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Abstract

In this paper, we extend the bilinear generalized approximate message passing (BiG-AMP) approach,
originally proposed for high-dimensional generalized bilinear regression, to the multi-layer case for the
handling of cascaded problem such as matrix-factorization problem arising in relay communication
among others. Assuming statistically independent matrix entries with known priors, the new algorithm
called ML-BiGAMP could approximate the general sum-product loopy belief propagation (LBP) in the
high-dimensional limit enjoying a substantial reduction in computational complexity. We demonstrate
that, in large system limit, the asymptotic MSE performance of ML-BiGAMP could be fully character-
ized via a set of simple one-dimensional equations termed state evolution (SE). We establish that the
asymptotic MSE predicted by ML-BiGAMP’ SE matches perfectly the exact MMSE predicted by the
replica method, which is well-known to be Bayes-optimal but infeasible in practice. This consistency
indicates that the ML-BiGAMP may still retain the same Bayes-optimal performance as the MMSE
estimator in high-dimensional applications, although ML-BiGAMP’s computational burden is far lower.
As an illustrative example of the general ML-BiGAMP, we provide a detector design that could estimate
the channel fading and the data symbols jointly with high precision for the two-hop amplify-and-forward

relay communication systems.

Index Terms

Multi-layer generalized bilinear regression, Bayesian inference, message passing, state evolution,
replica method.

I. INTRODUCTION

In the context of matrix completion [1]], robust principal component analysis [2], dictionary
learning [3], [4)], and representation learning [5], the matrix factorization problem could be
formalized as the following generalized bilinear regression problem: the signal recovery of H
and X from Y = ¢(Z, W) with Z = HX and P(Y|Z) = [ 6(Y — ¢(Z, W))P(W)dW, where
Y is observed from Z and noise W through a deterministic and element-wise mapping ¢(-), and
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Fig. 1. The multi-layer generalized bilinear inference problem is to estimate the input signal X® and measurement matrix
H® of each layer from the observation Y.

H and X are matrices to be factorized. To solve this inference problem, Parker et al proposed
bilinear generalized approximate message passing (BiG-AMP) [6] algorithm, which achieved the
Bayes-optimal error in large system setting with affordable computational complexity. Inspired
by this seminal work, we consider in this paper an even more ambitious problem, i.e., multi-layer

generalized bilinear regression. The multi-layer generalized bilinear mode][] can be described as
X = ) (H(Z)X(Z),W(z)) , 4=1,--- L, (1)

where X = X is the input of the network, {X(¥}_, are hidden layer signals, and Y = X(+1)
is the observation. In addition, Z(©) € RNe+1*K ig obtained from X(© € RNe*X going through a
linear mixing defined by Z() = H®X®, while X(“+" is further generated from Z) and random
variable W), whose probability distribution is (W), using a deterministic and element-wise
function ¢ (-).

The multi-layer generalized bilinear inference problem arises in many contexts, such
as, deep generative prior [7], [8l], [9], [10], massive multiple-input multiple-output (MIMO)
relay system [11]], [12], and machine learning [[13]], [14], where the correlations between sets of
variables in different subsystems involve multiple layers of interdependencies. To address this
issue, [15]], [16] extended approximate message passing (AMP) [17], [18] to provide inference
algorithms for multi-layer region. The AMP algorithm, an approximation to sum-product loopy
belief propagation (LBP), was firstly proposed for sparse signal reconstruction in standard linear
inverse inference. The AMP’s mean square error (MSE) performance could be predicted by a
scalar formula called state evolution (SE) under the assumption of i.i.d. sub-Gaussian random
matrix regimes. Further, it was shown that the AMP’s SE matched perfectly the fixed point of the
minimum mean square error (MMSE) estimator derived by replica method [[19]. In addition, the
AMP algorithm is closely related to the celebrated iterative soft thresholding (IST) algorithm [20],
in which the only difference is the Onsager term. Another algorithm for multi-layer inference
refers to multi-layer vector AMP (ML-VAMP) [7/], which extended the VAMP algorithm to
cover the multi-layer case. Recently, it has been proven that VAMP and AMP have identical
fixed points in their state evolutions [21]. The VAMP algorithm holds under a much broader

'Note that in [7], each layer of the model H was divided into two layer: odd-indexed layer (linear mixing space) and
even-indexed layer (element-wise mapping).



class of large random matrices (right-orthogonally invariant) than AMP algorithm but has higher
computational complexity for their overlapping regions due to the singular value decomposition
(SVD) operation, which is very close to expectation propagation (EP) [22], expectation consistent
(EC) [23]], [24], and orthogonal approximate message passing (OAMP) [25]. For the case of
K > 1, [[/] extended the ML-VAMP algorithm to the matrix case, called “ML-Mat-VAMP”".
Similar to AMP-like algorithms, the asymptotic MSE performance of ML-Mat-VAMP could be
predicted in a certain random large system limits. However, the ML-Mat-VAMP algorithm is
costly in computation due to the SVD operation.

To handle the multi-layer generalized bilinear inference problem, in the present work, we
extend the celebrated bilinear generalized AMP (BiG-AMP) algorithm [6] to multi-layer case
and propose the multi-layer bilinear generalized approximate message passing (ML-BiGAMP).
The ML-BiGAMP algorithm solves the vector-valued estimation problem into a sequence of
scalar problems and linear transforms, and is thus low-complexity, which is an approximation of
the sum-product LBP by performing Gaussian approximation and Taylor expansion. Similar to
other AMP-like algorithms, by performing large system analysis, we give SE analysis of the ML-
BiGAMP algorithm, which exactly predicts the asymptotic MSE performance of ML-BiGAMP
when the latter should be run for a sufficiently large number of iterations. In addition, we apply
replica methocﬂ derived from statistic physics [27] to analyze the achievable MSE performance
of the exact MMSE estimator for multi-layer generalized bilinear inference problem. Indeed, a
first cross-check of the correctness of our results is the fact that the asymptotic MSE predicted
by ML-BiGAMP’SE agrees precisely with the exact MMSE as predicted by replica method
in certain random large system limit. The main contributions of this work are summarized as
follows:

« We propose a computationally efficient iterative algorithm, multi-layer bilinear generalized
approximate message passing or ML-BiGAMP, for estimating {X(9}L | and {H®}L_ | from
the network output Y of the form in (TJ).

o Under the i.i.d. Gaussian measurement matrices, we show that the asymptotic MSE per-
formance of the ML-BiGAMP algorithm could be fully characterized by a set of one-
dimensional iterative equations termed state evolution.

o We establish that the asymptotic MSE predicted by ML-BiGAMP’SE matches perfectly the
exact MMSE predicted by the replica method, which is well known to be Bayes-optimal
but infeasible in practice. The fixed point equations of the exact MMSE estimator further
reveal the decouple principle, that is, in large system limit, the input output relationship of
the model (I) is decoupled into a bank of scalar additive white Gaussian noise (AWGN)
channels w.r.t. the input signal X and measurement matrices {H®“}% ;.

2 Although replica method is known as a non-rigorous tool, this method is widely believed to be exact in the context of
theoretical statistical physics [1]. Recently, several literatures have proven that the replica prediction is correct in the case of
i.i.d. Gaussian matrices (e.g., [26]).



« Based on the proposed algorithm, we develop a joint channel and data (JCD) estimation
method for massive amplify-and-forward (AF) relay communication, where the estimated
payload data are utilized to aid the channel estimation. The simulation results confirm
that our JCD method improves the performance of the pilot-only method, and validate the
consistency of MSE performance of ML-BiGAMP and its SE.

