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Kai Wan, Member, IEEE, Hua Sun, Member, IEEE, Mingyue Ji, Member, IEEE, and Giuseppe Caire, Fellow, IEEE

Abstract—This paper formulates a distributed computation
problem, where a master asks N distributed workers to compute
a linearly separable function. The task function can be expressed
as Kc linear combinations of K messages, where each message
is a function of one dataset. Our objective is to find the optimal
tradeoff between the computation cost (number of uncoded
datasets assigned to each worker) and the communication cost
(number of symbols the master must download), such that from
the answers of any Nr out of N workers the master can recover
the task function with high probability, where the coefficients of
the Kc linear combinations are uniformly i.i.d. over some large
enough finite field. The formulated problem can be seen as a
generalized version of some existing problems, such as distributed
gradient coding and distributed linear transform.

In this paper, we consider the specific case where the compu-
tation cost is minimum, and propose novel achievability schemes
and converse bounds for the optimal communication cost. Achiev-
ability and converse bounds coincide for some system parameters;
when they do not match, we prove that the achievable distributed
computing scheme is optimal under the constraint of a widely
used ‘cyclic assignment’ scheme on the datasets. Our results also
show that when K = N, with the same communication cost as the
optimal distributed gradient coding scheme proposed by Tandon
et al. from which the master recovers one linear combination of
K messages, our proposed scheme can let the master recover any
additional Nr − 1 independent linear combinations of messages
with high probability.

Index Terms—Distributed computation; linearly separable
function; cyclic assignment

I. INTRODUCTION

Enabling large-scale computations for a large dimension of
data, distributed computation systems such as MapReduce [1]
and Spark [2] have received significant attention in recent
years [3]. The distributed computation system divides a com-
putational task into several subtasks, which are then assigned
to some distributed workers. This reduces significantly the
computing time by exploiting parallel computing procedures
and thus enables handling of the computations over large-scale
big data. However, while large scale distributed computing
schemes have the potential for achieving unprecedented levels
of accuracy and providing dramatic insights into complex phe-
nomena, they also present some technical issues/bottlenecks.
First, due to the presence of stragglers, a subset of workers
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may take excessively long time or fail to return their computed
sub-tasks, which leads to an undesirable and unpredictable
latency. Second, data and computed results should be com-
municated among the master who wants to compute the
task, and the workers. If the communication bandwidth is
limited, the communication cost becomes another bottleneck
of the distributed computation system. In order to tackle these
two bottlenecks, coding techniques were introduced to the
distributed computing algorithms [4]–[6], with the purpose of
increasing tolerance with respect to stragglers and reducing
the master-workers communication cost. More precisely, for
the first bottleneck, using ideas similar to Minimum Distance
Separable (MDS) codes, the master can recover the task
function from the answers of the fastest workers. For the
second bottleneck, inspired by concepts from coded caching
networks [7], [8], network coding techniques are used to save
significant communication cost exchanged in the network.

In this paper, a master aims to compute a linearly separable
function f (such as linear MapReduce, Fourier Transform,
convolution, etc.) on K datasets (D1, . . . , DK), which can be
written as

f(D1, . . . , DK) = g
(
f1(D1), . . . , fK(DK)

)
= g(W1, . . . ,WK).

Wk = fk(Dk) for all k ∈ {1, . . . ,K} is the outcome of
the component function fk(·) applied to dataset Dk, and it
is represented as a string of L symbols on an appropriate
sufficiently large alphabet. For example, Wk can be the
intermediate value in linear MapReduce, an input signal in
Fourier Transform, etc. We consider the case where g(·) is a
linear map defined by Kc linear combinations of the messages
W1, . . . ,WK with uniform i.i.d. coefficients over some large
enough finite field; i.e., g(W1, . . . ,WK) can be seen as the
matrix product FW, where F is the coefficient matrix and
W = [W1; . . . ;WK].1 We consider the distributed computation
scenario, where f(D1, . . . , DK) is computed in a distributed
way by a group of N workers. Each dataset is assigned in
an uncoded manner to a subset of workers and the number
of datasets assigned to each worker cannot be larger than M,

1 As matrix multiplication is one of the key building blocks underlying
many data analytics, machine learning algorithms and engineering problems,
the considered model also has potential applications in those areas, where
f1, . . . , fK represent the pretreatment of the datasets. For example, each
dataset Dk where k ∈ {1, . . . ,K} represents a raw dataset and needs to
be processed through some filters, where Wk represents the filtered dataset
of Dk . For the sake of linear transforms (e.g., Wavelet Transform, Discrete
Fourier Transform), we need to compute multiple linear combinations of the
filtered datasets, which can be expressed as g(W1, . . . ,WK). For another
example, D1, . . . , DK are the K “input channels” of a Convolutional Neural
Networks (CNN) stage. Each input channel Dk where k ∈ {1, . . . ,K}
is filtered individually by a convolution operation yielding Wk . Then the
convolutions are linearly mixed by the coefficients of g(W1, . . . ,WK)
producing Kc new layers in the feature space. Moreover, if F represents
a MIMO precoding matrix, our considered model can also be used in the
MIMO systems.
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which is referred to as the computation cost.2 Each worker
should compute and send coded messages in terms of the
datasets assigned to it, such that from the answers of any
Nr workers, the master can recover the task function with
high probability. Given (K,N,Nr,Kc,M), we aim to find the
optimal distributed computing scheme with data assignment,
computing, and decoding phases, which leads to the minimum
communication cost (i.e., the number of downloaded symbols
by the master, normalized by L).

We illustrate two examples of the formulated distributed
scenario in Fig. 1 where Kc = 1 and Kc = 2, respectively.
In both examples, we consider that K = N = 3,Nr = 2, and
that the number of datasets assigned to each worker is M = 2.
Assume that the characteristic of Fq is larger than 3.
• When Kc = 1, the considered problem (as shown in

Fig. 1a) is equivalent to the distributed gradient coding
problem in [9], which aims to compute the sum of
gradients in learning tasks by distributed workers. The
gradient coding proposed in [9] assigns the datasets to the
workers in a cyclic way, where D1 and D2 are assigned
to worker 1, D2 and D3 are assigned to worker 2, and D3

and D1 are assigned to worker 3. Worker 1 then computes
and sends W1

2 +W2. Worker 2 sends W2−W3, and worker
3 sends W1

2 + W3. From any two sent coded messages,
the master can recover the task function W1 +W2 +W3.
By the converse bound in [10], it can be proved that the
gradient coding scheme [9] is optimal under the constraint
of linear coding in terms of communication cost. Note
that in our paper, from a novel converse bound, we prove
the optimality of the gradient coding scheme [9] when
Kc = 1 by removing the constraint of linear coding.

• When Kc = 2, besides W1 +W2 +W3 we let the master
also request another linear combination of the messages,
e.g., W1 + 2W2 + 3W3. Here, we propose a novel
distributed computing scheme (as shown in Fig. 1a),
which can compute this additional sum but with the same
number of communicated symbols as the gradient coding
scheme. With the same cyclic assignment, we let worker
1 send 2W1 +W2, worker 2 send W2 + 2W3, worker 3
send −W1+W3. It can be checked that from any two sent
coded messages, the master can recover both of the two
requested sums. Hence, with the same communication
cost as the gradient coding scheme [9], the proposed
distributed computing scheme allows the master recover
the two requested linear combinations.

Since the seminal works on using coding techniques in
distributed computing [4]–[6], different coded distributed com-
puting schemes were proposed to compute various tasks in
machine learning applications. The detailed comparison be-
tween the considered distributed linearly separable computa-
tion problem and each of the related existing works will be
provided in Section II-B. In short,

2We assume that each function fk(·) is arbitrary such that in general it does
not hold that computing less symbols for the result Wk is less costly in terms
of computation. Hence, each worker n computes the whole Wk = fk(Dk)
if Dk is assigned to it. We also assume that the complexity of computing the
messages from the datasets is much higher than computing the desired linear
combinations of the messages. So we denote the computation cost by M.

Worker 1 Worker 2 Worker 3

After receiving any two: 

sends 𝑊1/2 +𝑊2 sends 𝑊2 −𝑊3 sends 𝑊1/2 +𝑊3

𝐷1
𝐷2

𝐷2
𝐷3

𝐷3
𝐷1

𝑊1 +𝑊2 +𝑊3

Master

(a) Kc = 1.

Master

After receiving any two: 

sends 2𝑊1 +𝑊2 sends 𝑊2 + 2𝑊3 sends −𝑊1 +𝑊3

𝑊1 +𝑊2 +𝑊3;
𝑊1 + 2𝑊2 + 3𝑊3.

𝐷1
𝐷2

𝐷2
𝐷3

𝐷3
𝐷1

Worker 1 Worker 2 Worker 3

(b) Kc = 2.

Fig. 1: Distributed linearly separable computation with K = N = 3
and Nr = 2. The number of datasets assigned to each worker is

M = 2.

• the distributed gradient coding problem considered in [9],
[11], [12] is a special case of the considered problem in
this paper with Kc = 1 (i.e., the master requests one
linear combination of the messages);

• the distributed linear transform problem considered
in [13] is a special case of the considered problem in
this paper where L = 1 (i.e., each message contains one
symbol) and each worker sends one symbol;

• in the distributed matrix-vector multiplication problem
considered in [14]–[16], the distributed matrix-matrix
multiplication problem considered in [4], [17]–[23], and
the distributed multivariate polynomial computation prob-
lem considered in [24], coded assignments are allowed,
i.e., linear combinations of all input datasets can be as-
signed to each worker. Instead, in the considered problem
the data assignment phase is uncoded, such that each
worker can only compute functions of the datasets which
are assigned to it.
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Contributions

In this paper, we formulate the distributed linearly separable
computation problem and consider the case where N divides
K and the computation cost is minimum, i.e., M = K

N (N −
Nr + 1) by Lemma 1. Our main contributions on this case are
as follows.

• We first propose an information theoretic converse bound
on the minimum communication cost, inspired by the
converse bound for the coded caching problem with
uncoded cache placement [25], [26].

• With the cyclic assignment, widely used in the existing
works on the distributed gradient coding problem such
as [9]–[11],3 we propose a novel distributed computing
scheme based on the linear space intersection and prove
its decodability by the Schwartz-Zippel lemma [28]–
[30].4

• Compared to the proposed converse bound, the achievable
scheme is proved to be optimal when N = K, or

Kc ∈
{

1, . . . ,

⌈
K

( N
N−Nr+1)

⌉}
, or Kc ∈

{
K
NNr, . . . ,K

}
. In

addition, the proposed achievable scheme is proved to be
optimal under the constraint of the cyclic assignment for
all system parameters. The optimality results are listed in
Table I at the top of the next page.

• By the derived optimality results, we obtain an interesting
observation: when K = N, for any Kc ∈ {1, . . . ,Nr}, the
optimal communication cost is always Nr. Thus by taking
the same communicatoin cost as the optimal gradient
coding scheme in [9] for the distributed gradient coding
problem (which is the case Kc = 1 of our problem), with
high probability our propose scheme can let the master
recover any additional Nr − 1 linear combinations with
uniformly i.i.d. coefficients over Fq.

Moreover, for the case where N does not divide K, the cyclic
assignment cannot be directly used and we propose modified
cyclic assignment and computing phases.

