
ar
X

iv
:2

00
7.

00
60

4v
1

 [
cs

.I
T

]
 1

 J
ul

 2
02

0

New Linear Codes as Quasi-Twisted Codes from

Long Constacyclic Codes

Nuh Aydin

Department of Mathematics and Statistics

Kenyon College

Gambier, OH 43022

Email: aydinn@kenyon.edu

Thomas Guidotti

Kenyon College

Gambier, OH 43022

Email: guidotti1@kenyon.edu

Peihan Liu

Kenyon College

Gambier, OH 43022

Email: liu4@kenyon.edu

Abstract—One of the most important and challenging problems
in coding theory is to determine the optimal values of the
parameters of a linear code and to explicitly construct codes
with optimal parameters, or as close to the optimal values as
possible. The class of quasi-twisted (QT) codes has been very
promising in this regard. Over the past few decades various
search algorithms to construct QT codes with better parameters
have been employed. Most of these algorithms (such as ASR [11])
start by joining constacyclic codes of smaller lengths to obtain QT
codes of longer lengths. There has been an algorithm that works
in the opposite way that constructs shorter QT codes from long
constacyclic codes. We modified and generalized this algorithm
and obtained new linear codes via its implementation. We also
observe that the new algorithm is related to the ASR algorithm.

Index Terms—quasi-twisted codes, best known linear codes,
constacyclic codes, search algorithms for linear codes

I. INTRODUCTION

A linear block code C of length n over the finite field Fq

is a vector subspace of F
n
q . The elements of C are called

codewords. If the dimension of C is k, then it is referred to as

an [n, k]q-code. If the minimum (Hamming) distance (weight)

is d, then and it is an [n, k, d]-code. One of the most important

and challenging problems in coding theory is to determine the

optimal values of the parameters n, k, d, given the alphabet

size q and explicitly construct codes whose parameters attain

the optimal values. The problem can be formulated in a few

different ways. One common version is to fix q, n and k and

look for the maximum possible value of d. In general, this

optimization problem is very hard and in most cases codes

with optimal parameters are not known. The online database

[1] contains data about what is known about this problem for

codes over the alphabets Fq for q ≤ 9 up to certain length

for each alphabet. In most cases, there are gaps between the

minimum distances of best know linear codes (BKLC) and the

best theoretical upper bound on d.

This optimization problem is hard for two main reasons.

First, the number
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
of linear

codes over Fq of length n and dimension k is large and grows

fast. Hence exhaustive computer searches are not feasible

for all but small values of n or k. Secondly, computing the

minimum distance (weight) of a linear code is computationally

intractable [10]. For most entries in the database [1], optimal

values of the parameters are not attained. Optimal codes are

generally known when either k or n− k is small.

Numerous approaches, techniques, and search methods have

been employed to improve the parameters of BKLCs to get

closer to the the optimal values. It is unlikely that a single

method will work to solve most instances of this challenging

problem. One method that has been quite effective to obtain

new codes has been computer searches in the class of quasi-

twisted (QT) codes. The algorithm ASR introduced in [11]

is one such algorithm. It has been improved in recent years

and produced dozens of record breaking codes. The ASR

algorithm searches for new linear codes using a special type of

1-generator QT codes that have generators in a particular form.

It starts with a short constacyclic code and uses it as a building

block to construct longer QT codes. Another method was in-

troduced in [13] that works in the opposite direction, that is by

starting with a very long constacyclic code and obtains shorter

QT codes from it. In a recent paper [15], new linear codes have

been obtained via a modification of the original method. In this

work, we modified and generalized this method and obtained

new linear codes from its implementation. Finally, we notice a

connection between the new method and the ASR algorithm.

II. PRELIMINARIES

Cyclic codes are one of the most important classes of codes

in algebraic coding theory for both theoretical and practical

purposes. They are extensively studied and generalized in

many directions. Some of the well known generalizations of

cyclic codes are constacyclic codes, quasi-cyclic (QC) codes,

and quasi-twisted (QT) codes.