The remainder of this work is organized as follows. Section II presents several examples of the
multi-layer generalized bilinear inference problem (I). In Section III, we introduce the proposed
ML-BiGAMP algorithm. In Section IV, we give the SE analysis of the ML-BiGAMP algorithm.
In Section V, we apply the replica method to analyze the asymptotic MSE performance of the
exact MMSE estimator. Finally, Section VI gives numeric simulations to validate the accuracy
of these theoretic results.

Notations: A denotes a matrix with a;; being its (7, j)-th element. ||A||r denotes the Frobenius

norm. N (z|a, A) denotes a Gaussian distribution with mean « and variance A:

N (a, A, b, B) = P(a“ D z)\N (20|a, AN (2D |b, B), where P(2+)|29) is the transi-

x|z

tion distribution from 2 to z(**1). D¢ denotes Gaussian measure i.e., D¢ = N(£|0, 1)d€.

N(z|a, A) =

II. EXAMPLES OF MULTI-LAYER GENERALIZED BILINEAR REGRESSION

For the model in (I)), it is assumed that the transition distribution of each layer is componen-

twise, which is given by
P(XED|Z0) — / 5 (XU — ¢0(ZO, W) P(WO)aW O

where 4(-) denotes Dirac delta function. Additionally, the componentwise mapping means P (X1 |Z©)) =
HN” ! H el ( ngl)|z > The multi-layer generalized bilinear inference problem is to esti-
mate the input signals {X®}%£  and measurement matrices {H¥}%_, from the output Y of the
model. In doing so, it is assumed that X and H) are composed of random variables X and

H(e), respectively, which are drawn from the known distributions P(z) and P(h(g)), i.e.,

=ﬂHﬂmL )

n=1 k=1
N£+1 Ng

= [T ITP"%): (3)

m=1 n=1
We consider the large system limit, in which the dimensions of the system go into infinity, i.e.,
V¢, Ny, K — oo but the ratios o = % and (3, = Nj{,—f are fixed and bounded. Actually, the model
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Fig. 2. Massive MIMO AF relay system.

in (I)) is a general model with many important problems as its special cases. We give a brief

review in the following.

A. Single-Layer Inference Problem

When L = 1, the multi-layer inference problem (I)) reduces to a matrix factorization problem
or generalized bilinear inverse problem, in which the target is to estimate the signal of interest

X and the measurement matrix H from the observation Y:
Y =¢(Z,W), st Z=HX. 4

This degenerated model has a wide range of applications. One example is the joint channel and
user data estimation [28]], [29] considering a quantized massive MIMO communication system,
in which the function ¢(-) is particularized as Y = Q(HX + W) with Q(-) being an uniform
quantizer. More applications could be found in dictionary learning, blind matrix calibration,
sparse principal component analysis (PCA) and blind source separation [1]. It is worthy of
noting that when the function ¢(-) is particularized as a linear function, i.e., Y = HX + W,
and the measure matrix is already known, the model is degenerated to multiple measurement
vector (MMYV) problem, which has been widely applied in compressed sensing [30], [31], [32],
user activity detection in communication [33]], [34)], and direction of arrival (DOA) estimation
[35].

B. Multi-Hop Relay Communication

The multi-layer inference problem can also be applied to multi-hop massive MIMO
amplify-and-forward (AF) relay system [11], [12], which has been regarded as an attractive
solution to improve the quality of wireless communication. Fig. [2| shows a special case of multi-
hop massive MIMO AF relay system in L = 3. The multi-hop massive MIMO AF relay system



can be modeled as

;

X =Q, (H(I)X(l) + W(l))

XG) = Q, (p(Q)H(Z)X@) + W(2))
: : )

Y = Q. (¢WHOX® + Wh)

\

where the matrices H®, {H®1~1 and H" denote the channels from users to 1st relay
station (RS), (¢ —1)-th RS to ¢-th RS, and (L — 1)-th RS to BS, respectively. {W®}L | are the
corresponding additive white Gaussian noises (AWGNS). {0 }£_, are amplification coefficient.
Qc(+) refers to a complex-valued quantizer including two separate real-valued quantizer Q(+). In
[L1], the authors considered a two-hop massive MIMO AF relay system with perfect channel
information and developed a EC based method to estimate the user data, which can be regarded
as a special case of ML-VAMP in L = 2.

C. RIS-Aided Massive MIMO System

A reconfigurable intelligent surfaces (RIS)-aided massive MIMO system [36] is presented
in Fig. 3] where RIS includes N, low-cost passive elements and the BS is equipped with NV,
antennas. Each user is equipped with N3 antennas. In a coherent block (block length K'), the
received signal of the reference user can be expressed ag|

Y =H?S o (HYXD) + W) + W), (6)

where © represents componentwise vector multiplication, X(1) € RN1*X is the transmitted signal,
and (WM W) are additive noise with power o2. HY € R¥>*M and H® € RM>*M2 are the
channels from BS to RIS and RIS to user, respectively. In addition, S is phase shift matrix and is
known beforehand. Such system corresponds to the MMSE estimation of multi-layer generalized
bilinear model in L = 2. By defining Z() = HWX® and Z? = H®X®, the transition
distributions of the two layers are given by P(z2)|2{)) = N (¢} |smezt), 02) and P(ypk|z]gi)) =
N (ypk|zz(,i), 02). As the RIS only reflects the signal, then the model degenerates Y = H® (S ®
(HOXD)) + W@ Accordingly, the transition distribution becomes P(z%)|z{))) = §(2?) —
smkzﬁi,l) Indeed, the Dirac delta function §(x) can be regarded as the limit of standard Gaussian:

lim,_,o(27v) "2 exp(—g), which is useful in realization.

D. Compressive Matrix Completion

In matrix completion (MC) [37], only a fraction of entries of observation are valid. In other

words, the observation in MC problem is generally sparse. To reduce the memory, we here

3Here, we consider that the RIS not only reflects the signal, but also reflects nearby stray electromagnetic signal.
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Fig. 3. A RIS-aided massive MIMO system.

consider a more practical scheme: compressive matrix completion, i.e., MC + compressive

sampling. The problem of compressive MC can be modeled as

X® = FEHOXD + W)

7
Y = HOX® 1+ w®) ™

where H® ¢ RV3*N2 (N3 < N), and f is a componentwise mapping which is specified by

7D(x(g) z(l)) _ N(%fﬁil#;l,ai) (m, k) € Q )
T (m,k) ¢ Q

where Q) is a subset of valid entries of X(® and 1, denotes a point mass at y = 0. The goal
is to recover a rank N; < min(N,, K) matrix Z(V) = HOX® ¢ RN2%K from the observation
Y € RMs*K_ For convenience, we here consider the rank NN, is given. However, for the case of
unknown Ny, similar to BiG-AMP [37], the proposed ML-BiGAMP can also be combined with

rank selection method. The penalized log-likelihood is given by

N, = Narg m?VX 210%2?(5(5\273’25\1/1)) —n(N), ®)
1=1,-- ,Nmax

A~

where subscript /V; indicates the restriction to rank /Vy, Xg\i) and Zﬁf = IEISEX%B are provided by
ML-BiGAMP, and 7(N;) is penalty function (see [37]). Specially, when compressive sampling
is not considered, such compressive MC degenerates the classical MC. Note that compared to
compressive sampling [18], the prior of X is unknown in our compressive MC.