Paper Organization

The rest of this paper is organized as follows. Section II
formulates the distributed linearly separable computation prob-
lem and explains the differences from the existing distributed
computation problem in the literature. Section III provides the
main results in this paper. Section IV describes the proposed
achievable distributed computing scheme. Section V discusses
the extensions of the proposed results. Section VI concludes
the paper and some of the proofs are given in the Appendices.

3 The main advantages of the cyclic assignment are that it can be used
for any case where N divides K regardless of other system parameters, and
its simplicity. According to our knowledge, the other existing assignments,
such as the repetition assignments in [9], [27], can only be used for limited
number of cases. In addition, the cyclic assignment is independent of the task
function; thus if the master has multiple tasks in different times, we need not
assign the datasets in each time.

4 Note that the proposed computing is decodable with high probability;
it will be explained in Remark 3 that for some specific tasks, additional
communication cost is needed.

Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | · | to represent the cardinality of a
set or the length of a vector; [a : b] := {a, a+ 1, . . . , b},
(a : b] := {a+1, a+2, . . . , b}, [a : b) := {a, a+1, . . . , b−1},
(a, b) = {a + 1, a + 2, . . . , b − 1} and [n] := [1 : n]; ⊕
represents bit-wise XOR; E[·] represents the expectation value
of a random variable; a! = a× (a−1)× . . .×1 represents the
factorial of a; Fq represents a finite field with order q; MT

and M−1 represent the transpose and the inverse of matrix
M, respectively; the matrix [a; b] is written in a Matlab form,
representing [a, b]T; rank(M) represents the rank of matrix M;
In represents the identity matrix with dimension n×n; 0m×n
represents the zero matrix with dimension m × n; (M)m×n
represents that the dimension of matrix M is m × n; M(S)r

represents the sub-matrix of M which is composed of the
rows of M with indices in S (here r represents ‘rows’);
M(S)c represents the sub-matrix of M which is composed
of the columns of M with indices in S (here c represents
‘columns’); det(M) represents the determinant matrix M;
Mod(b, a) represents the modulo operation on b with integer
divisor a and in this paper we let Mod(b, a) ∈ {1, . . . , a} (i.e.,
we let Mod(b, a) = a if a divides b); we let

(
x
y

)
= 0 if x < 0

or y < 0 or x < y. In this paper, for each set of integers S,
we sort the elements in S in an increasing order and denote
the ith smallest element by S(i), i.e., S(1) < . . . < S(|S|).

The main network parameters and notations are given in
Table II at the top of the next page.

II. SYSTEM MODEL

A. Problem formulation

We formulate a (K,N,Nr,Kc,M) distributed linearly sepa-
rable computation problem over the canonical master-worker
distributed system, as illustrated in Fig. 1. The master wants
to compute a function

f(D1, . . . , DK)

on K independent datasets D1, . . . , DK. As the data sizes
are large, we distribute the computing task to a group of
N workers. For distributed computation to be possible, we
assume the function is separable to some extent. As the
simplest case, we assume the function is separable to each
dataset,

f(D1, . . . , DK) = g
(
f1(D1), . . . , fK(DK)

)
(1a)

= g(W1, . . . ,WK), (1b)

where we model fk(Dk), k ∈ [K] as the k-th message Wk

and fk(·) is an arbitrary function. We assume that the K
messages are independent and that each message is composed
of L uniformly i.i.d. symbols over a finite field Fq for some
large enough prime-power q, where L is large enough such
that any sub-message division is possible.5 We consider the

5In this paper, the basis of logarithm in the entropy terms is q.
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TABLE I: Optimality results for the distributed linearly separable computation problem where M = K
N (N− Nr + 1) and N

divides K.

Constraint of system parameters Optimality
N = K optimal

N 6= K, Kc ∈
{
1, . . . ,

⌈
K(
N

N−Nr+1

)
⌉}

optimal

N 6= K, Kc ∈
{

K
N
Nr, . . . ,K

}
optimal

N 6= K, Kc ∈
{⌈

K(
N

N−Nr+1

)
⌉
+ 1, . . . , K

N
Nr − 1

}
optimal under the cyclic assignment

TABLE II: Main notations

Notations Semantics
K number of datasets
N number of workers
Nr number of workers the master should wait for
Zn set of datasets assigned to worker n
M computation cost (i.e., number of datasets assigned to each worker)
Xn transmission of worker n
Tn number of symbols in Xn

XA {Xn : n ∈ A}
R communication cost
R? minimum communication cost over all achievable computing schemes
R?

cyc minimum communication cost over all achievable computing schemes with the cyclic assignment
Dn the nth dataset

Wn = fn(Dn) the nth message
L number of symbols of each message

g(W1, . . . ,WN) = F[W1; . . . ;WN] task function (i.e., demanded linear combinations of messages)
Kc number of demanded linear combinations of messages (i.e., number of rows in F)

simplest case of the function g(·), the linear mapping. So we
can rewrite the task function as

g(W1, . . . ,WK) = F

 W1

...
WK

 =

 F1

...
FKc

 , (2a)

where F is a matrix known by the master and the workers with
dimension Kc×K, whose elements are uniformly i.i.d. over Fq.
In other words, g(W1, . . . ,WK) contains Kc linear combina-
tions of the K messages, whose coefficients are uniformly i.i.d.
over Fq. In this paper, we consider the case where Kc ≤ K.6

Note that each component function fk where k ∈ [K] is not
restricted to be linear. We also assume that K

N is an integer.7

A computing scheme for our problem contains three phases,
data assignment, computing, and decoding.

Data assignment phase: We assign each dataset Dk

where k ∈ [K] to a subset of N workers in an uncoded manner.
The set of datasets assigned to worker n ∈ [N] is denoted by
Zn, where Zn ⊆ [K]. The assignment constraint is that

|Zn| ≤ M, ∀n ∈ [N], (3)

where M represents the computation cost as explained in
Footnote 2. The assignment function of worker n is denoted
by ϕn, where

Zn = ϕn(F) ⊆ [K], (4)

6 For the case where Kc > K, it is straightforward to use the same code for
the case where Kc = K, since all K messages can be decoded individually.

7 The case N does not divide K will be specifically considered in
Section V-A where we extend the proposed distributed computing scheme
to the general case.

ϕn : [Fq]
KcK → ΩM(K), (5)

and ΩM(K) represents the set of all subsets of [K] of size not
larger than M. In other words, the data assignment phase is
uncoded.

Computing phase: Each worker n ∈ [N] first computes
the message Wk = fk(Dk) for each k ∈ Zn. Then it computes

Xn = ψn({Wk : k ∈ Zn},F) (6)

where the encoding function ψn is such that

ψn : [Fq]
|Zn|L × [Fq]

KcK → [Fq]
Tn , (7)

and Tn represents the length of Xn. Finally, worker n sends
Xn to the master.

Decoding phase: The master only waits for the Nr

fastest workers’ answers to compute g(W1, . . . ,WK). Hence,
the computing scheme can tolerate N − Nr stragglers. Since
the master does not know a priori which workers are strag-
glers, the computing scheme should be designed so that
from the answers of any Nr workers, the master can recover
g(W1, . . . ,WK). More precisely, for any subset of workers
A ⊆ [N] where |A| = Nr, with the definition

XA := {Xn : n ∈ A}, (8)

there exists a decoding function φA such that

ĝA = φA
(
XA,F

)
, (9)

where the decoding function φA is such that

φA : [Fq]
∑

n∈A Tn × [Fq]
KcK → [Fq]

KcL. (10)
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The worst-case probability of error is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA 6= g(W1, . . . ,WK)}. (11)

In addition, we denote the communication cost by,

R := max
A⊆[N]:|A|=Nr

∑
n∈A Tn

L
, (12)

representing the maximum normalized number of symbols
downloaded by the master from any Nr responding workers.
The communication cost R is achievable if there exists a
computing scheme with assignment, encoding, and decoding
functions such that

lim
q→∞

ε = 0. (13)

The minimum communication cost over all possible achievable
computing schemes is denoted by R?. Since the elements of
F are uniformly i.i.d. over larger enough field, F is full-rank
with high probability. By the simple cut-set bound, we have

R? ≥ Kc. (14)

The following lemma provides the minimum number of
workers to whom each dataset should be assigned.

Lemma 1. Each dataset must be assigned to at least N−Nr+1
workers. �

Proof: Assume there exists one dataset (assumed to be
Dk) assigned to only ` workers where ` < N − Nr + 1. It
can be seen that there exist at least Nr workers which does
not know Dk. Hence, the answers of these Nr workers do
not have any information of Wk, and thus cannot reconstruct
g(W1, . . . ,WK) (recall that g(W1, . . . ,WK) depends on Wk

with high probability).
In this paper, we consider the case where the computation

cost is minimum, i.e., each dataset is assigned to N− Nr + 1
workers and

M = |Z1| = · · · = |ZN| =
K

N
(N− Nr + 1).

The objective of this paper is to characterize the minimum
communication cost for the case where the computation cost
is minimum.

We then review the cyclic assignment, which was widely
used in the existing works on the distributed gradient coding
problem in [9] (which is a special case of the consdered
problem as explained in the next subsection), such as the
gradient coding schemes in [9]–[12]. For each dataset Dk

where k ∈ [K], we assign Dk to worker j, where j ∈{
Mod(k,N),Mod(k − 1,N), . . . ,Mod(k − N + Nr,N)

}
.8 In

other words, the set of datasets assigned to worker n ∈ [N] is

Zn = ∪
p∈[0: KN−1]

{
Mod(n,N) + pN,Mod(n+ 1,N) + pN, . . . ,

Mod(n+ N− Nr,N) + pN
}

(15)

8By convention, we let Mod(b, a) ∈ [1 : a], and let Mod(b, a) = a if a
divides b.

with cardinality K
N (N − Nr + 1). For example, if K = N = 4

and Nr = 3, by the cyclic assignment with p = 0 in (15), we
assign

D1, D2, D3 to woker 1;

D2, D3, D4 to woker 2;

D3, D4, D1 to woker 3;

D4, D1, D2 to woker 4.

The minimum communication cost under the cyclic assign-
ment in (15) is denoted by R?cyc.

B. Connection to existing problems

Distributed gradient coding: When fk(Dk), k ∈ [K],
represents the partial gradient vector of the loss at the current
estimate of the dataset Dk and F = [1, . . . , 1], we have

f(D1, . . . , DK) = f1(D1) + · · ·+ fK(DK), (16)

representing the gradient of a generic loss function. In this
case, our problem reduces to the distributed gradient coding
problem in [9]. Hence, the distributed gradient coding problem
in [9] is a special case of the distributed linearly separable
computation problem with Kc = 1. For the case where the
computation cost is minimum, based on the cyclic assignment
in (15) and a random code construction, the authors in [9]
proposed a gradient coding scheme which lets each worker
compute and send one linear combination of the messages
related to its assigned datasets, while the achieved commu-
nication cost of this scheme is optimal under the constraint
of linear coding [10]. Instead of random code construction,
a deterministic code construction was proposed in [11]. The
authors in [12] improved the decoding delay/complexity by
using Reed–Solomon codes.

The authors in [10] characterized the optimal tradeoff
between the computation cost and communication cost for
the distributed gradient coding problem. A distributed com-
puting scheme achieving the same optimal computation-
communication costs tradeoff as in [10] but with lower de-
coding complexity, was recently proposed in [31].

