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COMPARISON GEOMETRY OF HOLOMORPHIC BISECTIONAL

CURVATURE FOR KÄHLER MANIFOLDS AND LIMIT SPACES

JOHN LOTT

Abstract. We give an analog of triangle comparison for Kähler manifolds with a lower
bound on the holomorphic bisectional curvature. We show that the condition passes to
noncollapsed Gromov-Hausdorff limits. We discuss tangent cones and singular Kähler
spaces.

1. Introduction

Holomorphic bisectional curvature is a Kähler analog of Riemannian sectional curvature.
We recall the definition in Section 3. There is a well developed theory of Riemannian man-
ifolds with lower sectional curvature bounds, including such topics as triangle comparison,
Gromov-Hausdorff limits and Alexandrov spaces. The goal of this paper is to give Kähler
analogs.

To state the first main result, we define a modified distance-squared function. Given
d ≥ 0 and K ∈ R, define dK ≥ 0 by

(1.1) d2K =





− 4
K
log cos

(
d
√

K
2

)
if K > 0,

d2 if K = 0,

4
−K

log cosh
(
d
√

−K
2

)
if K < 0.

(If K > 0 then we restrict to d ≤ π√
2K

.) Let M be a complete Kähler manifold. Given

p ∈ M and K ∈ R, let dp ∈ C(M) be the distance from p and define dK,p using (1.1),
replacing the d in the right-hand side by dp.

We write BK ≥ K if the holomorphic bisectional curvatures of M are bounded below
by K ∈ R. We prove the following analog of triangle comparison.

Theorem 1.2. Let M be a complete Kähler manifold. Given K ∈ R, the manifold M
has BK ≥ K if and only if it satisfies the following property. Let i : D2 → M be an
embedding of a disk into M , that is holomorphic on D2. Let Σ be the image of i. Let dA
denote the area form on Σ. Let z be the local coordinate on D2 and let θ ∈ [0, 2π) be the
local coordinate on ∂D2. Then

(1.3) d2K,p(0) ≥
2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

d2K,p(θ)dθ,
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where the “0” on the left-hand side denotes i(0), the center of Σ.

Next, we consider noncollapsing sequences of complete pointed Kähler manifolds with
BK ≥ K. Lee and Tam showed that after passing to a subsequence, there is a pointed
Gromov-Hausdorff limit that is a complex manifold [23]. Regarding its geometry, we show
that (1.3) holds on the limit.

Theorem 1.4. Let {(Mi, pi, gi)}∞i=1 be a sequence of pointed n-dimensional complete Kähler
manifolds with BK ≥ K. Suppose that there is some v0 > 0 so that for all i, we have
vol(B(pi, 1)) ≥ v0. Then after passing to a subsequence, there is a pointed Gromov-
Hausdorff limit (X∞, p∞, d∞) with the following properties.

(1) X∞ is a complex manifold.
(2) Embedded holomorphic disks Σ in X∞ satisfy (1.3), where dA is now the two di-

mensional Hausdorff measure coming from d∞.

Some simple examples of such limit spaces come from two dimensional length spaces
with Alexandrov curvature bounded below. The proof of Theorem 1.4 uses local Ricci flow
techniques, as developed by Bamler-Cabezas-Rivas-Wilking [1], Hochard [16], Lee-Tam [21]
and Simon-Topping [40].

The content of the paper is as follows. In Section 2 we briefly recall some facts about
Riemannian manifolds with nonnegative sectional curvature, and their Gromov-Hausdorff
limits. In Section 3 we show

• A complete Kähler manifold has BK ≥ K if and only if
√
−1∂∂d2K,p/2 ≤ ω as

currents.
• Theorem 1.2 holds.
• If a Hermitian manifold satisfies (1.3) then it must be Kähler.
• A domainM in a model space (of constant holomorphic sectional curvature) satisfies
(1.3) if and only if the length metric on M is the same as the restricted metric from
the model space.

Section 4 is about noncollapsed pointed Gromov-Hausdorff limits. We prove Theorem
1.4 and construct local Kähler potentials {φα} on the limit space.

In Section 5 we give a notion of “BK ≥ K” for possibly singular complex spaces. We
use the notion of Kähler spaces from [33], which is formulated in terms of local potential
functions {φα}. We define metric Kähler spaces and an associated complex Gromov-
Hausdorff convergence, which may be of independent interest. We say that a metric Kähler
space has “BK ≥ K” if φα−d2K,p/2 is plurisubharmonic for all α and p. For normal complex
spaces, this is equivalent to (1.3) being satisfied. The following properties hold:

• Given a sequence of metric Kähler spaces with “BK ≥ K”, if it converges in the
pointed complex Gromov-Hausdorff sense then the limit space has “BK ≥ K”.

• Under the assumptions of Theorem 1.4, a subsequence converges in the pointed
complex Gromov-Hausdorff sense.

• If a Kähler orbifold has BK ≥ K in the sense of curvature tensors then its under-
lying length space has “BK ≥ K”.
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Section 6 is about tangent cones of the limit spaces from Theorem 1.4. We show

• A tangent cone is a Kähler cone that is biholomorphic to Cn.
• When the distance function from the vertex is radially homogeneous on Cn, the
tangent cone is an affine cone over a copy of CP n−1 with “BK ≥ 2”, in the sense
of the previous section.

I thank Man-Chun Lee, Gang Liu and Song Sun for helpful comments. I also thank
Man-Chun for pointing out a gap in an earlier version of the paper, and the referee for
useful remarks.

2. Some facts from Riemannian comparison geometry

Let (M, g) be a complete Riemannian manifold. We consider lower sectional curvature
bounds; for simplicity, we assume that (M, g) has nonnegative sectional curvature. Given
p ∈ M , let dp ∈ C(M) denote the Riemannian distance from p. Then

(2.1) Hess(d2p/2) ≤ g

away from the cut locus Cp of p.
Let {γ(t)}t∈[0,L] be a unit-speed geodesic in M − Cp. For brevity, we write dp(t) for

dp(γ(t)). It follows from (2.1) that d2

dt2

(
d2p(t)/2

)
≤ 1, i.e. d2

dt2

(
d2p(t)/2− t2/2

)
≤ 0. That is,

d2p(t)− t2 is concave on [0, L]. Then

(2.2) d2p(t)− t2 ≥ t

L
(d2p(L)− L2) +

(
1− t

L

)
d2p(0),

or

(2.3) d2p(t) ≥
t

L
d2p(L) +

(
1− t

L

)
d2p(0)− t(L− t).

Toponogov’s theorem says that (2.3) remains true without the restriction that γ lies in
M − Cp.

Remark 2.4. We state some facts without proof.

(1) Equation (2.3), when applied to minimizing geodesics, passes to pointed Gromov-
Hausdorff limits. That is, such a limit is a complete length space with nonnegative
Alexandrov curvature.

(2) A noncollapsed limit is a topological manifold [36].
(3) A tangent cone of a noncollapsed limit is a metric cone. Its link has Alexandrov

curvature bounded below by one [2, Corollary 7.10] and is homeomorphic to a
sphere [17, Theorem 1.3].

(4) A Finsler manifold with nonnegative Alexandrov curvature is a Riemannian mani-
fold.

(5) A polytope in Euclidean space, i.e. a connected finite union of top dimensional
simplices, has nonnegative Alexandrov curvature, with respect to the length metric,
if and only if it is convex.
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3. Comparison geometry for Kähler manifolds with lower bounds on

holomorphic bisectional curvature

3.1. Holomorphic bisectional curvature. LetM be an n-dimensional Kähler manifold.
We let ω denote its Kähler form. In terms of holomorphic normal coordinates at a point

p, we have ω(p) =
√
−1
2

∑n

i=1 dz
i ∧ dzi.

Suppose that n ≥ 2. Given p ∈ M , if σ and σ′ are J-invariant 2-planes (i.e. complex
lines) in TpM , write σ = span(X, JX) and σ′ = span(Y, JY ) for unit vectors X and Y . The
holomorphic bisectional curvature of σ and σ′ is H(σ, σ′) = R(X, JX, Y, JY ). If σ = σ′

then the holomorphic sectional curvature of σ is H(σ, σ). From the Bianchi identity,

(3.1) R(X, JX, Y, JY ) = R(X, Y,X, Y ) +R(X, JY,X, JY ).

In particular,
(3.2)
(sect. curv. ≥ const.) =⇒ (holo. bisec. curv. ≥ const.) =⇒ (Ricci curv. ≥ const.)

where the constants are related by n-dependent factors. Given K ∈ R, we say that
BK ≥ K if all of the holomorphic bisectional curvatures are bounded below by K.

We use the curvature notation of [20, Chapter 9]. In particular, if {ei, ej} are elements of
a unitary frame then the corresponding holomorphic bisectional curvature is −Riijj. (Note
the minus sign.) Hence BK ≥ K if and only if we have

(3.3) − R(X,X, Y, Y ) ≥ K
(
〈X,X〉〈Y, Y 〉+ 〈X, Y 〉〈Y,X〉

)

for all X, Y ∈ T (1,0)M . (If n = 1 then to be consistent with (3.3), we say that BK ≥ K if
the holomorphic sectional curvatures are bounded below by 2K.)