III. ML-BIGAMP
A. Problem Formulation

Considering the multi-layer generalized bilinear inference problem (IJ), all the input signals
., and measurement matrices ., of each layer shou e estimated with the known
XYL and ices {H®}Z | of each layer should be estimated with the k

distributions P(z) and P(h*)). To address this joint estimation problem, we treat it under the



framework of Bayesian inference, which provides several analytical and optimal estimators.
Among them, we are interested in minimum mean square error (MMSE) estimator [38, Chapter
10], which is optimal in MSE sense. The MMSE estimator of X() and H® are given by

vk, ¢ s i) =E [2Q1Y] (10)
Ym,n,0: b =E [ Y], (11)

where the expectations are taken over the marginal distributions P(:cff,z]Y) and P(h{n[Y), re-
spectively, which are the marginalization of P(X®) H®)|Y). The posterior distribution P(X*) H®|Y)
is written as

L L
P(X® HO|Y) :ﬁ / [[aa® T ax®

1£¢ 140
L
X [P(X)HP(H(L))P(X(LH)\H(‘),X(‘))] , (12)
=1
where P(Y) is the partition function. The MMSE estimators minimize the MSEs defined as
1 .
mse(X) = ——E {|X1 - X3} 13
( ) NEK H ”F ’ ( )
1 .
mse(H") = E{ HO —HO 2}, (14)
(HO) = 5 E{ E

where the expectations are taken over P(X®) Y) and P(H¥,Y), respectively. Additionally,
HO = {Ad),, ¥m,n} and XO = {2) vn, k}.

Actually, the exact MMSE estimator is generally prohibitive due to the high-dimensional
integrals. Recent advances in signal processing [18]], [39] showed that the exact estimator can
be efficiently approximated by the sum-product LBP, and a renowned solution for the single-
layer case was BiG-AMP [6]. The multi-layer generalized bilinear regression problem is more
general and complex than the single layer, and the technical challenge lies in the design of
message passing in the middle layer. In this context, we propose multi-layer bilinear generalized
approximate message passing (ML-BiGAMP) as an extension of the BiG-AMP to the multi-layer

case.

B. The ML-BiGAMP Algorithm
The ML-BiGAMP algorithm described in Algorithm [l{ operates in an iterative manner and thus

organizes its message passing in two directions, one for the forward and the reverse. Per-iteration
of the algorithm seen Fig. @ works in a cyclic manner: Module A% - .. Module A —
---Module A"Y) — Module B — .- Module B — ---Module B".

Module A involves the scalar estimations (R1)-(R2) and vector valued operations (R3)-

(R8). In (R1)-(R2), the parameters (2(@ (t) 5 (t)) represent the mean and variance of random

mk ’ Ymk



Algorithm 1: ML-BiGAMP

LInitialization: Choosing {Z,, K)( ),Vﬁk( 1}, {RSh (1), v (1)}, {x ( )
2.0utput: X, HO,
3.Iteration: (fort =1,---,7T)
for / = L ,1 do
{Module A}
k() =E[C.0)]
Sk(t) = Var[¢\ (¢)]
() = GOLE) = Z5L0)/ (Val (1)
Wt) (VA1) = 05 (0) (V1))
S0 = (X RO 0P o)
RO (0 = 2000 [1 SSEOW Y 0] + 5500 Y
SO (1) = (Z ERIOIRt <t>)
k=1
RED(t) = h,(t) |1 = 3000 > o500l )| + 5800 Y (@
for (=1---.L do
{Module B
B+ 1) = B0t +1)]
vt 4 1) = Var[¢D0 (¢ + 1))
RO (t+1) = E[gL0(t + 1))
O (4 1) = Var[¢ O (¢ + 1)]
VO t4+1) = Z [| V(¢ + 1200 (¢ + 1) + 2O, (¢t + 1)) 2
Z0+1) = Zilhﬂ(tﬂ) Gt 41)
VOt+1) =79t +1) +Z Do®O(t 4 1)
i Z904+1)=Z0t+1) - “)k(t)v“(tﬂ)

(M)

(R1)
(R2)
(R3)
(R4)

(R5)

o (£))" 8001

mn

mk

(R6)

(R7)

(R8)

(R9)
(R10)
(R11)
(R12)

Ot +1)]
(R13)

(R14)
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Fig. 4. The framework of ML-BiGAMP and BiG-AMP.

Module A"’

ML-BiGAMP:

variable (RV) ¢\“) (t) drawn by the approximate posterior distribution P*(z“)|y) of 2!} which

for ¢ = L is expressed as,

m%wm><mg”mﬁ(m (=
) J Pz OIN (20|23 (1), V) (1))d=O
G (£) ~ TN (2o OV R .25 (#)de D i (15)
fN;Q Z(“ L0,V (), REST (1), 555D (1)) d2 (0 da(4+1)
where
Ni(a, Ab, B) = P20 (=]a, AN @V |b, B).
Note that the term N ( | ( ),V )(t)) is t-iteration approximate prior of zfﬂ/, ,l.e., 75’5(,27(%);
while N (z, (Hl) |R i KH)( t), Zf;flfﬂ)(t)) is t-iteration approximate likelihood function from xfﬁ:l)
to observatlon ie., Pt(y|x )y,

Similar to Module A®), Module B®) also includes scalar estimations (R9)-(R12) and vector
valued operations (R13) (R16). The parameters (& fl,z(t + 1), 7(:2[) (t +1)) denote the mean and
variance of RV fnk (t + 1), which for ¢ =1 follows

P ON @ RED (1,550 (1)

(=1
20 I P)N( x|R<“ Z’( ),259 (¢))dz
5( )(t + 1) fN(ék\li (& (t+1) v(z U (141),R (z l)(t) S ze)( ))dz (=1 o . (16)
>

SNED(ZED (), v - 1>(t+1),R§jf>( ), =88 (1)) dz (=D (®

x|z

Moreover, the parameters iz%)n(t + 1) and o0 (t + 1) refer to the mean and variance of RV
&b (t + 1) distributed as

P<h££%>fv<h%nm“ D), 20 (1))

S (E+1) ~ , (17)
J PN (IR (), S (1)) dh
where the term N (h ( |R ( ) Zq%f )(t)) is t-iteration approximate likelihood function from

i), to observation, i.e., P (y|hl).
To derive the proposed ML-BiGAMP algorithm, we first use the factor graph to represent
the joint posterior distribution P(X® H®|Y) in , which includes variable nodes (sphere)

and factor nodes (cube). Then the marginal posterior distribution can be approximated by
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Fig. 5. (a) Factor graph of 1-layer model; (b) Factor graph of 2-layer model. The sphere denotes variable node while cube
refers to factor node.

sum-product loopy belief propagation (LBP), which is impractical in large system limit. To
reduce the complexity of LBP, we simplify the messages from factor nodes to variable nodes
by central limit theorem (CLT) and Taylor expansion. The messages from variable nodes to
factor nodes are updated by Gaussian reproduction property. Besides, several new variables in
belief distributions are defined to establish the relationship between belief distributions and the
messages from variable nodes to factor nodes, where the Taylor expansion is applied again. By
ignoring infinitesimals, the ML-BiGAMP is obtained. The detailed derivation of ML-BiGAMP
is presented in Appendix [A]

Compared to BiG-AMP [6], a major difference in our derivation of the ML-BiGAMP is that
the factor node P(Y|Z) in BiG-AMP only connects X and H, which are all variable nodes of
current layer, but in a multi-layer setup, it is generalized as P(X“*+D|Z®), which is a junction

node that connects not only X and H® in current layer, but also X(¢+1)

in next layer. As a
result, message update in multi-layer setup is more complex. For example, as shown in Fig. [3]
the message (blue arrow) from factor node P(xﬁ,“zg,l) to variable node xfllk) in Fig. |5 (b) should
be updated by combining the message (red arrow) from the 2nd layer, while the message (blue

arrow) in Figl5] (a) is updated without adjacent layer.

