.2. Assume that

specL2(D/L) ∩ (−1/2, 1/2) = ∅ for each fiber L. (2.3)

Then the following holds:

(i) The operator D/ with domain C∞c
(
M reg

Σ ,S/
)
⊂ L2(M,S/) is essentially self-adjoint.

(ii) Its unique self-adjoint extension, still denoted by D/, defines a C`n-linear Fredholm operator
and thus a class αw(MΣ, g) in KOn, with n = dimMΣ.

As explained in Part I, (i) and (ii) are direct consequences of the analysis developed in [2]
(which builds in turn on the slightly more complicated case of the signature operator on Witt
spaces, see [4]). The main step is the construction of a Cln-linear parametrix for an opera-
tor D/ satisfying (2.3); this is based crucially on the construction of a parametrix for the edge
operator D/e associated to D/, using Mazzeo’s edge pseudodifferential calculus [35].

The following result also follows directly from [2] and from the Schrödinger–Lichnerowicz
formula, which is valid for D/:

Theorem 2.3. If the tubular neighborhood of the singular stratum
(
N(βM), g|N(βM)

)
has non-

negative scalar curvature, then (2.3) holds. See [2, Theorem 1.3].
If
(
M reg

Σ , g
)

has psc everywhere then (2.3) holds (this is clear from above, given that
(
N(βM),

g|N(βM)

)
has psc) and the unique self-adjoint extension D/ is L2-invertible; in particular

αw(MΣ, g) = 0 in KOn.
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Definition 2.4. We shall say that the stratified spin pseudomanifold (MΣ, g) is geometric-Witt
if the metric g is such that specL2(D/L) ∩ (−1/2, 1/2) = ∅ for each fiber L.

This notion is taken from [2], where it is applied to any generalized wedge Dirac operator.
If (MΣ, g) does not satisfy (2.3) but is such that the vertical metric g∂M/βM is of psc along

the fibers, then we can still define a wedge-alpha class αw(MΣ, g) ∈ KOn. Indeed, by the
Schrödinger–Lichnerowicz formula applied to the vertical family we know that there exists ε > 0
such that

specL2(D/L) ∩ (−ε, ε) = ∅ for each fiber L. (2.4)

From (2.4) we can achieve condition (2.3) above by rescaling the vertical metric g∂M/βM . (This
requires some adjustments in order to glue the rescaled metric around the singular locus βM
to the original metric on the complement of N(βM), along the lines of [16, Appendix 6].)
We obtain in this way a wedge-alpha class for D/ by considering the wedge-alpha class of the
operator associated to the rescaled metric.

There is a different (and in fact preferable) realization of this class that makes use of a natural
self-adjoint domain defined for any wedge Dirac operator with invertible vertical family along the
fibers of the boundary fibration. This is the so called vertical APS domain, see [1, Definition 2.3].
By applying the definition to our case we thus obtain a closed self-adjoint extension of D/, deno-
ted DVAPS(D/). Following [1] one proves that on this domain D/ admits a parametrix, that is,
an inverse modulo compacts, which can be used in order to see that

(
D/,DVAPS(D/)

)
is a C`n-

linear Fredholm operator on its domain endowed with the graph norm. We obtain in this way
a class αw(MΣ, g) ∈ KOn; one can prove that the class defined through the vertical APS domain
and the class defined by the operator associated to the rescaled metric are in fact equal. See [1,
Remark 4.10] for a sketch of the argument.

Definition 2.5. We shall say that the stratified spin pseudomanifold (MΣ, g) is psc-Witt if the
metric g is of psc along the links, i.e., if the vertical metric g∂M/βV induces on each fiber L
a metric of psc.

Given a psc-Witt stratified spin pseudomanifold (MΣ, g) we define its wedge alpha class
in KOn by considering the C`n-linear Fredholm operator

(
D/,DVAPS(D/)

)
.

Remark 2.6. In this article, which concentrates on (L,G)-pseudomanifolds, with L = G/H
a simply connected homogeneous space and G a compact semisimple Lie group acting on L
by isometries, we do not need to consider the vertical APS domain DVAPS(D/) or, equivalently,
the rescaled metric. Indeed, the proof of [2, Theorem 1.3] shows that (2.3) is automatic when
scalgL = scalS` = `(` − 1), which is the normalization we have adopted, see (1.1). Put it
differently, for the purposes of this article we can and we shall exclusively treat the geometric-
Witt case.

Theorem 2.7. Let (MΣ, g) be a geometric-Witt spin pseudomanifold. Then there is a well-
defined fundamental class [D/g] ∈ KOn(MΣ).

Proof. Following [19, Section 11], [40, Section 7.1] consider A, the algebra of smooth functions

on M that are constant along the fibers of ∂M
ϕ−→ βM ; there is a dense inclusion A ↪→ C(XΣ).

Once a parametrix for D/ is constructed, one obtains the existence of the fundamental class
in KOn(MΣ) by proceeding exactly as for the signature operator on Witt spaces – see [4,
Section 6.2], but taking A as a dense subalgebra of C(MΣ) instead of the subalgebra of Lipschitz
functions employed in [4, Section 6.2]. The details are very similar and thus we omit them. �

Remark 2.8. As usual, we have αw(M, g) = π∗[D/g], with π the mapping of the compact
pseudomanifold MΣ to a point.
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Remark 2.9. We remark that the wedge α-class and the fundamental class [D/g] are unchanged
if g(t), t ∈ [0, 1], is a 1-parameter family of adapted wedge metrics that are geometric-Witt for
any t ∈ [0, 1]. This is in fact a special case of Theorem 2.17 below.

Remark 2.10. Theorem 2.7, Remarks 2.8 and 2.9 also hold when (MΣ, g) is psc-Witt, with the
condition in Remark 2.9 being that g(t) is psc-Witt for each t ∈ [0, 1]. As we shall not use this
case, we do not discuss the details.

2.2 C∗-algebras and KO classes associated to D/

In this second part of our work we would like to bring in the fundamental group of the pseu-
domanifold MΣ. In fact, we will begin, more generally, with Galois Γ-covering spaces since this
approach is more general and simplifies the techniques.

Let Γ be a discrete group. A Γ-cover of MΣ will be denoted by MΓ
Σ

π−→MΣ. We shall keep the

notation M̃Σ →MΣ for the universal cover of MΣ. We notice that the Γ-cover MΓ
Σ has a natural

structure of depth-1 pseudomanifold, with strata equal to the inverse image of the strata of MΣ

through the projection map π. See [40] and [39] for more on this background material. Hence,
the singular stratum βMΓ of MΓ

Σ
1 is a Γ-cover of βM ,

Γ→ βMΓ → βM

with a link diffeomorphic again to L; similarly, the regular part
(
MΓ

Σ

)reg
of MΓ

Σ is a Γ-cover of the
regular part M reg

Σ of MΣ. Even if our Galois cover is the universal cover of MΣ, then βMΓ need

not be, in general, the universal covering β̃M of βM . A similar remark applies to the two regular
parts.

Finally, if MΓ is the resolution of MΓ
Σ then it is easy to see that MΓ is in a natural way

a Galois covering of M . The interior of MΓ is clearly a Galois Γ-cover of the interior of M . If

L→ ∂M
p−→ βM

is the boundary fibration of M and L → ∂MΓ pΓ−→ βMΓ is the boundary fibration of MΓ and
if π denotes the quotient map induced by the action of Γ, then there is a commutative diagram

∂MΓ π //

pΓ

��

∂M

p

��
βMΓ π // βM

with ∂MΓ π−→ ∂M inducing a diffeomorphism between the fiber of pΓ over x ∈ βMΓ and the
fiber of p over π(x). In the sequel we shall always endow MΓ

Σ, or rather its regular part, with
the lift of an adapted wedge metric on M ; this metric extends as a Γ-equivariant wedge metric
on all of the resolution MΓ; we denote this Γ-invariant metric by gΓ. Let us assume once again
that M and βM are spin; then also MΓ and βMΓ will be spin. Consequently, M reg

Σ and
(
MΓ

Σ

)reg

are spin.

Let D/Γ be the associated Γ-equivariant Cln-linear Atiyah–Singer operator. Notice that since
the link of MΓ

Σ is again L the analysis to be developed for understanding the properties of D/Γ is
obtained by combining the usual analysis of Γ-equivariant operators on Γ-covers of smooth com-
pact manifolds and the wedge analysis on compact stratified spaces. This principle is explained
in detail in [39].

1As we have denoted the singular locus of MΣ by βM , we denote the singular locus of MΓ
Σ by βMΓ.



Positive Scalar Curvature on Spin Pseudomanifolds 9

For the next theorem, however, we shall rather use the Mishchenko-Fomenko operator asso-
ciated to D/. Define the Mishchenko bundle V := MΓ

Σ ×Γ C
∗
r,R(Γ), a bundle of finitely gene-

rated projective C∗r,R(Γ)-modules of rank 1 over the whole MΣ. By definition D/MF is equal
to D/ twisted by V restricted to the regular part of MΣ. We shall also refer to this operator
as the Atiyah–Singer–Mishchenko operator and if necessary we shall denote it more precisely
by D/MF,g. We shall also consider the associated edge-operator, D/eMF, obtained by twisting D/e

by the Mishchenko bundle V.

Theorem 2.11. Let M and βM be spin and let g be a wedge adapted metric. Consider a Galois
Γ-cover MΓ

Σ of MΣ and endow the regular part with the associated Γ-equivariant metric gΓ as
above. Let us assume that (MΣ, g) is geometric-Witt. Consider the Atiyah–Singer–Mishchenko
operator D/MF,g. Then there is a unique self-adjoint extension of D/MF,g, with domain denoted
D(D/MF,g) such that the following hold:

(1) the pair
(
D/MF,g,D(D/MF,g)

)
defines an unbounded Kasparov (R, C∗r,RΓ⊗C`n)-bimodule and

thus an index class Indw
(
D/MF,g,M

Γ
Σ

)
∈ KKOn

(
R, C∗r,RΓ

)
; as usual we identify the group

KKOn
(
R, C∗r,RΓ

)
with the isomorphic group KOn

(
C∗r,RΓ

)
,

(2) if g has psc everywhere then Indw
(
D/MF,g,M

Γ
Σ

)
= 0 in KOn

(
C∗r,RΓ

)
,

(3) if ass : KOn(BΓ) → KOn
(
C∗r,RΓ

)
is the assembly map and if f : MΣ → BΓ is the classi-

fying map of the Γ-cover, then

ass
(
f∗[D/g]

)
= Indw

(
D/MF,g,M

Γ
Σ

)
in KOn

(
C∗r,RΓ

)
.

Sketch of the proof. The proof is an easy adaptation of the corresponding result for the
signature operator on Witt spaces, see [4, Proposition 6.4, Theorem 6.6], and for this reason we
shall be brief. The operator D/MF acts on the sections of S/ ⊗ V. Since the Mishchenko bundle
on the tubular neighborhood of the singular locus βM is the pull-back of a bundle on βM ,
we see that the analysis to be developed in order to understand D/MF is no more difficult than
the one already developed for D/. More precisely, following the proof of [4, Proposition 6.4],
we see that Nq(D/

e
MF), the normal operator of D/eMF at q ∈ βM is equal, up to conjugation

by a bundle isomorphism, to Nq(D/)⊗ IdC∗r,RΓ and so its invertibility properties, that are crucial

in the analysis developed in [2], are a consequence of those already established for Nq(D/).
The proof now proceeds parallel to the one given in [4, Section 6.3] for the signature operator
on Witt spaces. Notice that in (2) we use again the fact that a metric which is psc everywhere
is psc in

(
N(βM), g|N(βM)

)
and thus geometric-Witt. �

Notation. We shall briefly denote the index class Indw
(
D/MF,g,M

Γ
Σ

)
as

αΓ
w(MΣ, g) ∈ KO∗

(
C∗r,RΓ

)
.

In case we want to be very precise about the Galois cover MΓ
Σ involved in the definition of this

class we shall also write

αΓ
w(MΣ, g, f) ∈ KO∗

(
C∗r,RΓ

)
, where f : MΣ → BΓ and MΓ

Σ = f∗EΓ.

Remark 2.12. Similarly to Remark 2.9, the class αΓ
w(MΣ, g) ∈ KO∗

(
C∗r,RΓ

)
is unchanged

if g(t), t ∈ [0, 1], is a 1-parameter family of adapted wedge metrics that are geometric-Witt for
any t ∈ [0, 1]. This is in fact a special case of Theorem 2.17 below.

Remark 2.13. The above results can also be established for psc-Witt pseudomanifold, either by
using the vertical APS domain or by rescaling in the fiber direction on the boundary. We shall
not need this more general case.
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Remark 2.14. The existence of a fundamental class [D/] ∈ K∗(MΣ) and of a class αΓ(MΣ, g) can
be established more generally for spin pseudomanifolds of arbitrary depth, assuming of course
suitable Witt conditions along the links. This is based heavily on the general edge pseudodif-
ferential calculus developed by Albin and Gell-Redman in [1]. Details will appear in [3].

2.3 Cylindrical KO-theory classes and a gluing formula

We decompose

MΣ = M ∪∂M (−N(βM)) and M reg
Σ = M ∪∂M (−N(βM)reg).

Let g be an adapted wedge metric on MΣ. Denote by gM the Riemannian metric equal to the
restriction of g to M and by gN(βM) the metric equal to the restriction of g to N(βM), the
collar neighborhood of the singular stratum. By assumption,

gN(βM) = dr2 + r2g∂M/βM + p∗gβM +O(r).

Recall that an adapted wedge metric g is such that gM and gN(βM) are of product type in
a collar neighborhood of ∂M . We make the hypothesis that g is geometric-Witt and that the
whole metric g∂M is of psc. Now attach an infinite cylinder to M along the boundary ∂M and
extend the metric to be constant on the cylinder; similarly, attach an infinite cylinder to N(βM)
and extend the metric. Because of the hypothesis that g∂M is of psc we have well defined classes

Indcyl

(
D/MF,gM ,M

Γ
)
, Indcyl,w

(
D/MF,gN(βM)

, N(βM)Γ
)

in KO∗
(
C∗r,RΓ

)
.