The metric on CP n with constant holomorphic sectional curvature c is

(3.4) gij =
4

c
∂i∂j log

(
1 +

c

4
|z|2
)

with curvature tensor

(3.5) Rijkl = − c

2

(
gijgkl + gilgkj

)
.

The Riemannian sectional curvatures lie in
[
c
4
, c
]
. The holomorphic bisectional curvatures

lie in
[
c
2
, c
]
. The diameter is πc−

1
2 . (If n = 1 then the Riemannian sectional curvature and

the holomorphic bisectional curvature are c, and the diameter is πc−
1
2 .)

If BK ≥ K > 0 then diam(M) ≤ π√
2K

[25]. It seems to be open whether equality implies

that (M, g) is the Fubini-Study metric on CP n, up to a constant [30, 42].
A compact Kähler manifold with positive holomorphic bisectional curvature is biholo-

morphic to a complex projective space [35, 41]. The nonnegative case was described in [34].
Alternative proofs of these results, along with extensions to transverse Sasakian geometry,
are in [14, 15].
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3.2. Differential inequality for smooth Kähler manifolds. We now give a Kähler
analog of (2.1), for BK ≥ K.

For p ∈ M , let dp denote the distance function from p and define dK,p using (1.1), with
d replaced by dp.

Proposition 3.6. Let M be a complete Kähler manifold. If BK ≥ K then for all p ∈ M ,

(3.7)
√
−1∂∂d2K,p/2 ≤ ω

as currents on M .

Proof. Suppose that BK ≥ K. (If K > 0 then we initially restrict to the case when
diam(M) < π√

2K
.) It follows from [42, Theorem 2.1], along with some calculation, that

(3.7) is satisfied smoothly away from the cut locus of p. Given q ∈ M − {p}, let φ be a
local Kähler potential in a neighborhood U of q, i.e. ω =

√
−1∂∂φ. We can assume that

p /∈ U . To prove (3.7), we wish to show that φ − d2K,p/2 is plurisubharmonic. For this,
it suffices to show that it is subharmonic on any embedded holomorphic disk Σ in U , i.e.
that △Σd

2
K,p ≤ 4 as measures on Σ.

Given m ∈ Σ, we will construct a barrier function at m. Let γ : [0, d(p,m)] → M be
a minimizing unit speed geodesic from p to m. Let FK be the function appearing on the
right-hand side of (1.1), so d2K = FK ◦ d. Then F ′

K ≥ 0 and F ′′
K ≥ 0. For small ǫ > 0,

consider FK ◦ (dγ(ǫ) + ǫ). Its value at m is d2K,p(m). As dγ(ǫ) + ǫ ≥ dp, it follows that

FK ◦ (dγ(ǫ) + ǫ) ≥ d2K,p.
Since m is not in the cut locus of γ(ǫ), we now know that

(3.8) △Σ(FK ◦ dγ(ǫ)) ≤ 4

in a neighborhood of m in Σ. As

(3.9) △Σ(FK ◦ dγ(ǫ)) = (F ′′
K ◦ dγ(ǫ))|∇Σdγ(ǫ)|2 + (F ′

K ◦ dγ(ǫ))△Σdγ(ǫ),

it follows that

(3.10) (F ′
K ◦ dγ(ǫ))△Σdγ(ǫ) ≤ 4− (F ′′

K ◦ dγ(ǫ))|∇Σdγ(ǫ)|2 ≤ 4,

so

(3.11) △Σdγ(ǫ) ≤
4

F ′
K ◦ dγ(ǫ)

,

where the denominator is strictly positive in a neighborhood of m.
Similarly,

(3.12) △Σ(FK ◦ (dγ(ǫ) + ǫ)) = (F ′′
K ◦ (dγ(ǫ) + ǫ))|∇Σdγ(ǫ)|2 + (F ′

K ◦ (dγ(ǫ) + ǫ))△Σdγ(ǫ)
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Combining with (3.10) and (3.11) gives

△Σ(FK ◦ (dγ(ǫ) + ǫ)) ≤
(
(F ′′

K ◦ (dγ(ǫ) + ǫ))− (F ′′
K ◦ dγ(ǫ))

)
|∇Σdγ(ǫ)|2+(3.13)

(
(F ′

K ◦ (dγ(ǫ) + ǫ))− (F ′
K ◦ dγ(ǫ))

)
△Σdγ(ǫ) + 4

=
(
(F ′′

K ◦ (dγ(ǫ) + ǫ))− (F ′′
K ◦ dγ(ǫ))

)
+

(
(F ′

K ◦ (dγ(ǫ) + ǫ))− (F ′
K ◦ dγ(ǫ))

)
△Σdγ(ǫ) + 4

≤
(
(F ′′

K ◦ (dγ(ǫ) + ǫ))− (F ′′
K ◦ dγ(ǫ))

)
+

(
(F ′

K ◦ (dγ(ǫ) + ǫ))− (F ′
K ◦ dγ(ǫ))

) 4

F ′
K ◦ dγ(ǫ)

+ 4.

Given ǫ′ > 0, using the continuity of F ′
K and F ′′

K , by choosing ǫ small enough we can ensure
that △Σ(FK ◦ (dγ(ǫ) + ǫ)) ≤ 4 + ǫ′ in a neighborhood of m in Σ. Thus △Σd

2
K,p ≤ 4 in the

barrier sense, hence in the viscosity sense and in the distributional sense. This means that
φ− d2K,p/2 is subharmonic on Σ. Thus (3.7) holds.

Now suppose that K > 0 and diam(M) = π√
2K

. Given λ ∈ (0, 1), the metric g

also has BK ≥ λ2K, while diam(M) < π√
2λ2K

. Hence φ + 2
λ2K

log cos
(
λdp

√
K
2

)
is

plurisubharmonic, i.e. λ2φ + 2
K
log cos

(
λdp

√
K
2

)
is plurisubharmonic. Using the fact

that 2
K
log cos

(
λdp

√
K
2

)
is monotonically nonincreasing in λ as λ → 1, we can pass to

the limit to conclude that φ + 2
K
log cos

(
dp

√
K
2

)
is plurisubharmonic; c.f. [8, Proofs of

Theorems I.4.15 and I.5.4]. This proves the proposition. �

Remark 3.14. If K = 0 then Proposition 3.6 was proven in [3] by very different means.

3.3. Integral comparison inequality. We now wish to give an analog of (2.3). Compar-
ing (3.7) with (2.1), it is clear that instead of integrating over geodesics, i.e. real curves,
we should now integrate over two dimensional objects, i.e. complex curves.

Proposition 3.15. Let M be a complete Kähler manifold. Given K ∈ R, the manifold
M has BK ≥ K if and only if it satisfies the following property. Let i : D2 → M be an
embedding of a disk into M , that is holomorphic on D2. Let Σ be the image of i. Let dA
denote the area form on Σ. Let z be the local coordinate on D2 and let θ ∈ [0, 2π) be the

local coordinate on ∂D2. Then

(3.16) d2K,p(0) ≥
2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

d2K,p(θ)dθ,

where the “0” on the left-hand side denotes i(0), the center of Σ.

Proof. Suppose that BK ≥ K. From Proposition 3.6, or more precisely its proof, we know
that

√
−1∂∂d2K,p/2 ≤ ωΣ as currents on Σ. The solution to

√
−1∂∂f/2 = ωΣ on Σ, with
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f
∣∣∣
∂Σ

= d2K,p

∣∣∣
∂Σ

has

(3.17) f(0) =
2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

d2K,p(θ)dθ.

As f − d2K,p is subharmonic on Σ, and vanishes on ∂Σ, inequality (3.16) follows.
Now suppose that the inequality BK ≥ K is violated at some point p. In complex

normal coordinates around p, the metric is

(3.18) gij = δij +
1

2
Rijklz

kzl + o(|z|2),

where Rijkl is evaluated at p. Correspondingly,

(3.19) ω =
1

2

√
−1dzi ∧ dzi +

1

4

√
−1Rijklz

kzldzi ∧ dzj + o(|z|2).

In general, d2(p0, p1) is the minimum over γ of the energy

(3.20) E(γ) =

∫ 1

0

gij
dγi

dt

dγi

dt
dt,

where γ : [0, 1] → M has γ(0) = p0 and γ(1) = p1. If γ is a unique minimizer and we
perturb the metric by δg then to leading order, the squared distance changes by

(3.21) δd2(p0, p1) =

∫ 1

0

δgij
dγi

dt

dγi

dt
dt.

In our case, for the flat metric the minimizer between 0 ∈ Cn and z ∈ Cn is γ(t) = tz.
Treating the second term in (3.18) as the perturbation, the change in squared distance is

(3.22)
1

2

∫ 1

0

Rijklz
izj(tzk)(tzl) dt =

1

6
Rijklz

izjzkzl

Hence since p = 0 in the local coordinates,

(3.23) d2p(z) = |z|2 + 1

6
Rijklz

izjzkzl + o(|z|4).