Some other extensions on the distributed gradient coding
problem in [9] were also considered in the literature. For
instance, the authors in [32] extended the gradient coding
strategy to a tree-topology where the workers are located, and
a fixed fraction of children nodes per parent node may be
straggler. The case where the number of stragglers is not given
in prior was considered in [33]. In [34], each worker sends
multiple linear combinations such that the master does not
always need to wait for the answers of Nr workers (i.e., from
some ‘good’ subset of workers with the cardinality less than
Nr, the master can recover the task function). It can be seen
that these extended models are different from the considered
problem in this paper.

Distributed linear transform: The distributed linear
transform problem in [13] aims to compute the linear trans-
form Ax where x is the input vector and A is a given matrix
with dimension Kc × K. We should design a coding vector
cn for each worker n ∈ [N] (which then computes cnx)
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such that from the computation results of any Nr workers
we can reconstruct Ax. Meanwhile, in order to have low
computation cost, each coding vector should be sparse and
the number of its non-zero elements should be no more than
M, where M should be minimized. Hence, the distributed
linear transform problem in [13] can be seen a special case
of the distributed linearly separable computation problem with
Tn = L = 1 for each n ∈ [N] (recall that Tn represents the
number of symbols transmitted by worker n). In other words,
in this paper we consider the case where the computation
cost is minimum and search for the minimum communication
cost, while the authors in [13] considered the case where
L = 1 and the communication cost is minimum, and searched
for the minimum computation cost. A computing scheme
was proposed in [13] which needs M = K

N (N − Nr + Kc).
The authors in [35] further improved the distributed linear
transform scheme in [13] by proposing a computing scheme to
let each worker n ∈ [N] only access M′n elements in x, where
K(N− Nr + Kc)− NNr <

∑
n∈[N] M

′
n < NK

N (N− Nr + Kc).
The authors in [36] considered another distributed linear

transform problem with a different sparsity constraint com-
pared to [13]. The distributed linear transform problem in [36]
can be seen as a special case of the distributed linearly
separable computation problem with Tn = L = 1 and Kc = K.

Distributed matrix-vector and matrix-matrix multipli-
cations: Distributed computing techniques against stragglers
were also used to compute matrix-vector multiplication as
Ab [14]–[16] and matrix-matrix multiplication as AB [4],
[17]–[23]. The general technique is to partition each input
matrix into sub-matrices and assign some linear combinations
of all sub-matrices (from MDS codes, polynomial codes, etc.)
to the workers without considering the sparsity of the coding
vectors/matrices. Thus, the assignment phase is coded.

Distributed multivariate polynomial computation:
Similar difference as above also appears between the consid-
ered distributed linearly separable computation problem and
the distributed multivariate polynomial computation problem
in [24]. It was shown in [24] that the gradient descent can be
computed distributedly by using a coding scheme based on
the Lagrange polynomial. However, the assignment phase of
the Lagrange distributed computing scheme in [24] is coded.

In summary, compared to the distributed computing
schemes with coded assignment phase, the main challenge of
designing computing schemes with uncoded assignment phase
is that besides the decodability constraint, we should addition-
ally guarantee that in the transmitted linear combination(s) by
each worker, the coefficients of the unassigned elements are
0.

III. MAIN RESULTS

We first propose a converse bound on the minimum commu-
nication cost in the following theorem, which will be proved
in Appendix A inspired by the converse bound for the coded
caching problem with uncoded cache placement [25], [26].

Theorem 1 (Converse). For the (K,N,Nr,Kc,M) distributed
linearly separable computation problem with M = K

N (N−Nr+
1),

• when Kc ∈
[⌈

K

( N
N−Nr+1)

⌉]
, we have

R? ≥ NrKc. (17a)

• when Kc ∈
(⌈

K

( N
N−Nr+1)

⌉
: K

]
, we have

R? ≥ max

{
Nr

⌈
K(
N

N−Nr+1

)⌉ ,Kc

}
. (17b)

�

For the case with Kc = 1 and M = K
N (N − Nr + 1) which

reduces to the distributed gradient coding problem in [9], from
Theorem 1 and the gradient coding scheme in [9] (each worker
sends one linear combination of the assigned messages), we
can directly prove the following corollary.

Corollary 1. For the (K,N,Nr,Kc,M) distributed linearly
separable computation problem with M = K

N (N − Nr + 1)
and Kc = 1, we have

R? = Nr. (18)

�

Note that the optimality of the gradient coding scheme in [9]
for the distributed gradient coding problem was proved in [10],
but under the constraint that the encoding functions in (7) are
linear. In Corollary 1, we remove this constraint.

With the cyclic assignment in Section II-A, we then pro-
pose a novel achievable distributed computing scheme whose
detailed proof could be found in Section IV.

Theorem 2 (Proposed distributed computing scheme). For the
(K,N,Nr,Kc,M) distributed linearly separable computation
problem with M = K

N (N − Nr + 1), the communication cost
Rach is achievable, where
• when Kc ∈

[
1 : K

N

)
,

Rach = NrKc; (19a)

• when Kc ∈
[
K
N : K

NNr

]
,

Rach =
K

N
Nr; (19b)

• when Kc ∈
(
K
NNr : K

]
,

Rach = Kc. (19c)

�

In Theorem 2, we consider three regimes with respect to
the value of Kc and the main ingredients are as follows.

1) Kc ∈
[
1 : K

N

)
. By some linear transformations on the

request matrix F, we treat the considered problem as
Kc sub-problems in each of which the master requests
one linear combination of messages. Thus by using the
coding scheme in Corollary 1 for each sub-problem, we
can let the master recover the general task function.

2) Kc ∈
[
K
N : K

NNr

]
. This is the most interesting case,

where we propose a computing scheme based on the
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linear space intersection (see Remark 2 for further
explanations), with the communication cost equal to the
case where Kc = K

N . We generate K
NNr − Kc virtually

requested linear combinations of messages such that the
master totally recover K

NNr effective linear combinations
of messages from the responses of any Nr workers. Each
worker transmits K

N linear combinations of messages
which lie in the intersection of the linear spaces of
its known messages and the effective demanded linear
combinations. From a highly non-trivial proof based on
the Schwartz-Zippel lemma [28]–[30], where the main
challenge is to prove that the multivariate polynomials
are generally non-zero (see Appendix D), we show that
the responses of any Nr workers are linearly independent
with high probability, and thus are able to reconstruct the
effective demanded linear combinations.

3) Kc ∈
(
K
NNr : K

]
. To recover Kc linear combinations of

the K messages, we propose a computing scheme to let
the master totally receive Kc coded messages with L
symbols each, i.e., R? = Kc is achieved.

Remark 1. Note that, when the operations are on the field of
real numbers, the proposed computing scheme in Theorem 2
can work with high probability if each element in F is
uniformly i.i.d. over a large enough finite set of real numbers
or over an interval of real numbers. �

By comparing the proposed converse bound in Theorem 1
and the achievable scheme in Theorem 2, we can directly
derive the following optimality results.

Theorem 3 (Optimality). For the (K,N,Nr,Kc,M) distributed
linearly separable computation problem with M = K

N (N−Nr+
1),
• when K = N, we have

R? =

{
Nr, if Kc ∈ [Nr];

Kc, if Kc ∈ (Nr : K];
(20a)

• when Kc ∈
[⌈

K

( N
N−Nr+1)

⌉]
, we have

R? = NrKc; (20b)

• when Kc ∈
[
K
NNr : K

]
, we have

R? = Kc. (20c)

�

From Theorem 3, it can be seen that when K = N and
Kc ∈ [Nr], the optimal communication cost is always Nr (i.e.,
each worker sends one linear combination of the messages
from its assigned datasets). Thus we prove that with the same
communication cost as the optimal gradient coding scheme
in [9] for the distributed gradient coding problem (from which
the master recovers W1+ · · ·WK), our propose scheme can let
the master recover any additional Nr − 1 linear combinations
of the K messages whose coefficients are uniformly i.i.d. over
Fq with high probability.

In general, the minimum communication cost in the regime

where Kc ∈
(⌈

K

( N
N−Nr+1)

⌉
: K
NNr

)
is still open. The following

theorem claims that the proposed achievable scheme is optimal
under the constraint of the cyclic assignment in [9], whose
proof is in Appendix B.

Theorem 4 (Optimality under the cyclic assignment in [9]).
For the (K,N,Nr,Kc,M) distributed linearly separable com-
putation problem with M = K

N (N − Nr + 1), the minimum
communication cost under the cyclic assignment is

R?cyc = Rach, (21)

where Rach is given in (19). �

IV. ACHIEVABLE DISTRIBUTED COMPUTING SCHEME

In this section, we introduce the proposed distributed com-
puting scheme with the cyclic assignment in [9]. As shown
in Theorem 2, we divide the range of Kc (which is [K]) into
three regimes, and present the corresponding scheme in the
order, Kc ∈

[
K
N : K

NNr

]
, Kc ∈

[
1 : K

N

)
, and Kc ∈

(
K
NNr : K

]
.

A. Kc ∈
[
K
N : K

NNr

]
We first illustrate the main idea in the following example.

Example 1 (N = 3,K = 6,Kc = 4,Nr = 2, M = 4). In
this example, it can be seen that Kc = K

NNr. For the sake
of simplicity, in the rest of this paper while illustrating the
proposed schemes through examples, we assume that the field
is a large enough prime field. It will be proved that in general
this assumption is not necessary in our proposed schemes
where we only need the field size q is large enough. Assume
that the task function is

f(D1, . . . , D6) =


F1

F2

F3

F4

 = F


W1

W2

W3

W4

W5

W6



=


1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6
1, 0, 2, 3, 5, 4
1, 2, 1, 4, 4, 0



W1

W2

W3

W4

W5

W6

 .

Data assignment phase: By the cyclic assignment de-
scribed in Section II-A, we assign that

Worker 1 Worker 2 Worker 3
D1 D2 D1

D2 D3 D3

D4 D5 D4

D5 D6 D6

Computing phase: We first focus on worker 1, who first
computes W1, W2, W4, and W5 based on its assigned datasets.
In other words, Wi where i ∈ {3, 6} cannot be computed by
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worker 1. We retrieve the ith column of F where i ∈ {3, 6},
to obtain

F({3,6})c =


1, 1
3, 6
2, 4
1, 0

 . (22)

We then search for a vector basis for the left-side null space
of F({3,6})c . Note that F({3,6})c is a full-rank matrix with
dimension 4 × 2. Hence, a vector basis for its left-side null
space contains 4 − 2 = 2 linearly independent vectors with
dimension 1×4, where the product of each vector and F({3,6})c

is 01×2 (i.e., the zero matrix with dimension 1×2). A possible
vector basis could be the set of vectors (−6, 1, 0, 3) and
(0,−2, 3, 0). It can be seen that

− 6F1 + 1F2 + 0F3 + 3F4=−2W1 + 2W2 + 10W4 + 11W5,
(23a)

0F1 − 2F2 + 3F3 + 0F4 = W1 − 4W2 +W4 + 5W5, (23b)

both of which are independent of W3 and W6. Hence, the
two linear combinations in (23) could be computed and then
sent by worker 1.

For worker 2, who can compute W2, W3, W5, and W6,
we search for the a vector basis for the left-side null space
of F({1,4})c . A possible vector basis could be the set of
vectors (0,−1, 0, 1) and (−1,−2, 3, 0). Hence, we let worker
2 compute and send

0F1 − 1F2 + 0F3 + 1F4 = −2W3 −W5 − 6W6, (24a)
− 1F1 − 2F2 + 3F3 + 0F4 = −5W2 −W3 + 4W5 −W6.