C. Relation to Previous AMP-like Algorithms

Remark 1. The ML-BiGAMP algorithm is a general algorithm, which degenerates smoothly
to the existing AMP-like algorithms: BiG-AMP[6l], GAMP[39], AMP[39], as well as ML-AMP
[15].

(L = 1 and unknown H) By setting L = 1, the ML-BiGAMP reduces to the BiG-AMP
algorithm [6, Table IIT], where the RVs in (I3), (16)), and become

P(ymk |ka)N(zmk | ka (t)’ mG(t))

k) D | DN Zome 0), Vi ()0

(18)




P(zu)N (@ B (1), 25 (1))

@41 19
D Nl RG 0, 5 ) "
ER (1 1 1) ~ P(hmnwwmnmmn(t) Sin(1)) 0)

J PN (R RG(), S (t))dh

(L =1 and known H) If the measurement matrix is further perfectly given, then we have
ﬁmn(t) = Ny and o0 — 0,Vm,n. Accordingly, the ML-BiGAMP algorithm reduces to GAMP
algorithm [39, Algorithm 1] as below

Do) = Var[Gos (£)] (21b)
Smk(t) = (Zmk(t) — Znk (1)) (Ve (1)), (210

VO (1) = (Vi (£) = Bk () / (Vi (£))2), (21d)

-1

28 (1) = (Z | mnl%iiw)) 7 (21e)
R (t) = &an(t) + S Z BB (1), Q1)
Bt +1) = E[€9) (¢ + 1)), 21g)
v (¢ + 1) = Var[e (1 4 1)] (21h)
Vo(t + 1) ZlhmnF (t+1), (21i)
Zyio(t + 1) = Z P (£ 4+ 1) — i (8) Vi (£ 4 1). (21j)

(L = 1, known H, and Gaussian transition) Further, when the standard linear model is
considered, where the transition distribution becomes P (Y,ur|zmi) = N (Zimk|Ymk, 02), the ML-
BiGAMP degenerates to the AMP algorithm [18]], where

-1
(z) o |hmn’2

h;knn(ymk — Zmk (t))

o2+ Vo (1) (23)

RO () = & (t) + =) (1)

(L > 1 and known H) Besides, the ML-BiGAMP algorithm can also recover the ML-
AMP algorithm [15, (5)]. For the case of L > 1 and known measurement matrix, we have
ﬁ%)n(t) = Bynp and 0857 = 0,¥m, n, 0. In the sequel, the ML-AMP algorithm can be obtained
by plugging ﬁ%)n( t) = K, and w(m) = 0 into ML-BiGAMP algorithm.



D. Computational Complexity
We now look at the ML-BiGAMP’s computational complexity. As shown in Algorithm |1} the

ML-BiGAMP algorithm involves two directions: reverse and forward direction. Furthermore,

there are linear steps and non-linear steps in both the forward and reverse directions.

o The non-linear steps of the reverse direction refer to (R1)-(R2) in Algorithm |1} The com-
putation of the parameters (57(37 T)T(Qg) does not change with the dimension.

o The linear steps of the reverse direction refer to (R3)-(R8) and their computational cost is
dominated by the componentwise squares of X® in (R5) and H® in (R7). The computa-
tional cost of the linear steps is O(Ny1N/K). As a result, the total computational cost of
reverse direction is O(Ny 1 N/ K).

o Similarly, the computational cost of non-linear steps (R9)-(R12) in forward direction is
O(N,K). Furthermore, the computational cost of linear steps of forward direction is dom-
inated by componentwise squares of H® and X® in (R13), which is O(Np 1 NoK).

Hence, the total computational cost of ML-BiGAMP is O(Nyy 1 N,KLT) with L and T being
the number of layers and iteration numbers, respectively. By considering K and N, with the
same order and large system limit, the complexity of ML-BiGAMP is O(N}), which is the
same as BiG-AMP [6] and far less than ML-Mat-VAMP [7] with O(Ngl). Meanwhile, similar
to BiG-AMP, the proposed ML-BiGAMP algorithm reduces the vector operation to a sequence

of linear transforms and scalar estimation functions.

E. Damping
In practical applications, similar to other members in the AMP family, damping is applied to
ensure convergence of the proposed ML-BiGAMP algorithm. Let 3(¢) € (0, 1] denote the damp-

ing factor, then the following low-passed-filter damping is applied to the parameters §£ﬁ)k (1), vfi}f) (1),
S (8, o (1), 2530(1), hian (1), and V(1)

a(t) = B(t)a(t) + [L = H(B)]a(t - 1), (24)

where a(t) is the parameter at t-iteration. In particular, we used 5(¢) = 0.7 for our multi-layer
JCD simulations. In the case of single-layer with known measurement matrix, we only apply
damping factor 5(t) = 0.95 to the parameters VTELQ (t) and Zﬁfi(t)

IV. STATE EVOLUTION

In this section, we present the state evolution (SE) analysis for the ML-BiGAMP algorithm,
which illustrates that the asymptotic MSE performance of the ML-BiGAMP algorithm can be
fully characterized via a set of simple one-dimensional equations under the large system limit.
Previous work pertaining to SE analysis for AMP-like algorithms was found in [[17], in which

the SE was mathematically rigorous. In our derivation of SE analysis, we use some concepts



Algorithm 2: State Evolution of ML-BiGAMP

Output: mse!) = X(IE) q(g) mseﬁf) = X;(f) Qf(f)'

for /=1,---,L do
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(Definition 1, 2, and Assumption 1) from [39]. However, the SE of ML-BiGAMP presented
here is different from SE of [39] in the following aspects. Firstly, [39] considered single layer
with known measurement matrix, while we consider the multi-layer bilinear generalized model.
Secondly, we give the detailed SE derivation (although heuristic) that features a special treatment
towards the marginal density function: they are interpreted as the transitional probability of a
Markov chain, c.f. (100) in the Appendix B, while the details of SE’s proof of [39] are omitted.
The SE analysis is extracted from the practical algorithm after averaging the observed signal and



measurement matrices. It is worthy of noting that the analysis is based on large system limit,
that is, when V/, N,, K — oo but the ratios

N N,
?1 = a, “1 = B, (25)

are fixed and finite.

Proposition 1. In large system limit, by averaging the observation, the asymptotic MSE per-
formance of the ML-BiGAMP algorithm can be fully characterized by a set of scalar equations
termed state evolution shown in Algorithm

Proof. : See Appendix

Remark 2. Given the SE of ML-BiGAMP, we can recover the SEs of BiG-AMP[6], GAMP [39],
AMP [lI8|], and ML-GAMP|16|].

(L = 1 and unknown H) By setting L = 1 and using § = $;, N = Ny, and M = N, the
SE equations of the ML-BiGAMP become

.= / [ =P(y|2)N (| Nawant, V)dz]

TPV GV N Gnt, Vid: o 26w
AN
e
o - Mo
.
o Uiz, o
- [t
V = N(XoXt — @ln), (26f)

where x, = [2*P(z), x» = [ h*P(h)dh, and DE = N (€]0,1)d¢.
(L =1 and known H) If the measurement matrix H is perfectly given, we then have x;, = q,
i.e., mse, = 0. Considering h?  with order O(NLZ), the following can be obtained

y =Pl (o6 x5 ) as]

Dédy, (272)
PN (o5, 2252 ) a2
Y@ — (X — qz)Q b
B(/qu - qgc)7 (27 )
B U TP (x)N (z|C, Z("’“"))dac}2
= |t s e



(L = 1, known H, and Gaussian transition) When we further consider the Gaussian
transition distribution, i.e., P(Ymk|2zmi) = N (Zmk|Ymr, 02 ), by Gaussian reproduction propertyﬂ
and mse, = x, — ¢, the SE of ML-BiGAMP becomes

1
»® =2 4 Emsex(E(”“)). (28)

It is found that the SE of the ML-BiGAMP algorithm in standard linear model setting is precisely
equal to the SE of AMP [17], [19].

