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Abstract

Many inference problems in structured prediction can be modeled as maximizing a score function
on a space of labels, where graphs are a natural representation to decompose the total score into a
sum of unary (nodes) and pairwise (edges) scores. Given a generative model with an undirected
connected graph G and true vector of binary labels y, it has been previously shown that when G
has good expansion properties, such as complete graphs or d-regular expanders, one can exactly
recover y (with high probability and in polynomial time) from a single noisy observation of each
edge and node. We analyze the previously studied generative model by Globerson et al. [22] under a
notion of statistical parity. That is, given a fair binary node labeling, we ask the question whether it is
possible to recover the fair assignment, with high probability and in polynomial time, from single
edge and node observations. We find that, in contrast to the known trade-offs between fairness and
model performance, the addition of the fairness constraint improves the probability of exact recovery.
We effectively explain this phenomenon and empirically show how graphs with poor expansion
properties, such as grids, are now capable to achieve exact recovery with high probability. Finally,
as a byproduct of our analysis, we provide a tighter minimum-eigenvalue bound than that of Weyl’s
inequality.

1 Introduction

Structured prediction consists of receiving a structured input and producing a combinatorial structure such as trees,
clusters, networks, sequences, permutations, among others. From the computational viewpoint, structured prediction is
in general considered intractable because of the size of the output space being exponential in the input size. For instance,
in image segmentation tasks, the number of admissible segments is exponential in the number of pixels. In this work,
we focus on the inference problem, where a common approach is to exploit local features to infer a global structure.

Consider an undirected graph G = (V,E). In graphical models, specifically in Markov random fields, one generally
tries to find a solution to the following optimization problem:

max
y∈M|V |

∑
v∈V,m∈M

cv(m)1[yv = m] +
∑

(u,v)∈E,m1,m2∈M

cu,v(m1,m2)1[yu = m1, yv = m2] , (1)

whereM is the set of possible labels, cu(m) is the cost or potential of assigning label m to node v, and cu,v(m,n) is
the cost or potential of assigning m and n to the neighbors u, v respectively. This type of inference problem arises in
the context of community detection, statistical physics, sociology, among others. Only a few particular cases of problem
1 are known to be solvable in polynomial time. To name a few, [36] and [12] showed that problem 1 can be solved
exactly in polynomial time for planar ising models and graphs with low treewidth, respectively.

As the use of machine learning in decision making increases in our society [30], researchers have shown interest in
developing methods that can mitigate unfair decisions or avoid bias amplification. With the existence of several notions
of fairness [20, 38, 7, 17], and some of them being simultaneously incompatible to be achieved [31], the first step is to
define the notion of fairness, which is commonly dependent upon the task on hand. For our purposes, we will adapt
the notion of statistical parity and apply it to the exact inference problem. Several notions of statistical parity have
been studied in prior works [3, 27, 10], where, in general, statistical parity enforces a predictor to be independent of
the protected attribute. In particular, in regression, [3] relaxed the principle of statistical parity and studied ε-away
difference of marginal CDF and conditional CDF on the protected attribute. Finally, unlike the works on supervised
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learning [26, 33, 2], the work of [14] is among the first to adapt the disparate impact doctrine (related to statistical
parity) to unsupervised learning, specifically, to the clustering problem.

We study a similar generative model that has been previously used in [22, 19, 8, 1], and whose objective follows a
similar form of problem 1, with the addition of a fairness constraint. While [22, 19] studied the regime of approximate
inference, [1, 8] studied the scenario of exact inference. The latter authors showed that it suffices to have graphs with
high expansion properties to efficiently achieve exact recovery with high probability. However, graphs such as grids
remained evasive to exact recovery due to their poor expansion properties.

Contributions. We propose a generative model, similar to that of [22], where the true labeling is fair, and ask the
following question: Will the addition of a fairness constraint in the inference problem have any effect on the probability
of exact recovery? Contrary to the intuitive thinking that it should have a negative impact due to the several results
on inherent trade-offs of fairness and performance [40, 31], we show that the addition of a fairness constraint, in this
case a notion of statistical parity, can help increasing the probability of exact recovery. We are able to formally explain
why this phenomenon occurs, and also show empirical evidence to support our findings. Finally, as a byproduct of our
analysis, we provide a tighter eigenvalue bound than that of Weyl’s inequality for the case of the minimum eigenvalue.