From (1.1),

(3.24) d2K,p = d2p +
1

12
Kd4p + o(d4p),

so

(3.25) d2K,p(z) = |z|2 + 1

6
Rijklz

izjzkzl +
1

12
K|z|4 + o(|z|4).

This gives

√
−1∂∂d2K,p/2 =

1

2

√
−1dzi ∧ dzi +

1

3

√
−1Rijklz

kzldzi ∧ dzj+(3.26)

1

12

√
−1Kzizjdzi ∧ dzj +

1

12

√
−1K|z|2dzi ∧ dzi + o(|z|2).
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Equations (3.19) and (3.26) give

(3.27)
√
−1∂∂d2K,p/2− ω =

1

12

√
−1R′

ijkl
zkzldzi ∧ dzj + o(|z|2),

where

(3.28) R′
ijkl

= Rijkl +K(δijδkl + δilδjk).

If Σ is an embedded holomorphic disk in M then

(3.29) d2K,p(0)−
2

π

∫∫

Σ

log |z|dA− 1

2π

∫

∂Σ

d2K,p(θ)dθ =
2

π

∫∫

Σ

log |z|
(√

−1∂∂d2K,p/2− ω
)
.

Since M does not have BK ≥ K at p, there are unit vectors X, Y ∈ T
(1,0)
p M so that

R′(X,X, Y, Y ) > 0. (Recall the minus sign in (3.3).)

Given 0 < ǫ1 << ǫ2 << 1, consider a holomorphic disk i : D2 → M given in complex
normal coordinates by i(w) = ǫ1wX + ǫ2Y . Let Σ be the image of i. Using (3.27), the
right-hand side of (3.29) is approximately

1

6π

√
−1ǫ21ǫ

2
2(log ǫ2)R

′(X,X, Y, Y )

∫∫

D2

dw ∧ dw =(3.30)

1

3π
ǫ21ǫ

2
2(log ǫ2)R

′(X,X, Y, Y )

∫∫

D2

dAD2.

Since log ǫ2 < 0, we conclude that

(3.31) d2K,p(0)−
2

π

∫∫

Σ

log |z| dA− 1

2π

∫

∂Σ

d2K,p(θ)dθ < 0,

contradicting (3.16). �

Remark 3.32. There is an analogy between (2.3), with t = L
2
, and (3.16), where 1

2

(
d2p(L) + d2p(0)

)

is replaced by 1
2π

∫
∂Σ

d2K,p(θ)dθ and −L2

4
is replaced by 2

π

∫∫
Σ
log |z| dA.

For any point q in the disk, there is an inequality similar to (3.16) with 0 replaced by q,
obtained by performing a holomorphic automorphism of the disk.

Note that the area form dA in (3.16) can also be described as the two-dimensional
Hausdorff measure on Σ. Hence the statement of (3.16) only depends on the complex
structure and the metric d.

3.4. Hermitian manifolds. One can ask when (3.16) holds more generally in the setting
of Hermitian manifolds, rather than Kähler manifolds. It turns out that if (3.16) holds for
a Hermitian manifold then it is forced to be Kähler. We now give an analog of Remark
2.4(4), in which Finsler manifolds are replaced by Hermitian manifolds, and Riemannian
manifolds are replaced by Kähler manifolds.

Proposition 3.33. If a Hermitian manifold M satisfies (3.16), for all p ∈ M and all
holomorphic disks Σ, then it is Kähler.
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Proof. Choose complex coordinates around p. After a change of coordinates, we can write
the metric locally as

(3.34) g = dzidzi + Tijkz
jdzkdzi + Tijkz

jdzkdzi +O(|z|2).
Here Tijk is a constant times the torsion tensor at p, and is antisymmetric in j and k.

We first compute the leading order terms in d2p, using (3.21). For the flat metric the
minimizer between 0 ∈ Cn and z ∈ Cn is γ(t) = tz. Treating the second and third terms
in (3.34) as the perturbation, the change in squared distance is

(3.35)

∫ 1

0

(Tijk)(tz
j)zkzi dt+ complex conjugate.

This would be the O(|z|3) term in d2p, but it vanishes because of the (jk)-antisymmetry of

Tijk. Hence d2p(z) = |z|2 +O(|z|4). From (3.24), it follows that d2K,p(z) = |z|2 +O(|z|4).
Then

(3.36)
√
−1∂∂d2K,p/2 =

1

2

√
−1dzi ∧ dzi +O(|z|2).

On the other hand,

(3.37) ω =
1

2

√
−1dzi ∧ dzi +

1

2

√
−1Tijkz

jdzk ∧ dzi +
1

2

√
−1 Tijkz

jdzk ∧ dzi +O(|z|2),
so

(3.38)
√
−1∂∂d2K,p/2− ω = − 1

2

√
−1Tijkz

jdzk ∧ dzi − 1

2

√
−1 Tijkz

jdzk ∧ dzi +O(|z|2).

Suppose that M is nonKähler, so it has a nonzero torsion tensor at some point p. Let
~b ∈ Cn be such that

∑
j b

jTijk is a nonzero matrix in (i, k). Let ~a ∈ Cn be such that∑
i,j,k a

ibjTijka
k 6= 0. Multiplying ~b by a constant, we can assume that

∑
i,j,k a

ibjTijka
k is

a negative real number. Given 0 < ǫ1 << ǫ2 << 1, consider a small disk i : D2 → M

given by i(w) = ǫ1w~a + ǫ2~b. Let Σ be the image of i. As in the proof of Proposition 3.15,
it follows from (3.38) that the right-hand side of (3.29) is approximately

(3.39) − 4ǫ21ǫ2 log(ǫ2|~b|)
∑

i,j,k

aibjTijka
k < 0.

Thus (3.16) is violated for Σ, which is a contradiction. �

3.5. Domains in model spaces. We now give an analog of Remark 2.4(5). That is,
we look at regions in Cn or, more generally, in model spaces of constant holomorphic
sectional curvature. Since we want to characterize when (3.16) holds, we need a complex
structure everywhere. For that reason, we do not allow boundary, but simply consider
when a domain in the model space satisfies (3.16). One might initially expect that it has
something with pseudoconvexity of the domain. However, the latter notion is invariant
under biholomorphisms, whereas we have a metric d in addition. It turns out that the
answer is essentially given by convexity in the usual sense.
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Given K ∈ R, let MK be the complete simply connected Kähler manifold with constant
holomorphic sectional curvature 2K. Its metric is given by (3.4), with c = 2K. One can
check that equality is achieved in (3.7), away from the cut locus of p if K > 0.

Proposition 3.40. Let M be a connected open subset of MK. Let d be the length metric
on M . Then M satisfies (3.16) if and only if d coincides with the restriction D of the
metric from MK .

Proof. If d = D then (3.16) follows immediately from the corresponding inequality for MK .
Suppose that (3.16) is satisfied for M , but d 6= D. Let m1, m2 ∈ M be points such that

d(m1, m2) > D(m1, m2). If K > 0, let D denote the cut locus of m1, a copy of CP n−1. By
continuity of the distance functions, we can assume that m2 /∈ D.

Let γ : [0, 1] → M be a smooth embedding with γ(0) = m1 and γ(1) = m2. If K > 0
then we can assume that γ is disjoint from D. By approximation, we can assume that γ is
real analytic. We can then extend γ to a real analytic embedding γ : [−ǫ, 1 + ǫ] → M for
some ǫ > 0.

We claim that after possibly reducing ǫ, there is some ǫ′ > 0, and a continuous embedding
Γ : [−ǫ, 1 + ǫ] × [−ǫ′, ǫ′] → M that is holomorphic on the interior, so that Γ(t, 0) = γ(t)
for all t ∈ [−ǫ, 1 + ǫ]. To see this, suppose first that K = 0, so MK = Cn. Let {γi(t)}ni=1

be the components of γ. As γi is real analytic, it extends to a holomorphic function
Γi : (−ǫ, 1 + ǫ) × (−ǫ′i, ǫ

′
i) → C for some ǫ′i > 0. Taking ǫ′ = mini ǫ

′
i, the functions {Γi}ni=1

combine to give a holomorphic map Γ : (−ǫ, 1 + ǫ) × (−ǫ′, ǫ′) → Cn. The image of dΓ(t,0)

is the span of γ′(t) and Jγ′(t), a two dimensional space. Hence by reducing ǫ and ǫ′, we
can ensure that Γ is a continuous embedding from [−ǫ, 1 + ǫ] × [−ǫ′, ǫ′] to M , which is
holomorphic on the interior.

If K < 0 then the underlying complex structure of MK is the unit ball in Cn, so the
same argument can be applied. If K > 0 then MK −D is biholomorphic to Cn, so again
the same argument can be applied.

As Γ reparametrizes to a holomorphic disk i : D2 → M with image Σ, by a holomorphic
automorphism of the disk we can assume that i(0) = m1. The equality case of (3.7) with
p = m1 implies

(3.41) 0 =
2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

D2
K,m1

(θ)dθ.