(L > 1 and known H) If we consider the case of L > 1 and known measurement matrices
{H®}L |, then SE of ML-BiGAMP algorithm degenerates into the previous SE of ML-GAMP
algorithm [16] (including ML-AMP [15] as its special case).

V. RELATION TO EXACT MMSE ESTIMATOR

The proposed algorithm is derived from the sum-product LBP followed by AMP approxima-
tion, and it is well-known that the sum-product LBP generally provides a good approximation
to MMSE estimator [40]. The MMSE estimator is known as Bayes-optimal in MSE sense but is
infeasible in practice due to multiple integrals. In this section, we establish that the asymptotic
MSE predicted by ML-BiGAMP’SE agrees perfectly with the MMSE estimator predicted by
replica method. The key strategy of analyzing MSE of MMSE estimator is through averaging

free energy
, 1

where P(Y) is partition function. The analysis is based on large system limit and we simply apply
N; — oo to denote the large system limit. Actually, even in large system limit the computation
of is difficult due to the expectation of the logarithm of P(Y). Using the noteﬂ it can be
facilitated by rewriting F as
: 1 .. 0
F = lim — lim —logEv{P7(Y)}. (30)

N1—o00 N12 T7—0 87'

To ease the statement, we firstly calculate the free energy considering a representative two-
layer model, and it leads to the saddle point equations. By replica symmetry assumption, the
fixed point equations can be obtained by solving the saddle point equations. Finally, we extend
the results of the two-layer model into multi-layer regime with similar procedures where the

Proposition 2] and Proposition [3| can be obtained.

“N(z|a, A)N (z|b, B) = N'(0la — b, A+ B)N(z|c,C) with C = (A" + B ") P andc=C- (% + ).
5The following formula is applied from right to left

E{©7 log O}

E{or] = E{log ©},

) o
li 5 0B (07} = I

where © is any positive random variable.



A. Performance Analysis

Proposition 2 (Decoupling principle). In large system limit, by replica method, the input output
of the multi-layer generalized bilinear model is decoupled into a bank of scalar AWGN channels

w.r.t. the input signal X and measurement matrices {H®}L |
yno = b + w0, (32)

where w, ~ N(w.|0,(24,)7"), = ~ P(z), kO ~ P(R®), and wyey ~ N (wyw|0, (2qA,(f))_1).
The parameters q,, and qA}(f) are from the fixed point equations in — of the exact MMSE

estimator, for { =1,--- | L,

O = / (hORP(RO )R, (33a)
14 14 L
o By ) = Ngtq)
T N(X() <z>_q<e>q<>) (33b)
T xz 4p
(0 _ gt — Nigtgy”

, (33¢)
20 [1/2; B Ne(xx) (0 _ g0y
[[ ROPROYN (RO, mdh 2

& d 33d
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w ng) - f (#OPP (@O (D)0, x4 Ddat® € > 1
f roP) (ZWWs NeOx) - gf>q;‘>>)dz<“r[)§d (=1
Y =
() f7’(1/\2“))/\/<2(‘Z I/ Neat?al € Ne (X x — Qa(f)q;f)))dz(l)
e : (330
) 10N (YNt NI 00—ty )]
AN (T Nea® gD e Ny O O g0 O T W D&d¢ (< L
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( 2
[f JJP(aC)N(J:K,ﬁ)dx}
(=1
© TP@NGICt5)de
p— xT ,
v {fx(Z)N(Z_U( Y O e (l_l)qg_l))(ﬂqzl))dz(z—l)dxw] D&d¢ £>1
Nz(fz 1>(\/N (efl)q;éfl)&N[_l(Xglefl)X(szl)_q}(ffl)qa(cefl)),Cv 24%4) Ydz(=1) dg(0)
(332)

Proof: See Appendix [C]

Proposition 3 (Optimality). In large system limit, the SE equations of the proposed ML-BiGAMP
algorithm depicted in Algorithm 2] match perfectly the fixed point equations in (33d)-(33g) of



the exact MMSE estimator as predicted by replica method under setting

1 1
(o) — )
~(6)° (¢
24" 24,
The Proposition [3|indicates that the proposed ML-BiGAMP algorithm can attain the MSE per-

formance of the exact MMSE estimator, which is Bayes-optimal but is generally computationally

n(@h) —

(34)

intractable except all priors and transition distributions being Gaussian.

B. Parameters of Proposition 2]

Based on Proposition [2, the MSE performances of X and H® can be fully characterized by
the scalar AWGN channel and (32)), while the former should be run for a sufficiently large
number of iterations (independent of the system dimensions). We note that under certain inputs,
when the signal-to-noise ratio (SNR) related parameters 1/(2¢,) and 1/ (2@,(1@) are given, the
analytical expression of MSE of MMSE estimator is possible.

For the model and (32), we get the MMSE estimators:

b =Bl = [ «PGaly)ds, G3)
A0 = E{h 9|y, } = / ROP(hO]y, e )dh®. (36)
The MSEs of those MMSE estimators are given by

mse, = E,, {(z — E{z|y.})’}

= Xz = Ga, (37
2
mse;’ = En© g {(h(z) —E{r9yp0}) }
=i —a s (38)

where X, = E{2?}, ¢, = By, {(E{z|y.})*}, xi) = E{(h())?}, and g;) = B, , {(E{RO [0 })%}.
Below we only give a belief review of the MSE of the MMSE estimator of z, and that of h(")
can be obtained with similar steps.
Example 1 (Gaussian input): For the Gaussian input z ~ N (x]0, c2), the MSE of the MMSE
estimator for the scalar channel (31)) can be obtained by Gaussian reproduction property

mse, = ——-——. (39)

Example 2 (constellation-like input): Considering the quadrature phase shift keying (QPSK)
constellation symbol, the MSE of the MMSE estimator for scalar channel (31) is given by [41]]

mse, — 1 — / tanh <2q; + \/2%() DC. (40)



The corresponding symbol error rate (SER) w.r.t. X can be evaluated through the scalar AWGN
channel (31)), which is given by [28]

SER, = 20 (@) _ [Q ( chx)r, (41)

where Q(z) = ["° Dz is the Q-function.

Example 3 (Bernoulli-Gaussian input): The Bernoulli-Gaussian input, i.e., P(z) = pN (|0, p~1)+
(1 —p)d(x), is common in the recovery of sparse signal. In this case, the MSE of the MMSE
estimator for the scalar channel (31)) can be obtained by Gaussian reproduction property and

convolution formula

2, 2
mse, =1 — q; / < D (42)

Example 4 (Gaussian mixture input): In [42], the channel of massive MIMO system consid-
ering the pilot contamination is modeled as Gaussian mixture, i.e., P(z) = Y5 | piN(z]0,07),
where p; and o7 are the mixing probability and the power of the i-th Gaussian mixture component,
respectively. To implement channel estimation, a message passing based method is developed.
For Gaussian mixture input, the MSE of MMSE estimator of the scalar AWGN channel (31)) is
given by

K 102 NNENE
T N (Y10, 07 + (24,) )]

" [Zi:1 o2 (2
mse, = Zpiaf _ / 2+(242)
i=1

S N0+ )y (43)

VI. SIMULATION AND DISCUSSION

In this sectiorﬂ we firstly develop a joint channel and data (JCD) estimation method based on
the proposed algorithm for massive MIMO AF relay system. Secondly, we give the application of
ML-BiGAMP in compressive matrix completion. Finally, we present the numerical simulations
to validate the consistency of the ML-BiGAMP algorithm and its SE in different settings (prior
or layer). Here we only consider random Gaussian measurement matrices, but the proposed
algorithm and its SE empirically hold in more generalized regions such as discrete uniform

distribution, Bernoulli Gaussian, and Gaussian mixture, etc.