2 Notation and problem formulation

Vectors and matrices are denoted by lowercase and uppercase bold faced letters respectively (e.g., a,A), while scalars
are in normal font weight (e.g., a). For a vector a, and a matrixA, their entries are denoted by ai and Ai,j respectively.
Indexing starts at 1, with Ai,: and A:,i indicating the i-th row and i-th column of A respectively. The eigenvalues
of a n× n matrix A are denoted as λi(A), where λ1 and λn correspond to the minimum and maximum eigenvalue
respectively. Finally, the set of integers {1, . . . , n} is represented as [n].

Statistical parity. In few words, statistical parity enforces a predictor to be independent of the protected attributes.
While the definition has been mostly used in supervised learning, in this work we adapt this notion of fairness to an
inference problem. Specifically, we say that given a vector attribute a, the assignment y is fair under statistical parity if
y>a = 0. In particular, we will consider yi ∈ {−1,+1} as described later. That is, we would like the partitions (or
clusters) to have the same sum of the attribute a.1

Problem definition. We aim to predict a vector of n node labels ŷ = (ŷ1, . . . , ŷn)>, where ŷi ∈ {+1,−1}, from
a set of observations X and c, where X and c correspond to noisy measurements of edges and nodes respectively.
These observations are assumed to be generated from a fair ground truth labeling y by a generative process defined via
an undirected connected graph G = (V,E), an edge noise p ∈ (0, 0.5), and a node noise q ∈ (0, 0.5). For each edge
(u, v) ∈ E, we have a single independent edge observation Xu,v = yuyv with probability 1− p, and Xu,v = −yuyv
with probability p. While for each edge (u, v) /∈ E, the observation Xu,v is always 0. Similarly, for each node u ∈ V ,
we have an independent node observation cu = yu with probability 1− q, and cu = −yu with probability q. In addition,
we are given a set of attributes A = {a1, . . . ,ak} such that ai ∈ Rn and 〈ai,y〉 = 0 for all i ∈ [k], i.e., for each i we
have

∑
j|yj=1(ai)j =

∑
j|yj=−1(ai)j . In other words, we say that the ground truth labeling y is fair under statistical

parity with respect to the set of attributes A. Thus, we have a known undirected connected graph G, an unknown fair
ground truth label vector y ∈ {+1,−1}n, noisy observationsX ∈ {−1, 0,+1}n×n and c ∈ {−1,+1}n, a set A of k
attributes ai ∈ Rn, and our goal is to find sufficient conditions for which we can predict, in polynomial time and with
high probability, a vector label ŷ ∈ {−1,+1}n such that ŷ = y.

Given the generative process, our prediction ŷ is given by the following combinatorial problem:

ŷ = arg max
y

1

2
y>Xy + α · c>y (2)

subject to 〈ai,y〉 = 0, ∀i ∈ [k]

yi = ±1, ∀i ∈ [n].

where α = log 1−q
q /log 1−p

p , intuitively, this value captures the amount of penalty for the linear term based on the noise
parameters, and is motivated by maximum likelihood estimation [22].
Remark 1. The optimization problem 2 is clearly NP-hard to compute in general. For instance, consider the case
where k = 1, and (a1)j is a positive integer for all j ∈ [n], i.e., there is a single attribute with positive entries. Also,

1Note that the elements of the attribute can already be divided by the size of the clusters they belong to, in which case it would
represent equal averages. Here we make no assumptions on the elements of a.
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letX = 0 and c = 0, that is, any vector y will attain the same objective value. Then, the problem reduces to find an
assignment y such that 〈a1,y〉 = 0, which is equivalent to the known NP-complete partition problem. Another example
is the case when a1 = 1, that is, a feasible solution has to have the same number of positive and negative labels. Thus,
ifX is such that it encourages minimizing the number of edges between clusters, the problem reduces to the minimum
bisection problem, which is known to be NP-complete [21]. Finally, consider also the case in which k = 0, then it is
known that when the graph G is a grid, the problem is NP-hard [5].

In the next section, we relax problem 2 to a polynomial problem, and formally show how the addition of some fairness
constraints such as that of statistical parity can help the exact recovery rate of previously known results [1, 8].