Definition II.1. Let Fq be the finite field with q elements and

let a ∈ F
∗
q = Fq \ {0}. A linear code C of length n over Fq is

called a quasi-twisted (QT) code of index ℓ (or an ℓ-QT code)

if it is closed under the constacyclic shift by ℓ positions, i.e,

for any codeword c = (c0, c1, · · · , cn−1) ∈ C, we also have

πℓ,a(c) = (acn−ℓ, · · · , acn−1, c0, c1, · · · , cn−ℓ−1) ∈ C.

The smallest such positive integer ℓ is called the index of

C and it must divide the code length n. Hence, n = m · ℓ for

some m ∈ Z
+. The scalar a ∈ F

∗
q is called the shift constant.

The following are some of the most important special cases

of QT codes:

http://arxiv.org/abs/2007.00604v1

• a = 1, ℓ = 1 gives cyclic codes

• a = −1, ℓ = 1 gives negacyclic codes

• a = 1 gives quasi-cyclic (QC) codes

• ℓ = 1 gives constacyclic codes

One of the reasons why cyclic codes are so prominent in

coding theory is they establish a key link between algebra

and coding theory through the correspondence between vectors

v = (v0, v1, · · · , vn−1) and polynomials

v(x) = v0 + v1x + · · · + vn−1x
n−1. This map establishes

a vector space isomorphism between F
n
q and Fq[x]<n =

{p(x) ∈ Fq[x] : deg(p(x)) < n}, the set of all polynomials

of degree < n over Fq. It is well known that under this

identification cyclic codes of length n over Fq correspond

to the ideals of the quotient ring
Fq[x]

〈xn−1〉 . Under the same

identification, the algebraic structure of a QT code of length

n = m · ℓ is an R-module of Rℓ, where R =
Fq [x]

〈xm−a〉 . If C is

generated by r elements of Rℓ then it is called an r-generator

QT code. A generator matrix of an r-generator QT code can

be put, by applying a suitable permutation of the columns if

necessary, into the form:








G11 G12 · · · G1l

G21 G22 · · · G2l

· · · · · · · · · · · ·
Gr1 Gr2 · · · Grl









where each Gij is an a-circulant (also called a twistulant)

matrix of the form









c0 c1 c2 · · · cm−1

acm−1 c0 c1 · · · cm−2

acm−2 acm−1 c0 · · · cm−3

.









where each row is a constacyclic shift of the previous row.

The ASR search algorithm that is introduced in [11] is based

on the following theorem.

Theorem II.2. [11] Let C be a 1-generator QT code of length

n = mℓ over Fq with a generator of the form

(g(x)f1(x), g(x)f2(x), ..., g(x)fℓ(x))

where xm − a = g(x)h(x) and gcd(h(x), fi(x)) = 1 for all

i = 1, ..., ℓ. Then dim(C) = m−deg(g(x)), and d(C) ≥ ℓ ·d
where d is the minimum distance of the constacyclic code Cg

generated by g(x).

This algorithm has been refined and automatized in more

recent works such as ([3], [4], [5], [6], [8]) and dozens of

record breaking codes have been obtained over every finite

field Fq , for q = 2, 3, 4, 5, 7, 8, 9 through its implementation.

Moreover, it has been further generalized in [7] and more new

codes were discovered that would have been missed by its

earlier versions.

In an implementation of the ASR algorithm, we begin by

choosing the alphabet Fq and the shift constant a. We then

pick a desired block length m and number of blocks ℓ such

that the resulting length of the code is n = m ·ℓ. Next, we find

all divisors of the polynomial xm − a and end up with a list

of possible generator polynomials g(x) (with corresponding

check polynomial h(x) such that g(x) · h(x) = xm − a)

of varying degrees, each generator giving a constacyclic

code Cg of length m with dimension k = m − deg(g(x)).
Then the search program generates polynomials fi(x) where

gcd(fi(x), h(x)) = 1 for all i 1 ≤ i ≤ ℓ, and for each set

{f1(x), . . . , fℓ(x)} of polynomials constructs the QT code C

with a generator of the form given in Theorem II.2. Note that,

each block is a constacyclic code generated by g(x)fi(x). In

fact, 〈g(x)fi(x)〉 = 〈g(x)fj〉 for all i, j under the condition

gcd(h(x), fi(x)) = 1. We simply join all of these ℓ blocks

together to obtain a QT code whose minimum distance is

guaranteed to be at least ℓ · d. In many cases, its actual

minimum distance is much bigger.