The codes of simulations can be found in branches from the link: https:/github.com/QiuyunZou/ML-BiGAMP.
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Fig. 6. Signal model for massive MIMO AF relay system.

A. JCD Method Based on Proposed Algorithm

As shown in Fig. [6] and also described in Section [[I} the massive MIMO AF relay system can
be modeled as [

X2 =HOX® W)

(44)
Y =Q, (H(2)X(2) + W(Z))

To estimate the channel H("), the original signal X" is divided into two parts. The first K,
symbols of the block of K symbols serve as the pilot sequences, while the remaining Ky =
K — K, symbols are data transmission, i.e., X(!) = [X](Jl), Xgl)], where both X](Jl) and Xgl) are
quadrature phase shift keying (QPSK) symbol. As a toy model, we assume that the channel
H® in the second layer is perfectly known, but be aware that our ML-BiGAMP algorithm
is generally applicable to those cases of an unknown H®. W® and W® refer to additive
white Gaussian noise and it is assumed that they have the same power 2. The signal-to-noise
ratio (SNR) is defined as 1/02. Additionally, Q¢(-) represents a low-resolution complex-valued

quantizer including two separable real-valued quantizer Q(-), i.e.,

where J2 = =1, Y = {fi, Vm, k} = HOX® 4+ W® and Q(-) : R — Rp with R being the
set of B-bits ADCs defined as Rp = {(—5 +b)A; b= —-25"141,... 2871} and A being
an uniform quantization step size. For the output y of ADCs, its input ¢ is assigned within the
range of (¢'¥(y), ¢""(y)], which reads [28]

A . .
ow y— 5, ify>minRp
@™ (y) = ’ , : (46)
—00 otherwise

"For simplification, we consider the relay antennas equipped with co-bit ADCs and this system can be combined as a single-
layer model with non-white noise. In fact, it is the ML-BiGAMP that can be applied to the case of relay with low-precision
ADCs.
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A .
" y+ 5, ify<maxRp
q"(y) = ’ , . (47)
+00 otherwise

Accordingly, the transition distribution from Z® to Y of this quantization model reads

Ply1-®) = 0 (wy)m@@)), %) U (%(y)\%(z@)), %)

low (

where U(y|v,c?) = @(%) — @(%) with ®(z) = [ _N(t/0,1)dt. Furthermore, the

main technical challenges in particularizing our algorlthm and SE to the specific quantization
2) ~(2)

ks Upp) in practical algorithm and q§2) in SE

model are the computation of parameters (Z
equations. The expressions of (2(2) 177(5,1) are given in [28, (23)-(25)]. The evaluation of qu)

mk>
can be found in [43]]

(V)2 (c1(y,€)) ¢( (
¢ = MqPq® + / 1(y, 2 (y,
I 9z 2+V Z P(c1(y, &) — (s2(y

i
o)

up _ 22)7‘/(2) 2 low (2) V(Q) 2
where 6y, ) = T, G (y, ) = THUEMUC TV, and 6(x) = N ([0, 1),

In Fig. (7} the dimensions of the system are set as (K, K4, N1, Na, N3) = (100, 400, 50, 200, 400)
and SNR; = SNR, = 1/02 = 8dB. As depicted in Fig. [7, the ML-BiGAMP and its SE
converge very quickly within 12~15 iterations. More importantly, the normalized MSE (NMSE)
performance of X\" (|X{" = XM[12/X |12 ) of ML-BiGAMP algorithm agrees with its SE
(mse,) perfectly in this two layer setting, where || - || denotes the Frobenius norm.

In Fig. [§] we present the bit error rate (BER) versus SNR plot in terms of pilot-only, JCD,
and perfect-CSI method. The pilot-only method involves two phases: train phase and data phase.
In train phase, the pilot Xl()l) is transmitted to estimate channel H™") using the proposed ML-
BiGAMP algorithm. In data phase, the data X4 is detected using the proposed ML-BiGAMP
algorithm based on the estimated channel. The JCD method is to jointly estimate channel and data
using the proposed algorithm. In perfect-CSI (channel status information) method, the channel
H® is perfectly given and Xgl) is detected using the proposed algorithm. The dimensions of the
system are set as (K, K4, N1, Na, N3) = (100, 400, 50, 150, 300) and SNR; = SNRy = 1/02. As
can be seen from Fig. 8] the JCD has a huge advantage over the pilot-only method. Meanwhile,
there is small gap between JCD and perfect-CSI method, especially in B = oo.

In Fig. @, we present the influence of pilot length on NMSE performance of H") of JCD
and pilot-only method by varying K,/K from 0.1 to 0.99. The dimensions of the system are
(K, N1, N, N3) = (500,50, 150, 300) and SNR is SNR; = SNR, = 5dB. As shown in Fig. [9]
the performance of JCD method is better than the pilot-only method, especially in low K,/K.
A straightforward ideal to reduce the gap between JCD and pilot-only method is increasing the
pilot length.

In Fig. we compare the ML-BiGAMP with the competing ML-Mat-VAMP in 3-layer
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Fig. 7. Per-iteration behavior of ML-BiGAMP and its SE in two-hop AF relay communication.
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Fig. 8. BER behavior of pilot-only, JCD, and perfect-CSI method in two-hop AF relay communication.

model: X®) = HOX® + Wl X6 = HOX® + WY = Q. (H®OX® 4 WO)), The
system dimensions are set as (N1, Na, N3, Ny, K) = (200,400, 600,800, 1). The noise power
of each layer is considered to be equal and the SNR is set as 1/02 = 15dB. Besides, it is
assumed that the measurement matrix of each layer is known. As can be seen from Fig.
at the case of 2-bit and 3-bit, the NMSE performance of ML-BiGAMP coincides with ML-
Mat-VAMP almost. While, at the case of 1-bit and oco-bit, ML-BiGAMP has a slight advantage
over ML-Mat-VAMP on NMSE performance. Also, the convergence speed of ML-Mat-VAMP
is faster than ML-BiGAMP, but it has to pay more computational cost.
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Fig. 10. NMSE performance of ML-BiGAMP and ML-Mat-VAMP in 3-layer model.

B. Compressive Matrix Completion

As described in Section [[I-D] the compressive matrix completion (MC) problem is formalized

as

X®? = FEHOXD + W)

48
Y = HO®OX® 1+ wW® )

where f is a componentwise mapping which is specified by (8). In this problem, only a fraction
€ = % of entries of X2 are valid, where ) is the set of valid entries of X, In addition,
it is assumed that W) and W(?) have the same power o2, and H") and X() are drawn from
Gaussian distribution with zero mean and unit variance. For any (m, k) ¢ €2, several quantities

in Algorithm |1 becomes 21 (1) = 20 (1), ) (1) = v (1), 22 (¢) = 0, and v\%2 (¢) = 0.

m m mk
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In Fig. {11, we show NMSE performance of Z defined as ||[HMX® — ZM|12/|ZM]12 over a
grid of sampling ratios € = z\‘/%( and rank N;. The dimensions of system are set as (K, Ny, N3) =
(1000, 1000, 500) and the SNR is SNR = 1/02 = 50dB. The “success” (white grid) is defined
as NMSE< —50dB. As we can seen from this figure, more valid entries or smaller rank /Ny can

improve the NMSE performance of Z").