3 The effect of statistical parity constraint on exact recovery of labels

Our approach to analyze exact recovery will focus on the quadratic term of problem 2. This is because if ŷ ∈ {y,−y}
from solving only the quadratic term with the constraints, then by using majority vote with respect to the observation c
one can decide which of {y,−y} is optimal, as done by [22, 8]. We will show sufficient conditions for exact recovery
in polynomial time through the use of semidefinite programming (SDP) relaxations, which has also been previously
used by [4, 1, 8]. SDPs are optimization problems that can be solved in polynomial time by using, for example, interior
point methods. Thus, showing sufficient conditions for exact recovery under SDP relaxations implies that we have
sufficient conditions for exact recovery in polynomial time.

Next, we provide the SDP relaxation of problem (2). Let Y = yy>, we have that y>Xy = Tr(XY ) = 〈X,Y 〉.
Note that yy> is rank-1 and symmetric, which implies that Y is a positive semidefinite matrix. Therefore, as dropping
the constant 1/2 from the quadratic term does not affect the optimal solution, the SDP relaxation to the combinatorial
problem (2) results in the following primal formulation:

Ŷ = arg max
Y

〈X,Y 〉 (3)

subject to Yii = 1, i ∈ [n],

a>i Y ai = 0, i ∈ [k],

Y � 0.

Basically, problem 3 drops the rank-1 constraint from problem 2 and results in a convex formulation that can be solved
in polynomial time. Next, we present an intermediate result that is of use for the proof of Theorem 1.
Lemma 1. LetM ∈ Rn×n be a positive semidefinite matrix and letN ∈ Rn×n be a rank-l positive semidefinite matrix,
and consider a non-negative α ∈ R. Define ∆ = λ2(M)− λ1(M), where λ1(·) and λ2(·) represent the minimum and
second minimum eigenvalue, respectively. Also, let q1 denote the first eigenvector ofM , and let v1, . . . ,vn denote the
eigenvectors ofN related to λ1(N), . . . , λn(N) respectively. Then, we have that:

λ1(M + α ·N) ≥ λ1(M) + max
i

(
αi + ∆

2
−
√

(
αi + ∆

2
)2 − αi ·∆ · (v>i q1)2

)
,

where αi = α · λi(N).

Proof. Let M = QDQ> and N =
∑n
i=n−l+1 λi(N)viv

>
i be the eigendecomposition of M and N respectively.

Let us define T = Q>(M + α · N)Q. Since T and (M + α · N) are similar matrices, their spectrum is the
same, which means that λ1(M + α ·N) = λ1(T ). By letting pi = Q>vi and αi = α · λi(N), we can express
T = D+

∑n
i=n−l+1 αi ·pip>i . Without loss of generality, consider the elements of the diagonal matrixD to be in non-

decreasing order, i.e., D11 = λ1(M) ≤ D22 = λ2(M) ≤ . . . ≤ Dnn = λn(M). Choose any r ∈ {n− l+ 1, . . . , n}
and let D̃ = diag(D11, D22, . . . , D22), and T̃ = D̃ + αr · prp>r . Then, we have that λ1(T ) ≥ λ1(T̃ ). Denote
by λ̃i the eigenvalues of T̃ , since prp>r is a rank-1 matrix and D̃ has only two different eigenvalues, we have that
λ̃2 = . . . = λ̃n−1 = D22. Now,

λ̃1λ̃nD
n−2
22 = det(D̃ + αr · prp>r ) = det(D̃) det(I + αr · D̃−1prp

>
r )

= (1 + αr · p>r D̃−1pr) det(D̃)

= D11D
n−1
22

(
1 + αr

p2
r1

D11
+ αr

1

D22
(1− p2

r1)

)
,
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where the third equality comes from det(I + AB) = det(I + BA), and the last equality is due to ‖pr‖2 = 1.
Simplifying on both ends, we obtain:

λ̃1λ̃n = αrD11 +D11D22 + αrp
2
r1∆ (4)

From calculating the trace we have:

λ̃1 + (n− 2)D22 + λ̃n = Tr(T̃ ) = Tr(D̃) + αr Tr(prp
>
r ) = D11 + (n− 1)D22 + αr.

Simplifying on both ends, we obtain:

λ̃1 + λ̃n = D11 +D22 + αr. (5)

Combining eq.(4) and eq.(5), and simplifying for λ̃1 we have, λ̃1 = D11 + αr+∆
2 ±

√
(αr+∆

2 )2 − αr ·∆ · p2
r1 . Finally,

since λ1(T ) ≥ λ1(T̃ ) = λ̃1 and the choice of r was arbitrary, we take the negative sign of the square root for a lower
bound and we can maximize over the choice of r for the tightest lower bound.