For the existence of the cylindrical class on MΓ we refer the reader to [18, 33, 47] and referen-
ces therein. The existence of the index class Indcyl,w

(
D/MF, N(βM)Γ

)
follows from the above

theorem and these references.

Notation. We shall briefly denote the above index classes as

αΓ
cyl(M, gM ) and αΓ

cyl,w

(
N(βM), gN(βM)

)
∈ KO∗

(
C∗r,RΓ

)
.

Proposition 2.15. Under the same assumptions as above, namely that g is geometric-Witt and
that g|∂M is of psc, the following gluing formula holds:

αΓ
w(MΣ, g) = αΓ

cyl(M, gM ) + αΓ
cyl,w

(
N(βM), gN(βM)

)
in KO∗

(
C∗r,RΓ

)
.

Consequently, if
(
N(βM), gN(βM)

)
if of psc then

αΓ
w

(
MΓ

Σ, g
)

= αΓ
cyl

(
MΓ, gM

)
in KO∗

(
C∗r,RΓ

)
. (2.5)

Proof. The existence of these classes has been discussed above. The gluing formula has been
discussed for the signature operator on Witt and Cheeger spaces by Albin–Piazza [5], based on
a well known technique due to Bunke – see [18]; the same arguments, with minor modifications,
apply here. �

2.4 Spin bordism of geometric-Witt pseudomanifolds

It is well-known that in the smooth context the Fredholm index of the spin-Dirac operator
and the index class of the spin-Dirac operator twisted by the Mishchenko bundle define group
homomorphisms

ind: Ωspin
n → Z, IndΓ : Ωspin

n (BΓ)→ K∗(C
∗
rΓ), (2.6)
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where for the numeric index we limit ourselves to n = 4k. More generally, the α invariant of the
Atiyah–Singer operator D/ defines a group homomorphism

α : Ωspin
n → KOn

while the αΓ-invariant of the Atiyah–Singer–Mishchenko operator D/MF defines a group homo-
morphism

αΓ : Ωspin
n (BΓ)→ KO∗

(
C∗r,RΓ

)
.

The results for the spin-Dirac operator, see (2.6), is well known and treated in several references.
See for example the detailed treatment in [7] and its extension to the C∗rΓ-index class in [32].
For the passage to the Atiyah–Singer operator, see [31, Chapter IV, Section 4, equation (4.3)]
and [42] or, for a purely analytic argument, the appendix to this paper, Section A.

Definition 2.16. Let (MΣ, g) and (M ′Σ, g
′) be two spin-stratified pseudomanifolds of dimen-

sion n and let us assume that they are both geometric-Witt. Let (WΣ, ḡ) be a spin-stratified
pseudomanifold of dimension (n + 1) with collared boundary and adapted wedge metric, also
of product-type near the boundary, such that ∂WΣ = MΣ∪ (−M ′Σ) and ḡ|∂WΣ

= g∪g′. We shall
say that (WΣ, ḡ) provides a geometric-Witt bordism between (MΣ, g) and (M ′Σ, g

′) if the adapted
wedge metric ḡ is globally psc-Witt.

If Γ is a discrete group as above and f : MΣ → BΓ and f ′ : M ′Σ → BΓ are classifying maps,
then we shall say that (MΣ, g, f) is geometric-Witt bordant to (M ′Σ, g

′, f ′) if there exists (WΣ, ḡ)
as above and a continuous map F : WΣ → BΓ restricting to f and f ′ on the boundary. We use
the notation (WΣ, ḡ, F ) : (MΣ, g, f)  (M ′Σ, g

′, f ′) for such a geometric-Witt bordism. Notice
that f , f ′ and F define in a natural way Galois coverings MΓ

Σ, (M ′Σ)Γ, WΓ
Σ and thus Mishchenko

bundles on MΣ, M ′Σ and WΣ. We denote briefly by D/MF and D/ ′MF the corresponding Atiyah–
Singer–Mishchenko operators on MΣ and M ′Σ.

Theorem 2.17. If there exists a geometric-Witt bordism (WΣ, ḡ) : (MΣ, g) (M ′Σ, g
′), then

αw(MΣ, g) = αw(M ′Σ, g
′) in KOn.

If there exists a geometric-Witt bordism (WΣ, ḡ, F ) : (MΣ, g, f) (M ′Σ, g
′, f ′), then

αΓ
w(MΣ, g, f) = αΓ

w(M ′Σ, g
′, f ′) in KOn

(
C∗r,RΓ

)
,

where we recall that the above classes are defined in terms of MΓ
Σ = f∗EΓ and (M ′Σ)Γ = (f ′)∗EΓ.

Sketch of proof. Once an analytic proof of the spin-bordism invariance is given in the smooth
closed case, the argument for geometric-Witt pseudomanifolds is the same. For this reason, we
just give a sketch of the argument. Indeed, by general principles, the proof is reduced to a collar
neighborhood of the boundary where the two directions, the one of the boundary and the one
normal to the boundary, are completely decoupled. Now, for smooth spin manifolds we have
provided a purely analytic proof of the spin-bordism invariance of the α-class and of the αΓ-class
in the appendix;2 it is very easy to extend this proof to the geometric-Witt case, exactly as it is
done for the signature operator on Witt pseudomanifolds in order to establish the Witt-bordism
invariance of the signature index and of the C∗rΓ signature-index class. See the proof of [4,
Theorem 7.1]. �

Remark 2.18. One can extend Definition 2.16 to the psc-Witt case and the analogue of Theo-
rem 2.17 holds.

2This is well known to the experts, but we could not pin down a quotable reference.
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3 KO-obstructions on (L,G)-fibered pseudomanifolds

In this section we shall finally meet the obstructions to the existence of a wedge metric of psc on
an (L,G)-fibered pseudomanifold. We treat first the general case of L-fibered pseudomanifolds
and then specialize to the case of (L,G)-fibered pseudomanifolds; the latter are the pseudoman-
ifolds for which we shall prove an existence theorem.

3.1 KO-obstructions for general L-fibered pseudomanifolds

Let Γ be a finitely generated discrete group, and assume that MΓ
Σ is a Γ-cover of an L-fibered

pseudomanifold MΣ = M ∪∂M (−N(βM)). If MΣ admits an adapted wedge metric of psc then
we know that MΣ is geometric-Witt and αΓ

w(MΣ, g) = 0 in KO∗(C
∗
r,R(Γ)). See Theorems 2.3

and 2.11(2). Since
(
N(βM), gN(βM)

)
is of psc we also have that αΓ

w(MΣ, g) = αΓ
cyl(M, gM )

in KO∗
(
C∗r,RΓ

)
. See Proposition 2.15, and in particular (2.5).

Summarizing, if g is an adapted wedge metric of psc on an L-fibered pseudomanifold of dimen-
sion n, then the following necessary condition is fulfilled:

αΓ
w(MΣ, g) = αΓ

cyl(M, gM ) = 0 in KOn
(
C∗r,R(Γ)

)
.

Consider now the singular locus of MΓ
Σ, denoted βMΓ. We already observed that the cove-

ring map MΓ
Σ → MΣ induces a Γ-cover βMΓ → βM . Consider the Atiyah–Singer operator

on (βM, gβM ) and let us denote it by D/βgβM . We also have an Atiyah–Singer–Mishchenko operator

D/βMF,gβM
, obtained by twisting D/βgβM with the Mishchenko bundle associated to the Γ-cover

Γ→ βMΓ → βM . We can consider Ind
(
D/βMF,gβM

, βMΓ
)

in KOn−`−1

(
C∗r,R(Γ)

)
that we denote,

as usual, by αΓ(βM, gβM ). Since βM is a closed smooth spin manifold we can in fact adopt the
notation αΓ(βM) ∈ KOn−`−1

(
C∗r,R(Γ)

)
, given that this class does not depend on the particular

choice of the metric gβM . See [42]. Unless further assumptions are made on the fibration
L→ ∂M → βM we cannot infer that also αΓ(βM) = 0 in KOn−`−1

(
C∗r,R(Γ)

)
, where ` = dimL.

In the next section, on the other hand, we shall specialize this discussion to the case of (L,G)-
fibered pseudomanifolds and get consequently more precise information.

3.2 KO-classes on (L,G)-fibered pseudomanifolds

We follow the notation of the previous section but we now assume that MΣ is an (L,G)-fibered
pseudomanifold endowed with an adapted wedge metric g. We know that (MΣ, g) is geometric-
Witt – see Remark 2.6. By Theorem 2.11 there exists a well defined wedge-alpha class αΓ

w(MΣ, g)
in KOn

(
C∗r,R(Γ)

)
. Moreover, from Theorem 3.5 of Part 1 (item (1)) we know that g|∂M is of

psc and so we also have a cylindrical class αΓ
cyl(M, gM ) ∈ KOn

(
C∗r,R(Γ)

)
. As already remarked

in the Introduction, the space of adapted wedge metrics on an (L,G)-fibered pseudomanifold is
contractible. Thus αΓ

w(MΣ, g) ∈ KOn
(
C∗r,R(Γ)

)
does not depend on the choice of the adapted

wedge metric g. See Remark 2.12. Similarly, the cylindrical α class αΓ
cyl(M, gM ) does not depend

on the choice of g; indeed, if g and g′ are two adapted wedge metrics joined by a 1-parameter
family of adapted wedge metric, then gM and g′M are joined by a path of metrics that are
uniformly of psc on the boundary ∂M . The result then follows from well-known properties of
index classes on manifolds with cylindrical ends. See for example [26] or [34]. Thus we can
adopt the notation

αΓ
w(MΣ) and αΓ

cyl(M)

for the two classes.
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Finally, we remark that under the assumption that (βM, gβM ) is of psc, the equality

αΓ
w(MΣ, g) = αΓ

cyl(M, gM )

holds generally; indeed, in this case the wedge metric g restricted to N(βM) has psc – see again
Theorem 3.5 of Part I (item (2)) – and thus the result follows from Proposition 2.15.

Assume now that our (L,G)-fibered pseudomanifolds is endowed with an adapted wedge
metric of psc. We then certainly have that

αΓ
w(MΣ, g) = αΓ

cyl(M, gM ) = 0 in KOn
(
C∗r,R(Γ)

)
since this is true even in the general L-fibered case. However, in this particular case, because of
Theorem 3.5 of Part I (item (3)), we have additionally that

αΓ(βM) = 0 ∈ KOn−`−1

(
C∗r,R(Γ)

)
.

This discussion proves the obstruction theorem, Theorem 1.1 in the introduction.
Our task in the next two sections will be to show that under suitable additional assumptions

these necessary conditions for the existence of an adapted wedge metric of psc are also sufficient.

Recall now that for these special pseudomanifolds we have defined a bordism theory

Ω
spin,(L,G)-fb
∗ (−); see Part I, Section 4. We end this section by observing that in this special

case of (L,G)-fibered pseudomanifolds we can frame the alpha classes of this section in the
following elegant way.

Proposition 3.1. Let Ω
spin,(L,G)-fb
∗ (−) be the singular spin bordism group. Then we have well-

defined homomorphisms:

αΓ
w : Ω

spin,(L,G)-fb
∗ (BΓ)→ KO∗

(
C∗r,R(Γ)

)
,

αΓ
cyl : Ω

spin,(L,G)-fb
∗ (BΓ)→ KO∗

(
C∗r,R(Γ)

)
,

αΓ
β : Ω

spin,(L,G)-fb
∗ (BΓ)→ KO∗−`−1

(
C∗r,R(Γ)

)
. (3.1)

Proof. Let [MΣ, f : MΣ → BΓ] ∈ Ω
spin,(L,G)-fb
∗ (BΓ). We know that (L,G)-fibered pseudoman-

ifolds are geometric-Witt. Fix an adapted wedge metric g on MΣ and set

αΓ
w

(
[MΣ, f : MΣ → BΓ]

)
:= αΓ

w(MΣ, g, f) ∈ KO∗
(
C∗r,R(Γ)

)
.

By definition, bordant elements in the group Ω
spin,(L,G)-fb
∗ (BΓ) are in fact geometric-Witt bor-

dant. Thus the first result follows immediately from Theorem 2.17. Regarding the cylindrical
class, exactly the same arguments given for the αcyl invariant in Part I, apply to αΓ

cyl , thus
showing that

αΓ
cyl : Ω

spin,(L,G)-fb
∗ (BΓ)→ KO∗

(
C∗r,R(Γ)

)
is well defined.

Regarding (3.1): we have a homomorphism βBΓ : Ω
spin,(L,G)-fb
∗ (BΓ) → Ω∗−`−1(BΓ), associ-

ating to [MΣ, f : MΣ → BΓ] the class [βM, f |βM : βM → BΓ]. The homomorphism (3.1) is
obtained by composing this homomorphism βBΓ with the well-known alpha homomorphism for
closed spin manifolds. Thus αΓ

β [MΣ, f : MΣ → BΓ] is equal to the C∗r,R(Γ)-index of the Atiyah–

Singer–Mishchenko operator D/βMF,gβM
obtained by twisting D/βgβM with the Mishchenko bundle

associated to the Γ-cover Γ → βMΓ → βM defined by f |βM : βM → BΓ; it is therefore well
defined. �
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3.3 Fundamental groups and KO-obstructions for (L,G)-fibered
pseudomanifolds

We assume now that Γ = π1(MΣ). We also consider π1(βM). In this section we want to be
particularly precise about the discrete groups involved in the various Galois coverings.

• In all of this section we assume that MΣ has an adapted wedge metric g of psc.