Note that the two dimensional Hausdorff measure dA is the same for d and D. Since
d(m1, m2) > D(m1, m2), if ǫ and ǫ′ are small enough then d2K,m1

(θ) > D2
K,m1

(θ) for some
θ. By continuity of the distance functions, this will also be true for all θ in some open
interval. Thus

(3.42) 0 <
2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

d2K,m1
(θ)dθ,

which contradicts (3.16). �
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4. Noncollapsed Gromov-Hausdorff limits

We consider a noncollapsed pointed Gromov-Hausdorff limit of a sequence of complete
Kähler manifolds with BK ≥ K. Lee and Tam proved that the limit has the structure of
a complex manifold [23]. This extends earlier results of Liu [27, 28], and is an analog of
Remark 2.4(2). We wish to study the geometry of the limit. Although the metric d on the
limit is generally not smooth, we show that it satisfies the comparison inequality (3.16).
This is an analog of Remark 2.4(1).

The method of proof is by running the Ricci flow on the approximants and passing
to a limiting Ricci flow that exists for positive time (locally). Then one is reduced to
understanding the t → 0 limit of a single Ricci flow, as opposed to a sequence of Riemannian
manifolds. This approach has been applied in many other contexts. Since we are not
assuming an upper curvature bound, we apply recent results on local Ricci flow.

The proof also relies on local Kähler potentials. We actually prove the existence of local
Kähler potentials, of a certain regularity, on the limit space.

Proposition 4.1. Let {(Mi, pi, gi)}∞i=1 be a sequence of pointed n-dimensional complete
Kähler manifolds with BK ≥ K. Suppose that there is some v0 > 0 so that for all i, we
have vol(B(pi, 1)) ≥ v0. Then after passing to a subsequence, there is a pointed Gromov-
Hausdorff limit (X∞, p∞, d∞) with the following properties.

(1) X∞ is a complex manifold and d∞ is locally biHölder-equivalent to the distance
metric of a smooth Riemannian metric on X∞.

(2) There is an open covering {Uα}α∈A of X∞ and plurisubharmonic potentials φα ∈
C(Uα), locally Lipschitz with respect to d∞, so that φα − φβ is pluriharmonic on

Uα∩Uβ, and the following holds. Let Σ be a holomorphic disk in X∞. Let φα

∣∣∣
Σ∩Uα

be

the restriction of φα to Σ ∩ Uα and put ω∞

∣∣∣
Σ
=

√
−1∂∂φα

∣∣∣
Σ∩Uα

, a globally defined

measurable (1, 1)-form on Σ. Then ω∞

∣∣∣
Σ

equals the two dimensional Hausdorff

measure µ∞ coming from d∞

∣∣∣
Σ
.

(3) We have

(4.2) d2K,p(0) ≥
2

π

∫

Σ

log |z| dµ∞ +
1

2π

∫

∂Σ

d2K,p (θ) dθ.

Proof. (1). We claim first that there are nondecreasing sequences αk, βk ≥ 1 and a nonin-
creasing sequence Sk > 0 such that for any i, there is a Kähler-Ricci flow gi(t) defined on⋃∞

k=1(Bgi(pi, 2k)× [0, Sk]) with gi(0) = gi, such that

(4.3) |Rm(gi(t))| ≤
αk

t
,

(4.4) Ric(gi(t)) ≥ −βk

and

(4.5) injgi(t) ≥ α−1
k

√
t
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on Bgi(pi, 2k)× [0, Sk]. This follows from the pyramid Ricci flow constructed in [23, The-
orem 1.2] (see also the proof of [21, Theorem 5.1] and the proof of [32, Theorem 1.3]).

From distance distortion estimates as in [18, Section 27], there is then a constant Ck < ∞
so that for t1 ≤ t2, we have

(4.6) dgi(t1) − Ck(
√
t2 −

√
t1) ≤ dgi(t2) ≤ eβk(t2−t1)dgi(t1)

on Bgi(pi, 2k)× [0, Sk].
Using a local version of Hamilton compactness [18, Appendix E], after passing to a

subsequence of the i’s, there is a pointed smooth manifold (X∞, p∞) and an exhaustion of
X∞ by precompact open sets {Vk}∞k=1 containing p∞, along with a limiting pointed Ricci
flow g∞(·) defined on

⋃∞
k=1(Vk × (0, Sk)); c.f. [32, Theorem 1.5]. More precisely, for each

k ∈ Z
+, for large i there is a pointed embedding φi,k : Vk → Mi so that

(4.7) g∞(·) = lim
i→∞

φ∗
i,kgi(·)

on compact subsets of Vk × (0, Sk), in the smooth topology.
The distance distortion estimate (4.6) passes to the limiting Ricci flow. It follows that

there is a pointed Gromov-Hausdorff limit limt→0(X∞, p∞, g∞(t)) = (X∞, p∞, d∞) for some
complete metric d∞. It then follows that limi→∞(Mi, pi, gi) = (X∞, p∞, d∞) in the pointed
Gromov-Hausdorff topology. We can take Vk to be the metric ball B(p∞, k) with respect
to d∞, so

(4.8) dg∞(t1) − Ck(
√
t2 −

√
t1) ≤ dg∞(t2) ≤ eβk(t2−t1)dg∞(t1)

on B(p∞, k)× (0, Sk). Also,

(4.9) |Rm(g∞(t))| ≤ αk

t

on B(p∞, k)× (0, Sk).
From [40, Lemma 3.1], for any t ∈ (0, Sk), the metric ball B(p∞, k) ⊂ X∞ with the

metric d∞ is biHölder homeomorphic to the same ball with the metric g∞(t).
Given k ∈ Z+ and considering the time interval (0, Sk), since the complex structures Ji

on Bgi(pi, 2k) ⊂ Mi satisfy ∇gi(t)Ji = 0, after passing to a subsequence of i’s we can assume
that they converge to a complex structure J∞,k on B(p∞, k) that satisfies ∇g∞(t)J∞,k = 0.
After passing to a further subsequence of i’s, we obtain a complex structure J∞ on X∞
that, on B(p∞, k), satisfies ∇g∞(t)J∞ = 0 for t ∈ (0, Sk). Let ω(t) denote the corresponding
Kähler form.

(2). Fix k ∈ Z+ and fix t′ ∈ (0, Sk). For t ∈ (0, t′], put

(4.10) u(t) = −
∫ t′

t

log
ωn(s)

ωn(t′)
ds.

Then

(4.11) ω(t) = ω(t′)− (t− t′) Ric(ω(t′)) +
√
−1∂∂u(t),

as can be seen by differentiating in t.
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Since

(4.12)
∂ω

∂t
= − Ric(ω(t)),

the estimate (4.9) implies

(4.13)

∣∣∣∣log
ωn(s)

ωn(t′)

∣∣∣∣ ≤ const. log
t′

s

for s ∈ (0, t′], where “const.” is an n-dependent factor times αk. Then

|u(t1)− u(t2)| ≤ const.

∫ t2

t1

log
t′

s
ds(4.14)

= const. ((t2 − t1) log(t
′)− t2 log(t2) + t1 log(t1)) .

Hence {u(1/j)} is a uniformly Cauchy sequence and has a limit u(0) ∈ C(B(p∞, k)).
Given x ∈ B(p∞, k), let U be a neighborhood of x that is biholomorphic to the unit ball

in Cn. There are vU , wU ∈ C∞(U) so that we can write ω(t′) on U as
√
−1∂∂vU , and we

can write Ric(ω(t′)) on U as
√
−1∂∂wU . Doing the same for another point p′ ∈ B(p∞, k),

we have
√
−1∂∂(vU − vU ′) = 0 and

√
−1∂∂(wU − wU ′) = 0 on U ∩ U ′. For t ∈ [0, Sk), put

(4.15) φU(t) = vU − (t− t′)wU + u(t)
∣∣∣
U
.

If t > 0 then (4.11) gives
√
−1∂∂φU(t) = ω(t), so

√
−1∂∂(φU(t) − φU ′(t)) = 0 on U ∩ U ′.

Let η ∈ Ωn−1,n−1(U ∩ U ′) be a smooth compactly supported form. Then

(4.16)

∫

X∞

(φU(t)− φU ′(t)) ∧
√
−1∂∂η =

∫

X∞

√
−1∂∂(φU(t)− φU ′(t)) ∧ η = 0.

Using the uniform convergence limt→0 u(t) = u(0), it follows that

(4.17)

∫

X∞

(φU(0)− φU ′(0)) ∧
√
−1∂∂η = 0,

so
√
−1∂∂(φU(0) − φU ′(0)) = 0 as a current. That is, φU(0) − φU ′(0) is pluriharmonic.

Similarly, if η has compact support in U and is strongly positive in the sense of [8, Chapter
3] then for t > 0, we have

(4.18)

∫

X∞

φU(t) ∧
√
−1∂∂η =

∫

X∞

√
−1∂∂φU(t) ∧ η =

∫

X∞

ω(t) ∧ η ≥ 0.

Passing to the limit as t → 0 gives

(4.19)

∫

X∞

φU(0) ∧
√
−1∂∂η ≥ 0.

Hence
√
−1∂∂φU(0) ≥ 0 in the sense of currents, i.e. φU(0) is plurisubharmonic.