Remark 2. Note that Lemma 1 is tighter than general eigenvalue inequalities such as Weyl’s inequality. Lemma 1 is
tight with respect to ∆ in the sense that whenN is rank-1 and ∆ = 0, i.e., when λ1(M) = λ2(M), our lower bound
yields λ1(M), which is exactly the case as the minimum eigenvalue cannot be perturbed by a rank-1 matrix under this
scenario. Similarly, our bound is tight with respect to α. When α = 0, i.e., no perturbation, our lower bound results in
λ1(M).

For a graph G = (V,E), its Laplacian is defined as LG = DG −AG, where DG is a diagonal matrix with entries
corresponding to the node degrees, i.e., Di,i = deg(vi) for vi ∈ V , and AG is the adjacency matrix of G. For
any subset S ⊂ V , we denote its complement by SC such that S ∪ SC = V and S ∩ SC = ∅. Furthermore, let
E(S, SC) = {(i, j) ∈ E | (i ∈ S, j ∈ SC) or (j ∈ S, i ∈ SC)}, i.e., |E(S, SC)| denotes the number of edges between
S and SC .
Definition 1 (Edge Expansion). For a set S ⊂ V with |S| ≤ n/2, its edge expansion, φS , is defined as: φS =
|E(S,SC)|/|S|. Then, the edge expansion of a graph G = (V,E) is defined as: φG = minS⊂V,|S|≤n/2 φS .

In the graph theory literature, φG is also known as the Cheeger constant, due to the geometric analogue defined by
Cheeger [13]; while the second smallest eigenvalue of LG and its respective eigenvector are known as the algebraic
connectivity and the Fiedler vector2, respectively. The following theorem corresponds to our main result where we
formally show how the effect of the statistical parity constraint improves the probability of exact recovery.
Theorem 1. Let G = (V,E) be an undirected connected graph with n nodes, Cheeger constant φG, Fiedler vector π2,
and maximum node degree degmax(G). Let also ∆ denote the gap between the third minimum and second minimum
eigenvalue of the Laplacian of G, namely, ∆ = λ3(LG) − λ2(LG). Let N =

∑k
i=1 aia

>
i with eigenvalues λi(N)

and related eigenvectors vi for i ∈ [n]. Then, for the combinatorial problem (2), a solution y ∈ {y,−y} is achievable

in polynomial time by solving the SDP based relaxation (3), with probability at least 1− 2n · e
−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , where

ε1 = max
i=n−k+1...n

nλi(N) + ∆

2
−

√(
nλi(N) + ∆

2

)2

− nλi(N) ·∆ · (v>i π2)2

 ,

ε2 = (1− 2p)
φ2
G

4 degmax(G)
, σ2 = 4p(1− p) degmax(G), R = 2(1− p),

and p is the edge noise from our model.

Proof. The dual of problem 3 is given by:

min
V , ρ

Tr(V ) (6)

subject to V −X − ρ ·
k∑
i=1

aia
>
i � 0,V is diagonal.

Letting Λ
def
= Λ(V , ρ) = V −X − ρ ·

∑k
i=1 aia

>
i , with V diagonal. The Karush-Kuhn-Tucker (KKT) [9] optimality

conditions are:
2If the multiplicity of the algebraic connectivity is greater than one then we have a set of Fiedler vectors.
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1. Primal Feasibility: Yii = 1, a>i Y ai = 0, Y � 0.

2. Dual Feasibility: Λ � 0.

3. Complementary Slackness: 〈Λ,Y 〉 = 0.

Our approach is to find a pair of primal and dual solutions that simultaneously satisfy all KKT conditions above. Then,
the pair witnesses strong duality between the primal and dual problems, which means that the pair is optimal. It is clear
that Y = Y = yy> satisfies the primal constraints. Let Vii = (XY )ii and ρ = −n, if Λ � 0 then V and ρ satisfy
the dual constraints. Thus, we conclude that if the condition Λ � 0 is met then Y is an optimal solution.

For arguing about uniqueness, let us consider that λ2(Λ) > 0 and let Ỹ be another optimal solution to problem 3. From
dual feasibility and complementary slackness we have that Λy = 0, which implies that y spans all the null space of Λ

since λ2(Λ) > 0. Finally, from primal feasibility we have that Ỹ = yy>. Thus, λ2(Λ) > 0 is a sufficient condition
for uniqueness.