(24b)

For worker 3, who can compute W1, W3, W4, and W6,
we search for the a vector basis for the left-side null space
of F({2,5})c . A possible vector basis could be the set of
vectors (−2,−2, 0, 3) and (10,−5, 3, 0). Hence, we let worker
3 compute and send

− 2F1 − 2F2 + 0F3 + 3F4 = −W1 − 5W3 + 2W4 − 14W6,
(25a)

10F1 − 5F2 + 3F3 + 0F4 = 8W1 +W3 −W4 − 8W6.
(25b)

In summary, each worker sends two linear combinations of
(F1, F2, F3, F4).

Decoding phase: Assuming the set of responding workers
is {1, 2}. The master receives

X{1,2} =


−6, 1, 0, 3
0,−2, 3, 0
0,−1, 0, 1
−1,−2, 3, 0



F1

F2

F3

F4

 := C{1,2}


F1

F2

F3

F4

 .
(26)

Since matrix C{1,2} is full-rank, the master can recover
[F1;F2;F3;F4] by computing C−1{1,2}X{1,2}.

Similarly, it can be checked that the four linear combinations
sent from any two workers are linearly independent. Hence,
by receiving the answers of any two workers, the master can
recover task function.

Performance: The needed communication cost is
2L+2L

L = 4, coinciding with the converse bound R? ≥ Kc = 4.
�

We are now ready to generalize the proposed scheme in
Example 1. First we focus on Kc = K

NNr. During the data
assignment phase, we use the cyclic assignment described in
Section II-A.

Computing phase: Recall that by the cyclic assignment,
the set of datasets assigned to worker n ∈ [N] is

Zn = ∪
p∈[0: KN−1]

{
Mod(n,N) + pN,Mod(n+ 1,N) + pN, . . . ,

Mod(n+ N− Nr,N) + pN
}

as defined in (15). We denote the set of datasets which are not
assigned to worker n by Zn := [K]\Zn. We retrieve columns
of F with indices in Zn to obtain F(Zn)c . It can be seen that
the dimension of F(Zn)c is Kc× K

N (Nr−1) = K
NNr× K

N (Nr−1),
and the elements in F(Zn)c are uniformly i.i.d. over Fq. Hence,
a vector basis for the left-side null space F(Zn)c is the set of K

N
linearly independent vectors with dimension 1× K

NNr, where
the product of each vector and F(Zn)c is 01× K

N (Nr−1).
We assume that a possible vector basis contains the vectors

un,1, . . . ,un, KN
. For each j ∈

[
K
N

]
, we focus on

un,jF

 W1

...
WK

 . (27)

Since un,jF
(Zn)c = 01× K

N (Nr−1), it can be seen that (27) is
a linear combination of Wi where i ∈ Zn, which could be
computed by worker n.

After computing Wi = fi(Di) for each i ∈ Zn, worker n
then computes

X{n} =

 un,1
...

un, KN

F

 W1

...
WK

 := C{n}F

 W1

...
WK

 , (28)

which is then sent to the master. It can be seen that X{n}
contains K

N linear combinations of the messages in Zn, each
of which contains L symbols. Hence, worker n totally sends
K
NL symbols, i.e.,

Tn =
K

N
L. (29)

Decoding phase: We provide the following lemma which
will be proved in Appendix C based on the Schwartz-Zippel
lemma [28]–[30].

Lemma 2. For any set A ⊆ [N] where |A| = Nr, the vectors
un,j where n ∈ A and j ∈

[
K
N

]
are linearly independent (i.e.,

CA is full-rank) with high probability. �

Assume that the set of responding workers is A =
{A(1), . . . ,A (Nr)} where A ⊆ [N] and |A| = Nr. Hence,
the master receives

XA =

 XA(1)

...
XA(Nr)

 =

 CA(1)

...
CA(Nr)

F

 W1

...
WK


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:= CAF

 W1

...
WK

 . (30)

By Lemma 2, matrix CA is full-rank. Hence, the master can
recover the task function by taking

C−1A XA = F

 W1

...
WK

 .
Performance: From (29), the number of symbols sent by

each worker is K
NL. Hence, the communication cost is K

NNr.

Remark 2. The proposed scheme can be explained from the
viewpoint on linear space. The request matrix F can be seen
as a linear space composed of K

NNr linearly independent
vectors, each of which has the size 1 × K. The assigned
datasets to each worker n ∈ [N], are Di where i ∈ Zn.
Thus all the linear combinations which can be sent by worker
n are located at a linear space composed of the vectors
(0, . . . , 0, 1, 0, . . . , 0) where 1 is at ith position for i ∈ Zn.
The intersection of these two linear spaces contains K

N linearly
independent vectors. In other words, the product of each of
the K

N vectors and [W1; . . . ;WK] can be sent by worker n. In
addition, considering any set of Nr workers, Lemma 2 shows
that the total K

NNr vectors are linearly independent, such that
the master can recover the whole linear space generated by
F. �

For each Kc ∈
[
K
N : K

NNr

)
, the master generates a ma-

trix G with dimension
(
K
NNr − Kc

)
× K, whose elements

are uniformly i.i.d. over Fq. The master then requests
F′[W1; . . . ;WK], where F′ = [F;G]. Hence, we can then use
the above distributed computing scheme with Kc = K

NNr to let
the master recover F′[W1; . . . ;WK], and the communication
cost is also K

NNr, which coincides with (19b).
As stated in Footnote 2, the computation complexity of each

worker is mainly due to the computation on the messages
from the assigned datasets. Recall that L is large enough. For
the proposed computing scheme in this case, the decoding
complexity (i.e., the number of multiplications) of the master
is O

(
Kc

K
NNrL

)
.

B. Kc ∈
[
1 : K

N

)
We also begin with an example to illustrate the main idea.

Example 2 (N = 3,K = 9,Kc = 2,Nr = 2, M = 6). Assume
that the task function is

f(D1, . . . , D9) =

[
F1

F2

]
= F

 W1

...
W9


=

[
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 9

] W1

...
W9

 .

By the cyclic assignment described in Section II-A, we
assign that

Worker 1 Worker 2 Worker 3
D1 D2 D1

D2 D3 D3

D4 D5 D4

D5 D6 D6

D7 D8 D7

D8 D9 D9

Note that by the cyclic assignment, we can divide the K = 9
datasets into N = 3 groups, where in each group there are K

N =
3 datasets. The first group contains D1, D4, D7, which are
assigned to workers 1 and 3. The coefficients of (W1,W4,W7)
in F1 are (1, 1, 1) and in F2 are (1, 4, 7). We define that

W ′1,1 = W1 +W4 +W7, (31a)

W ′2,1 = W1 + 4W4 + 7W7, (31b)

which are computed by workers 1 and 3. Similarly, the second
group contains D2, D5, D8, which are assigned to workers 1
and 2. The coefficients of (W2,W5,W8) in F1 are (1, 1, 1)
and in F2 are (2, 5, 8). We define that

W ′1,2 = W2 +W5 +W8, (32a)

W ′2,2 = 2W2 + 5W5 + 8W8, (32b)

which are computed by workers 1 and 2. The third group
contains D3, D6, D9, which are assigned to workers 2 and 3.
The coefficients of (W3,W6,W9) in F1 are (1, 1, 1) and in
F2 are (3, 6, 9). We define that

W ′1,3 = W3 +W6 +W9, (33a)

W ′2,3 = 3W3 + 6W6 + 9W9, (33b)

which are computed by workers 2 and 3.
Now we treat this example as two separated sub-

problems, where each sub-problem is a (K′,N′,N′r,K
′
c,M

′) =
(3, 3, 2, 1, 2) distributed linearly separable computation prob-
lem. In the first sub-problem, the three messages are W ′1,1,
W ′1,2, and W ′1,3, and the master aims to compute W ′1,1 +
W ′1,2 +W ′1,3. In the second sub-problem, the three messages
are W ′2,1, W ′2,2, and W ′2,3, and the master aims to compute
W ′2,1 +W ′2,2 +W ′2,3. Hence, each sub-problem can be solved
by the proposed scheme in Section IV-A with communication
cost equal to K′

N′N
′
r = 2. The total communication cost is 4. �

We are now ready to generalize Example 2. For each
integer n ∈ [N], we focus on the set of messages{
Wn+pN : p ∈

[
0 : K

N − 1
]}
. We define

W ′j,n =
∑

p∈[0: KN−1]

fj,n+pNWn+pN, ∀j ∈ [Kc], (34)

where fj,n+pN is the element located at the jth row and (n+
pN)th column of matrix F. Note that each message Wn+pN can
be computed by workers in [n : Mod(n−N+Nr)]. Hence, W ′j,n
can also be computed by workers in [n : Mod(n− N + Nr)].
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We can re-write the task function as

f(D1, . . . , DK) =

 F1

...
FKc

 =

 W ′1,1 + · · ·+W ′1,N
...

W ′Kc,1
+ · · ·+W ′Kc,N

 .
(35a)

We then treat the problem as Kc separate sub-problems,
where in the jth sub-problem, the master requests W ′j,1 +
· · · + W ′j,N. Hence, each sub-problem is equivalent to the
(K′,N′,N′r,K

′
c,M

′) = (N,N,Nr, 1,N− Nr + 1) distributed
linearly separable computation problem. Each sub-problem
can be solved by the proposed scheme in Section IV-A with
communication cost equal to K′

N′N
′
r = Nr. Hence, considering

all the Kc sub-problems, the total communication cost is KcNr,
which coincides with (19a).

For the proposed computing scheme in this case, the decod-
ing complexity of the master is O (KcNrL).

C. Kc ∈
(
K
NNr : K

]
We still use an example to illustrate the main idea.

Example 3 (N = 3,K = 3,Kc = 3,Nr = 2, M = 2). Assume
that the task function is

f(D1, . . . , D3) =

 F1

F2

F3

 = F

 W1

W2

W3


=

 1, 1, 1
1, 2, 3
1, 4, 9

 W1

W2

W3

 .
By the cyclic assignment described in Section II-A, we

assign that

Worker 1 Worker 2 Worker 3
D1 D2 D1

D2 D3 D3

For each message Wk where k ∈ [K], we divide Wk into
2 non-overlapping and equal-length sub-messages, denoted
by Wk,1 and Wk,2. We then use a (3, 2) MDS (Maximum
Distance Separable) code to obtain 3 MDS-coded packets:

Wk,{1,2} = Wk,1, Wk,{1,3} = Wk,2, Wk,{2,3} = Wk,1+Wk,2.

Next we treat this example as 3 sub-problems, where each
sub-problem is a (K′,N′,N′r,K

′
c,M

′) = (3, 3, 2, 2, 2)
distributed linearly separable computation problem.
In the first sub-problem, the three messages are
W1,{1,2},W2,{1,2},W3,{1,2}, and the master requests

F({1,2})r

W1,{1,2}
W2,{1,2}
W3,{1,2}

=[ W1,{1,2} +W2,{1,2} +W3,{1,2}
W1,{1,2} + 2W2,{1,2} + 3W3,{1,2}

]
.

In the second sub-problem, the three messages are
W1,{1,3},W2,{1,3},W3,{1,3}, and the master requests

F({1,3})r

W1,{1,3}
W2,{1,3}
W3,{1,3}

=[ W1,{1,3} +W2,{1,3} +W3,{1,3}
W1,{1,3} + 4W2,{1,3} + 9W3,{1,3}

]
.