C. Validation for SE Using More Degenerated Cases
In Fig. 15| we consider the model (I) in L =1 and K = 1,ie., Y = ¢(HX+ W), where

H is Gaussian random matrix and is perfectly given. Further, the deterministic and element-wise
mapping ¢(+) is particularized as quantization function defined by —.

In Fig. to be specific, the application in compressive sensing (Bernoulli-Gaussian
prior) is considered by varying the sparse rate p and the precision of ADCs. The SNR is defined
as 1/02 and it is set as 12dB. The dimensions of the system are (Np, Ny) = (512,1024), i.e.,
measurement ratio N,/N; = 0.5. In addition, the NMSE of X is defined as ||X — X||2/||X||2. As
can be seen from Fig. (12| and Fig. the SEs agree perfectly with the algorithm in all settings.

Meanwhile, the application of ML-BiGAMP in communication (QPSK symbols) is depicted
in Fig. by varying the measurement ratio No/N; and the precision of ADCs. The SNR
of them is set as 9dB. It can also be seen that the SEs predict the NMSE performance of the

algorithm in all settings.

VII. CONCLUSION

In this paper, we studied the multi-layer generalized bilinear inference problem (IJ), where
the goal is to recover each layer’s input signal X(© and the measurement matrix H®) from the
ultimate observation Y. To this end, we have extended the BiG-AMP [6]], originally designed for
a single layer, to develop a new algorithm termed multi-layer BiG-AMP (ML-BiGAMP). The
new algorithm approximates the general sum-product LBP by performing AMP approximation in
the high-dimensional limit and thus has a substantial reduction in its computational complexity as
compared to competing methods. We also demonstrated that, in large system limit, the asymptotic
MSE performance of ML-BiGAMP could be fully characterized via its state evolution, i.e., a set
of one-dimensional equations. The state evolution further revealed that its fixed point equations
agreed perfectly with those of the exact MMSE estimator as predicted via the replica method.
Given the fact that the MMSE estimator is optimal in MSE sense and that it is infeasible in
high-dimensional practice, our ML-BiGAMP is attractive because it could achieve the same
Bayes-optimal MSE performance with only a complexity of O(N?). To illustrate the usefulness
as well as to validate our theoretical analysis and prediction, we designed a new detector based on
ML-BiGAMP that jointly estimates the channel fading and the data symbols with high precision,

considering a two-hop AF relay communication system.
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Fig. 12. Per-iteration behavior of ML-BiGAMP and its SE in compressive sensing (sparse rate p = 0.1).

APPENDIX A
DERIVATION OF ML-BIGAMP

The factor graph of multi-layer generalized bilinear problems is presented in Fig. [16] We then
address the following messages defined in Table

14 £+1 14 41 €+1
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Fig. 14. Per-iteration behavior of ML-BiGAMP and its SE in communication (N2/N7 = 2).
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Fig. 15. Per-iteration behavior of ML-BiGAMP and its SE in communication (N2/Ny = 1).
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Fig. 16. The factor graph of multi-layer generalized bilinear inferences problem with unknown measurement matrices, where
the cubes denote the factor nodes, the spheres denote the variable nodes, and the messages deliver via the edges between factor
nodes and variable nodes.

Ny_1 Ny_1
TCINERE b ED SIS | LN A
s=1 s=1
Nea
< TT 1S @80 ¢+ 1) daidhy,. (54)
r=1

(L+1) (z! (L+1) ) =

e — 1 whereas when ¢ = 1, we have 7\ (a:(g) t) =

n—nk\*“"nk>

Specially, when ¢ = L, there is

/P(ank)
Accordingly, the belief distributions (approximate posterior distribution) of :r;ff,z and a'b), are
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TABLE I
SUM-PRODUCT MESSAGE DEFINITIONS

u%%mk(x%, t) message from P(x (ﬁ+1)| ) (tecila):nk
u?ﬁﬁk@”&?ﬁ? message from :c?;ito Pz, ") (e+1)
@H__ﬂm( Lok ,t) | message from z, ;" in (¢ —i— 1)-th layer to P(z,, ” ) )
,an( nk,t) message from 77( nk\ ) in (¢ — 1)-th layer to x,
ukw< mn, t) | message from 7>(<x““>| ) o ?%n
+
’&Tm’(‘() 9, t) message from 9 to Pz, ])
w0 (2Y) 1) belief distribution at z,,,
%%(h,(fb)n, t) belief distribution at h%)n

respectively given by

0—1) /(¢ N, ¢

OO 41 Miﬁn)k(ﬂff@ﬁ’ O T #ade( ) 5
:unk( Lk + ) (£—-1) Nepr (0 () ()’ ( )

funﬁnk nk7 )Hm 1 Mnemk( nk>’ )dx

¢ ¢

@) h(ﬁ) PH“)( mn) Hk 1 lul(clmn(h’gnzm t) 56

f 7DH([) mn) Hk 1M k—)mn(hmn? )dhm”
We denote the mean and variance of uff,z (a:ff,z, t) as 2 )( ) and v ff (t) respectively. Meanwhile,

we denote the mean and variance of u%%(h%)n, t) as hmn and U(h e)( t)

, respectively. Note that
ZTnx(t) and iz%)n(t) are the approximate MMSE estimators of x,;, and h,,, in t-th iteration,

respectively.

A. Approximate factor-to-variable messages

We begin at simplifying the factor-to-variable message ,ugf Lmk(xg,z, t)
¢ ¢ +1)) (¢
Ry L B EERE S o |
S#N
X My )2y, (57)

where the expectation is taken over the distribution [, /L,(f?_ms(h%?g, t) Hf;ﬁn /“L7(~Z—)>mk( 5,3 ,t). We

associate random variable (RV) f ( ) with 2\ associate RV 5,(;3%( t) with b following

mk?
uglms(h%)s, t), and associate RV ST Hmk( ) with x() following uilmk( gk), t). Then applying

PDF-to-RV lemma ﬂ yields

2l Z
s#EN

8Let w € R? and u € R' be two RVs, and g : R — R be a generic mapping. Then, u = g(w) if and only if the PDF
x [6(u— g(w))Puw(w)dw.
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In large system limits, the central limit theorem (CLT) allows us to handle 57(5,’5) (t) as Gaussian

distribution with mean and variance respectively given by

2z 03¢
B ()] = 2l (8) + Z (1), (59)
zl
Varlgl (1)) = |25 Pole) () + VI (), (60)
where
S#N
Y4 h,0 z,0 > (0 z,0 (h,t

VL0 =0l (00l () + L, ()P (8) + 3, (Pl (1), (62)

s#n

(h,0) (h,0)

with hk Hms( ) and v (t) being the mean and variance of RV ¢t (t), respectively, and

k<ms k<ms

a?ﬁmk( t) and vsiilk( t) being the mean and variance of RV 5’8 Hmk(t), respectively.