Under this assumption we observe that (M, gM ) is of psc and we certainly have that

απ1(MΣ)
w (MΣ, g) = 0 = α

π1(MΣ)
cyl (M, gM ) in KO∗

(
C∗r,R(π1(MΣ))

)
,

where the first class is relative to M̃Σ, the universal cover of MΣ, and the second class is relative
to Mπ1(MΣ), the restriction of M̃Σ to the inverse image of M . Also, since βM admits a metric
of psc, we also have, as already remarked,

απ1(MΣ)(βM) = 0 in KOn−`−1

(
C∗r,R(π1(MΣ))

)
,

where this class is relative to the π1(MΣ)-cover of βM obtained by taking the restriction of M̃Σ

to the inverse image of βM (this is in fact the singular locus of M̃Σ). In addition we also have

απ1(βM)(βM) = 0 in KOn−`−1

(
C∗r,R(π1(βM))

)
,

where this class is relative to β̃M , the universal cover of βM , π1(βM)→ β̃M → βM , and it is

defined in terms of D/MF,π1(βM), the operator D/βgβM twisted by the Mishchenko bundle

β̃M ×π1(βM) C
∗
r,R(π1(βM)).

We remark that if L is simply connected (for example a sphere, complex or quaternionic pro-

jective space, or complex Grassmannian), then the fibration L → ∂M
ϕ−→ βM gives that

ϕ∗ : π1(∂M) → π1(βM) is an isomorphism; moreover, the tubular neighborhood N of βM
has a deformation retraction down to βM . An easy application of Van Kampen’s theorem then
proves that

π1(MΣ) ' π1(M).

Thus in this case there are exactly two fundamental groups to keep track of, π1(MΣ) ≡ π1(M)
and π1(βM).

We summarize the index obstructions when L is 1-connected and we take into account the
fundamental groups, in the following proposition.

Proposition 3.2. Let MΣ be a (L,G)-fibered pseudomanifold. Assume that L is 1-connected so
that π1(MΣ) ≡ π1(M). Let g be an adapted wedge metric of psc on MΣ. We endow M with the
metric gM := g|M . Under the above hypothesis we have the following vanishing results:

απ1(MΣ)
w (MΣ, g) = α

π1(MΣ)
cyl (M, gM ) = 0 in KOn

(
C∗R,r(π1(MΣ))

)
,

απ1(MΣ)(βM) = 0 in KOn−`−1

(
C∗R,r(π1(MΣ))

)
,

απ1(βM)(βM) = 0 in KOn−`−1

(
C∗R,r(π1(βM))

)
,

where the first two classes are relative to M̃Σ, the universal cover of MΣ, and to its restriction
to the inverse image of M respectively; the third class is relative to the restriction of M̃Σ to the
inverse image of βM , and the fourth class is defined in terms of β̃M , the universal cover of βM .
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4 Relevant surgery and bordism theorems

4.1 The case of a single fundamental group

We need two simple generalizations of our results from Part I [14, Theorems 4.6 and 4.7].
Given a simply connected link manifold L and a simply connected Lie group G, acting on L,
we consider (L,G)-singular spin pseudomanifolds MΣ, where MΣ = M ∪∂M N(βM), and the
manifolds M and βM have non-trivial fundamental groups. The first case to analyze is when
the pseudomanifold MΣ and its strata M and βM have the same fundamental group Γ. While
this case is also covered by the more complicated case to be treated below in Section 4.2,
we have separated this case out because the argument is simpler and clearer. In particular,

such an MΣ determines an element in the bordism group Ω
spin,(L,G)-fb
∗ (BΓ). In more detail, this

means that there are maps ξ : MΣ → BΓ and ξβ : βM → BΓ such that the following diagram of
isomorphisms is commutative:

π1(MΣ) Γ

π1(M) π1(∂M) π1(βM).

//ξ∗

OO

i∗

::

(ξ|M )∗

oo j∗ //p∗

dd
(ξβ)∗

(4.1)

Here i : M ↪→MΣ, j : ∂M ↪→M are canonical embeddings.

Theorem 4.1 (a refined surgery theorem). Assume G is a simply connected Lie group, L is

simply connected and spin, and Γ is a discrete group. Let the element x ∈ Ω
spin,(L,G)-fb
∗ (BΓ)

be represented by two (L,G)-singular spin pseudomanifolds ξ : MΣ → BΓ and ξ′ : M ′Σ → BΓ
of dimension n ≥ 6 + `, where MΣ = M ∪∂M −N(βM), M ′Σ = M ′ ∪∂M −N(βM ′) are given
together with maps ξβ : βM → BΓ and ξ′β : βM ′ → BΓ and with structure maps f : βM → BG
and f ′ : βM → BG. Assume the pseudomanifold MΣ and its strata M and βM have the same
fundamental group Γ, i.e., (4.1) is a commutative diagram of isomorphisms.

Then there exists an (L,G)-bordism WΣ : MΣ  M ′Σ, WΣ = W ∪∂W N(βW ) over BΓ, with
a structure map f̄ : βW → BG restricting to the structure maps on βM and βM ′, such that the
pairs (βW, βM) and (W,M) are 2-connected.

Remark 4.2. We emphasize that the maps ξ′ : M ′Σ → BΓ and ξ′β : βM ′ → BΓ are not assumed
to be isomorphisms on fundamental groups; the only requirement here is that (M ′Σ, ξ

′, ξ′β) rep-

resents the same bordism class x ∈ Ω
spin,(L,G)-fb
∗ (BΓ) as (MΣ, ξ, ξβ).

Proof. We start with some (L,G)-bordism WΣ : MΣ  M ′Σ over BΓ. In particular, we have
maps ξ̄ : WΣ → BΓ and ξ̄β : βW → BΓ such that ξ̄|MΣ

= ξ and ξ̄β|βMΣ
= ξβ.

Remark 4.3. For future use, we recall that WΣ = W ∪∂(1)W N(βW ), where W is a manifold
with corners: ∂W = ∂(0)W ∪ ∂(1)W , where

∂(0)W = M t −M ′, ∂
(
∂(0)W

)
= −∂

(
∂(1)W

)
= ∂M t −∂M ′,

and the (L,G)-fiber bundle ∂(1)W is given by the map f̄ : βW → BG, where f̄ |βM = f
and f̄ |βM ′ = f ′. Then we denote by

δWΣ = ∂(0)W ∪∂(∂(0)W ) N(∂(βW )) = MΣ tM ′Σ.
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By assumption, the maps ξ and ξβ induce isomorphisms of fundamental groups. As already
remarked, the restrictions ξ̄|M ′Σ = ξ′ and ξ̄β|βM ′Σ = ξ′β may not be isomorphisms on π1. However,
the commutativity of the diagrams

π1(W ) Γ

π1(M)

//ξ̄∗

OO ??

ξ∗
and

π1(βW ) Γ

π1(βM)

//
(ξ̄β)∗

OO ??

(ξβ)∗

(with the vertical arrows induced by the inclusions) implies that the homomorphisms ξ̄∗:
π1(W )→ Γ and (ξ̄β)∗ : π1(βW )→ Γ are surjective.

Then the first step is to do surgery on βW to make the pair (βW, βM) 2-connected. We begin
by killing the kernel of π1(βW ) � Γ. This proceeds as in the proof of [14, Theorem 4.7], the
point being that since this kernel maps trivially to π1(BΓ), the surgery can be done over BΓ
without any extra effort. After taking care of the fundamental group, the situation is the same
as in [14, Theorem 4.7]. The process for making the pair (W,M) 2-connected is completely
analogous. �

Once we have established Theorem 4.1, we get a corresponding bordism theorem; see Theo-
rem 4.6 from Part I.

Theorem 4.4 (a refined bordism theorem). Assume G is a simply connected Lie group, L is

simply connected and spin, and Γ is a discrete group. Let the element x ∈ Ω
spin,(L,G)-fb
∗ (BΓ)

be represented by two (L,G)-singular spin pseudomanifolds ξ : MΣ → BΓ and ξ′ : M ′Σ → BΓ
of dimension n ≥ 6 + `, where MΣ = M ∪∂M −N(βM), M ′Σ = M ′ ∪∂M −N(βM ′) are given
together with maps ξβ : βM → BΓ and ξ′β : βM ′ → BΓ and with structure maps f : βM → BG
and f ′ : βM → BG. Assume the pseudomanifold MΣ and its strata M and βM have the
same fundamental group Γ, i.e., (4.1) is a commutative diagram of isomorphisms. Furthermore,
assume M ′Σ has an adapted psc metric g′.

Then there exists an (L,G)-bordism WΣ : MΣ  M ′Σ over BΓ together with an adapted
psc metric ḡ which is a product metric near the boundary δWΣ = MΣt−M ′Σ such that ḡ|M ′Σ = g′.
In particular, MΣ admits an adapted psc metric g.

4.2 The case of two fundamental groups

Next, we would like to address the natural situation when the fundamental groups of βM and M
are different. For that, we need to redo some of the bordism theory of [14, Section 4] and fix
two discrete groups Γβ and Γ and a homomorphism θ : Γβ → Γ. This data will be held fixed,
and we consider pseudomanifolds MΣ = M ∪∂M −N(βM) with (L,G)-fibered singularities3

but now Γβ is the fundamental group of βM and ∂M and Γ is the fundamental group of M ,
and θ : Γβ → Γ is the map of groups induced by the inclusion. To describe a bordism group

Ω
spin,(L,G)-fb
n

(
BΓβ

θ∗−→ BΓ
)
, we need maps ξ : M → BΓ and ξβ : βM → BΓβ such that the

following diagram commutes:

Γ Γβ

π1(M) π1(∂M) π1(βM).

oo θ

OO

ξ∗

::
(ξ∂)∗

oo j∗ //p∗

OO

(ξβ)∗

3Where as before L and G are simply connected and G acts transitively on L.
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(Here ξ∂ = ξβ ◦ p.) In the case of interest, since L is simply connected, p∗ : π1(∂M)→ π1(βM),
ξ∗ : π1M → Γ, and (ξβ)∗ : π1(βM)→ Γβ are all isomorphisms. Notice that in our case, as already
remarked, by Van Kampen’s theorem, the fundamental group of MΣ is π1(M)∗π1(βM)π1(βM) =
π1(M) = Γ.

Definition 4.5. Fix a group homomorphism θ : Γβ → Γ. We define Ω
spin,(L,G)-fb
n

(
BΓβ

θ∗−→ BΓ
)

to be the bordism group of n-dimensional closed (L,G)-singular spin pseudomanifolds MΣ, where
MΣ = M ∪∂M −N(βM) is equipped with maps ξ : M → BΓ and ξβ : βM → BΓβ such that the
diagram

BΓ BΓβ

M ∂M βM

oo Bθ

OO

ξ

??

ξ∂

oo j //p

OO

ξβ

commutes up to homotopy (here ξ∂ = ξβ ◦ p). A bordism(
WΣ, ξ̄, ξ̄β

)
: (MΣ, ξ, ξβ) (M ′Σ, ξ

′, ξ′β),

between such objects is an (L,G)-singular spin pseudomanifold WΣ = W ∪∂W N(βW ) with the
boundary δWΣ = MΣ t −M ′Σ given together with maps ξ̄ : W → BΓ and ξ̄β : βW → BΓβ such
that

ξ̄|M = ξ, ξ̄|M ′ = ξ′; ξ̄β|βM = ξβ, ξ̄β|βM ′ = ξ′β.

Remark 4.6. Note that, in general, W here is a manifold with corners with ∂W = ∂(0)W ∪
∂(1)W , where ∂(0)W∩∂(1)W = ∂Mt−∂M ′ and ∂(1)W has an (L,G)-fibration structure over βW ,
so that the map ξ̄∂ is just the bundle projection followed by ξ̄β.

Remark 4.7. Together with structure maps f : βM → BG, f ′ : βM ′ → BG and f̄ : βW → BG,
we obtain a spin bordism

(
f̄ × ξ̄β : βW → BG×BΓβ

)
between (f × ξβ : βM → BG×BΓβ) and

(f ′ × ξ′β : βM ′ → BG×BΓβ).

Remark 4.8. Let MΣ = M ∪∂M −N(βM) be as above, i.e., π1M = Γ, π1∂M = π1βM = Γβ,
and the homomorphism θ : Γβ → Γ coincides with the one given by the inclusion ∂M ↪−→ M .
Then there is a canonical map u : MΣ → BΓ such that u|M = ξ, and u|N(βM) is given by the

composition N(βM)
proj−−→ βM

ξβ−→ BΓβ
θ−→ BΓ. This construction defines a natural forgetful

map

Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)
→ Ωspin,(L,G)-fb

n (BΓ),

which sends (MΣ, ξ, ξβ) to (MΣ, u) as above.

To generalize the arguments in [14] for proving existence of well-adapted positive scalar
curvature metrics in some cases, we now need an exact sequence into which the bordism group
of Definition 4.5 will fit. In general this is quite complicated, so we only do an easy case as
follows.

Theorem 4.9. Let Ω
spin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

be a bordism group as in Definition 4.5. Assume
that L is a G-equivariant spin boundary, i.e., that there is a spin G-manifold L with ∂L = L
(as G-manifolds). Then there is an exact sequence of bordism groups

0→ Ωspin
n (BΓ)

i−→ Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
) β−→ Ωspin

n−`−1(BΓβ ×BG)→ 0. (4.2)
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Proof. First of all, note that the assumption on L gives the surjectivity of β. For if the map
βM → BΓβ × BG represents an element of Ωspin

n−`−1(BΓβ × BG) and we form the associated
(L,G)-bundle

L // X //

p

��

BΓβ

βM // BΓβ ×BG,

then by replacing L by L, we get a spin manifold X of dimension n with boundary X, fibering
over βM with fiber L and fiber bundle projection p̄. Now we have a commutative diagram

X
p //

��

βM

=

��

// BΓβ

=

��

Bθ

""
X

p̄ // βM // BΓβ //Bθ // BΓ.