In the third sub-problem, the three messages are
W1,{2,3},W2,{2,3},W3,{2,3}, and the master requests

F({2,3})r

W1,{2,3}
W2,{2,3}
W3,{2,3}

=[W1,{2,3} + 2W2,{2,3} + 3W3,{2,3}
W1,{2,3} + 4W2,{2,3} + 9W3,{2,3}

]
.

Each sub-problem can be solved by the proposed scheme
in Section IV-A, where each worker sends K′

N′ = 1 linear
combination of sub-messages with L

2 symbols. Hence, each
worker totally sends 3L

2 symbols, and thus the communication
cost equal to 3LNr

2L = 3.
Now we show that by solving the three sub-problems, the

master can recover the task, i.e., F1 = W1 +W2 +W3, F2 =
W1 + 2W2 + 3W3, and F3 = W1 + 4W2 + 9W3.

From the first and second sub-problems, the master can
recover

W1,{1,2} +W2,{1,2} +W3,{1,2} = W1,1 +W2,1 +W3,1,
(36a)

W1,{1,3} +W2,{1,3} +W3,{1,3} = W1,2 +W2,2 +W3,2.
(36b)

Hence, by concatenating (36a) and (36b), the master can
recover F1.

From the first and third sub-problems, the master can
recover

W1,{1,2} + 2W2,{1,2} + 3W3,{1,2} = W1,1 + 2W2,1 + 3W3,1,
(37a)

W1,{2,3} + 2W2,{2,3} + 3W3,{2,3} = (W1,1 +W1,2)+

2(W2,1 +W2,2) + 3(W3,1 +W3,2). (37b)

From (37a) and (37b), the master can first recover W1,2 +
2W2,2+3W3,2, which is then concatenated with (37a). Hence,
the master can recover F2.

From the second and third sub-problems, the master can
recover

W1,{1,3} + 4W2,{1,3} + 9W3,{1,3} = W1,2 + 4W2,2 + 9W3,2,
(38a)

W1,{2,3} + 4W2,{2,3} + 9W3,{2,3} = (W1,1 +W1,2)

+ 4(W2,1 +W2,2) + 9(W3,1 +W3,2). (38b)

From (38a) and (38b), the master can first recover W1,1 +
4W2,1+9W3,1, which is then concatenated with (38a). Hence,
the master can recover F3. �

We are now ready to generalize Example 3. We di-
vide each message Wk into

( Kc−1
K
NNr−1

)
equal-length and non-

overlapped sub-messages, Wk =

(
Wk,1, . . . ,Wk,( Kc−1

K
N
Nr−1

)

)
,

which are then encoded by a
(( Kc

K
NNr

)
,
( Kc−1

K
NNr−1

))
MDS code.

Each MDS-coded packet is denoted by Wk,S where S ⊆ [Kc]
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where |S| = K
NNr. Since Wk,S is a linear combination of(

Wk,1, . . . ,Wk,( Kc−1
K
N
Nr−1

)

)
, we define that

Wk,S = vS


Wk,1

...
W
k,( Kc−1

K
N
Nr−1

)

 , ∀S ⊆ [Kc] : |S| = K

N
Nr,

(39)

where vS with
( Kc−1

K
NNr−1

)
elements represents the generation

vector to generate the MDS-coded packet Wk,S . Note that
each MDS-coded packet has L

( Kc−1
K
N
Nr−1

)
symbols.

Next we treat the problem as
( Kc

K
NNr

)
sub-problems,

where each sub-problem is a (K′,N′,N′r,K
′
c,M

′) =(
K,N,Nr,

K
NNr,M

)
distributed linearly separable computation

problem. For each S ⊆ [Kc] where |S| = K
NNr, there

is a sub-problem. In this sub-problem the messages are
W1,S , . . . ,WK,S , and the master requests

F(S)r

 W1,S
...

WK,S

 .
Each sub-problem can be solved by the proposed scheme in
Section IV-A, where each worker sends K

N linear combination
of sub-messages with L

( Kc−1
K
N
Nr−1

)
symbols. Hence, each worker

totally sends (
Kc
K
NNr

)
K

N

L( Kc−1
K
NNr−1

) =
LKc

Nr

symbols, and thus the communication cost equal to Nr
LKc

NrL
=

Kc, which coincides with (19c).
Now we show that by solving all the sub-problems, the

master can recover the task, i.e., for each j ∈ [Kc] the master
can recover

Fj = F({j})r [W1; . . . ;WK] = fj,1W1 + · · ·+ fj,KWK (40a)

= fj,1


W1,1

...
W

1,( Kc−1
K
N
Nr−1

)

+ · · ·+ fj,K


WK,1

...
W

K,( Kc−1
K
N
Nr−1

)

 ,
(40b)

where we define that F({j})r := [fj,1, . . . , fj,K].
For each S ⊆ [Kc] where |S| = K

NNr and j ∈ S, in the
corresponding sub-problem the master has recovered

F({j})r [W1,S ; . . . ;WK,S ] = fj,1W1,S + · · ·+ fj,KWK,S

(41a)

= fj,1vS


W1,1

...
W

1,( Kc−1
K
N
Nr−1

)

+ · · ·+ fj,KvS


WK,1

...
W

K,( Kc−1
K
N
Nr−1

)

 .
(41b)

We assume that all the sets S ⊆ [Kc] where |S| = K
NNr and j ∈

S, are S1, . . . ,S( Kc−1
K
N
Nr−1

). By considering all the sub-problems

corresponding to the above sets, the master has recovered

fj,1


vS1

...
vS

( Kc−1
K
N
Nr−1)




W1,1

...
W

1,( Kc−1
K
N
Nr−1

)

+ · · ·+

fj,K


vS1

...
vS

( Kc−1
K
N
Nr−1)




WK,1

...
W

K,( Kc−1
K
N
Nr−1

)

 := Hj . (42)

Note that


vS1

...
vS

( Kc−1
K
N
Nr−1)

 is full-rank with size
( Kc−1

K
NNr−1

)
×

( Kc−1
K
NNr−1

)
, and thus invertible. Hence, the master can recover

Fj in (40b) by taking


vS1

...
vS

( Kc−1
K
N
Nr−1)


−1

Hj .

For the proposed computing scheme in this case, the decod-
ing complexity of the master is O

(
Kc

( Kc−1
K
NNr−1

)
L
)

.

Remark 3. By using the Schwartz-Zippel Lemma, we prove
that the proposed scheme is decodable with high probability if
the elements in the demand matrix F are uniformly i.i.d. over
some large field. However, for some specific F, the proposed
scheme is not decodable (i.e., CA is not full-rank) and we
may need more communication load.

Let us focus on the (K,N,Nr,Kc,M) = (3, 3, 2, 2, 2)
distributed linearly separable computation problem. In this
example, there is only one possible assignment, which is as
follows,

Worker 1 Worker 2 Worker 3
W1 W2 W1

W2 W3 W3

Noting that in this case we have N = K and Kc = Nr. From
Theorem 3, the proposed scheme in Section IV-A is decodable
with high probability if the elements in the demand matrix F
are uniformly i.i.d. over some large field, and achieves the
optimal communication cost 2.

In the following, we focus on a specific demand matrix

F′ =

[
1, 1, 1
2, 1, 1

] W1

W2

W3

 =

[
W1 +W2 +W3

2W1 +W2 +W3

]
. (43)

Note that the demand is equivalent to (W1,W2 +W3). If we
use the proposed scheme in Section IV-A, it can be seen that
C{1} = [1,−1], C{2} = [2,−1], and C{3} = [1,−1]. So

we have C{1,3} =

[
1,−1
1,−1

]
is not full-rank, and thus the

proposed scheme is not decodable. In the following, we will
prove that the optimal communication cost for this demand
matrix is 3.
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[Converse]: We now prove that the communication cost is
no less than 3. Note that from X1 and X3, the master can
recover W1 and W2 +W3. Hence, we have

0 = H(W2 +W3|X1, X3) (44a)
≥ H(W2 +W3|X1, X3,W1,W3) (44b)
= H(W2 +W3|X1,W1,W3) (44c)
= H(W2|X1,W1,W3) (44d)
= H(W2|X1,W1), (44e)

where (44c) comes from that X3 is a function of
(W1,W3) and (44e) comes from that W3 is independent
of (W1,W2, X1). Since the master can recover W1 from
(X1, X3), (44e) shows that from (X1, X3) the master can also
recover W2, i.e.,

H(W1,W2|X1, X3) = 0. (45)

Moreover, we have

0 = H(W2 +W3|X1, X3) (46a)
≥ H(W2 +W3|X1, X3,W1,W2) (46b)
= H(W3|X1, X3,W1,W2) (46c)
= H(W3|X1, X3), (46d)

where (46d) comes from (45). Hence, we have

H(W1,W2,W3|X1, X3) = 0. (47)

Note that from X1 and X2, the master can recover W1

and W2 + W3. Since the master can recover W1 from
(X1, X2), (44e) shows that from (X1, X2) the master can also
recover W2, i.e.,

H(W1,W2|X1, X2) = 0. (48)

Moreover, we have

0 = H(W2 +W3|X1, X2) (49a)
≥ H(W2 +W3|X1, X2,W1,W2) (49b)
= H(W3|X1, X2,W1,W2) (49c)
= H(W3|X1, X2), (49d)

where (49d) comes from (48). From (48) and (49d), we have

H(W1,W2,W3|X1, X2) = 0. (50)

Similarly, we also have

H(W1,W2,W3|X2, X3) = 0. (51)

From (47), (50), and (51), it can be seen that for any set
of workers A ⊆ [3] where |A| = 2, we have (recall that
XA := {Xn : n ∈ A})

H(XA) ≥ 3L, (52)

Hence, we have the communication cost is no less than 3.
[Achievability]: We can use the proposed scheme in Ex-

ample 3 to let the master recover 3 linearly independent
linear combinations of (W1,W2,W3), such that the master
can recover each message and then recover (W1,W2 +W3).
The needed communication cost is 3 as shown in Example 3,
which coincides with the above converse bound.

From the above proof, we can also see that for the
(K,N,Nr,Kc,M) = (3, 3, 2, 2, 2) distributed linearly separa-
ble computation problem,
• if the demand matrix is full-rank and it contains a sub-

matrix with dimension 2 × 2 which is not full-rank, the
optimal communication cost is 3;

• otherwise, the optimal communication cost is 2.
It is one of our on-going works to study the specific demand
matrices for more general case. �

V. EXTENSIONS

In this section, we will discuss about the extension of the
proposed scheme in Section IV. In Section V-A, we propose
an extended scheme for the general values of K and N (i.e.,
N does not necessarily divide K). In Section V-B, we provide
an example to show that the cyclic assignment is sub-optimal.

A. General values of K and N

We assume that K = aN + b, where a is a non-negative
integer and b ∈ [N− 1]. Since we still consider the minimum
computation cost and each dataset should be assigned to at
least N−Nr +1 workers, thus now the minimum computation
cost is⌈

K

N
(N− Nr + 1)

⌉
= a(N− Nr + 1) +

⌈
b

N
(N− Nr + 1)

⌉
.

(53)

It will be explained later that in order to enable the extension
of the cyclic assignment to the general values of K and N, we
consider the computation cost

M1 := a(N− Nr + 1) +

⌈
N− Nr + 1⌊

N
b

⌋ ⌉
, (54)

which may be slightly larger than the minimum computation
cost in (53).

We generalize the proposed scheme in Section IV by
introducing N − b virtual datasets, to obtain the following
theorem, which is the generalized version of Theorem 2.