From the arguments above, showing the condition λ2(Λ) > 0 suffices to guarantee that Y = Y is optimal and unique.
AsX and V (by construction) are random variables, we next show when this condition is satisfied with high probability.
By Weyl’s theorem on eigenvalues, we have

λ2(Λ) = λ2(Λ− E[Λ] + E[Λ]) ≥ λ2(E[Λ]) + λ1(Λ− E[Λ])

LetM = V −X andN =
∑k
i=1 aia

>
i , then we have E[Λ] = E[M ] + n ·N , where we remove the expectation on

N since it is not a random matrix. To lower bound λ2(E[M ] + n ·N), we first note that y ∈ {Null(M) ∩ Null(N)},
which means that we can invoke Lemma 1 for λ2 instead of λ1. Thus, we have

λ2(E[M ] + n ·N) ≥ λ2(E[M ]) + ε1 (7)
≥ ε2 + ε1, (8)

where ε1 = maxi=n−k+1...n

(
nλi(N)+∆

2 −
√

(nλi(N)+∆
2 )2 − nλi(N) ·∆ · (v>i π2)2

)
in eq.(7) follows from

Lemma 1, and ε2 = (1− 2p)
φ2
G

4 degmax(G) in eq.(8) follows from Theorem 1 in [8]. The term π2 in ε1 corresponds to the
Fiedler vector of G because the matrixM is a signed Laplacian of G [8], that is, the matrix LG andM share the same
spectrum, and the i-th eigenvector ofM is equal to the i-th eigenvector of LG multiplied by yi. Since y2

i = 1, only the
second eigenvector of LG appears in the expression, i.e., π2.

To lower bound λ1(Λ − E[Λ]), we first observe that Λ − E[Λ] = V −X − E[V −X]. Thus, we can further
decompose the lower bound as follows: λ1(V −X − E[V −X]) ≥ λ1(V − E[V ]) + λ1(E[X]−X). Finally, for
λ1(V − E[V ]) and λ1(E[X]−X) we use Bernstein’s inequality [37] with a similar setting to the one in the proof of
Theorem 2 in [8] and obtain:

P

(
λ1(V − E[V ]) ≤ −ε1 + ε2

2

)
≤ n · e

−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , (9)

P

(
λ1(E[X]−X) ≤ −ε1 + ε2

2

)
≤ n · e

−3(ε1+ε2)2

24σ2+8R(ε1+ε2) , (10)

where σ2 = 4p(1−p) degmax(G) andR = 2(1−p). Combining equations (8), (9) and (10) we conclude our proof.

4 Discussion

In this section we analyze the implications of our results through theoretical and empirical comparisons. We start by
contrasting our result in Theorem 1 to previously known bounds that did not incorporate fairness constraints [8, 1].
Since [1, 8] present bounds that are of similar rates, we take the bound from [8] as their bound is in a similar format
than that of ours.

Following our notation, the authors in [8] show that the probability of error for exact recovery is 2n · e
−3ε22

24σ2+8Rε2 , while

our result in Theorem 1 is 2n · e
−3(ε1+ε2)2

24σ2+8R(ε1+ε2) . We can then conclude that, whenever ε1 > 0, the probability of error
when adding a statistical parity constraint (our model) is strictly less than the case with no fairness constraint whatsoever
(models studied in [1, 8, 22, 19]).
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The above argument poses the question on when ε1 > 0. Recall from Theorem 1 that ε1 =

maxi=n−k+1...n

(
nλi(N)+∆

2 −
√(

nλi(N)+∆
2

)2

− nλi(N) ·∆ · (v>i π2)2

)
. For clarity purposes, we discuss the

case of a single fairness constraint, that is, N = a1a
>
1 , and let ‖a1‖22 = s. Then we have that ε1 =

n·s+∆
2 −

√(
n·s+∆

2

)2

− n ·∆ · (a>1 π2)2, from this expression, it is clear that whenever ∆ > 0 and 〈a1,π2〉 6= 0 then

ε1 > 0. In other words, to observe improvement in the probability of exact recovery, it suffices to have a non-zero scalar
projection of the attribute a1 onto the Fiedler vector π2, and an algebraic connectivity of multiplicity 1.3 Finally, note
that since 〈a1,π2〉 depends on a1, which is a given attribute, one can safely assume that 〈a1,π2〉 6= 0. However, the
eigenvalue gap ∆ depends solely on the graph G and raises the question on what classes of graphs we observe (or do
not) ∆ = 0.