There is another method of constructing QC and QT codes

that works in the opposite way (which we may informally refer

to as “top-down method”). The basic idea of this method goes

back to [12] and [13]. It starts with a long cyclic code of

composite length N and permutes the coordinates of the code

so that each block is a cyclic code of length dividing N . This

method was later refined to search algorithms that produced

QT 2-weight codes from constacyclic codes in [14]

One improvement of the algorithm is given in [15] which

applied the method to the specific case of simplex codes,

the duals of Hamming codes. Simplex codes are constacyclic

themselves, so the idea of applying a permutation to a long

constacyclic code to form a matrix that is a generator for a QT

code can be applied here. This version of the algorithm uses

the idea of a weight matrix to construct better QT codes. After

applying the permutation to the generator of the constacyclic

code, a p × p weight matrix is created to store the weights

of the defining polynomials g1(x), . . . , gp(x). The first row of

this matrix has the weights wt(g1(x)), . . . , wt(gp(x)) and all

subsequent rows are its cyclic shifts, so it suffices to store the

first row of the matrix only. Because of this construction, it

follows that the minimum distance of a QT [n = t · m, k]q
code is determined by the minimum row sums of the chosen

columns from the weight matrix. So to form a QT code

with these parameters having the highest possible minimum

distance it suffices to maximize the minimum row sums. This

gives rise to the iterative algorithm found in [15]. The idea is

that one will build a QT code from maximizing the minimum

row sums one column at a time. So given a QT [i · m, k]q
code the algorithm tries to construct a QT [(i + 1) · m·, k]q
code by using the weight matrix to add another block to the

resulting QT code. If the maximum number of blocks desired

is t, then the algorithm constructs codes with parameters

[m, k]q, [2 ·m, k]q · · · [t ·m, k]q.

III. OUR CONTRIBUTION

In this work, we generalize and modify the search method

described in the previous section. As a result of our imple-

mentation of the generalized algorithm, we have found 5 new

linear codes that improve the bounds in the database [1].

The previous version of the algorithm is restricted to the

class of simplex codes. Our first generalization is to apply

it to the broader class of all constacyclic codes. We first

choose the alphabet Fq , a shift constant a ∈ F
∗
q , and a

length N with many factors. Next, we find a number of

generator polynomials G(x) such that G(x)|(xN − a). We

want the degree of this generator to be relatively high, so our

initial program (written in Magma) that outputs the generator

polynomials has constraints on their degrees. After reading in

all of these long generator polynomials to a C++ program, we

want to find all combinations of m · p = N . This is obviously

determined by the prime factorization of N . We refer to m

as the block length and then p is the total number of blocks.

For a given combination of (m, p) we first represent our long

polynomial G(x) as a vector in the usual way. Then we split

up this vector into p vectors of length m each, such that each

vector combines columns i, i + p, i + 2p, . . . , i + (m − 1)p
for 0 ≤ i ≤ p − 1. Next, we convert all of these vectors

back to polynomials gi(x) in the usual way and then compute

gcd(xm − a, g1(x), g2(x), . . . gp(x)). Computing this gcd is

very similar to the ASR search in which we begin with a stan-

dard generator polynomial g(x) (a divisor of xm−a) and then

multiplying it by polynomials fi(x) in each block such that

gcd(h(x), fi(x)) = 1. The process here is simply the reverse:

we are starting with g(x) · fi(x) in each block and we want

to determine the standard generator g(x) based on this. Obvi-

ously then the dimension of the constacyclic code with stan-

dard generator g(x) = gcd(xm − a, g1(x), g2(x), . . . gp(x))
is k = m − deg(g(x)). If k is equal to the dimension of

the original constacyclic code, then we are dealing with the

1-generator QT case, otherwise we are dealing with a multi-

generator case. Our last step here is to construct a a-circulant

(twistulant) matrix corresponding to each of these defining

polynomials gi(x) for 1 ≤ i ≤ p, keeping only those matrices

whose rank is equal to k or k − 1. We observed that using

blocks that have the same rank usually gives the best results

in terms of obtaining codes with high minimum distances.