Theorem 5. For the (K,N,Nr,Kc,M) distributed linearly
separable computation problem with K = aN+b and M = M1

where a is a non-negative integer and b ∈ [N − 1], the
communication cost R′ach is achievable, where
• when Kc ∈

[⌊
K
N

⌋]
,

R′ach = NrKc; (55a)

• when Kc ∈
[⌈

K
N

⌉
:
⌈
K
N

⌉
Nr

]
,

R′ach =

⌈
K

N

⌉
Nr; (55b)

• when Kc ∈
(⌈

K
N

⌉
Nr : K

]
,

R′ach = R? = Kc, (55c)

where R? represents the optimal communication cost for
this case.

�
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Proof: We first extend the cyclic assignment in Sec-
tion II-A to the general case by dividing the K datasets into
two groups, [aN] and [aN + 1 : K], respectively.

• For each dataset Dk where k ∈ [aN], we assign
Dk to worker j, where j ∈

{
Mod(k,N),Mod(k −

1,N), . . . ,Mod(k −N + Nr,N)
}

. Hence, the assignment
on the datasets in the first group is the same as the cyclic
assignment in Section II-A. The number of datasets in
the first group assigned to each worker is

a(N− Nr + 1). (56)

• For the second group, we introduce N−b virtual datasets
and thus there are totally N effective (real or virtual)
datasets. We then use the cyclic assignment in Sec-
tion II-A to assign the N effective datasets to the workers,
such that the number of effective datasets assigned to
each worker is N − Nr + 1. To satisfy the assignment
constraint (i.e., |Zn| ≤ M for each n ∈ [N]), it can be
seen from (54) and (56) that the number of real datasets
in the second group assigned to each worker should be

no more than
⌈

N−Nr+1

b N
b c

⌉
. Hence, our objective is to

choose b datasets from N effective datasets as the real
datasets, such that by the cyclic assignment on these N
effective datasets the number of real datasets assigned

to each worker is no more than
⌈

N−Nr+1

b N
b c

⌉
. We will

propose an allocation algorithm in Appendix E which can
generally attain the above objective. Here we provide an
example to illustrate the idea, where K = b = 3, a = 0,
N = 6, and Nr = 4. We have totally 6 effective datasets
denoted by, E1, . . . , E6. By the cyclic assignment, the
number of effective datasets assigned to each worker is
N− Nr + 1 = 3. Thus we assign that

Worker 1 Worker 2 Worker 3
E1 E2 E3

E2 E3 E4

E3 E4 E5

Worker 4 Worker 5 Worker 6
E4 E5 E6

E5 E6 E1

E6 E1 E2

By choosing E1, E3, and E5 as the real datasets, it can
be seen that the number of real datasets assigned to each

worker is no more than
⌈

N−Nr+1

b N
b c

⌉
= 2.

After the data assignment phase, each worker then computes
the message for each assigned real dataset. The virtual mes-
sage which comes from each virtual dataset, is set to be a vec-
tor of L zeros. We then directly use the computing phase of the
proposed scheme in Section IV for the (K′,N′,N′r,K

′
c,M

′) =
((a + 1)N,N,Nr,Kc, (a + 1)(N− Nr + 1)) distributed lin-
early separable computation problem, to achieve the commu-
nication cost in Theorem 5.

B. Improvement on the cyclic assignment

In the following, we will provide an example which shows
the sub-optimality of the cyclic assignment.

Example 4 (K = 12, N = 4, Nr = 3, Kc = 3, M = 6).
Consider the example where K = 12, N = 4, Nr = 3, Kc = 3,
and we assign M = K

N (N − Nr + 1) = 6 datasets to each
worker. Each dataset is assigned to N− Nr + 1 = 2 workers.
By the proposed scheme with the cyclic assignment for the
case where Kc = K

N in Theorem 2, the needed communication
cost is K

NNr = 9, which is optimal under the constraint of
the cyclic assignment. However, by the proposed converse
bound in Theorem 1, the minimum communication cost is
upper bounded by 6. We will introduce a novel distributed
computing scheme to achieve the minimum communication
cost. As a result, we show the sub-optimality of the cyclic
assignment.

Data assignment phase: Inspired by the placement phase
of the coded caching scheme in [7], we assign that

Worker 1 Worker 2 Worker 3 Worker 4
D1 D1 D3 D5

D2 D2 D4 D6

D3 D7 D7 D9

D4 D8 D8 D10

D5 D9 D11 D11

D6 D10 D12 D12

More precisely, we partition the 12 datasets into
(
4
2

)
= 6

groups, each of which is denoted by HT where T ⊆ [4] where
|T | = 2 and contains 2 datasets. In this example, we let

H{1,2} = {1, 2}, H{1,3} = {3, 4}, H{1,4} = {5, 6},
H{2,3} = {7, 8}, H{2,4} = {9, 10}, H{3,4} = {11, 12}.

For each set T ⊆ [4] where |T | = 2, we assign dataset
Dk where k ∈ HT to workers in T . Hence, each dataset
is assigned to 2 workers, and the number of datasets assigned
to each worker is 2

(
4−1
2−1
)

= 6 (e.g., the datasets in groups
H{1,2},H{1,3},H{1,4} are assigned to worker k), satisfying
the assignment constraint.

Computing phase: We assume that the task function is

f(D1, . . . , DK) =

 F1

F2

F3

 = F

 W1

...
W12


=

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1, 0, 3, 2, 8, 4, 1, 2, 9, 4, 5, 10


 W1

...
W12

 .
Note that the following proposed scheme works for any request
with high probability, where the elements F are uniformly i.i.d.

We now focus on each group HT where T ⊆ [6] and |T | =
2. When T = {1, 2}, we have H{1,2} = {1, 2}. We retrieve
the sub-matrix

F({1,2})c =

 1, 1
1, 2
1, 0

 ,
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i.e., columns with indices in H{1,2} = {1, 2} of F. Since
the dimension of F({1,2})c is 3 × 2, the left-side null-space
of F({1,2})c contains one vector. Now we choose the vector
(−2, 1, 1), where (−2, 1, 1)F({1,2})c = (0, 0). Hence, in the
product (−2, 1, 1)[F1;F2;F3], the coefficients of W1 and W2

are 0. We define that

UT = U{1,2} := (−2, 1, 1)[F1;F2;F3] = −2F1 + 1F2 + 1F3

(57a)
= 0W1 + 0W2 + 4W3 + 4W4 + 11W5 + 8W6 + 6W7

+ 8W8 + 16W9 + 12W10 + 14W11 + 20W12. (57b)

Similarly, when T = {1, 3}, we have H{1,3} = {3, 4}. By
choosing the vector (−6, 1, 1) as the left-side null-space of
F({3,4})c , and define that

U{1,3} := (−6, 1, 1)[F1;F2;F3] = −6F1 + 1F2 + 1F3

(58a)
= −4W1 − 4W2 + 0W3 + 0W4 + 7W5 + 4W6 + 2W7

+ 4W8 + 12W9 + 8W10 + 10W11 + 16W12. (58b)

When T = {1, 4}, we have H{1,4} = {5, 6}. By choosing
the vector (−28, 4, 1) as the left-side null-space of F({5,6})c ,
and define that

U{1,4} := (−28, 4, 1)[F1;F2;F3] = −28F1 + 4F2 + 1F3

(59a)
= −23W1 − 20W2 − 13W3 − 10W4 + 0W5 + 0W6 + 1W7

+ 6W8 + 17W9 + 16W10 + 21W11 + 30W12. (59b)

When T = {2, 3}, we have H{2,3} = {7, 8}. By choosing
the vector (6,−1, 1) as the left-side null-space of F({7,8})c ,
and define that

U{2,3} := (6,−1, 1)[F1;F2;F3] = 6F1 − 1F2 + 1F3 (60a)
= 6W1 + 4W2 + 6W3 + 4W4 + 9W5 + 4W6

+ 0W7 + 0W8 + 6W9 + 0W10 + 0W11 + 4W12. (60b)

When T = {2, 4}, we have H{2,4} = {9, 10}. By choosing
the vector (−54, 5, 1) as the left-side null-space of F({9,10})c ,
and define that

U{2,4} := (−54, 5, 1)[F1;F2;F3] = −54F1 + 5F2 + 1F3

(61a)
= −48W1 − 44W2 − 36W3 − 32W4 − 21W5 − 20W6

− 18W7 − 12W8 + 0W9 + 0W10 + 6W11 + 16W12.
(61b)

When T = {3, 4}, we haveH{3,4} = {11, 12}. By choosing
the vector (50,−5, 1) as the left-side null-space of F({11,12})c ,
and define that

U{3,4} := (50,−5, 1)[F1;F2;F3] = 50F1 − 5F2 + 1F3

(62a)
= 46W1 + 40W2 + 38W3 + 32W4 + 33W5 + 24W6

+ 16W7 + 12W8 + 14W9 + 4W10 + 0W11 + 0W12.
(62b)

Our main strategy is that for any set of two workers S ⊆
[4] where |S| = N−Nr+1 = 2, from the transmitted coded

messages by the workers in S, the master can recover
U[4]\S .
• Assume that the straggler is worker 4. From workers 1

and 2, the master can recover U{3,4}; from workers 1 and
3, the master can recover U{2,4}; from workers 2 and 3,
the master can recover U{1,4}. In addition, it can be seen
that U{1,4}, U{2,4}, and U{3,4} are linearly independent.
Hence, the master can recover F1, F2, and F3.

• Assume that the straggler is worker 3. The master can
recover U{1,3}, U{2,3}, and U{3,4}, which are linearly
independent, such that it can recover F1, F2, and F3.

• Assume that the straggler is worker 2. The master can
recover U{1,2}, U{2,3}, and U{2,4}, which are linearly
independent, such that it can recover F1, F2, and F3.

• Assume that the straggler is worker 1. The master can
recover U{1,2}, U{1,3}, and U{1,4}, which are linearly
independent, such that it can recover F1, F2, and F3.

In the following, we provide a code construction such that the
above strategy can be achieved.

When S = {1, 2}, workers 1 and 2 should send coopera-
tively

U{3,4} = 46W1 + 40W2 + 38W3 + 32W4 + 33W5 + 24W6

+ 16W7 + 12W8 + 14W9 + 4W10 + 0W11 + 0W12.