The result is a spin manifold X with boundary X, representing a class in

Ωspin,(L,G)-fb
n

(
BΓβ

θ−→ BΓ
)
,

mapping under β to the class of βM → BΓβ ×BG.

The map i : Ωspin
n (BΓ) → Ω

spin,(L,G)-fb
n

(
BΓβ

θ−→ BΓ
)

just comes from thinking of a closed
manifold as a manifold with empty fibered singularities. We need to show this map is injective.

Suppose M
ξ−→ BΓ represents a class in Ωspin

n (BΓ). Suppose it bounds as a manifold with (L,G)-
fibered singularities (in the bordism group in the center). Since ∂M and βM are empty, that
means we have an (L,G)-singular spin pseudomanifold with boundary WΣ = W ∪∂W N(βW )
with the boundary ∂WΣ = M and maps ξ̄ : W → BΓ, ξ̄∂ : ∂(1)W → BΓβ and ξ̄β : βW → BΓβ
such that ξ̄|M = ξ. Also, in this case, there are no corners, i.e., X = ∂(1)W is disjoint from
∂(0)W = M . Now we want to modify W to convert it to a manifold with boundary exactly equal
to M . Once again, we use the assumption that L is a spin G-boundary to build an

(
L,G

)
-fiber

bundle X over βW bounding X, and W ∪∂(1)W X is our required null-bordism of M . Thus the

class of M
ξ−→ BΓ was already zero in Ωspin

n (BΓ).
Finally, we need to prove exactness in the middle. Suppose given MΣ defining a class in

Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

with [βM → BΓβ×BG] trivial in Ωspin
n−`−1(BΓβ×BG). Choose a spin manifold Y bounding βM ,

with a map to BΓβ ×BG extending the original map on βM . Form the associated (L,G) fiber
bundle X over Y . Now by gluing −X to M along the common boundary ∂M we get a closed
spin n-manifold M1 with a map to BΓ coming from M . Indeed, this map extends over −X via

the composite X → BΓβ
Bθ−−→ BΓ. Then M1 represents the same class as MΣ, because

W =
(
M × [0, 1]

)
∪∂M×{1} X

is a bordism between them in the sense of Definition 4.5. �

Theorem 4.10 (surgery theorem, general version). Assume G is a simply connected Lie group,
L` is simply connected and spin, θ : Γβ → Γ is a group homomorphism, and n ≥ 6 + `. Let

x ∈ Ω
spin,(L,G)-fb
n

(
BΓβ

θ∗−→ BΓ
)

be represented by two (L,G)-singular spin pseudomanifolds
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(MΣ, ξ, ξβ), MΣ = M ∪∂M −N(βM), and (M ′Σ, ξ
′, ξ′β), M ′Σ = M ′ ∪∂M −N(βM ′) given together

with maps

ξβ : βM → BΓβ, and ξ′β : βM ′ → BΓβ,

such that ξ∗ : π1M → Γ and (ξβ)∗ : π1βM → Γβ are isomorphisms. Then there exists an (L,G)-
bordism(

WΣ, ξ̄, ξ̄β
)

: (MΣ, ξ, ξβ) (M ′Σ, ξ
′, ξ′β),

as in Definition 4.5 with the additional property that the pairs (βW, βM) and (W,M) are 2-con-
nected.

Proof. Start with an (L,G)-bordism WΣ : MΣ  M ′Σ in the sense of Definition 4.5. We have
a commutative diagram

π1(βW )

π1(W )

π1(βM) π1(M) Γ Γβ,

��

$$$$
//θ

::

//
∼=

::

oo θ

where the composite π1(βM)→ π1(βW )→ Γβ (along the top triangle) is an isomorphism, and
thus the homomorphism π1(βW ) → Γβ is surjective. The first step is to do surgery on βW
to make the pair (βW, βM) 2-connected. We begin by killing the kernel of the surjection
π1(βW )� Γβ, just as in the proof of Theorem 4.1, so that the inclusion of βM ↪→ βW induces
an isomorphism on π1. Once this is done, we have an exact sequence

π2(βM)→ π2(βW )→ π2(βW, βM)
0−→ π1(βM)

∼=−→ π1(βW ).

Then we need to do surgery on certain embedded 2-spheres in βW , generating π2(βW, βM).
These embedded 2-spheres have trivial normal bundle because of the spin assumption, and map
null-homotopically to the classifying space BG (since the Lie group G is simply connected, hence
automatically 2-connected – π2 of any Lie group vanishes – and thus BG is 3-connected). So the
necessary surgery is possible. The process for making the pair (W,M) 2-connected is completely
analogous. �

The following result is a straightforward generalization of known bordism results for psc metrics.
Here Theorem 4.10 provides all the necessary tools.

Theorem 4.11 (bordism theorem, general version). Assume G is a simply connected Lie group,
L` is simply connected and spin, θ : Γβ → Γ is a group homomorphism, and n ≥ 6 + `. Let

x ∈ Ω
spin,(L,G)-fb
n

(
BΓβ

θ∗−→ BΓ
)

be represented by two (L,G)-singular spin pseudomanifolds
(MΣ, ξ, ξβ), MΣ = M ∪∂M N(βM), and (M ′Σ, ξ

′, ξ′β), M ′Σ = M ′ ∪∂M N(βM ′) given together
with maps

ξ : M → BΓ, ξβ : βM → BΓβ and ξ′ : M ′ → BΓ, ξ′β : βM ′ → BΓβ

such that ξ∗ : π1MΣ → Γ and (ξβ)∗ : π1βM → Γβ are isomorphisms. Furthermore, assume M ′Σ
has an adapted psc metric g′. Then there exists an (L,G)-bordism(

WΣ, ξ̄, ξ̄β
)

: (MΣ, ξ, ξβ) (M ′Σ, ξ
′, ξ′β),

together with an adapted psc metric ḡ which is a product metric near the boundary δWΣ =
MΣ t −M ′Σ such that ḡ|M ′Σ = g′. In particular, MΣ admits an adapted psc metric g.

Proof. This proceeds like the proof Theorem 4.6 from Part I, using Theorem 4.10. �
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5 The existence theorem in the non-simply connected case

In this section we will use the results from Section 4 to obtain existence theorems for well-
adapted positive scalar curvature metrics on singular pseudomanifolds in suitable cases. These
results are parallel to those in [14, Section 6], but without the assumption that M and ∂M are
simply connected. However, we will have to assume something about the fundamental groups.
We denote by Bott8 a simply connected spin 8-manifold with Â-genus 1, which one can take to be
Ricci-flat [27]. This is often called a “Bott manifold”, because taking the product with it in spin
bordism corresponds, after applying the α-transformation to KO∗, to the Bott periodicity map

KO∗
∼=−→ KO∗+8. Let Γ be a discrete group. We need the following definitions.

(GLR) A group Γ satisfies the Gromov–Lawson–Rosenberg conjecture (GLR conjecture) if
a closed connected spin manifold M with dimension n ≥ 5 and fundamental group Γ
admits a psc metric if and only if the generalized index αΓ(M) ∈ KOn(C∗r,R(Γ)) of the
Dirac operator (i.e., the Atiyah–Singer–Mishchenko operator) on M vanishes.

(sGLR) A group Γ satisfies the stable Gromov–Lawson–Rosenberg conjecture (sGLR conjecture)
if for any closed connected spin manifold M with fundamental group Γ, the vanishing

of the generalized index αΓ(M) ∈ KOn(C∗r,R(Γ)) implies that M ×
(
Bott8

)k
admits

a psc metric for some sufficiently large k.

We recall that Stolz ([45] and [46, Section 3]) sketched a proof that the sGLR conjecture holds
whenever the Baum–Connes assembly map is injective, which is true for a very large class of
groups (conjecturally, all groups!). The GLR conjecture is satisfied for a more restricted class
of groups, but including free groups, fundamental groups of oriented surfaces, and free abelian
groups (as long as one takes n bigger than the rank of the group). It also holds [13] for finite
groups with periodic cohomology, which includes finite cyclic groups and quaternion groups. But
it fails for some groups [20, 43]. Our first main result is a generalization of [14, Theorem 6.3].
Recall the setting:

We fix a simply connected homogeneous space L = G/H, where G is a compact semisimple
Lie group acting on L by isometries of the metric gL, where scalgL = scalS` = `(` − 1), where
` = dimL.

Theorem 5.1. Let MΣ be an n-dimensional compact pseudomanifold with resolution M , a spin
manifold with boundary ∂M . Assume the following:

(1) M is a spin manifold with boundary ∂M fibered over a connected spin manifold βM ,

(2) the fiber bundle φ : ∂M → βM is a geometric (L,G)-bundle.

Let Γ = π1(M), Γβ = π1(βM). Furthermore, assume n ≥ `+ 6 and that the following condition
holds:

• the link L is a spin G-boundary of a G-manifold L̄ equipped with a psc metric gL̄ which is
a product near the boundary and satisfies gL̄|L = gL.

Then, provided both groups Γ and Γβ satisfy GLR conjecture, the vanishing of the invariants

αΓ
cyl(M, gM ) ∈ KOn

(
C∗r,R(Γ)

)
and αΓβ (βM) ∈ KOn

(
C∗r,R(Γβ)

)
implies that MΣ admits an adapted psc metric.

Proof. Before we start with the proof we emphasize that under the assumptions above the
index αΓ

cyl(M) is well defined, independent of the chosen adapted wedge metric g; see Remark 2.9
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and Proposition 3.1. According to Theorems 4.11 and 4.9, it suffices to show that the bordism
class4

[MΣ] ∈ Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

is a sum of classes of pseudomanifolds with well-adapted positive scalar curvature metrics.
We use the exact sequence (4.2). Since αΓβ (βM) = 0 and Γβ satisfies the GLR conjecture,
and since dimβM = n − ` − 1 ≥ 5, the manifold βM admits a psc metric. Then, since the
fibration φ : ∂M → βM is a geometric (L,G)-bundle; we can identify ∂M with P ×G L, where
P → βM is the corresponding principal G-bundle. We use a bundle connection on P to con-
struct a well-adapted psc metric on the tubular neighborhood N of βM in MΣ. In particular,
we obtain a psc metric on the boundary ∂N , where the (L,G)-fiber bundle ∂N → βM is also
a Riemannian submersion.

We use the G-manifold L̄ which bounds L to construct an L̄-bundle M ′ = P ×G L̄ over βM
associated to the above principal G-bundle P → βM . By assumptions, L̄ is given a psc metric
gL̄ which is a product metric near ∂L̄ = L. Then M ′ has a bundle metric of positive scalar
curvature, and joining M ′ to N , we get an (L,G)-singular spin manifold

M ′Σ = M ′ ∪∂M −N

with a well-adapted psc metric.
Since the pseudomanifolds M ′Σ and MΣ coincide near βM , by (4.2) their bordism classes

differ by a class [M ′′] in the image of Ωspin
n (BΓ). Since, by assumption, we have αΓ

cyl(M) = 0,

and also αΓ
cyl(M

′) = 0 (since M ′ has a psc metric), we have by additivity of the α-invariant

(Proposition 2.15) that αΓ(M ′′) = 0, and so we can take M ′′ to be a closed spin n-manifold with
fundamental group Γ equipped with some psc metric. Now MΣ is in the same bordism class in

Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

as M ′Σ tM ′′, and we can apply Theorem 4.11 to get the conclusion. �

Theorem 5.2. Let a link L and pseudomanifold MΣ be as in Theorem 5.1, but this time
only assume that the groups Γ and Γβ satisfy the sGLR conjecture. Then MΣ stably admits

a well-adapted metric of positive scalar curvature, i.e., MΣ×
(
Bott8

)k
admits such a metric for

some k ≥ 0.

Proof. The proof of this is exactly the same as for Theorem 5.1, the only difference being that
first we need to cross with some copies of the Bott manifold to get positive scalar curvature
on βM , and then we might need to cross with additional copies of the Bott manifold to get
positive scalar curvature on M ′′. �

Remark 5.3. It is possible without great effort to adapt the arguments above to the case
where βM is disconnected. We leave details to the reader.

Now we present a generalization of [14, Theorem 6.7]. It was shown in [14, Lemma 6.6] that
the class of HP2k, k ≥ 1, is not a zero-divisor in the spin bordism ring Ωspin

∗ . It then follows
that if H∗(BΓ;Z) is torsion free and the Atiyah-Hirzebruch spectral sequence converging to
Ωspin
∗ (BΓ) collapses, so that Ωspin

∗ (BΓ) is a free Ωspin
∗ -module Ωspin

∗ ⊗Z H∗(BΓ;Z), then the class
of HP2k does not annihilate any non-zero class in Ωspin

∗ (BΓ). This condition on Γ is satisfied
if BΓ is stably homotopy-equivalent to a wedge of spheres – for example, if Γ is a free group or
free abelian group.

4Here we use a short notation MΣ instead of (MΣ, ξ, ξβ).
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Theorem 5.4. Let (MΣ, ξ, ξβ) be a closed (L,G)-singular spin pseudomanifold, dimMΣ = n,
with L = HP2k and G = Sp(2k + 1), k ≥ 1. Assume that

(i) the manifolds M and βM are connected and the inclusion ∂M ↪→ M induces an isomor-
phism on fundamental groups with π1M ∼= π1∂M = Γ,

(ii) the (L,G)-bundle ∂M → βM is trivial, i.e., ∂M = βM × L,

(iii) the group Γ satisfies the GLR conjecture,

(iv) Ωspin
∗ (BΓ) is free as an Ωspin

∗ -module.

Then if n − 8k ≥ 6, the pseudomanifold MΣ has an adapted psc metric if and only if the
α-invariant αΓ

cyl(M) ∈ KOn
(
C∗r,R(Γ)

)
vanishes.

Remark 5.5. Note that in this case we have isomorphisms π1M ∼= π1∂M ∼= π1βM . Also recall
that if the bundle ∂M → βM is trivial, then the singularities are of Baas–Sullivan type.