4.1 On the multiplicity of the algebraic connectivity

Since ∆ > 0 if and only if the multiplicity of the algebraic connectivity is 1, we devote this section to discuss in
which cases this condition does or does not occur. After the seminal work of Fiedler [18], which unveiled relationships
between graph properties and the second minimum eigenvalue of the Laplacian matrix, several researchers aimed to find
additional connections. In the graph theory literature, one can find analyses on the complete spectrum of the Laplacian
(e.g. [25, 24, 34, 35, 15]), where the main focus is to find bounds for the Laplacian eigenvalues based on structural
properties of the graph. Another line of work studies the changes on the Laplacian eigenvalues after adding or removing
edges in G [28, 29, 6]. To our knowledge the only work who attempts to characterize families of graphs that have
algebraic connectivity with certain multiplicity is the work of [6]. Let π be a Fiedler vector of G, we denote the entry
of π corresponding to vertex u as πu. A vertex u is called a characteristic vertex of G if πu = 0 and if there exists
a vertex w adjacent to u such that πw 6= 0. An edge {u,w} is called a characteristic edge of G if πuπw < 0. The
characteristic set of G is denoted by CG(π) and consists of all the characteristic vertices and characteristic edges of G.
Let W be any proper subset of the vertex set of G, by a branch at W of G we mean a component of G \W . A branch
at W is called a Perron branch if the principal submatrix of LG, corresponding to the branch, has an eigenvalue less
than or equal to λ2(LG). The following was presented in [6] and characterizes graphs that have algebraic connectivity
with certain multiplicity.
Theorem 2 (Theorem 10 in [6]). LetG be a connected graph and π be a Fiedler vector withW = CG(π) consisting of
vertices only. Suppose that there are t ≥ 2 Perron branches G1, . . . , Gt of G at W . Then the following are equivalent.

• The multiplicity of λ2(LG) is exactly t− 1.
• For each Fiedler vector ψ, CG(ψ) = W .
• For each Fiedler vector ψ, the set CG(ψ) consists of vertices only.

The above characterization is very limited in the sense that authors in [6] are able to show only one example of graph
family that satisfies the conditions above. Specifically, their example correspond to the classG = (KC

n−t+H
C
t )C , where

Ki denotes the complete graph of order i andHj is a graph of j isolated vertices, and forG1 = (V1, E1), G2 = (V2, E2),
the operation G = G1 + G2 is defined as G = (V1 ∪ V2, E1 ∪ E2). A particularly known instance of this class is
t = n− 1, which corresponds to the star graph and has algebraic connectivity with multiplicity n− 2 and therefore
∆ = 0 for n > 3.

Another known example where ∆ = 0 is the complete graph Kn of order n where there is only one non-zero eigenvalue
equal to n and with multiplicity n− 1. We now turn our attention to graphs with poor expansion properties such as
grids. A m× n grid, denoted by Grid(m,n), is a connected graph such that it has 4 corner vertices which have two
edges each, m− 2 vertices that have 3 edges which make up the short “edge of a rectangle” and n− 2 vertices that have
3 edges each which make up the “long edge of a rectangle” and (n− 2)(m− 2) inner vertices which each have four
edges. [16] characterizes the full Laplacian spectrum for grid graphs as follows: the eigenvalues of the Laplacian matrix
of Grid(m,n) are of the form λi,j = (2 sin( πi2n ))2 + (2 sin( πj2m ))2, where i and j are non-negative integers. Next, we
present a corollary showing the behavior of ∆ in grids.
Corollary 1. Let G be a grid graph, Grid(m,n), then we have:

• If m = n then ∆ = 0.
• If m 6= n then ∆ > 0.

3Specifically, we refer to the algebraic multiplicity. Having an algebraic connectivity with multiplicity greater than 1 will imply
that ∆ = 0.
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Proof. Since λi,j = (2 sin( πi2n ))2 + (2 sin( πj2m ))2, then λi,j = 0 if and only if (i, j) = (0, 0) and corresponds to the
first eigenvalue of the Laplacian. It is clear that the next minimum should be of the form λ0,j and λi,0. By taking
derivatives we obtain: dλi,0

di = 2π
n sin(πin ) and dλ0,j

dj = 2π
m sin(πjm ). We observe that the minimums are attained at

λ1,0 = (2 sin( π2n ))2 and λ0,1 = (2 sin( π
2m ))2 respectively. Thus, when m = n we have ∆ = 0 and when m 6= n we

have ∆ > 0.