From [7, Theorem 6], there is a bound on |∇φU(t)| in terms of K and the oscillation of
φU(t), the latter of which is uniformly bounded in t. Hence φU(t) is uniformly Lipschitz
in t, with respect to dg∞(t). This passes to the limit, to show that φU(0) is Lipschitz with
respect to d∞.
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Taking an open cover {Uα} of X∞ by such neighborhoods, we obtain such plurisubhar-
monic functions φα = φUα

(0) ∈ C(Uα) so that φα − φβ is pluriharmonic on Uα ∩ Uβ.

Fixing k, for t ∈ (0, Sk) put d̂t = e−βktdg∞(t). From (4.8), we know that d̂t is nonincreasing
in t. In addition, it follows from (4.8) that

(4.20) d̂t ≤ d∞ ≤ eβktd̂t + Ck

√
t.

Let Σ be a holomorphic disk in B(p∞, k). Then for t ∈ (0, Sk), the two dimensional

Hausdorff measure µ̂t on Σ coming from d̂t

∣∣∣
Σ
is e−2βkt times ω(t)

∣∣∣
Σ
=

√
−1∂∂φU(t)

∣∣∣
Σ
. It

follows that limt→0 µ̂t equals
√
−1∂∂φU(0)

∣∣∣
Σ
= ω∞

∣∣∣
Σ
.

We claim that limt→0 µ̂t also equals µ∞, the two dimensional Hausdorff measure coming

from d∞

∣∣∣
Σ
. To see this, let K ⊂ Σ be a compact set lying in some B(p∞, k). Then

µ∞(K) = limδ→0H
2
d∞,δ(K), where

(4.21) H2
d∞,δ(K) =

π

4
inf
∑

l

(diamd∞ Wl)
2,

and {Wl} ranges over finite covers of K by open sets Wl ⊂ Σ with diamd∞(Wl) < δ. The

definition of µ̂t is similar, using d̂t. Note that H2
d∞,δ(K) is nonincreasing in δ. Since d̂t is

monotonically nondecreasing as t → 0, with limit d∞, it follows from (4.21) that µ̂t(K)
is monotonically nondecreasing as t → 0, and limt→0 µ̂t(K) ≤ µ∞(K). To show equality,
suppose first that µ∞(K) < ∞. Given t, δ and ǫ, let {Wl} be a finite open cover of K with

(4.22)
π

4

∑

l

(
diam

d̂t
Wl

)2 ≤ H2
d̂t,δ

(K) + ǫ,

and diam
d̂t
Wl < δ for each l. Now

(4.23)
π

4

∑

l

(diamd∞ Wl)
2 ≤ π

4

∑

l

(
eβkt diam

d̂t
Wl + Ck

√
t
)2

and diamd∞ Wl < eβktδ + Ck

√
t for each l. Since {Wl} is finite, if t is small enough then

(4.24)
π

4

∑

l

(
eβkt diam

d̂t
Wl + Ck

√
t
)2

≤ π

4

∑

l

(
diam

d̂t
Wl

)2
+ ǫ.

Put δ′ = eβktδ + Ck

√
t. Then

(4.25) H2
d∞,δ′(K) ≤ H2

d̂t,δ
(K) + 2ǫ ≤ µ̂t(K) + 2ǫ ≤ lim

t′→0
µ̂t′(K) + 2ǫ.

As ǫ is arbitrary, this shows that H2
d∞,δ′(K) ≤ limt′→0 µ̂t′(K). A similar argument shows

that if µ∞(K) = ∞ then limt′→0 µ̂t′(K) = ∞. Hence µ∞ ≤ limt′→0 µ̂t′ .

(3). Given p ∈ X∞, let dp ∈ C(X∞) be the distance function from p. Given x ∈ X∞,
choose k ∈ Z+ so that x ∈ B(p∞, k/2). Let U ⊂ B(p∞, k/2) be a ball neighborhood of x
on which the potential function φU(0) ∈ C(U) is defined.
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Using the comparison maps in (4.7), we can assume that each Ricci flow gi(·) is defined
on B(p∞, k) × (0, Sk). As limi→∞ Ji = J∞ smoothly (say relative to g∞(t′) for a given
t′ ∈ (0, Sk)), there is a sequence of holomorphic maps µi : (U, J∞) → (B(p∞, k), Ji), for
large i, with {µi}∞i=1 smoothly approaching the identity map [13]. The pullback Ricci flows
{µ∗

i gi(·)}∞i=1 live on U and are all Kähler relative to the fixed complex structure J∞.
Let {pi}∞i=1 be a sequence of points, with pi ∈ Mi, that converges to p in the Gromov-

Hausdorff sense. We first show that limi→∞ µ∗
idpi = dp uniformly on U . To see this, we

apply (4.6) with t1 = 0 and t2 = t to get that for all q ∈ U , we have

(4.26) e−βktdgi(t)(q, µi(q)) ≤ di(q, µi(q)) ≤ dgi(t)(q, µi(q)) + Ck

√
t.

For fixed t, we have limi→∞ dgi(t)(q, µi(q)) = 0 uniformly in q. Taking t to zero, we conclude
from (4.26) that limi→∞ di(q, µi(q)) = 0 uniformly in q. Now

(4.27) |(µ∗
idpi)(q)−dp(q)| = |di(pi, µi(q))−d∞(p, q)| ≤ |di(pi, q))−d∞(p, q)|+|di(q, µi(q))|.

Using the Gromov-Hausdorff convergence of di to d∞, relative to the identity comparison
map, equation (4.27) gives that limi→∞ µ∗

idpi = dp uniformly on U .
We will show that there are local Kähler potentials {ηi} on Mi so that limi→∞ µ∗

i ηi =
φU(0) uniformly on U . Pulling back by µi, it suffices to construct such Kähler potentials
for the pullback metrics on U , which we again denote by gi, that are compatible with J∞.

Construct ui(·) as in the proof of part (2) of the proposition, except for the flow gi(·)
instead of g∞(·). From (4.10), we have

(4.28) ui(0)− u(0) = −
∫ t′

0

log
ωn(s)

ωn
i (s)

ds.

Then

(4.29) ‖ui(0)− u(0)‖C(U) ≤
∫ t′

0

∥∥∥∥log
ωn(s)

ωn
i (s)

∥∥∥∥
C(U)

ds.

Using (4.13) and dominated convergence, it follows that limi→∞ ui(0) = u(0) uniformly on
U .

Recall the functions vU and wU constructed in part (2), using the ∂∂-lemma. Con-
struct functions vi and wi analogously for the metric gi. From the smooth convergence
of {gi(t′)}∞i=1 to g∞(t′), and the explicit proof of the ∂∂-lemma [8, Lemma I.(3.29) and
Proposition III.(1.19)], we can assume that {vi}∞i=1 converges smoothly to v∞, and {wi}∞i=1

converges smoothly to w∞. Put

(4.30) φi(0) = vi + t′wi + ui(0).

By construction, φi(0) is a Kähler potential for ωi on U or, more precisely, for µ∗
iωi. We have

shown that limi→∞ φi(0) = φU(0) uniformly on U . Finally, for large i, put ηi = (µ−1
i )∗φi(0).

Then ηi is a smooth local Kähler potential for gi on µi(U).
We momentarily exclude the case when K > 0 and diam(X∞, d∞) = π√

2K
. We know

that ηi − d2K,pi
/2 is plurisubharmonic. As

(4.31) lim
i→∞

µ∗
i

(
ηi − d2K,pi

/2
)
= φU(0)− d2K,p/2
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uniformly on U , it follows that φU(0)− d2K,p/2 is plurisubharmonic on U .

If K > 0 and diam(X∞, d∞) = π√
2K

then we use the fact that BK ≥ λ2K for λ ∈ (0, 1),

and diam(X∞, d∞) < π

λ
√
2K

, so φU(0) − d2
λ2K,p

/2 is plurisubharmonic on U . We take the

limit as λ → 1, as in the proof of Proposition 3.6, to again conclude that φU(0) − d2K,p/2
is plurisubharmonic on U .

Given the holomorphic disk Σ ∈ X∞. we know that the restriction of φU(0)− d2K,p/2 to
Σ ∩ U is subharmonic. Hence

(4.32)
√
−1∂∂d2K,p

∣∣∣
Σ∩U

/2 ≤
√
−1∂∂φU(0)

∣∣∣
Σ∩U

= µ∞

∣∣∣
Σ∩U

.

Then

(4.33)
√
−1∂∂d2K,p

∣∣∣
Σ
/2 ≤ µ∞

globally, as measures on Σ.
Given ǫ ∈

(
0, 1

10

)
, define fǫ : D

2 → R by

(4.34) fǫ
(
reiθ
)
=





log(ǫ) + ǫ if 0 ≤ r ≤ ǫ,

log(r) + ǫ if ǫ ≤ r ≤ e−ǫ,

0 if e−ǫ ≤ r < 1.