Proof. Necessity was proved in Section 3, so we need to prove existence of an adapted metric
of positive scalar curvature assuming the vanishing condition. Since ∂M = βM × L is a spin
boundary over BΓ (namely, it is the boundary of M), its class is trivial in Ωspin

∗ (BΓ). But
the class of L cannot annihilate any non-zero class in Ωspin

∗ (BΓ), by [14, Lemma 6.6], so in
fact βM must be a spin boundary over BΓ. (In particular, αΓ(βM) automatically vanishes.)
Now by [14, Proposition 4.4], or equivalently, by the proof of middle-exactness in the proof
of Theorem 4.9 (this part of the proof doesn’t require L to be a spin boundary), MΣ is bordant
over BΓ to a closed manifold M ′ with fundamental group Γ and no singularities. Then we must
have αΓ(M ′) = αΓ

cyl(M) = 0, and since Γ satisfies the GLR conjecture, M ′ admits a metric
of positive scalar curvature. The conclusion now follows from Theorem 4.4. �

Theorem 5.6. Let (MΣ, ξ, ξβ) be a closed (L,G)-singular spin pseudomanifold, dimMΣ = n,
with L = HP2k and G = Sp(2k + 1), k ≥ 1. Assume that

(i) the manifolds M and βM are connected and the inclusion ∂M ↪→ M induces an isomor-
phism on fundamental groups with π1M ∼= π1∂M = Γ,

(ii) the (L,G)-bundle ∂M → βM is trivial, i.e., ∂M = βM × L,

(iii) the group Γ satisfies the sGLR conjecture,

(iv) Ωspin
∗ (BΓ) is free as an Ωspin

∗ -module.

Then the pseudomanifold MΣ×
(
Bott8

)m
has an adapted metric of positive scalar curvature for

some m ≥ 0 if and only if the α-invariant αΓ
cyl(M) ∈ KOn(C∗r,R(Γ)) vanishes.

Proof. This is exactly the same as the proof of Theorem 5.4, except that we need to multiply M ′

by some product of copies of the Bott manifold to get positive scalar curvature. �

6 The space R+
w(MΣ) of adapted wedge metrics

of positive scalar curvature

Let MΣ be a (L,G)-fibered pseudomanifold which admits a well-adapted wedge psc metric.
In this section we shall study the space R+

w(MΣ) of well-adapted wedge psc metrics on MΣ. Our
first goal is to establish a relationship between the space R+

w(MΣ) and corresponding spaces
R+(βM), R+(∂M), R+(M) of psc metrics. We consider the map resΣ : R+

w(MΣ) → R+(βM)
which takes an adapted wedge metric g on MΣ to its restriction gβM on βM , and we will observe
that this map is a Serre fiber bundle. We show (this was stated before as Theorem 1.5) that
there exists a non-canonical section s : R+(βM) → R+

w(MΣ); this fact, together with recent
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results on the homotopy type of the space of psc metrics on spin manifolds, [11, 24], implies
that the homotopy groups of the space R+

w(MΣ) are rationally at least as complicated as the
groups KO∗

(
C∗r (π1(βM))

)
⊗Q. Next, we elaborate on a direct definition of the index-difference

homomorphism which enables us to detect some nontrivial classes in πq
(
R+
w(MΣ)

)
. Finally, if

the fundamental group of MΣ has an element of finite order, we show that the Cheeger–Gromov
rho invariant on a depth-1 pseudomanifold, introduced and studied in [39], can be used to show
that

∣∣π0

(
R+
w(MΣ)

)∣∣ =∞.

6.1 Controlling the homotopy type of R+
w(MΣ)

We fix an (L,G)-fibered compact pseudomanifold MΣ = M ∪∂M N(βM). Here M is a compact
manifold with boundary ∂M which is a geometric (L,G)-bundle over βM . Recall that the G
acts on L by isometries of a given metric gL, and the (L,G)-bundle φ : ∂M → βM is given by
a principal G-bundle p : P → βM so that ∂M = P ×G L. Then we identify the space R+

w(MΣ)
of well-adapted wedge psc metrics on MΣ with the space of associated triples (gM , gβM ,∇p),
where gM and gβM are psc metrics on M and βM respectively, and ∇p is a connection on the
principal bundle P . By definition of well-adapted wedge metrics, the triples (gM , gβM ,∇p) are
subject to the following conditions:

(i) gM = dt2 + g∂ near the boundary ∂M ⊂M , for some Riemannian metric g∂ on ∂M ;

(ii) the bundle map φ gives a Riemannian submersion φ : (∂M, g∂) → (βM, gβM ), and the
connection ∇p on P defines a G-connection ∇φ for the submersion.

We denote by R+(M,∂M) the space of Riemannian psc metrics g on M such that g = dt2 + g∂
near the boundary ∂M , for some metric g∂ on ∂M . There is an obvious restriction map

res : R+(M,∂M)→ R+(∂M), (6.1)

which is known to be a Serre fiber bundle, see [23, Theorem 1.1]. For a given metric h ∈ R+(∂M),
we denote by R+(M)h = res−1(h) the corresponding fiber of (6.1).

We notice that there is a map ιL : R+(βM)→ R+(∂M) which is given by lifting a metric gβM
on βM to a Riemannian submersion metric g∂M on the total space ∂M of the (L,G)-bundle
φ : ∂M → βM , using the connection ∇φ of (ii) above, by putting the metric gL on each fiber L.
This map is injective since the metrics gβM and ιL(gβM ) determine one another. Then, by
definition, a wedge psc metric g on MΣ determines a unique psc metric gβM ∈ R+(βM). This
gives a well-defined map resΣ : R+

w(MΣ) → R+(βM). Thus we see that the space R+
w(MΣ) is

a pull-back in the following diagram:

R+
w(MΣ) R+(βM)

R+(M,∂M) R+(∂M).

//resΣ

��

� _

��
ιL

//res

(6.2)

As we mentioned above, the restriction map res : R+(M,∂M)→ R+(∂M) is a Serre fiber bundle,
and it is easy to see that the map resΣ : R+

w(MΣ) → R+(βM) from (6.2) is also a Serre fiber
bundle.5 Let gβM ∈ R+(βM) and g∂M ∈ R+(∂M) be such that ιL(gβM ) = g∂M . We have the

5 This requires a word of explanation, as follows: by [14, Theorem 3.5(2)], given a metric gβ ∈ R+(βM) such
that ιL(gβ) extends to a metric in R+(M,∂M), then some rescaling of gβ (by a constant conformal factor) lifts
to R+

w(MΣ).
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following commutative diagram of fiber bundles:

R+
w(MΣ)gβM R+

w(MΣ) R+(βM)

R+(M)g∂M R+(M,∂M) R+(∂M),

//

��
'

//resΣ

�� ��
ιL

// //res

(6.3)

where R+
w(MΣ)gβM and R+(M)g∂M are the corresponding fibers. Note that the downward map

on the left is a homotopy equivalence, in fact a homeomorphism, since any element ofR+(M)g∂M
defines a unique psc wedge metric.

In particular, if we have an isotopy (gβM )t ∈ R+(βM), and (gβM )0 = resΣ(g0), then the
isotopy (gβM )t lifts to an isotopy gt in R+

w(MΣ) with resΣ(gt) = (gβM )t.

Theorem 6.1. Let MΣ be an (L,G)-fibered compact pseudomanifold with L a simply connected
homogeneous space of a compact semisimple Lie group. Also assume that MΣ admits an adapted
wedge metric of positive scalar curvature. Then there exists a section s : R+(βM) → R+

w(MΣ)
to resΣ. In particular, there is an injection of homotopy groups

s∗ : πq
(
R+(βM)

)
→ πq

(
R+
w(MΣ)

)
, q = 0, 1, . . . .

Proof. We want to construct a (non-canonical) section to the “forgetful map”

resΣ : R+
w(MΣ)→ R+(βM),

sending a psc metric g (interpreted as a triple (gM , gβM ,∇p), as above) to the metric gβM .
As before, we will fix the connection ∇p once and for all, and we fix a metric gβM ∈ R+(βM).
Given another metric g′βM in R+(βM), we consider the linear homotopy gβM (t) = (1− t)gβM +
tg′βM within the space R(βM) of all Riemannian metrics. This homotopy may go out of the

subspace R+(βM), but the scalar curvature function along the homotopy is bounded below
by some constant −c, c > 0. If we scale the metrics gβM (t) by λ2, then the scalar curvature
scales by scalλ2gβM (t) = λ−2scalgβM (t). We consider the family of metrics g∂M (t) = ιL

(
λ2gβM (t)

)
on ∂M . Recall that scalL = `(`− 1) > 0, so we obtain

scalg∂M (t) = scalgL + λ−2scalgβM (t) ≥ `(`− 1)− λ−2c.

Clearly, there exists λ > 0 such that scalg∂M (t) > 0 for all t > 0. Then we lift the curve of
metrics g∂M (t) to a curve of metrics g(t) ∈ R+(M,∂M) using homotopy lifting in the fiber
bundle

res : R+(M,∂M)→ R+(∂M).

In particular, we obtain an adapted wedge metric (g′M , g
′
βM ,∇p) ∈ R+

w(MΣ). It is important to
notice the following:

1. The curve of the adapted wedge metrics (gM (t), gβM (t),∇p) is not, in general, a curve in
the space R+

w(MΣ). Indeed, the scalar curvature on the tubular neighborhood N(βM)
is dominated by the sum of zero scalar curvature on the cone over L and by the scalar
curvature λ−2scalgβM (t).

6

6An important comment: to apply the argument of [14, Theorem 3.5(2)] in order to rescale a metric g′βM
in R+(βM) so that ιL(g′βM ) extends to a psc metric on the whole tubular neighborhood N of βM , one needs to
make use of a positive lower bound on the scalar curvature. So while g′βM lifts to R+

w(MΣ) (after rescaling by
a positive constant), the same is not true for the other metrics in the path in R(βM) from gβM to g′βM .
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2. The correspondence g′βM 7→ (g′M , g
′
βM ,∇p) can be made continuous (in the C2 topology)

as long as the metrics g′βM stay inside a compact set K ⊂ R+(βM).

This is enough to get a (non-canonical) section sgβM : R+(βM)→ R+
w(MΣ) of the fiber bundle

resΣ in (6.2). �

Corollary 6.2. The fiber bundle (6.3) gives a split short exact sequence:

0→ πq
(
R+
w(MΣ)gβM

) i∗−→ πq
(
R+
w(MΣ)

) (resΣ)∗−−−−→ πq
(
R+(βM)

)
→ 0 (6.4)

for each q = 0, 1, . . . .

Proof. Indeed, a section sgβM : R+(βM)→ R+
w(MΣ) from Theorem 6.1 implies that the homo-

morphism (resΣ)∗ is split surjective for all q = 0, 1, . . .. �

An immediate consequence of this corollary is that πq(R+
w(MΣ)) admits πq

(
R+(βM)

)
as a direct

summand. In particular, π0(R+
w(MΣ)) contains π0

(
R+(βM)

)
as a direct summand.

Example 6.3. Here is an interesting example of obtaining information about π0

(
R+(MΣ)

)
.

Let L = G = SU(2) = S3. Since π7(BS3) = π6

(
S3
)

= Z/12, there are 12 distinct principal S3-
bundles over βM = S7, all of them of the rational homotopy type of S7×S3. For any one of these
S3-bundles over S7, the total space is ∂M = ∂N , where M = N is the disk bundle of our S3-
bundle over S7. Define MΣ = N ∪∂M −N , the double of N . Note that N is actually the unit
disk bundle of a quaternionic line bundle, so our MΣ in this case is in fact a smooth manifold,
though not every Riemannian metric on MΣ is adapted for the (L,G)-fibered structure, and
we are only interested in this special subclass of metrics. We know that π0

(
R+
w(MΣ)

)
contains

π0

(
R+(βM)

)
= π0

(
R+
(
S7
))

as a direct summand. By [26, Theorem 4.47], π0

(
R+
(
S7
))

contains
a copy of Z, and the same argument shows π0

(
R+
(
S11
))

contains a copy of Z. By taking
a connected sum of (MΣ, gΣ) with

(
S11, gk

)
for suitable metrics gk on S11 (the connected sum

takes place on the interior of M , so it doesn’t change the adapted wedge structure of the metric
near βM = S7), we see that π0

(
R+
w(MΣ)

)
contains Z⊕Z, with one summand coming from βM

and one coming from the interior of M .

Remark 6.4. We recall that for a closed manifold X, the homotopy type of the space R+(X)
does not change under admissible surgeries; in particular, this implies that the homotopy type
of R+(X) depends only on the bordism class of X in a relevant bordism group [23, Theorem 1.5].
As we have seen, on an (L,G)-pseudomanifold MΣ, we can do two types of surgeries: surgeries
on the interior of the resolution M , and surgeries on βM . It turns out that the homotopy type
of the space R+

w(MΣ) is also invariant with respect to corresponding admissible surgeries, [16].

There are several methods for detecting non-trivial elements in πq
(
R+(βM)

)
: the index-

difference homomorphisms and (higher) rho-invariants are certainly two very efficient tools in this
direction. In the Sections 6.2 we shall elaborate further on these two tools. Notice that some of
the results proven by rho-invariants can also be recovered using the index-difference homomor-
phisms (6.5) explained below; see [24, Remark 1.1.2].

6.2 The index-difference homomorphism

First we recall some results from [11, 24]. Let X̄ be a compact closed spin manifold, dim X̄ =
k ≥ 5. Let h̄0 ∈ R+

(
X̄
)

be a base point. Assume there is a map f : X̄ → BΓ, where Γ is
a discrete group such that f∗ : π1X̄ → Γ is split surjective. (If π1X̄ is trivial, we assume Γ = 0.)