Obviously the dimension k has an upper bound of m, so

it only makes sense to consider combinations of (m, p) that

will yield reasonable dimensions. In many cases where there

are a high number of defining polynomials, their gcds with

xm−a have a very low degree, resulting in a QT code whose

dimension is very close to block length m.

For each combination of (m, p) we apply the column

permutations as described to put the large circulant matrix into

p blocks of length m circulant matrices. We then horizontally

join t of these matrices to form the generator matrix for a

QT code. An improvement we made to this algorithm deals

with the rank of these circulant matrices. In [13], the author

notes that in cases where N − deg(G(x) 6= m − deg(g(x))
(G(x) is the generator polynomial of the long constacyclic

code and g(x) is the gcd of defining polynomials) we are

dealing with a multi-generator QT code. Chen suggests that

in such a case the smaller dimension generator polynomial

can be augmented by adding rows one at a time such that

the rows are linearly independent, in this way a code with

Note
THE TABLE BELOW JUST SHOWS A SMALL PART OF ALL RANKS

DISTRIBUTION

N = m · p Rank1: No. Rank2: No. Rank3: No. Rank4: No.

924 = 4 · 231 3 : 49 2 : 140 1 : 21 n/a

924 = 6 · 154 4 : 126 3 : 14 2 : 14 n/a

924 = 21 · 44 7 : 32 6 : 12 n/a n/a

924 = 22 · 42 11 : 28 10 : 14 n/a n/a

924 = 28 · 33 14 : 20 13 :9 13 : 4 n/a

924 = 12 · 77 5 : 50 4 : 18 3 : 6 2 : 3

924 = 4 · 231 2 : 151 1 : 59 n/a n/a

924 = 12 · 77 4 : 70 2 : 6 n/a n/a

924 = 11 · 84 11 : 56 10 : 28 n/a n/a

924 = 14 · 66 13 : 48 12 : 18 n/a n/a

dimension N − deg(G(x)) may be constructed. After some

testing using this idea we had no success in finding codes with

parameters close to those of BKLCs, so instead we decided

to construct codes with dimension k = m−deg(g(x)) simply

taking the blocks of circulant matrices of rank k rather than

by adding additional linearly independent rows. Additionally

we noticed that amongst all of the p circulant matrices, there

are many matrices of rank k − 1 so we keep those as well.

So once we choose k after finding the defining polynomials,

we first determine if k is large enough to find reasonable

results. After that we go through all circulant matrices and

keep those whose rank is equal to k or k − 1. So when we

end up selecting t blocks of circulant matrices for a given

(m, p) combination, we are selecting t blocks from the set

of rank k matrices and an additional t blocks from the rank

k − 1 matrices. After horizontally joining these matrices we

construct two QT codes with lengths and dimensions [tm, k]
and [tm, k−1] and check their minimum distances against the

BKLC for those parameters.

In the next table, we give a few data points about the rank

distribution for N = 924 over GF (5). We give the values of

m · p on the left and then the following columns are the rank

and the number of matrices of that rank.

If we choose the highest rank matrices, there is an interest-

ing property of the gcd of all possible generator polynomials

with xm − a and the gcd of all generator polynomials that

corresponds to the highest rank circulant matrices with xm−a.