Then log(|z|) ≤ fǫ(z) ≤ 0, and
√
−1∂∂fǫ exists as a measure. We have

∫

Σ

(
√
−1∂∂fǫ)d

2
K,p =

1

2

∫ 2π

0

∫ 1

0

(∂r(r∂rfǫ)) d
2
K,p(r, θ) dr dθ(4.35)

=
1

2

∫ 2π

0

∫ 1

0

(δǫ(r)− δe−ǫ(r)) d2K,p(r, θ) dr dθ

=
1

2

∫ 2π

0

(
d2K,p(ǫ, θ)− d2K,p

(
e−ǫ, θ

))
dθ.

Let f̂ǫ ∈ C∞
c (D2) be a smooth nonpositive approximation to fǫ, obtained by rounding

out the corners at r = ǫ and r = e−ǫ. Since f̂ǫ is nonpositive, equation (4.33) gives

(4.36)
1

2

∫

Σ

f̂ǫ ·
√
−1∂∂d2K,p ≥

∫

Σ

f̂ǫdµ∞.

Passing to a limit as f̂ǫ approaches fǫ, it follows from (4.35) that

(4.37)
1

4

∫ 2π

0

(
d2K,p(ǫ, θ)− d2K,p

(
e−ǫ, θ

))
dθ ≥

∫

Σ

fǫdµ∞ ≥
∫

Σ

log |z| dµ∞.

Taking the limit as ǫ → 0 gives

(4.38)
π

2
d2K,p(0)−

1

4

∫ 2π

0

d2K,p

(
eiθ
)
dθ ≥

∫

Σ

log |z| dµ∞,
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or

(4.39) d2K,p(0) ≥
1

2π

∫ 2π

0

d2K,p

(
eiθ
)
dθ +

2

π

∫

Σ

log |z| dµ∞.

This proves the proposition. �

Remark 4.40. In the collapsing case, i.e. if limi→∞ vol(B(pi, 1)) = 0, there is no direct
analog of Proposition 4.1 since the limit space need not be Kähler, even if it is smooth.
For example, a sequence of flat 2-tori can converge in the Gromov-Hausdorff sense to a
circle.

If there are uniform two-sided sectional curvature bounds then one can take a limit in the
sense of étale groupoids [31, Section 5], even in the collapsing case. The conclusion is that
there is a W 2,p-regular Kähler metric on the unit space of the groupoid, with BK ≥ K.

Natural examples in which there is collapsing with a Kähler limit space arise in the
long-time behavior of the Kähler-Ricci flow.

As a consequence of Proposition 4.1, we see that if a noncollapsed pointed Gromov-
Hausdorff limit of a sequence of Kähler manifolds happens to be a smooth Riemannian
manifold, and if the Kähler manifolds in the sequence have BK ≥ K, then the limit is a
Kähler manifold with BK ≥ K.

Corollary 4.41. Let {(Mi, pi, gi)}∞i=1 be a sequence of pointed n-dimensional complete
Kähler manifolds with BK ≥ K, that converges in the pointed Gromov-Hausdorff topology
to a smooth pointed n-dimensional Riemannian manifold (M∞, p∞, g∞). Then (M∞, g∞)
is a Kähler manifold with BK ≥ K.

Proof. This follows from Propositions 3.15 and 4.1. �

As an example of what the limits in Proposition 4.1 look like, consider the case of two
real dimensions. A smooth oriented surface with a Riemannian metric is also a Kähler
manifold. A lower bound on the sectional curvature is equivalent to a lower bound on
the holomorphic bisectional curvature. Hence one would expect that oriented surfaces
with lower curvature bounds, in the Alexandrov sense, could also be limits in the sense of
Proposition 4.1.

Proposition 4.42. Let (X, d) be a compact two dimensional length space, with Alexandrov
curvature bounded below by 2K. It follows that X is a topological manifold; assume that it
is oriented. Then X satisfies the conclusions of Proposition 4.1.

Proof. One knows that X acquires a conformal structure [38, Theorem 7.1.2]. From [39],
there is a smooth Ricci flow g(·) on X × (0, T ], preserving the conformal structure, so that
the sectional curvature of g(t) is bounded below by 2K, and limt→0(X, g(t)) = (X, d) in
the Gromov-Hausdorff topology. Hence the proof of Proposition 4.1 applies. �

Remark 4.43. The examples in Proposition 4.42 show the sharpness of the regularity esti-
mates in Proposition 4.1. Consider a conical metric on R2 given by ds2 = r−2α(dr2+r2dθ2),
with α ∈ (0, 1). A Kähler potential is φ = const. r2−2α, which is only Hölder-continuous
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with respect to the standard metric on R2. On the other hand, the distance function from
the origin is d0 = const. r1−α, so φ is Lipschitz-regular with respect to d.

5. Singular spaces with lower bounds on holomorphic bisectional

curvature

In Section 4 the underlying topological spaces were manifolds, both in the noncollapsing
sequences and in the limit spaces. In analogy with Alexandrov geometry, it is natural to
ask if there is a notion for singular spaces of a lower bound on the holomorphic bisectional
curvature.

5.1. Metric Kähler spaces. In the proof of Proposition 4.1, an important role was played
by local Kähler potentials. This fits well with the notion of Kähler spaces, which are defined
using local potentials on possibly singular complex spaces.

Let X be a reduced complex space of pure dimension n [8, Chapter 2.5]. For each x ∈ X ,
there is a neighborhood Ux of x and an embedding ex : Ux → CNx so that e(Ux) is the zero
set of a finite number of analytic functions defined on an open set Vx ⊂ C

Nx .
If X1 and X2 are complex spaces then a map F : X1 → X2 is holomorphic if for each

x ∈ X1, there are such Ux and UF (x), with F (Ux) ⊂ UF (x), so that the composite map

eF (x) ◦F
∣∣∣
Ux

: Ux → C
NF (x) equals F̂ ◦ex, where F̂ : Vx → C

NF (x) is holomorphic [12, Section

1.3].
A function φ on Ux is plurisubharmonic if it is the pullback under ex of a plurisubhar-

monic function on Vx ⊂ C
Nx . A pluriharmonic function on Ux is defined similarly. If X is

normal and φ ∈ C(Ux) is plurisubharmonic on Ux ∩ Xreg then it is plurisubharmonic on
Ux [10].

As in [9, 33], a (semi)-Kähler space consists of a complex space with a covering {Uj}∞j=1

by such open sets, along with continuous plurisubharmonic functions φj on Uj , so φj − φj′

is pluriharmonic on each Uj ∩ Uj′ 6= ∅. Two such collections {(Uj , φj)} and {(Ûk, φ̂k)} are

equivalent if φj − φ̂k is pluriharmonic on each Uj ∩ Ûk 6= ∅. (In the papers [9, 33] the
functions φj are taken to be smooth and strictly plurisubharmonic, but there is clearly
some flexibility in the definitions.)

We wish to define a metric Kähler space, meaning a Kähler space with a metric d.
Naturally, we want some compatiblity between the Kähler space structure and the metric
structure. If the Kähler potentials are smooth then there is a corresponding Riemannian
metric and one can require that d be the corresponding length metric. If the Kähler
potentials are only continuous then it is not clear how to construct a length metric; see,
however, [24, Theorem 1.3].

An indication of a reasonable compatibility condition for us comes from the use of dA in
(3.16). In the smooth setting dA is both the restriction of the Kähler form to a holomorphic
disk, and its two dimensional Hausdorff measure. Again in the smooth setting, the complex
structure and the two dimensional Hausdorff measure determine the Kähler form and the
Riemannian metric. Based on this, we make the following definition.
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Definition 5.1. A metric Kähler space is a Kähler space X equipped with a metric d
that induces the topology of the complex space X, so that if Σ is an embedded holomorphic

disk then for all j,
√
−1∂∂φj

∣∣∣
Σ

equals the two dimensional Hausdorff measure on each

Σ ∩ Uj 6= ∅.
We now define a notion of “BK ≥ K” for metric Kähler spaces, which we put in quotes

in order to distinguish it from the condition BK ≥ K for smooth Kähler manifolds.

Definition 5.2. A metric Kähler space X has “BK ≥ K” if for every p ∈ X and every
j, φj − d2K,p/2 is plurisubharmonic on Uj.

If S is a subset of X and dS denotes the distance to S then we define dK,S in terms of
dS as in (1.1). The next lemma will be used in Section 6.

Lemma 5.3. If X has “BK ≥ K” then for any S ⊂ X, the function φj − d2K,S/2 is
plurisubharmonic on Uj.

Proof. As dS = infp∈S dp, it follows that dK,S = infp∈S dK,p and φj − d2K,S/2 = supp∈S(φj −
d2K,p/2). Now the supremum of a family of plurisubharmonic functions, when upper semi-

continuous, is also plurisubharmonic [8, Chapter 1, Theorem 5.7]. As φj − d2K,S/2 is con-
tinuous, it is hence plurisubharmonic. �

We now show the essential equivalence between “BK ≥ K” and (3.16).

Proposition 5.4. If X has “BK ≥ K” then for all embedded holomorphic disks φ in X,
equation (3.16) holds. If X is normal then the converse is true.