We also need the case when the boundary ∂X̄ = X is non-empty, with a given metric
h ∈ R+(X). As before, we denote by R+

(
X̄
)
h

the subspace of metrics h̄ in R+(X̄,X) which
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restrict to h on the boundary X. Let h̄0 ∈ R+
(
X̄
)
h

be a base point. Again, we assume that
there is a map f : X̄ → BΓ, such that f∗ : π1X̄ → Γ is split surjective. In both these settings
(without using split surjectivity of f∗ yet) we have the index-difference homomorphisms

inddiffΓ
h̄0

: πqR+
(
X̄
)
→ KOq+k+1

(
C∗r (Γ)

)
,

inddiffΓ
h̄0

: πqR+
(
X̄
)
h
→ KOq+k+1

(
C∗r (Γ)

)
. (6.5)

Since it will be useful later, we remind the reader about where these index difference maps come
from. Say for simplicity that X̄ is a closed manifold. A class in πqR+

(
X̄
)

is represented by
a family gt, t ∈ Sq, of psc metrics on X̄, with gt0 , t0 the basepoint in Sq, equal to our basepoint
psc metric. Let us denote here by g0 this base-point metric. From this family we get a warped
product metric g on Sq × X̄, that restricts on the copy of X̄ over t ∈ Sq to gt, and that is
the usual flat (if q ≤ 1) or round (if q ≥ 2) metric on the copy of Sq over each point in X̄.
By the usual argument that “isotopy implies concordance” [25, Lemma 3], we can, without
changing the homotopy class of our map t 7→ gt in πqR+

(
X̄
)
, assume that g has positive scalar

curvature on Sq × X̄. Our class in πqR+
(
X̄
)

is trivial if and only if it can be extended over the
disk Dq+1. So extend g to a metric on Dq+1× X̄ which restricts to a product metric dr2 + g on
a neighborhood of the boundary. Extend it to a complete metric on Rq+1× X̄ by allowing r, the
distance to the center of the disk, to go to ∞, and taking the metric to be dr2 + g for all r ≥ 1.
Since the metric has psc outside a compact set, the Dirac operator on Rq+1 × X̄ for this metric
is Fredholm, and we get an index in KOq+1+k

(
C∗r (Γ)

)
as usual. One way to see this property is

to use b-calculus techniques; this point of view will be useful later on in this section. This index
is an obstruction to triviality of our class in πqR+

(
X̄
)
, since it would be 0 if we could extend our

family of metrics to a psc family over the disk. Summarizing, we have defined a homomorphism

inddiffΓ
g0

: πqR+
(
X̄
)
→ KOq+k+1

(
C∗r (Γ)

)
.

An alternative way to construct the index difference is the following. Once we choose a base point
g0 = gt0 ∈ R+

(
X̄
)
, then for any metric g ∈ R+

(
X̄
)
, there is a linear path gt = (1− t)g0 + tg

of metrics in the spaceR
(
X̄
)

of all Riemannian metrics. Then we have a curve of the correspond-
ing Dirac operators Dgt with the ends of the curve, Dg0 and Dg being in the contractible space
of C`k-linear invertible operators. Such a curve determines a loop in the space KOk which
classifies C`k-linear Fredholm operators (where the space of invertible operators is collapsed
to a point). One can easily replace this by the classifying space KOk

(
C∗r (Γ)

)
for the K-theory

KO∗+k
(
C∗r (Γ)

)
in the non-simply connected case. Thus in homotopy we get the index-difference

homomorphism

inddiffΓ
g0

: πqR+
(
X̄
)
→ πq

(
ΩKOk

(
C∗r (Γ)

))
= KOq+1+k

(
C∗r (Γ)

)
,

which depends on a choice of the base point g0 ∈ R+
(
X̄
)
. The equivalence of these two

approaches to the index difference (with a discussion of how to trace them back to the work
of Gromov–Lawson and Hitchin, respectively) may be found in [21, 22] (see also [17]).

Next we recall the following relevant results:

Theorem 6.5 (see [11, 24]).

(a) Let X̄ be a simply connected spin manifold, with ∂X̄ possibly non-empty, dim X̄ = k ≥ 6,
with h̄0 ∈ R+

(
X̄
)
6= ∅

(
or h̄0 ∈ R+

(
X̄
)
h
6= ∅

)
. Then both index-difference homomor-

phisms inddiffΓ
h̄0

from (6.5) are non-trivial whenever the target group KOq+k+1 is.

(b) Let X̄ be a non-simply connected spin manifold, with ∂X̄ possibly non-empty, dimX = k ≥
6 with h̄0 ∈ R+

(
X̄
)
6= ∅

(
or h̄0 ∈ R+

(
X̄
)
h
6= ∅

)
. Assume there is a map f : X̄ → BΓ,

such that f∗ : π1X̄ → Γ is split surjective. Furthermore, we assume that
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• Γ satisfies the rational Baum–Connes conjecture,

• Γ is torsion free and has finite rational homological dimension d, and

• q > d− 2k − 1.

Then the images of both index-difference homomorphisms inddiffΓ
h̄0

from (6.5) generate the

target group KOq+k+1

(
C∗r (Γ)

)
⊗Q as a Q-vector space.

Recall also the following stable result. As in the beginning of Section 5, we denote by Bott8

a Bott manifold, which is a simply connected spin 8-manifold with Â(Bott) = 1. By the work
of Joyce [27], we may choose a Ricci flat metric g[ on Bott. Then for a closed manifold X̄ there
are induced maps

R+
(
X̄
) ×(Bott,g[)−−−−−−→ R+

(
X̄ × Bott

) ×(Bott,g[)−−−−−−→ R+
(
X̄ × Bott× Bott

) ×(Bott,g[)−−−−−−→ · · · ,

and writeR+
(
X̄
)[

Bott−1
]

for the homotopy colimit. Similarly, if ∂X̄ = X 6= ∅, and h ∈ R+(X),
we define the space R+

(
X̄
)
h

[
Bott−1

]
. Assume we have a reference map f : X̄ → BΓ which

is surjective on the fundamental groups. Then the index-difference homomorphisms inddiffΓ
h̄0

extend to the corresponding index-difference homomorphisms

inddiffΓ
h̄0

: πqR+
(
X̄
)[

Bott−1
]
→ KOq+k+1

(
C∗r (Γ)

)
,

inddiffΓ
h̄0

: πqR+
(
X̄
)
h

[
Bott−1

]
→ KOq+k+1

(
C∗r (Γ)

)
. (6.6)

Here is one more relevant result:

Theorem 6.6 (see [24, Theorem B] and [17]). If Γ is a torsion-free group satisfying the Baum–
Connes conjecture, and f : X̄ → BΓ is split surjective on the fundamental groups, then the
homomorphisms (6.6) are surjective for all q ≥ 0.

Now we are ready to apply those results to the case of (L,G)-pseudomanifolds. Let MΣ be
an (L,G)-fibered compact pseudomanifold. We notice that if the space R+

w(MΣ) is not empty
and g0 ∈ R+

w(MΣ) is a base point, then it determines base points in the corresponding spaces:
the metrics gβM,0 ∈ R+(βM), g∂M,0 ∈ R+(∂M) and gM,0 ∈ R+(M)g∂M,0 .

As we noticed above the spaces R+
w(MΣ)gβM,0 and R+(M)g∂M,0 from (6.3) are homotopy

equivalent and the groups πq
(
R+
w(MΣ)gβM,0

)
in the exact sequence (6.4) could be replaced

by πq
(
R+(M)g∂M,0

)
. Thus we obtain the homomorphism

inddiffgM,0 : πqR+
w(MΣ)gβM,0

∼=−→ πq
(
R+(M)g∂M,0

) inddiffg∂M,0−−−−−−−→ KOq+n+1,

which, together with the index-difference homomorphism

inddiffgβM,0 : πq(R+(βM))→ KOq+n−`,

determines the homomorphism

inddiffg0 : πq(R+
w(MΣ))

inddiffg∂M,0⊕inddiffgβM,0−−−−−−−−−−−−−−−−→ KOq+n+1 ⊕KOq+n−`.

Corollary 6.7. Let MΣ be a (L,G)-fibered compact pseudomanifold with L a simply connected
homogeneous space of a compact semisimple Lie group, and n − ` − 1 ≥ 5, where dimM = n,
dimL = `. Let g0 ∈ R+

w(MΣ) 6= ∅ be a base point giving corresponding base points, the met-
rics gβM,0 ∈ R+(βM), g∂M,0 ∈ R+(∂M) and gM,0 ∈ R+(M)g∂M,0.



28 B. Botvinnik, P. Piazza and J. Rosenberg

If MΣ is spin and simply connected, then we have the following commutative diagram:

0→ πqR+
w(MΣ)gβM,0 πqR+

w(MΣ) πqR+(βM)→ 0

0 −→ KOq+n+1 KOq+n+1 ⊕KOq+n−` KOq+n−` → 0,

//j∗

��
inddiffgM,0

//(resΣ)∗

��
inddiffg0

��
inddiffgβM,0

// //

where the homomorphisms inddiffgM,0 and inddiffgβM,0 are both nontrivial whenever the target
groups are. In particular, the homomorphism

inddiffg0 : πqR+
w(MΣ)→ KOq+n+1 ⊕KOq+n−`

is surjective rationally and surjective onto the torsion of KOq+n+1 ⊕KOq+n−`.

Proof. We use Corollary 6.2 to choose a splitting

πq
(
R+
w(MΣ)

) ∼= πq
(
R+
w(MΣ)gβM

)
⊕ πq

(
R+(βM)

) ∼= πq
(
R+(M)g∂M,0

)
⊕ πq

(
R+(βM)

)
.

Then we can construct the homomorphism inddiffg0 as a direct sum

inddiffg0 = inddiffgM,0 ⊕ inddiffgβM,0 : πqR+
w(MΣ)→ KOq+n+1 ⊕KOq+n−`.

By Theorem 6.5(a), the individual index difference maps in this decomposition are non-trivial
whenever the target KOk is non-zero. Since KOk = Z/2 whenever it has torsion, that implies
that the map surjects onto the torsion. Similarly, the part of Theorem 6.5(a) about the rational
groups implies rational surjectivity. �

Now we address the case when MΣ is not simply-connected. Let θ : Γβ → Γ be a group homo-
morphism as in Section 4. We consider a triple (MΣ, ξ, ξβ) as an object representing an element

in the bordism group Ω
spin,(L,G)-fb
n

(
BΓβ

θ−→ BΓ
)
, i.e., MΣ = M ∪∂M N(βM) comes together with

the maps ξ : M → BΓ, ξβ : βM → BΓβ satisfying the conditions given in Definition 4.5.
Thus we obtain the homomorphism

inddiffΓ
gM,0

: πqR+
w(MΣ)gβM,0

∼=−→ πq
(
R+(M)g∂M,0

) inddiffg∂M,0−−−−−−−→ KOq+n+1

(
C∗r (Γ)

)
,

which, together with the index-difference homomorphism

inddiff
Γβ
gβM,0 : πq(R+(βM))→ KOq+n−`

(
C∗r (Γβ)

)
,

determines the homomorphism

inddiff
Γ,Γβ
g0 : πq

(
R+
w(MΣ)

) inddiffg∂M,0⊕inddiffgβM,0−−−−−−−−−−−−−−−−→KOq+n+1

(
C∗r (Γ)

)
⊕KOq+n−`

(
C∗r (Γβ)

)
.

The same argument as above and Theorem 6.5(b) prove the following:

Corollary 6.8. Let MΣ be a (L,G)-fibered compact pseudomanifold with L a simply connected
homogeneous space of a compact semisimple Lie group, and n − ` − 1 ≥ 5, where dimM = n,
dimL = `. Let g0 ∈ R+

w(MΣ) 6= ∅ be a base point giving corresponding base points, the metrics
gβM,0 ∈ R+(βM), g∂M,0 ∈ R+(∂M) and gM,0 ∈ R+(M)g∂M,0. Let (MΣ, ξ, ξβ) represent an ele-

ment in the bordism group Ω
spin,(L,G)-fb
n

(
BΓβ

θ−→ BΓ
)
, then we have the following commutative

diagram:

0→ πqR+
w(MΣ)gβM,0 πqR+

w(MΣ) πqR+(βM)→ 0

0 −→KOq+n+1

(
C∗r (Γ)

)
KOq+n+1

(
C∗r (Γ)

)
⊕KOq+n−`

(
C∗r (Γβ)

)
KOq+n−`

(
C∗r (Γβ)

)
→0.

//j∗

��
inddiffΓ

gM,0

//(resΣ)∗

��
inddiff

Γ,Γβ
g0 ��

inddiff
Γβ
gβM,0

// //
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If, in addition, the pair (Γ,Γβ) is such that

• Γ and Γβ both satisfy the rational Baum–Connes conjecture,

• Γ and Γβ are both torsion free and have finite rational homological dimension d, and

• q > d− 2n+ 2`+ 1,

then the image of the homomorphism

inddiff
Γ,Γβ
g0 : πqR+

w(MΣ)→ KOq+n+1

(
C∗r (Γ)

)
⊕KOq+n−`

(
(C∗r (Γβ)

)
generates the target KOq+n+1

(
C∗r (Γ)

)
⊕KOq+n−`

((
C∗r (Γβ)

))
⊗Q as a Q-vector space.

Let R+(MΣ)
[
Bott−1

]
be the homotopy colimit

R+(MΣ)
×(Bott,g[)−−−−−−→ R+(MΣ × Bott)

×(Bott,g[)−−−−−−→ R+(MΣ × Bott× Bott)
×(Bott,g[)−−−−−−→ · · · .