By Gaussian approximation, the message uflimk(xff,z, t) is simplified as
O N Z( ) h.t) V
xw( ) mk> D (o, ) dn . (63)

O

It is found that the parameters Z \n (t) only has a slight differ from each others. The similar

situation also exists in the parameter Vﬁ,z\n(t). To further simplify the message ,ug ()_mk( 52, t),
we define
Hg,)f(a, A) = log/’P (m%}?”zﬁﬁi) N (=, © la, A)uni:lmk(xgﬁzl),t)dx%zl), (64)
Ny
¢ 2 (L NG
Zyi) = Y (OF,,40), (65)

n=1
Ny
Vi) =D ol 0ol ) + Ryl 0P ) + 13, ) Pol,, (), (66)
n=1
and then obtain

lOg /’Ln<—mlc ( t)

= const + H{ (00 (0) + ZL0 (0, 1 20, 0 + VL. (0) (67)
= const + H{ (Z5)(6) + b, (0@l - #42,.(1)

VARE + v O = 120, ) = vl O (0) = B, (P 0,.0)) 68)

E K 4 ~(£ l h,t {4 ~ (£
~ const + HY) (Z00(0) + biL,, (0@l = #00), VL) + v, (0 (2 — 13,0
(69)

8
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TABLE II
ML-BIGAMP VARIABLE SCALINGS IN THE LARGE SYSTEM LIMIT [|6]

o [[a0w o) | a0 - ;<> O(4)
i) | O() | o) | O) | (32,0 - |n<n O(A)
i o |0 o) ||l -5 | 0K
I (8) | O(F2) | 00 (8) | O() || Ayl (1) — h%x> O(%)
han(t) | O(F) || v ()| OGE) || 1AL (DI = 1S (0)2 | O(g7m)
Z®) [ 00) | VR@® o) || vl -l | Ok
RGOy o) | 50w o)

mi (1) | O(7x) || S’ () | O(;)

s o) sl ®) o)

where we use fc(g) . (1) to replace i‘gl)mk (t), since ,uff,z( if,z, t) is slightly different from ufflmk(xff,z, t)
(z) .x(t) has the same order as :%g,z( t). Besides, the item v,(jggm(t)vfff;k(t) +

(t) is ignored due to infinitesimal items v,(ffzm(t)v,g _)mk( ) |hk <_mn( )|%. The

and further 7,
xé

remaining variance entries are found in Table
We further apply Taylor series expansimﬂ to logarithm of message ,uff Lmk(ng,z, t)

4
10g 1,2 (1)

~ const + H'9 (Z“L(t) v (t))

m » Ymk
{4 ~ (0 ¢ l l
+h;m4>uu—x%unﬂ“(z“<xw$un
h 21,.(0) A0 £)12
h,l l ~ (¢ (¢ l {4
+¢F;ﬁxuﬁﬁ—uﬁmxm%Hﬁ(Z&@AQAw) (70)

= const+ 'y} [, (VH (2000, Vil (0)) + D, P00 Hi (2500, Vi) ]
1 .
+|a Plgm%ﬂﬂﬁﬂf(ZQﬁxwﬁ@0+»“%»Hm(zﬁﬁxuﬁ@ﬁ], ()

where H;Sgk)() and H;(,f)( -) are first and second order partial derivation w.r.t. first argument and
o0

. (+) 1s first order partial derivation w.r.t. second argument.

V(@ + Aayy+ Dy) & f(z,y) + Daf(2,y) + Dyfe,y) + L2217 (@,y) +o.
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With the fact , the message ,u(@ (xfflz, t) is approximated by following Gaussian distri-

n<—mk
bution
7 (¢ N 7 (¢ ~ (2 s,
WO 0 <x<e>| Pl (B)3me (8) + ian (8) 250 ()ogai (8)
nemk\Lnk> ¢ / s, ht ~(¢ sl ’
A (8) 20850 (8) — o (1) (180,02 — 50 (1))
! > (72)
> (0) 5,0 ht (¢ 5,0 )
A () [205:0 () — vl (1) (180, (8)]2 — 050 (1))
where
-(0) 0
A(0) 10 () ) Zoi(t) = Z1 (1)
S0 = B (2500, v 0m) = , (73)
k k k k V;lglz (t)
- (0)
(5,0) ey (o) (0) 1 Ve ()
A VL)

with éﬂ(t) and 6%L(t) defined as the mean and variance of random variable (RV) Cf,f;g(t) drawn
by

(e+1) (¢ 041 41 41
/P ( L0 ) N 280, Vi), el

P (el )N<z Z5 0 VOl el Dz

mk

(75)

(¢+1)
m<—mk

distributions. Based on the Gaussian reproduction propertyﬂ> we obtain

(e+1)

mk

Note that the message u (x ) in 1| is the product of a large number of Gaussian

a5 £) o N L (1), 200 (1), 76)

where
1

Ngjo
sy (3L 71
mk ( ) - Z (z,0+1) (t) ) ( )

p=1 “m<pk

41 ), 2 (1)
T+ x b+ m<—
Ry () =20 () (Z ] (78)

p=1 “m<pk (t)

(4+1) (x(é-i-

with ¥ (t) and pl=h (t) being the mean and variance of j,,. /. (Z,.. Y, t) respectively.

m<—pk m<—pk

"Defining the mean and variance of distribution P(z|a, A) = = J@N@lad)  uq By and Varlz , where f(z) is bound
g I/ fQ(z YN (z|a,A)dx
and non-negative function, we havealogf(zg’;/(z‘“’m - E[II];G’ 9 logf(az()lN@\a A V‘“[X]JA, and alogf(zgi;/(zla’A) =

dlog P(z|a,A) 2 +
da

1 8% log P(z|a,A)
2 da?

"N (z|a, A)N (z|b, B) = N'(0la — b, A+ B)N (z|c,C) with C = (A" + B ") ' andc=C - (% + ).
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We then update the expression of Z ) (t) and vff}c (t)
SHORSAISHOI (79)
Bik(t) = Var [¢}0(1)] (80)

where the expectation is taken over

fP(““ ) NGRIZ0 0, VANl IR (0, 55 1) ol

() (4 Lok
P (D) M2 VWLl IR (1), 5 (1) da Vel
(81)
Specially, as ¢ = L, we have p{"T" (2“I) 1) = 1 and further
¢ (¢
P (yrl2fn ) N (01250 (), ViL(®)
mil0) ~ (0 O g0 (82)
S P (gl ) NG Z0 0, V@) a0
.. . r (0 () . ) (0)
Similar to simplifying p,; . (x,;,t), we approximate the message 1, ., (hmn,t) as below

lukﬁmn (h’%n )

bl

Y ( X B0 (8)30e() + 128 () 2Rl (0055 (8)
2012050 () — o5 () (185,12 — o5 (1))

1
|a:«“ (0)Pvii (1) — v () 85k (O] — vff;;f)(t))) W

For message /%(1_>1) (x ;k,t +1) in , we have

No—a
( - 2 e 1)] (ETRNC

with expectation over []2‘;" pd,(i}l)r(h(e Y t41) | R ugiii( (‘=1 ¢+1). Applying PDF-to-RV
lemma and CLT, we get

’LL7('L—>TL)]€ nk’t+1 /P (é 1

Pt D~ [P () N2 VT e DY 89)
where the definitions of fo;;l)(t—i— 1) and Vn(i*l)(t +1) are found in Il and lb respectively.

B. Approximate variable-to-factor node messages

We now move to the simplifying of messages from variable node to factor node. By Gaussian
O (O .
t+ 1) is as blow

reproduction lemma, the Gaussian product item in message /i, ... (%,

Neya1

TT il t) o N (el B0, (0, 250, 8)) (86)
s#EM
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-1
- 1
S () = (Z (Ta)) &7
-1
=@mmmWwwwwmwtﬁ%ﬁ, (88)

z T n<r t
RGO (1) = Eﬁk@m(z ’“()> (89)

r#m n(—rk (t)

~ (e ~ (¢ (L 0
o ML 5lt) + RO P ()03 (1) 00
- 7 sl h,t ~(¢ s,
> B (O PO (1) — 0l (185 (02 — 050 (1))
_ 30 i i (8P (1)
= Lnk 5,0 nt (7 5,0
> B (PO () — 0 () (185 ()2 — 050 (1))
0 R
) 2 L (6)3re(1) o