Proof. If X has “BK ≥ K” then by [10, Theorem 5.3.1], φj − d2K,p/2 is subharmonic on

Uj ∩Σ. Hence
√
−1∂∂dK,p

∣∣∣
2

Σ
/2 ≤ dA globally on Σ. As in the proof of Proposition 4.1(3),

it follows that (3.16) holds.
Suppose that X is normal and (3.16) holds. Taking embedded holomorphic disks Σ in

Uj ∩Xreg, it follows that φj − d2K,p/2 is plurisubharmonic on Uj ∩Xreg. As φj − d2K,p/2 is
continuous on Uj , it is then also plurisubharmonic on Uj. �

We show that if a Kähler orbifold has BK ≥ K, in the sense of curvature tensors, then
the underlying length space has “BK ≥ K”. For a summary of the relevant topology and
geometry of orbifolds, we refer to [19, Section 2].

Proposition 5.5. If O is a smooth effective Kähler orbifold with BK ≥ K, in terms of
the curvature tensor on local coverings, then the underlying topological space |O| with the
length metric has “BK ≥ K”.

Proof. Given x ∈ |O|, let Gx be its local group. There is a local model (Û , Gx) around

x, where Û is an open subset of Cn containing 0, and Gx acts effectively by holomorphic

isometries on Û while fixing 0. Put U = Û/Gx, a neighborhood of x, with projection

π : Û → U . By shrinking Û if necessary, we can assume that there is a Kähler potential φ̂

on it. Averaging φ̂ over Gx, we can assume that it is Gx-invariant. Then there is a unique
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φ ∈ C(U) with π∗φ = φ̂. This gives |O| the structure of a Kähler space. With the natural
length space structure on |O|, it becomes a metric Kähler space.

The regular subset |O|reg consists of the points with trivial local group. It is convex in
the sense that if x1, x2 ∈ |O|reg then any minimizing geodesic in |O| from x1 to x2 lies in
|O|reg, as follows for example from [37, Corollary of Theorem 1.2(A)]. Given p ∈ |O|reg
and a local potential φ defined on an open set U , the convexity and the fact that BK ≥ K
on |O|reg implies that φ− d2K,p/2 is plurisubharmonic on U ∩ |O|reg. Since |O| is a normal

complex space [4], it follows that φ− d2K,p/2 is plurisubharmonic on U .
For any p ∈ |O|, we can find a sequence {pi} in |O|reg converging to p. As each φ −

d2K,pi
/2 is plurisubharmonic on U , we can pass to the limit and deduce that φ − d2K,p/2 is

plurisubharmonic on U . Hence |O| has “BK ≥ K”. �

Remark 5.6. Proposition 5.5 shows that quotient singularities can occur as singularities of
metric Kähler spaces with a lower bound on the holomorphic bisectional curvature. We do
not know what other singularities can occur.

5.2. Complex Gromov-Hausdorff convergence. We now give a notion of Gromov-
Hausdorff convergence that is adapted to metric Kähler spaces. One’s first inclination may
be to require the Gromov-Hausdorff approximants to be holomorphic. However, requiring
this globally would be too restrictive. Instead we consider Gromov-Hausdorff approximants
in the usual sense, which in turn can be locally approximated by holomorphic maps.

Definition 5.7. A collection {(Xi, pi, di)}∞i=1 of pointed complete metric Kähler spaces
converges to a pointed complete metric Kähler space (X∞, p∞, d∞) in the pointed complex
Gromov-Hausdorff topology if for every k ∈ Z

+, there is a covering of B(p∞, k) by bounded
open sets {U∞,j} and associated plurisubharmonic functions {φ∞,j} so that for every ǫ > 0,
if i is sufficiently large then there are

• A pointed ǫ-Gromov-Hausdorff approximation hi : B(p∞, k) → B(pi, k) and
• Holomorphic maps ri,j : U∞,j → Mi that are ǫ-close to hi on U∞,j ∩ B(p∞, k),
so that ri,j(U∞,j) is contained in a set Vi,j with an associated plurisubharmonic
function φi,j, and

• r∗i,jφi,j is uniformly ǫ-close to φ∞,j.

Note that in Definition 5.7, the limit space can have lower dimension than the ap-
proximants. In using Definition 5.7, we allow ourselves to pass to equivalent choices of
{(Vi,j, φi,j)} on Mi.

We now show that the “BK ≥ K” condition is preserved under complex Gromov-
Hausdorff limits.

Proposition 5.8. If limi→∞(Xi, pi, di) = (X∞, p∞, d∞) in the pointed complex Gromov-
Hausdorff topology, and each (Xi, di) has “BK ≥ K”, then (X∞, p∞) has “BK ≥ K”.

Proof. Fix k. Given p ∈ X∞, let {mi} be points that approach it relative to the Gromov-
Hausdorff convergence. Given U∞,j as in Definition 5.7, we have

(5.9) lim
i→∞

r∗i,j
(
φi,j − d2K,mi

/2
)
= φ∞,j − d2K,p/2
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in L∞(U∞,j). As ri,j is holomorphic, it follows that φ∞,j − d2K,p/2 is plurisubharmonic. �

Finally, in the setting of Proposition 4.1, a subsequence converges in the complex
Gromov-Hausdorff sense.

Proposition 5.10. Let {(Mi, pi, gi)}∞i=1 be a sequence of pointed n-dimensional complete
Kähler manifolds with BK ≥ K. Suppose that there is some v0 > 0 so that for all i,
vol(B(pi, 1)) ≥ v0. Then a subsequence converges in the pointed complex Gromov-Hausdorff
topology.

Proof. This follows from the proof of part (3) of Proposition 4.1. �

6. Tangent cones

In this section, we prove an analog of Remark 2.4(3).

6.1. Tangent cones as Kähler cones. We first characterize tangent cones of noncol-
lapsed limit spaces.

Proposition 6.1. Let (X∞, p∞, d∞) be a limit space from Proposition 4.1. Let Tp∞X∞ be
a tangent cone of X∞ at p∞. Then Tp∞X∞ is a Kähler cone that is biholomorphic to C

n,
with r2/2 as a Kähler potential. It has “BK ≥ 0”.

Proof. As X∞ is a noncollapsed limit of Riemannian manifolds with a uniform lower
Ricci bound, Tp∞X∞ is a metric cone of the same dimension whose link has diameter
at most π [6, Theorem 5.2]. After passing to a subsequence, we can write (Tp∞X∞, 0) =
limi→∞(Mi, pi, µ

2
i gi), a pointed Gromov-Hausdorff limit, where limi→∞ µi = ∞. Hence

(Tp∞X∞, 0) is a noncollapsed pointed limit of manifolds with the lower bound on BK
going to zero. Proposition 4.1 implies that it satisfies (3.16) with K = 0.

Since a neighborhood of x∞ ∈ X∞ is biholomorphic to a ball in C
n, and Tp∞X∞ is a

blowup limit, it makes sense that it should be biholomorphic to Cn. To show this, we first
construct the complex structure on Tp∞X∞, using the Kähler-Ricci flow.

By definition, (Tp∞X∞, 0) = limk→∞ (X∞, p∞, λkd∞) as a pointed Gromov-Hausdorff
limit, where limk→∞ λk = ∞. Let g∞(·) be the Kähler-Ricci flow constructed in the proof
of Proposition 4.1, with t → 0 limit given by (X∞, d∞). The estimates (4.3)-(4.5) are
valid for g∞(·). Define the parabolically rescaled Ricci flows g∞,k(u) = λ2

kg∞(λ−2
k u). After

passing to a subsequence of the k’s, we can assume that there is a pointed Cheeger-Hamilton
limit

(6.2) (Tp∞X∞, 0, g∞,∞(·)) = lim
k→∞

(X∞, p∞, g∞,k(·))

on the time interval (0,∞). Letting B(0, l) denote the l-ball around the vertex 0 in Tp∞X∞,
in taking the limit there are implicit embeddings σk,l : B(0, l) → X∞ for large k so that
g∞,∞(·) = limk→∞ σ∗

k,lg∞,k(·) on [l−1, l]× B(0, l). In particular, σk,l decreases distances by
approximately λk, when going from Tp∞X∞ to (X∞, d∞).

As in the proof of Proposition 4.1, after passing to a subsequence, the pullbacks σ∗
k,lJ∞

converge, as k → ∞, to a complex structure on B(0, l) (say relative to the metric g∞,∞(1)).
Applying a diagonal argument, we obtain the complex structure J∞,∞ on Tp∞X∞.
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Let {za}na=1 be local complex coordinates around p∞ for X∞. Note that
∑n

a=1 |za|2 is
strictly plurisubharmonic near p∞. Put zak,l = σ∗

k,lz
a, which for large k is a function on

B(0, l) that is holomorphic relative to σ∗
k,lJ∞ and harmonic relative to σ∗

k,lg∞,k(1). After

a linear transformation, we can assume that
∫
B(0,1)

zak,lz
b
k,l dµ = δab, where dµ is the n-

dimensional Hausdorff measure on Tp∞X∞.
After passing to a subsequence of k’s, there is a limit za∞,l = limk→∞ zak,l, where {za∞,l}na=1

are holomorphic functions on B(0, l) with
∫
B(0,1)

za∞,lz
b
∞,ldµ = δab. By a diagonal argument,

we obtain independent holomorphic functions {za∞}na=1 on Tp∞X∞. Let F : Tp∞X∞ → Cn

be given by F (q) = {za∞(q)}na=1. One sees by approximation that F is a proper holomorphic
map of degree one, and the level sets of |F |2 are Stein domains. The preimage F−1(w) of
a point w ∈ C

n is a compact subvariety in Tp∞X∞, so by the Stein property it is a finite
set of points. It now follows from [11, Proposition 14.7 on p. 87] that F is biholomorphic.
Proposition 5.4 implies that Tp∞X∞ has “BK ≥ 0”.