We have the following conclusion from Theorems 6.6 and 6.1:

Corollary 6.9. Let MΣ be a (L,G)-fibered compact pseudomanifold with L a simply connected
homogeneous space of a compact semisimple Lie group, and n − ` − 1 ≥ 5, where dimM = n,
dimL = `. Let g0 ∈ R+

w(MΣ) 6= ∅ be a base point giving corresponding base points, the metrics
gβM,0 ∈ R+(βM), g∂M,0 ∈ R+(∂M) and gM,0 ∈ R+(M)g∂M,0. Let (MΣ, ξ, ξβ) represent an ele-

ment in the bordism group Ω
spin,(L,G)-fb
n

(
BΓβ

θ−→ BΓ
)
. Assume that the pair (Γ,Γβ) is such

that

• Γ and Γβ both satisfy the Baum–Connes conjecture,

• Γ and Γβ are both torsion free.

Then the homomorphism

inddiff
Γ,Γβ
g0 : πqR+

w(MΣ)
[
Bott−1

]
→ KOq+n+1

(
C∗r (Γ)

)
⊕KOq+n−`

(
(C∗r (Γβ)

)
is surjective.

Example 6.10. In [24, Section 1.1.3], the authors provided an example of a group π0 such
that KO7+k(C

∗
r (π0)) ⊗ Q has countably infinite dimension for each k ≥ 0,7 as well as a 4-

dimensional closed spin manifold X with π1X = π0. Then, according to [24, Theorem C],
the manifold Y = X × S2 has the property that the group π7+kR+(Y ) ⊗ Q has countably
infinite dimension for each k ≥ 0. Then it is easy to construct a pseudomanifold MΣ with
L = G = SU(2) and βM = Y . Indeed, we let M = X × D3 × L, ∂M = X × S2 × L,
βM = X × S2 and MΣ = M ∪∂M (Y × c(L)). Then, clearly, Theorem 6.1 and Corollary 6.8
imply that π7+kR+

w(MΣ)⊗Q has countably infinite dimension for each k ≥ 0.

6.3 A direct approach to the index-difference homomorphism
for (L,G)-fibered pseudomanifolds

Let MΣ be as above, thus a (L,G)-fibered pseudomanifold, and let g0, g1 ∈ R+
w(MΣ) be two well

adapted wedge psc metrics. Then the “difference” between g0 and g1 could be detected directly
by a wedge relative index as follows. We consider MΣ×[0, 1] as a pseudomanifold with boundary,
and equip it with a well adapted wedge metric ḡ of product-type near the boundary and equal

7Let Free2 be a free group on two generators. Then the group π0 is a free product SB3 ∗SB4 ∗SB5 ∗SB6, where
SBr is the r-th Stallings–Bieri group, the kernel of the homomorphism (Free2)r → Z sending each generator to 1.
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to g0 on MΣ × {0} and to g1 on MΣ × {1}. Now we attach infinite cylinders to MΣ × [0, 1] to
get a wedge metric on the associated manifold with cylindrical ends (MΣ × [0, 1])∞ (which in
this case is nothing but MΣ ×R), with psc metrics along the two ends. This is a special case of
the situation already encountered in Section 2.4, see in particular Theorem 2.17. In particular,
since the resulting metric on MΣ × R has psc along the cylindrical ends and is geometric-
Witt on the compact part, there is a well defined class αrel

w (g0, g1) in KOn+1. This class, by
definition, is equal to the cylindrical αw-class of the Atiyah–Singer operator on the manifold with
cylindrical ends (MΣ × [0, 1])∞ ≡ MΣ × R endowed with the natural extension of the metric ḡ
to a metric ḡ∞.The existence of this class follows immediately, as in Theorem 2.17, from the
b-edge calculus developed in [1].

If the psc metrics g0 and g1 are isotopic, i.e., they lie in the same component of R+
w(MΣ), then

the usual “isotopy ⇒ concordance” argument shows that we can construct a psc metric ḡ on
MΣ× [0, 1], which implies that the metric g∞ is of psc. Hence the element αrel

w (g0, g1) in KOn+1

gives an obstruction to an isotopy from g0 to g1 within R+
w(MΣ). Proceeding in the same way,

but using the Atiyah–Singer–Mishchenko operator instead, we also have a class

αrel,π1(MΣ)
w (g0, g1) ∈ KOn+1

(
C∗r,R(π1(MΣ))

)
which is again an obstruction to the existence of an isotopy between g0 and g1.

More generally, for an (L,G)-fibered pseudomanifold we can adapt the general discussion
given just before Theorem 6.5 and, using in a crucial way the results explained in Section 2,
define directly the wedge-index-difference homomorphism

w -inddiffΓ
h̄0

: πqR+
w(MΣ)→ KOq+k+1

(
C∗r (Γ)

)
either by considering Sq×MΣ and Dq×MΣ or by employing the classifying space KOk

(
C∗r (Γ)

)
.

It would be interesting to show, but we shall leave this to future research, that w -inddiffΓ
h̄0

is equal to the index-difference homomorphism considered in the previous section, that is,
the composition of the isomorphism πq

(
R+
w(MΣ)gβM,0

)
→ πq

(
R+(M)g∂M,0

)
with the index-

difference homomorphism for the manifold with boundary M , inddiffΓ
g∂M,0

: πq
(
R+(M)g∂M,0

)
→

KOq+n+1(C∗rΓ).

6.4 Rho invariants and torsion fundamental groups

We begin by introducing the relevant bordism groups:

Posspin,(L,G)-fb
n (BΓ) and Posspin,(L,G)-fb

n

(
BΓβ

Bθ−−→ BΓ
)
.

We only give the definition of the latter of these two in detail, since Pos
spin,(L,G)-fb
n (BΓ) is just

a special case of Pos
spin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

when Γ = Γβ and θ is the identity map. Recall

that an element of the bordism group Ω
spin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

is represented by a geometric
cycle, i.e., a tuple(

M,P
p−→ βM, ξ : M → BΓ, ξβ : βM → BΓβ

)
with the same compatibility conditions for ξ, Bθ, ξβ as in Definition 4.5 and with P

p−→ βM
a principal G-bundle such that ∂M = P ×G L.

Similarly, the bordism relation in Definition 4.5 can be described as follows: two geometric
cycles(

M,P
p−→ βM, ξ, ξβ

)
and

(
M ′, P ′

p′−→ βM ′, ξ′, ξ′β
)
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are equivalent if there exists a manifold W with corners such that ∂W = ∂(0)W ∪ ∂(1)W , where
∂(1)W fibers over a manifold with boundary βW ,

∂(0)W = M t −M ′, ∂
(
∂(1)W

)
= ∂M t −∂M ′, ∂(βW ) = βM t −βM ′,

i.e., ∂(1)W : ∂M  ∂M ′ and βW : βM  βM ′ are usual spin bordisms between closed spin
manifolds, and

∂(0)W ∩ ∂(1)W = ∂M t −∂M ′.

We also have a principal G-bundle P
p−→ βW restricting to P and P ′ over ∂(βW ) = βM t−βM ′.

A psc-geometric cycle for Pos
spin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

is then given by a tuple(
M,P

p−→ βM, ξ, ξβ, gM , gβM ,∇p
)
,

where gM and gβM are Riemannian metrics of psc and ∇p is a bundle-connection on P . Then
two psc-geometric cycles(

M,P
p−→ βM, ξ, ξβ, gM , gβM ,∇p

)
and

(
M ′, P ′

p′−→ βM ′, ξ′, ξ′β, gM ′ , gβM ′ ,∇P
′)

are equivalent if there exists a bordism (W, P̄ ) as above together with metrics of psc ḡW and ḡβW
restricting to gM , gM ′ and gβM , gβM ′ on the boundary, along with a connection ∇P̄ restricting
to the connections ∇p and ∇P ′ . The proof of the following statement is straightforward and
thus omitted.

Proposition 6.11. There exist natural homomorphisms

RPos : Posspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)
→ Posspin,(L,G)-fb

n (BΓ)

“forget Γβ”, (6.7)

iPos : Posspinn (BΓ)→ Posspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

“consider a closed manifold as a pseudomanifold with empty singularities”, (6.8)

fΓβ ,Γ : Posspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)
→ Ωspin,(L,G)-fb

n

(
BΓβ

Bθ−−→ BΓ
)

“forget metric and connection”. (6.9)

We also have a natural map

π0

(
R+
w(MΣ)

)
→ Posspin,(L,G)-fb

n

(
BΓβ

Bθ−−→ BΓ
)
.

We would like to use the technique of Botvinnik–Gilkey [12] (and generalizations of it, such
as the ones presented in [37]) in order to detect elements in the groups

Posspin,(L,G)-fb
n

(
Bπ1(βM)→ Bπ1(MΣ)

)
,

with MΣ a pseudomanifold with (L,G)-fibered singularities. A relevant version of the rho
invariant on a depth-one wedge spin stratified pseudomanifold of psc was introduced in [39].
Then, using a suitable APS index theorem on spaces with (L,G)-fibered singularities, it follows
from [39] that the APS rho invariant and the Cheeger–Gromov rho invariant of such a MΣ are
well defined and that they both define maps ρw,APS : π0

(
R+
w(MΣ)

)
→ R and ρw,CG : π0

(
R+
w(MΣ)

)
→ R and group homomorphisms:

ρw,APS : Posspin,(L,G)-fb
n (BΓ)→ R, ρw,CG : Posspin,(L,G)-fb

n (BΓ)→ R,
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with Γ = π1(MΣ). We shall mainly be interested in ρw,CG and we shall denote it simply by ρw.
Summarizing, we have a well-defined homomorphism:

ρw : Posspin,(L,G)-fb
n (BΓ)→ R. (6.10)

Here is an example where the Cheeger–Gromov rho invariant of a wedge space can be used

in order to show that the group Pos
spin,(L,G)-fb
n

(
Bπ1(βM)→ Bπ1(MΣ)

)
is infinite.

Proposition 6.12. Let L be simply connected, G be a compact semisimple Lie group. Let MΣ

be a pseudomanifold with (L,G)-fibered singularities and of dimension m = 4k + 3, with Γ :=
π1(MΣ). Assume that Γ has an element of finite order. Then the group

Posspin,(L,G)-fb
m

(
Bπ1(βM)→ Bπ1(MΣ)

)
is infinite provided R+

w(MΣ) 6= ∅.

Proof. Let Γβ := π1(βM), Γ := π1(MΣ) and θ : Γβ → Γ induced by the inclusion of βM
into MΣ. Let ξΣ : MΣ → BΓ be the classifying map for the universal cover of MΣ; this provides
us with a map ξ : M → BΓ and we also have a classifying map ξβ : βM → BΓβ satisfying the
compatibility conditions of Definition 4.5. As already remarked, we have a forgetful homomor-
phism

fΓβ ,Γ : Posspin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)
→ Ωspin,(L,G)-fb

m

(
BΓβ

Bθ−−→ BΓ
)
,

(we forget the metrics). We shall consider the subset C(MΣ,ξ,ξβ) of the group Pos
spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)

obtained by keeping MΣ and the classifying maps ξ : M → BΓ and ξβ : βM → BΓβ
fixed and varying only the psc metrics gM , gβM and the connection ∇p.

We shall prove that under the present assumptions

• ker fΓβ ,Γ has infinite cardinality,

• there is a free and transitive action of ker fΓβ ,Γ on C(MΣ, ξ, ξβ).

This will imply that C(MΣ, ξ, ξβ) and thus Pos
spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)

has infinite cardinality.

Consider then ker(fΓβ ,Γ) ⊂ Pos
spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)

and C(MΣ, ξ, ξβ). Then, using cru-
cially our bordism theorem, Theorem 4.11, we can prove as in [37, Proposition 2.4], that there
is well defined action

ker(fΓβ ,Γ)× C(MΣ, ξ, ξβ)→ C(MΣ, ξ, ξβ) ,

which associates to x ∈ ker(fΓβ ,Γ) and
[
(MΣ, ξ, ξβ, gM , gβM )

]
8 the class

x+
[
(MΣ, ξ, ξβ, gM , gβM )

]
.

Indeed, as x is null-bordant in Ω
spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)
, the element x +

[
(MΣ, ξ, ξβ)

]
is

bordant to
[
(MΣ, ξ, ξβ)

]
in Ω

spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)
. Since the element x +

[
(MΣ, ξ, ξβ)

]
is

represented by a manifold with an adapted wedge psc metric, we can use our bordism theorem
and propagate this psc metric back to MΣ, obtaining a new adapted wedge metric of psc, i.e.,
a new element in C(MΣ, ξβ, ξ). One proves exactly as in Proposition 2.4 in [37] that this action
is well defined, free and transitive.

8Here we skip “∇p” from the notations.
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Consider now Γ = Zn, the cyclic group of order n. It is explained in [37], building on spe-
cific examples provided in [12], that the Cheeger–Gromov rho invariant defines a map ρ:
Posspinm (BZn)→ R which has an image of infinite cardinality. To prove this, one only needs
to show that ρ is a homomorphism and that it is non-trivial; the property that it is a homomor-
phism is a consequence of the definition of rho invariant whereas the fact that it is non-trivial
follows from the specific examples in [12] (lens spaces). Remark that we have a well defined

rho-homomorphism ρrel
w : Pos

spin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)
→ R, obtained by composing the homo-

morphism (6.7) with the homomorphism (6.10):

ρrel
w := ρw ◦RPos.

Recall now that we are under the assumption that there is an injection j : Zn → Γ. Such
an injection induces homomorphisms

BjΩ
∗ : Ωspin

m (BZn)→ Ωspin
m (BΓ) and BjPos

∗ : Posspinm (BZn)→ Posspinm (BΓ).

Consider the following diagram, where for typographic reasons we omit the superscripts spin
and fb,

Posm(BZn)
BjPos
∗ //

fZn

��

Posm(BΓ)

fΓ

��

iPos
// Pos

(L,G)
m

(
BΓβ

Bθ−−→ BΓ
)

fΓβ,Γ

��

Ωm(BZn)
BjΩ∗ // Ωm(BΓ)

iΩ // Ω
(L,G)
m

(
BΓβ

Bθ−−→ BΓ
)
.