Between workers 1 and 2, it can be seen that W3, W4, W5,
and W6 can only be computed by worker 1, while W7, W8,
W9, and W10 can only be computed by worker 2. In addition,
both workers 1 and 2 can compute W1 and W2. Hence, we
let worker 1 send

A1,{3,4} = x5W1 + x6W2 + 38W3 + 32W4 + 33W5 + 24W6,

and let worker 2 send

A2,{3,4} = x11W1 +x12W2 +16W7 +12W8 +14W9 +4W10,

where A1,{3,4}+A2,{3,4} = U{3,4}. Note that x5, x6, x11, and
x12 are the coefficients which we can design. Hence, we have

x5 + x11 = 46; (63)
x6 + x12 = 40. (64)

Similarly, by considering all sets S ⊆ [4] where |S| = 2,
the transmissions of worker 1 can be expressed as

A1,{2,3} = 6W1 + 4W2 + 6W3 + 4W4

+ x1W5 + x2W6, (65)
A1,{2,4} = −48W1 − 44W2 + x3W3 + x4W4

− 21W5 − 20W6, (66)
A1,{3,4} = x5W1 + x6W2 + 38W3 + 32W4

+ 33W5 + 24W6. (67)

The transmissions of worker 2 can be expressed as

A2,{1,4} = −23W1 − 20W2 + x7W7 + x8W8

+ 17W9 + 16W10, (68)
A2,{1,3} = −4W1 − 4W2 + 2W7 + 4W8 + x9W9

+ x10W10, (69)
A2,{3,4} = x11W1 + x12W2 + 16W7 + 12W8
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+ 14W9 + 4W10. (70)

The transmissions of worker 3 can be expressed as

A3,{1,2} = 4W3 + 4W4 + 6W7 + 8W8

+ x13W11 + x14W12, (71)
A3,{1,4} = −13W3 − 10W4 + x15W7 + x16W8

+ 21W11 + 30W12, (72)
A3,{2,4} = x17W3 + x18W4 − 18W7 − 12W8

+ 6W11 + 16W12. (73)

The transmissions of worker 4 can be expressed as

A4,{1,2} = 11W5 + 8W6 + 16W9 + 12W10

+ x19W11 + x20W12, (74)
A4,{1,3} = 7W5 + 4W6 + x21W9 + x22W10

+ 10W11 + 16W12, (75)
A4,{2,3} = x23W5 + x24W6 + 6W9 + 0W10

+ 0W11 + 4W12. (76)

The coefficients of (x1, . . . , x12) should satisfy (63), (64), and

x1 + x23 = 9; (77)
x2 + x24 = 4; (78)
x3 + x17 = −36; (79)
x4 + x18 = −32; (80)
x7 + x15 = 1; (81)
x8 + x16 = 6; (82)
x9 + x21 = 12; (83)
x10 + x22 = 8; (84)
x13 + x19 = 14; (85)
x14 + x20 = 20. (86)

Finally, we will introduce how to choose (x1, . . . , x12) such
that the above constraints are satisfied. Meanwhile, the rank of
the transmissions of each worker is 2 (i.e., among the three sent
sums by each worker, one sum can be obtained by the linear
combinations of the other two sums), such that we can let each
worker send only two linear combinations of messages and the
needed communication cost is 2Nr = 6, which coincides with
the proposed converse bound in Theorem 1.

We let A1,{2,3} +A1,{2,4} = A1,{3,4}. Hence, we have

x1 = 54, x2 = 44, x3 = 32, x4 = 28, x5 = −42, x6 = −40.

With x5 = −42 and x6 = −40, from (63) and (64) we can
see that

x11 = 88, x12 = 80.

Since we fix x11 = 88 and x12 = 80, if the rank of the
transmissions of worker 2 is 2, we should have

x7 = −11, x8 = −29/2, x9 = −89/10, x10 = −7.

With x3 = 32 and x4 = 28, from (79) and (80) we can see
that

x17 = −68, x18 = −60.

Since we fix x17 = −68 and x18 = −60, if the rank of the
transmissions of worker 3 is 2, we should have

x13 = 6, x14 = 192/25, x15 = 12, x16 = 41/2.

With x1 = 54 and x2 = 44, from (77) and (78) we can see
that

x23 = −45, x24 = −40.

Since we fix x23 = −45 and x24 = −40, if the rank of the
transmissions of worker 4 is 2, we should have

x19 = 8, x20 = 308/25, x21 = 418/20, x22 = 15.

With the above choice of (x1, . . . , x12), we can find that
x7 + x15 = −11 + 12 = 1, satisfying (81);
x8 + x16 = −29/2 + 41/2 = 6, satisfying (82);
x9 + x21 = −89/10 + 418/20 = 12, satisfying (83);
x10 + x22 = −7 + 15 = 8, satisfying (84);
x13 + x19 = 6 + 8 = 14, satisfying (85);
x14 + x20 = 192/25 + 308/25 = 20, satisfying (86).

In conclusion the above choice of (x1, . . . , x12) satisfies
all constraints in (63), (64), (77)-(86), while the rank of the
transmissions of each worker is 2.

Note that the above assignment based on coded caching
can only be used for very limited number of cases in our
problem, i.e., when

(
N

N−Nr+1

)
divides K. In addition, it is part

of on-going works to generalize the above computing phase
under the coded caching assignment to the general case where(

N
N−Nr+1

)
divides K. �

VI. CONCLUSIONS

In this paper, we introduced a distributed linearly separable
computation problem and studied the optimal communication
cost when the computation cost is minimum. We proposed a
converse bound inspired by coded caching converse bounds
and an achievable distributed computing scheme based on
linear space intersection. The proposed scheme was proved to
be optimal under some system parameters. In addition, it was
also proved to be optimal under the constraint of the cyclic
assignment on the datasets.

Further works include the extension of the proposed scheme
to the case where the computation cost is increased, the
design of the distributed computing scheme with some im-
proved assignment rather than the cyclic assignment, and novel
achievable schemes on specific demand matrices for general
case.

APPENDIX A
PROOF OF THEOREM 1

Recall that the computation cost is minimum, and thus each
dataset is assigned to N− Nr + 1 workers. For each set S ⊆
[N] where |S| = N − Nr + 1, we define GS as the set of
datasets uniquely assigned to all workers in S. For example,
in Example 1, G{1,2} = {2, 5}, G{1,3} = {1, 4}, and G{2,3} =
{3, 6}.

Let us focus one worker n ∈ [N]. Since the number of
datasets assigned to each worker is K

N (N− Nr + 1), we have∑
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | =
K

N
(N− Nr + 1). (87)
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From (87), it can be seen that

max
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | ≥

⌈
K(N− Nr + 1)

N
(
N−1
N−Nr

) ⌉
(88a)

=

⌈
K(
N

N−Nr+1

)⌉ . (88b)

In addition, with a slight abuse of notation we define that

Smax = arg max
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | (89)

Consider now the set of responding workers S1 = {n}∪([N]\
Smax). Note that among the workers in S1, each dataset Dk

where k ∈ GSmax
is only assigned to worker n. In addition,

since the elements in F are uniformly i.i.d. over a large enough
field, matrix F(GSmax )c (representing the sub-matrix containing
the columns with indices in GSmax

of F) has the rank equal
to min {Kc, |GSmax

|} with high probability. In addition, each
message has L uniformly i.i.d. symbols. Hence, we have

Tn ≥ H(Xn) ≥ min {Kc, |GSmax
|} L. (90)

Now we consider each A ⊆ [N] where |A| = Nr as
the set of responding worker. From the definition of the
communication cost in (12), we have

R ≥
∑
n1∈A Tn1

L
(91a)

≥ Nr min {Kc, |GSmax |} L
L

(91b)

≥ Nr min

{
Kc,

⌈
K(
N

N−Nr+1

)⌉} , (91c)

where (91b) comes from (90) and (91c) comes from (88b).
By the definition of the minimum communication cost and
the fact that R? ≥ Kc, from (91c) we prove Theorem 1.

APPENDIX B
PROOF OF THEOREM 4

We fix an integer n ∈ [N]. By the cyclic assignment
described in Section II-A, each dataset Dn+pN where p ∈[
0 : K

N − 1
]

is assigned to N − Nr + 1 workers. The set of
these N− Nr + 1 workers is

S1 =
{
n,Mod(n− 1,N), . . . ,Mod(n− N + Nr,N)

}
.

Now we assume the set of the responding workers is R1 =
{n} ∪ ([N] \ S1). It can be seen that among the workers in
R1, each dataset Dk where k ∈

{
n+ pN : p ∈

[
0 : K

N − 1
]}

is only assigned to worker n. In addition, since the elements
in F are uniformly i.i.d. over a large enough field, matrix
F({n+pN:p∈[0: KN−1]})c has the rank equal to min

{
Kc,

K
N

}
with

high probability. In addition, each message has L uniformly
i.i.d. symbols. Hence, we have

Tn ≥ H(Xn) ≥ min

{
Kc,

K

N

}
L. (92)

Now we consider each A ⊆ [N] where |A| = Nr as the set
of responding worker. We have

R ≥
∑
n1∈A Tn1

L
(93a)

≥
Nr min

{
Kc,

K
N

}
L

L
, (93b)

where (93b) comes from (92). Hence, when Kc ≤ K
N , we have

R ≥ NrKc; when Kc ≥ K
N , we have R ≥ Nr

K
N . Together with

R ≥ Kc, we obtain the converse bound in Theorem 4.

APPENDIX C
PROOF OF LEMMA 2

We first focus one A ⊆ [N] where |A| = Nr. We assume
that A = {A(1), . . . ,A(Nr)} where A(1) < · · · < A(Nr).

Recall that Kc = K
NNr and that the task function is (recall

that (M)m×n indicates that the dimension of matrix M is
m× n)

(F) K
NNr×K([W1; . . . ;WK])K×L,

where each element in F is uniformly i.i.d. over large enough
finite field Fq. By the construction of our proposed achievable
scheme, each worker A(i) where i ∈ [Nr] sends

C{A(i)}F

 W1

...
WK

 =

 uA(i),1

...
uA(i), KN

F

 W1

...
WK

 , (94)

where uA(i),jF
(ZA(i))c = 01× K

N (Nr−1) for each j ∈
[
K
N

]
,

and ZA(i) ⊆ [K] represents the set of datasets which are not
assigned to worker A(i). To simplify the notations, we let

FA(i) := F(ZA(i))c , (95)

with dimension Kc× K
N (Nr−1) = K

NNr× K
N (Nr−1). By some

linear transformations on the rows of C{A(i)} (we will prove
very soon that this transformation exists with high probability),
we have (96) at the top of the next page. In other words, we
let  cA(i),1, KN (i−1)+1 · · · cA(i),1, KN i

...
. . .

...
cA(i), KN ,

K
N (i−1)+1 · · · cA(i), KN ,

K
N i

 = I K
N

(97)

where I K
N

represents the identity matrix with dimension K
N×

K
N .

Recall that M(S)r represents the sub-matrix of M which is
composed of the rows of M with indices in S. From

C{A(i)}FA(i) = 0 K
N×

K
N (Nr−1), (98)

we have

C
([ K

NNr]\[ K
N (i−1)+1: KN i])c

{A(i)} FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r

= −FA(i)
([ K

N (i−1)+1: KN i])r :=


fA(i), KN (i−1)+1

...
fA(i), KN i

 , (99)

where each vector fA(i),j , j ∈
[
K
N (i− 1) + 1 : K

N i
]
, is with

dimension 1× K
N (Nr − 1).

By the Cramer’s rule, it can be seen that

cA(i),j,m =
det(YA(i),j,m)

det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

) , (100)
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(
C{A(i)}

)
K
N×

K
NNr

=

 cA(i),1,1 cA(i),1,2 · · · cA(i),1, KNNr

...
...

. . .
...

cA(i), KN ,1
cA(i), KN ,2

· · · cA(i), KN ,
K
NNr

 (96a)

=


cA(i),1,1 · · · cA(i),1, KN (i−1)

1 0 · · · 0 cA(i),1, KN i+1 · · · cA(i),1, KNNr

cA(i),2,1 · · · cA(i),2, KN (i−1)
0 1 · · · 0 cA(i),2, KN i+1 · · · cA(i),2, KNNr

...
. . .

...
...

...
. . .

...
...

. . .
...

cA(i), KN ,1
· · · cA(i), KN ,

K
N (i−1)

0 0 · · · 1 cA(i), KN ,
K
N i+1 · · · cA(i), KN ,

K
NNr

 . (96b)

∀m ∈
[
K
NNr

]
\
[
K
N (i− 1) + 1 : K

N i
]
. Assuming m is the

sth smallest value in
[
K
NNr

]
\
[
K
N (i− 1) + 1 : K

N i
]
, we define

YA(i),j,m as the matrix formed by replacing the sth row of

FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r by fA(i),j .