To see that r2/2 is a Kähler potential, we use an argument similar to [27, Section 4]. Let

(Mi, pi, gi) be a sequence as in the beginning of the proof. Put g̃i = µ2
i gi and d̃pi = µidpi.

Given 0 < a < b < ∞ and ǫ > 0, by [5, Proposition 4.38, Corollary 4.42 and Corollary
4.83] there is a smooth approximate distance-squared function ρi for (Mi, pi, g̃i), defined

on the metric annulus d̃−1
pi
(a, b), so that

‖ρi − d̃2pi‖2L2 = o(i0),(6.3)

‖∇̃ρi − ∇̃d̃2pi‖2L2 = o(i0),

‖H̃essρi −
1

n
(△̃ρi)g̃i‖L1 = o(i0).

From [5, (4.25) and Proposition 4.35], we also have

(6.4) ‖△̃ρi − n‖L1 = o(i0).

Hence

(6.5) ‖H̃essρi − g̃i‖L1 = o(i0).

In particular,

(6.6) ‖
√
−1∂∂ρi − ω̃i‖L1 = o(i0).

From Proposition 5.10, after passing to a subsequence, limi→∞(Mi, pi, g̃i) = (Tp∞X∞, 0)
in the pointed complex Gromov-Hausdorff topology. It follows from (6.6) that if φ∞ is a

local Kähler potential for Tp∞X∞, supported away from 0, then
√
−1∂∂

(
r2

2
− φ∞

)
= 0 as

a current. Hence r2

2
is a Kähler potential for Tp∞X∞ − 0.

There is some continuous Kähler potential φ0 defined in a neighborhood U0 of 0. Then
r2

2
− φ0 is continuous on U0 and pluriharmonic on U0 − 0. Thinking of it as a function in

a neighborhood of 0 ∈ Cn, it follows that r2

2
− φ0 extends to a continuous pluriharmonic
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function on U0 (which is then actually smooth). Hence r2

2
is a Kähler potential on Tp∞X∞.

�

6.2. Curvature of the CP n−1 quotient. We denote the generator of radial rescaling
on Tp∞X∞ by r∂r. From [29, Proof of Proposition 15], r∂r and J∞,∞(r∂r) generate one-
parameter groups that are holomorphic on an open dense subset of Cn ∼= Tp∞X∞. The one
parameter group {σt} generated by J∞,∞(r∂r) acts isometrically on Tp∞X∞ and preserves
level sets of the distance function d0 from the vertex p∞. Following terminology about
Sasaki manifolds, we say that the structure is regular if {σt} comes from a free S1-action.
Then the quotient of Tp∞X∞ by the group action is a cone over a manifold.

In order to put ourselves in the setting of a regular structure, we assume that d0 is a
radially homogeneous function on Cn ∼= Tp∞X∞. That is, letting ζ : Cn − 0 → CP n−1

denote the quotient map, we assume that there are a number δ > 0 and a function H ∈
C(CP n−1) so that

(6.7) d0(z) = |z|δH(ζ(z))

on Cn − 0. (As an example, this is the case for a two dimensional cone.) Then

(6.8) r∂r = δ−1

(
n∑

α=1

zα∂zα +

n∑

α=1

zα∂zα

)

and {σt} is the Hopf action on the level sets of d0. The quotient of the link d−1
0 (1) = S2n−1

by the Hopf action is CP n−1, with a possibly nonstandard quotient metric dCPn−1.
Let T be the tautological complex line bundle over CP n−1, whose fibers are lines through

the origin in Cn. The complement of the zero section in T is biholomorphic to Cn − 0. We
will also let ζ : T → CP n−1 denote the projection map from T to the base. Consider a local
holomorphic trivialization of T and let w be the fiber coordinate, with w = 0 corresponding
to the vertex 0 ∈ Tp∞X∞. Then d20 = h|w|2δ for some locally defined continuous function
h on the base. We put a Kähler space structure on CP n−1 by saying that 1

2
log h is a local

potential.

Proposition 6.9. (CP n−1, dCPn−1) is a metric Kähler space with “BK ≥ 2”.

Proof. Let π : S2n−1 → CP n−1 be the quotient map. Fix z′ ∈ CP n−1 and let S ⊂ Cn be
the corresponding complex line.

Lemma 6.10. Let (r, s) denote a point in the metric cone Tp∞X∞ where r ≥ 0 and
s ∈ S2n−1. Put z = π(s). Then d((r, s), S) = r sin (dCPn−1(z, z′)).

Proof. By the definition of the metric cone,

(6.11) d((r, s), (r′, s′)) =
√
r2 + (r′)2 − 2rr′ cos (dS2n−1(s, s′)).

Minimizing over r′ gives

(6.12) d((r, s), S) = r min
s′∈S∩S2n−1

sin (dS2n−1(s, s′)) .

As the S1-action is isometric, the lemma follows from the definition of the quotient metric.
�
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From Lemma 5.3, we know that

(6.13) φ− d2S/2 =
1

2
r2ζ∗ cos2 d2z′

is plurisubharmonic on Tp∞X∞ − 0 ∼= C
n − 0.

Working locally on CP n−1 and putting

Dw = δ dw + wh−1∂h,(6.14)

Dw = δ dw + wh−1∂h,

Ω =
√
−1∂∂ log h,

one finds

∂r2 = |w|2δhw−1Dw(6.15)

∂r2 = |w|2δhw−1Dw,
√
−1∂∂r2 =

√
−1|w|2(δ−1)hDw ∧Dw + |w|2δhΩ

as currents.
To show that (CP n−1, dCPn−1) is a metric Kähler space, it remains to show that if

Σ is a holomorphic disk in the domain of h then 1
2

√
−1∂∂ log h

∣∣∣
Dom(h)∩Σ

equals the two

dimensional Hausdorff measure dA on Dom(h) ∩ Σ. Put Γ = ζ−1(Σ), a four dimensional
submanifold of Tp∞X∞ − 0. Let H denote the four dimensional Hausdorff measure on Γ.
As in the proof of Proposition 6.1 there is a Kähler-Ricci flow whose pointed Gromov-
Hausdorff limit as t → 0 is Tp∞X∞. Let Ht be the four dimensional Hausdorff measure on

Γ coming from dt

∣∣∣
Γ
. It equals 1

2

(√
−1∂∂φ(t)

)2
, where φ(t) is a local Kähler potential for

the flow. Using [8, Chapter 3.3] and proceeding as in the proof of Proposition 4.1(2), it

follows that limt→0Ht =
1
2

(√
−1∂∂r2/2

)2
. Also as in the proof of Proposition 4.1(2), we

have limt→0Ht = H. Hence

(6.16) H =
1

2

(√
−1∂∂r2/2

)2
=

1

4

√
−1|w|4δ−2h2Dw ∧Dw ∧ Ω

as a measure on Γ.
From (6.15), the area form on a preimage of ζ is

(6.17)
1

2

√
−1δ2|w|2(δ−1)hdw ∧ dw.

Since the area of a level set of w is proportionate to h|w|2δ, doing a fiberwise integration
on Γ gives

(6.18)

∫

|w|≤1

H =

(∫

B2

δ2|z|4δ−2 · 1
2

√
−1dz ∧ dz

)
h2dA.
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On the other hand, from (6.16),

(6.19)

∫

|w|≤1

H =

(∫

B2

δ2|z|4δ−2 · 1
2

√
−1dz ∧ dz

)
· 1
2
h2Ω.

Thus dA = 1
2
Ω on Dom(h)∩Σ. Since Ω equals

√
−1∂∂ log h, this shows that (CP n−1, dCPn−1)

is a metric Kähler space.
Finally, put C = cos dz′ ∈ C(CP n−1), which we will identify with its pullback to T , and

put

DCw = Dw + wC−2∂C2,(6.20)

DCw = Dw + wC−2∂C2.

One finds
√
−1C−2∂∂(r2C2) =

√
−1|w|2(δ−1)hDCw ∧DCw +(6.21)

|w|2δh
(
Ω+

√
−1C−2∂∂C2 −

√
−1C−4∂C2 ∧ ∂C2

)
,

as equalities of currents. Hence from (6.13), it follows that

(6.22) Ω +
√
−1C−2∂∂C2 −

√
−1C−4∂C2 ∧ ∂C2 ≥ 0,

or

(6.23) −
√
−1∂∂ logC2 ≤ Ω.

Equivalently, 1
2
log h − d22,z′/2 is plurisubharmonic, where d22,z′ is defined in (1.1), which

means that (CP n−1, dCPn−1) has “BK ≥ 2”. �
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