By naturality this is a commutative diagram. Consider K := ker fZn . We know from [37] that
ρ|K has an image of infinite cardinality. For κ ∈ K consider

Θκ := iPos ◦BjPos
∗ (κ) ∈ Posspin,(L,G)-fb

m

(
BΓβ

Bθ−−→ BΓ
)
.

Then, by commutativity of the diagram, we have

fΓβ ,Γ(Θκ) = 0.

This means that{
Θk + [M,βM, ξ, ξβ, g], κ ∈ K

}
⊂ C(MΣ, ξ, ξβ) ⊂ Posspin,(L,G)-fb

m

(
BΓβ

Bθ−−→ BΓ
)
.

We also have

ρrel
w

(
Θk + [M,βM, ξ, ξβ, gM , gβM ,∇p]

)
= ρ(k) + ρw[MΣ, ξΣ, g]

with g the wedge metric defined by gM , gβM and ∇p. Indeed:

ρrel
w

(
[M,βM, ξ, ξβ, gM , gβM ,∇p]

)
:= ρw

(
RPos

(
[M,βM, ξ, ξβ, gM , gβM ,∇p]

))
= ρw[MΣ, ξΣ, g],

whereas, thanks to Lemma 2.2 in [37] and naturality, we have

ρrel
w (Θk) = ρrel

w

(
iPos ◦BjPos

∗ (κ)
)

= ρw
(
RPos ◦ iPos ◦BjPos

∗ (κ)
)

= ρ
(
BjPos
∗ (κ)

)
= ρ(κ).

This implies that the set {Θk + [M,βM, ξ, ξβ, g], κ ∈ K} and thus the group

Posspin,(L,G)-fb
m

(
BΓβ

Bθ−−→ BΓ
)

that contains it, is of infinite cardinality. �
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Corollary 6.13. Under the previous assumptions we have∣∣π0

(
R+
w(MΣ)

)∣∣ =∞.

Proof. It suffices to observe that there exists a surjection π0

(
R+
w(MΣ)

)
→ C(MΣ, ξ, ξβ). �

The above result is just an example of how rho-invariants can be used in order to detect elements
in bordism groups of wedge psc metrics or in π0

(
R+
w(MΣ)

)
. It should also be possible to use

higher rho invariants to get sharper results (under additional assumptions on the fundamental
groups). We comment on this in the next section.

7 Open problems and subjects for future study

In this section we just sketch a few ideas for additional projects related to the topics of this
paper.

7.1 The index-difference homomorphism for L-fibered pseudomanifolds

In this paper, we have not done very much (beyond the obstruction theory in Section 2) for L-
fibered pseudomanifolds that are not (L,G)-fibered. But there is hope of extending the theory
of the index-difference homomorphism to the more general L-fibered case. Assume that g0, g1 ∈
R+
w(MΣ), with MΣ an L-fibered pseudomanifold. Let us take a path of wedge metrics joining g0

and g1 and let us denote by gv0 and gv1 the vertical part of the metric on the link-bundle. It is
not automatic, in this generality, that the path we take joining g0 and g1 will stay within the
metrics that are geometric-Witt or psc-Witt, i.e., with positive scalar curvature along the links.
Under which assumptions can we ensure this? One sufficient condition is that R+(∂M/βM),
the space of vertical metrics of psc along the links, is connected, and, moreover, that we can lift
a path joining gv0 and gv1 in R+(∂M/βM) to a path joining g0 and g1 in R+

w(MΣ). When this is
the case, the theory of the index difference outlined above in Section 6.2 ought to go through;
of course, it will be necessary to work out the details.

7.2 The theory of R-groups

In [44], Stolz sketched the theory of concordance groups of psc metrics (on compact smooth
manifolds), which he called R-groups. Assuming for simplicity that we are considering spin
manifolds with fundamental group Γ, one obtains a long exact sequence [44, sequence (4.4)]

· · · → Rspin
n+1(BΓ)

∂−→ Posspinn (BΓ)→ Ωspin
n (BΓ)→ Rspin

n (BΓ)
∂−→ · · · . (7.1)

Here Posspinn (BΓ) is the bordism group of pairs (M, g), with M a closed spin manifold with a map
to BΓ and g a positive scalar curvature metric on M . The map from this group to Ωspin

n (BΓ)
simply forgets the Riemannian metric. The group Rspin

n (BΓ) [44, Definition 4.1] is a bordism
group of pairs (M → BΓ, h), with M a compact spin n-manifold with possibly non-empty
boundary, and with h a psc metric on ∂M . The map ∂ : Rspin

n+1(BΓ) → Posspinn (BΓ) is just
restriction to the boundary.

It should be rather straightforward to replace Posspinn (BΓ) here with Pos
spin,(L,G)-fb
n (BΓ),

and Ωspin
n (BΓ) with Ω

spin,(L,G)-fb
n (BΓ), to obtain R-groups of pseudomanifolds with (L,G)-fibered

singularities: R
spin,(L,G)-fb
n (BΓ).

• What do these R-groups look like and how do they differ from the usual R-groups?

• Do they act freely and transitively on the set of concordance classes of psc wedge metrics,
as in Stolz [44]?
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• Do we have the analogue of Stolz sequence (7.1) in the singular setting?

• If so, can one map the analogue of sequence (7.1) to a Higson–Roe type analytic exact
sequence as in [38]? This would involve the definition of a higher rho class associated
to a wedge psc metric. For the signature operator on stratified spaces that are Witt
or Cheeger, a similar result has been proved in [5], mapping the Browder–Quinn surgery
sequence to the Higson–Roe analytic surgery sequence, and we expect the analysis there
to play a role here.

• Is there an R-group R
spin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)

and does it fit into a Stolz sequence

· · · → Ωspin,(L,G)-fb
n

(
BΓβ

Bθ−−→ BΓ
)
→ Rspin,(L,G)-fb

n

(
BΓβ

Bθ−−→ BΓ
)

→ Pos
spin,(L,G)-fb
n−1

(
BΓβ

Bθ−−→ BΓ
)
→ · · · ?

• Can we use the Stolz (L,G)-sequences above, the mapping to Higson–Roe, and the tech-
niques of Xie–Yu–Zeidler [49] in order to give a lower bound on the rank of the group

Pos
spin,(L,G)-fb
n (BΓ)?

7.3 Rho-invariants of wedge psc metrics

7.3.1 Torsion-free groups

In the smooth case one can prove that if π1(M) is torsion-free and the Baum–Connes map
µmax : K∗(BΓ) → K∗(C

∗
maxΓ) is an isomorphism, then the Cheeger–Gromov rho invariant of

a positive scalar curvature metric on a spin manifold M of odd dimension must vanish. See [36]
and also [8] for a new proof based on the Higson–Roe analytic surgery sequence. Notice that
this is a no-go result: the Cheeger–Gromov rho invariant for manifolds with fundamental group
satisfying these conditions cannot be used in order to distinguish metrics of psc (indeed, it is
equal to 0).

Can one extend this vanishing result to (L,G)-pseudomanifolds and the Cheeger–Gromov
rho invariant of a wedge metric?

A direct approach would build on the proof of Piazza–Schick in [36]. A different route would
use the results of the previous Section 6.4, the Benameur–Roy map K0(D∗Γ)→ R of [8] and the
exactness of the Higson–Roe analytic surgery sequence.

7.3.2 Groups with torsion

On the other hand, one would like to define and use higher rho invariants in order to distinguish
wedge metrics of positive scalar curvature, especially for fundamental groups with torsion. See
for example [6, 33, 48] for the case of smooth closed manifolds.

7.4 Stratifications with higher depth

For applications to algebraic varieties, moduli spaces, and other natural examples of stratified
spaces, it would be nice to generalize our theory to pseudomanifolds with higher depth, in other
words, with singular strata of multiple dimensions. While the analytic part concerning Dirac
operators is largely under control, thanks to [1] (see also [40]), on the geometric side we expect
several complications:

• The geometry of the tubular neighborhoods of the singular strata gets to be rather com-
plicated, as one would need to consider iterated Riemannian submersions and careful
curvature estimates.
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• Proving the appropriate bordism theorem would be quite complicated.

• Perhaps one could say more in the case of Baas–Sullivan singularities, as in [10], which did
consider some pseudomanifolds with higher depth.

7.5 Topological questions

• The “mixed fundamental group” bordism group Ω
(L,G)
n

(
BΓβ

Bθ−−→ BΓ
)

seems to be very
hard to compute; it doesn’t just fit into an exact sequence like the one we developed in [14].

But is there a spectral sequence computing Ω
(L,G)
n

(
BΓβ

Bθ−−→ BΓ
)
?

• What about a Kreck–Stolz s-invariant? More precisely, in [30, Proposition 2.13], Kreck and
Stolz defined an invariant s(M, g) of psc metrics g on closed spin manifolds M of dimen-
sion 3 mod 4 with vanishing Pontryagin classes. This invariant has the properties that it
is preserved under spin-structure-preserving isometries and that the relative index i(g, g′)
in the sense of [26, Section 4] is given by s(M, g)−s(M, g′). It would be interesting to know
if one could do something similar for adapted psc wedge metrics on Witt spin pseudoman-
ifolds MΣ. This would require using the index theorem of [39] and replacing vanishing of
the Pontryagin classes with vanishing of the Goresky–MacPherson homology L-class or,
more generally, of the K-homology class of the pseudomanifold signature operator.

A On the spin-bordism invariance of the α-invariant

In this appendix we shall discuss briefly an analytic proof of the spin-bordism invariance of the
α class and of the αΓ class. We have already observed, building on the case of the signature
operator on Witt spaces treated in great detail in [4, Section 7], that given an analytic proof in
the smooth case, it extends mutatis mutandis to the pseudomanifold case.

A.1 A generator of KO1(R)

Consider R with its standard spin structure. Then we have D/R and its class in KO1(R) :=
KKO(C0(R), C`1).

Proposition A.1. KO1(R) is isomorphic to Z and the class [D/R] ∈ KO1(R) is a generator.
Equivalently, KO1((0, 1)) is isomorphic to Z and the class

[
D/(0,1)

]
∈ KO1((0, 1)) is a generator.

Proof. This is a very special case of [28, Theorems 4.8 and 4.10] and of [29, Section 5, Lem-
ma 4]. �

A.2 Boundary of Atiyah–Singer is Atiyah–Singer

We now know that [D/R] is the generator ofKO1(R). We want to prove that prove that “boundary
of Atiyah–Singer is Atiyah–Singer” in KO-homology, i.e.,

δ[D/X ] = [D/∂X ] in KOdim ∂X(∂X)

on a spin manifold X with metrically collared boundary ∂X. Here δ is the connecting homo-
morphism in KO-theory associated to the semisplit short exact sequence

0→ C∂X(X)→ C(X)→ C(∂X)→ 0

with C∂X(X) the ideal of continuous functions vanishing on the boundary.
Using excision we can easily reduce to a collar neighbourhood. Then the result is a conse-

quence of the following:
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Lemma A.2. Let X = [0, 1)×N with ∂X = {0} ×N . Let n = dimN . In this case C∂X(X) =
C0

(
(0, 1)×N

)
. Let us consider the connecting homomorphism

KOn+1

(
(0, 1)×N)

) δ−→ KOn(N)

associated to the semisplit short exact sequence

0→ C0

(
(0, 1)×N

)
→ C0

(
[0, 1)×N

)
→ C(N)→ 0.

Then δ is the inverse of the isomorphism

KOn(N)→ KOn+1

(
(0, 1)×N

)
obtained by taking the Kasparov product with

[
D/(0,1)

]
, the generator of KO1((0, 1)). In par-

ticular, as [D/(0,1)×N ] is precisely the Kasparov product of
[
D/(0,1)

]
and [D/N ], we have that

δ[D/(0,1)×N ] = [D/N ] which is what we wanted to prove.

Proof. By the naturality of Kasparov product we can reduce to the connecting homomorphism

KO1((0, 1))
δ−→ KO0(point)

associated to the semisplit short exact sequence

0→ C0((0, 1))→ C0([0, 1))→ R→ 0.

But δ is the inverse of the isomorphism KO0(point) → KO1((0, 1)) obtained by taking the
Kasparov product with the generator

[
D/(0,1)

]
of KO1((0, 1)). This again follows from Kasparov’s

results on Poincaré duality in KO-theory, [28, Theorems 4.8 and 4.10] and [29, Section 5,
Lemma 4]. �

A.3 Spin bordism invariance

Using δ[D/X ] = [D/∂X ] we can now prove the spin bordism invariance of the α-class in KOn.

Theorem A.3. Assume that Y is spin and of dimension n and that Y = ∂X, with X spin.
Then α(Y ) = 0 ∈ KOn.

Proof. We write part of the long exact sequence in KO associated to the short exact sequence

0→ C∂X(X)→ C(X)→ C(∂X)→ 0.

We have the induced exact sequence

KOn+1(X, ∂X)
δ−→ KOn(∂X)

ι∗−→ KOn(X)

with ι the inclusion of ∂X into X. Notice, in particular, that

ι∗ ◦ δ = 0.

Consider πY : Y → point; obviously πY = πX ◦ ι. Then we have

α(Y ) = πY∗ [D/Y ] = πX∗ ◦ ι∗[D/Y ] = πX∗ ◦ ι∗ ◦ δ[D/X ] = 0. �

The same proof applies to the αΓ class if we use the Atiyah–Singer–Mishchenko operator D/MF

and the exact sequence

KKn+1O
(
C∂X(X), C∗rΓ

) δ−→ KKnO
(
C(∂X), C∗rΓ

) ι∗−→ KKnO
(
C∂X(X), C∗rΓ

)
.

See [32, Proposition 2.3] for the details.
Note that for the α class the spin bordism invariance is usually proved by identifying it with

the Atiyah–Milnor–Singer invariant. See [31]. The generalization of this approach to the αΓ

class is treated in [41] and (more extensively) in [42].
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