In addition, det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
is the deter-

minant of a K
N (Nr − 1) × K

N (Nr − 1) matrix, which can be
viewed as a multivariate polynomial whose variables are the
elements in F. Since the elements in F are uniformly i.i.d. over
Fq, it is with high probability that the multivariate polynomial

det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
is a non-zero multivariate

polynomial (i.e., a multivariate polynomial whose coefficients
are not all 0) of degree K

N (Nr − 1). Hence, by the Schwartz-
Zippel Lemma [28]–[30], we have

Pr{cA(i),j,m exsits}

= Pr

{
det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
is non-zero

}
(101a)

≥ 1− K(Nr − 1)

Nq
. (101b)

Note that the above probability (101b) is over all possible
realizations of F whose elements are uniformly i.i.d. over Fq.

By the probability union bound, we have

Pr

{
cA(i),j,m exsits, ∀i ∈ [Nr], j ∈

[
K

N

]
,

m ∈
[
K

N
Nr

]
\
[
K

N
(i− 1) + 1 :

K

N
i

]}
≥ 1− K(Nr − 1)

Nq
N
K

N

K

N
(Nr − 1) (102a)

= 1− K3(Nr − 1)2

N2q
(102b)

q→∞−→ 1. (102c)

Hence, we prove that the coding matrix of each worker A(i)
where i ∈ [Nr], CA(i) in (94), exists with high probability.

In the following, we will prove that matrix

CA :=

 CA(1)

...
CA(Nr)

 (103)

is full-rank with high probability.

Note that CA is a matrix with dimension K
NNr × K

NNr. We
expand the determinant of CA as follows,

det(CA) =
∑

i∈[( K
NNr)!]

Pi
Qi
, (104)

which contains
(
K
NNr

)
! terms. Each term can be expressed

as Pi

Qi
, where Pi and Qi are multivariate polynomials whose

variables are the elements in F. From (100), it can be seen
that each element in CA is the ratio of two multivariate
polynomials whose variables are the elements in F with
degree K

N (Nr − 1). In addition, each term in det(CA) is a
multivariate polynomial whose variables are the elements in
CA with degree K

NNr. Hence, Pi and Qi are multivariate
polynomials whose variables are the elements in F with degree(
K
N

)2
Nr(Nr − 1).

We then let

PA := det(CA)
∏

i∈[( K
NNr)!]

Qi. (105)

If CA exists and PA 6= 0, we have det(CA) 6= 0 and thus
CA is full-rank.

To apply the Schwartz-Zippel lemma [28]–[30], we need to
guarantee that PA is a non-zero multivariate polynomial. To
this end, we only need one specific realization of F so that
PA 6= 0 (or alternatively det(CA) 6= 0 and Qi 6= 0 at the same
time). We construct such specific F in Appendix D such that
the following lemma can be proved.

Lemma 3. For the (K,N,Nr,Kc,M) =(
K,N,Nr,

K
NNr,

K
N (N− Nr + 1)

)
distributed linearly

separable computation problem, PA in (105) is a non-
zero multivariate polynomial. �

Recall that Pi and Qi are multivariate polynomials with
degree

(
K
N

)2
Nr(Nr − 1). Thus the degree of PA is less than(

K
NNr

)2
. Hence, by the Schwartz-Zippel lemma [28]–[30] we

have

Pr {PA 6= 0} ≥ 1−
(
K
NNr

)
!
(
K
NNr

)2
q

. (106)

Hence, from (102b) and (106), we have

Pr{CA is full-rank}
≥ 1− Pr{CA does not exist} − Pr{PA = 0} (107a)

≥ 1− K3(Nr − 1)2

N2q
−
(
K
NNr

)
!
(
K
NNr

)2
q

. (107b)
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Finally, by considering all A ⊆ [N] where |A| = Nr, we
have

Pr{CA is full-rank, ∀A ⊆ [N] : |A| = Nr} (108a)

≥ 1−
∑

A⊆[N]:|A|=Nr

Pr{CA is not full-rank} (108b)

≥ 1−
(
N

Nr

)(
K3(Nr − 1)2

N2q
+

(
K
NNr

)
!
(
K
NNr

)2
q

)
(108c)

q→∞−→ 1. (108d)

Hence, we prove Lemma 2.

APPENDIX D
PROOFS OF LEMMA 3

A. N = K

We first consider the case where N = K. We aim to construct
one demand matrix F where det(CA) 6= 0, such that we can
prove Lemma 3 for this case.

Note that when N = K, we have that Kc = K
NNr = Nr and

that the dimension of F is Nr×N. We construct an F such that
for each i ∈ [Nr] and j ∈ ZA(i), the element located at the ith

row and the jth column is 0. Recall that the number of datasets
which are not assigned to each worker is |ZA(i)| = Nr − 1
and that by the cyclic assignment, the elements in ZA(i) are
adjacent; thus the ith row of F can be expressed as follows,

F({i})r = [∗, ∗, · · · , ∗, 0, 0, · · · , 0, ∗, ∗, · · · , ∗], (109)

where the number of adjacent ‘0’ in (109) is Nr− 1 and each
‘∗’ represents a symbol uniformly i.i.d. over Fq.

To prove that P(A) in (105) is non-zero, we need to prove

1) det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
6= 0 for each

i ∈ [Nr], such that CA exists (see (100)); thus∏
i∈[( K

NNr)!]Qi 6= 0.
2) det(CA) 6= 0.
First, we prove that CA exists. We focus on worker

A(i) where i ∈ [Nr]. Matrix FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r

is with dimension (Nr − 1) × (Nr − 1). Each row of

FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r corresponds to one worker in A\

{A(i)}. There are three cases:
• if this worker is Mod(A(i) + j,N) where j ∈ [Nr − 2],

the corresponding row is

[∗, · · · , ∗, 0, · · · , 0],

where the number of ‘∗’ is j and the number of ‘0’ is
Nr − 1− j;

• if this worker is Mod(A(i) − j,N) where j ∈ [Nr − 2],
the corresponding row is

[0, · · · , 0, ∗, · · · , ∗],

where the number of ‘0’ is j and the number of ‘∗’ is
Nr − 1− j;

• otherwise, the corresponding row is

[∗, · · · , ∗].

By the above observation, it can be seen that each column of

FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r contains at most (Nr−2) ‘0’, and

that there does not exist two columns with (Nr−2) ‘0’ where
these two columns have the same form (i.e., the positions
of ‘0’ are the same). Hence, with some row permutation on
rows, we can let the elements located at the right-diagonal

of FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r are all ‘∗’. In other words,

det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
is a non-zero multivariate

polynomial where each ‘∗’ in FA(i)
([ K

NNr]\[ K
N (i−1)+1: KN i])r is

a variable uniformly i.i.d. over Fq. By the Schwartz-Zippel
lemma [28]–[30], it can be seen that

Pr

{
det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
6= 0

}
q→∞−→ 1. (110)

By the probability union bound, we have

Pr

{
det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
6= 0, ∀i ∈ [Nr]

}
q→∞−→ 1.

(111)

Hence, there must exist some F such that

det
(
FA(i)

([ K
NNr]\[ K

N (i−1)+1: KN i])r

)
6= 0 for each i ∈ [Nr]; thus

we finish the proof on the existence of CA.
Next, we prove the proposed scheme is decodable. Obvi-

ously,

F({i})r

 W1

...
WN


can be sent by worker A(i). With N = K, each worker sends
K
N = 1 linear combination of messages. By the construction,
we can see that for each i ∈ [Nr], the coding matrix is

CA(i) = [0, · · · , 0, 1, 0, · · · , 0], (112)

where 1 is located at the ith column and the dimension of
CA(i) is 1× Nr. Hence, it can be seen that

CA =

 CA(1)

...
CA(Nr)

 (113)

is an identity matrix and is thus full-rank, i.e., det(CA) 6= 0.

B. N divides K

Let us then focus on the (K,N,Nr,Kc,M) =(
aN,N,Nr, aNr, a(N−Nr + 1)

)
distributed linearly separable

computation problem, where a is a positive integer. Similarly,
we also aim to construct one demand matrix F where
det(CA) 6= 0.

More precisely, we let (recall that 0m×n represents the
zero matrix with dimension m × n; (M)m×n represents the
dimension of matrix M is m× n)

F =


(F1)Nr×N 0Nr×N · · · 0Nr×N
0Nr×N (F2)Nr×N · · · 0Nr×N

...
...

...
...

0Nr×N 0Nr×N · · · (Fa)Nr×N

 , (114)
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where each element in Fi, i ∈ [a], is uniformly i.i.d.
over Fq. In the above construction, the (K,N,Nr,Kc,M) =(
aN,N,Nr, aNr, a(N − Nr + 1)

)
distributed linearly sepa-

rable computation problem is divided into a independent
(K,N,Nr,Kc,M) = (N,N,Nr,Nr,N− Nr + 1) distributed
linearly separable computation sub-problems. In each sub-
problem, assuming that the coding matrix of the workers
in A is C′A, from Appendix D-A, we have C′A 6= 0
with high probability. Hence, in the (K,N,Nr,Kc,M) =(
aN,N,Nr, aNr, a(N−Nr + 1)

)
distributed linearly separable

computation problem with the constructed F in (114), we also
have that det(CA) 6= 0 with high probability.

APPENDIX E
AN ALLOCATION ALGORITHM FOR THE CYCLIC

ASSIGNMENT IN THE GENERAL CASE

Recall that our objective is to choose b datasets from
N effective datasets as the real datasets, such that by the
cyclic assignment on these N effective datasets the number
of real datasets assigned to each worker is no more than⌈

N−Nr+1

b N
b c

⌉
. By the cyclic assignment, each effective dataset

(denoted by Ek where k ∈ [N]) is assigned to workers
in
{

Mod(k,N),Mod(k − 1,N), . . . ,Mod(k − N + Nr,N)
}

.
The set of effective datasets assigned to worker n ∈ [N]
is
{

Mod(n,N),Mod(n + 1,N), . . . ,Mod(n + N − Nr,N)
}

.
We propose an algorithm based on the following integer
decomposition.

We decompose the integer N − b into b parts, N − b =
p1 + · · · + pb, where p1 ≤ · · · ≤ pb and pi is either

⌈
N−b
b

⌉
or
⌊
N−b
b

⌋
for each i ∈ [b]. More precisely, by defining α =

b
⌈
N−b
b

⌉
− (N− b), we let

p1 = · · · = pα =

⌊
N− b

b

⌋
; (115a)

pα+1 = · · · = pb =

⌈
N− b

b

⌉
. (115b)

We then choose datasets

E1, E2+p1 , E3+p1+p2 , . . . , Eb+p1+···+pb−1

as the real datasets. It can be seen that between each two real
datasets, there are at least

⌊
N−b
b

⌋
virtual datasets. Hence, in

each adjacent N− Nr + 1 datasets, there are at most⌈
N− Nr + 1⌊

N−b
b + 1

⌋ ⌉ =

⌈
N− Nr + 1⌊

N
b

⌋ ⌉
real datasets. Hence, we prove that by the above choice, the
number of real datasets assigned to each worker is no more

than
⌈

N−Nr+1

b N
b c

⌉
.
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