That is, Corollary 1 states that square grids have ∆ = 0, while rectangular grids have ∆ > 0. To conclude our discussion
on ∆, we empirically show that the family of Erdős-Rényi graphs exhibit ∆ > 0 with high probability. Specifically, we
let G ∼ ER(n, r), where r is the edge probability. When r = 1, G is the complete graph of order n then ∆ > 0 with
probability zero. Interestingly, when r = 0.9 or r = 0.99, that is, values close to 1, the probability of ∆ > 0 tends
to 1 as n increases. Also, we analyze the case when r = 2 logn/n,4 and also observe high probability of ∆ > 0. The
aforementioned results are depicted in Figure 1 (Left). Intuitively, this suggests that the family of graphs where ∆ > 0
is much larger than the families where ∆ = 0. Finally, in Figure 1 (Right), we also plot the expected value of the gap,
where we note an interesting concentration of the gap to 0.5 for r = 2 logn/n and remains an open question to explain
this behavior.

10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

0

0.25

0.5

0.75

1

1.25

1.5

Figure 1: Graphs drawn from an Erdős-Rényi model with n nodes and edge probability r. (Left.) Probability of ∆ > 0 for each
number of nodes, we draw 1000 graphs and compute ∆, then, we count an event as success whenever ∆ > 0, and failure when
∆ = 0. (Right.) Expected value of ∆ computed across the 1000 random graphs for each number of nodes.

4.2 Experiments

In this section, we corroborate our theoretical results through synthetic experiments. Graphs with high expansion
properties such as complete graphs and d-regular expanders are known to manifest high probability of exact recovery as
their Cheeger constant increases with respect to n or d [8]. That is, in these graphs, the effect of the fairness constraint
will not be noticeable. In contrast, graphs with poor expansion properties such as grids, which have a Cheeger constant
in the order of O(1/n) for a Grid(n, n), can only be recovered approximately [22], or exactly if the graph can be
perturbed with additional edges [8]. Thus, we focus our experiments on grids and empirically show how the inclusion
of the fairness constraint boosts the probability of exact recovery. In Figure 2, we first randomly set y by independently
sampling each yi from a Rademacher distribution. We consider a graph of 64 nodes, specifically, Grid(4, 16), i.e., ∆ is
guaranteed to be greater than 0. Finally, we compute 30 observations for p ∈ [0, 0.1]. We observe that the probability of
exact recovery decreases with a very high rate, while the addition of fairness constraints improves the exact recovery
probability. In particular, we note that while the addition of a single fairness constraint (SDP + 1F) helps to achieve
exact recovery, the tendency is to still decrease as p increases, in this case the attribute a1 was randomly sampled
from the nullspace of y> so that y>a1 = 0. We also show the case when two fairness constraints are added (SDP +
2F), were we observe that exact recovery happens almost surely, here the two attributes also come randomly from the
nullspace of y>.

4The reason for the choice of r = 2 logn/n is due to that for r > (1+ε) logn/n then the graph is connected almost surely.
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Figure 2: Probability of exact recovery for Grid(4, 16) computed across 30 observations X for different values of p ∈ [0, 0.1].
We observe how the addition of fairness constraints helps exact recovery, where SDP+1F refers to the addition of a single constraint,
and SDP+2F the addition of two constraints.

5 Concluding remarks

We considered a model similar to that of [22, 8, 19, 1] and studied the effect of adding fairness constraints, specifically,
under a notion of statistical parity, and showed how it can help increasing the probability of exact recovery even for
graphs with poor expansion properties such as grids. We argue that even in the scenario of having “fair data” one should
not rule out the possibility of adding fairness constraints as there is a chance that it can help increasing the performance.
For instance, a practitioner could use one of the several preprocessing methods for debiasing a dataset with respect to a
particular metric [39, 11, 32, 23], assuming that the data is now fair, the practitioner might be tempted to not use any
fairness constraint anymore. However, as showed in this work, when the data is fair, adding fairness constraint can
improve performance. As future work, it might be interesting to analyze different soft versions of the generative model
such as letting the data being at most ε-away with respect to some fairness criteria instead of imposing a hard constraint.
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