Given the context above, we have

Theorem III.1. Let B = {g1(x), . . . , gp(x)} be a set of gen-

erators of constacyclic codes, and let A = {f1(x), . . . , ft(x)}
be the subset of B consisting of those polynomials that

correspond to circulant matrices of highest rank. Then we have

gcd(A, xm − a) = gcd(B, xm − a)

Proof. Let B = {g1(x), · · · gp(x)} be the set of p defining

polynomials as in the algorithm. Let g(x) = gcd{B, xm − a}
and let k = m − deg(g(x)). Thus for every gi(x) ∈ B, we

may rewrite gi(x) = g(x) · ui(x) for some ui(x) ∈ Fq[x].
Let A = {f1(x), . . . , ft(x)} be the subset of B such that the

constacyclic code generated by each fi(x) has dimension k.

Thus for every fi(x) ∈ A, we may rewrite fi(x) = g(x)·vi(x)
for some vi(x) ∈ Fq[x] such that gcd(vi(x), x

m − a) = 1, for

if this were not true then the constacyclic code generated by

fi(x) would not have dimension k. Thus gcd(A, xm − a) =
g(x) = gcd(B, xm − a)

Thus, the codes obtained by our algorithm are of the form

(g1(x), . . . , gt(x)) where g1(x), . . . , gt(x) correspond to the

highest rank matrices. We can find a lower bound on the

minimum distance, and an equivalence between the ASR

algorithm and this algorithm.

Theorem III.2. [11] Let gcd(g1(x), . . . gt(x), x
m−a)=D(x)

and fi(x) = gi(x)
D(x) for i = 1, 2, . . . t. Then the 1-generator

QT code C generated by (g1(x), . . . , gt(x)) is of length m · t,
dimension m− deg(D(x)), and d(C) ≥ t · d, where d is the

minimum distance of the constacyclic code generated by D(x).

In the ASR algorithm, we start with a generator g(x),
which corresponds to the D(x) above. Then by finding

qi(x) that is co-prime with h(x) = xm−a
g(x) , which corre-

sponds to the fi(x) above, we form QT codes with gen-

erators of the form (g(x)q1(x), g(x)q2(x), . . . , g(x)qt(x)).
Hence, a code constructed by the top down method of the

form (D(x)f1(x), D(x)f2(x), . . . , D(x)ft(x)) is essentially

the same as a code constructed by the ASR algorithm.

So for each possible value t for the number of blocks, we

want to construct QT codes of length t ·m and dimensions k

or k−1. These t blocks come from the p circulant matrices we

have already constructed, and we only join circulant matrices

of the same rank. Clearly the total number of ways we can do

this is
(

p
t

)

, which in general is very large so we have imposed a

limit of 20, 000. The next step is to randomly select t circulant

matrices of rank k, and t of rank k − 1, horizontally join

them, and construct two codes with parameters [t ·m, k]q and

[t ·m, k − 1]q. Finally we compute the minimum distance of

each code and compare it against the BKLC in [1].

Take our record breaking code [84, 19, 41]5 as an example.

We chose N = 840, q = 5 and a = 1. Firstly, we need

to find out the list of possible generator polynomials g(x),
which are divisors of x840 − 1. Using an original generator

polynomial of degree 765 (so the dimension of the original

constacyclic code is 75), we found all possible m’s and

p’s. The values of m = 21 and p = 40 yielded a record

breaker with t = 4 blocks. In this case, of the 40 blocks

in total, we chose 4 blocks from the 35 blocks with the

highest rank, which is 19. Each of the remaining 5 blocks

has rank 18. The dimension is determined by computing

k = m − deg(gcd(xm − a, g1(x), g2(x), . . . , gp(x))). After

we split up the original long generator polynomial using our

selected values of m and p, we construct a circulant matrix

for each of the p = 40 polynomials. Once we have computed

k, we go through all of these circulant matrices and only keep

those with rank k or k− 1. After selecting our t = 4 full rank

matrices, we horizontal join them, and get a final matrix of

84 = t · m = 4 · 21 columns with rank 19. For a particular

choice of these 4 blocks, we obtained a new linear code whose

minimum distance is 41, improving the minimum distance of

the previously BKLC of this length and dimension given in

[1]. The defining (generating) polynomials of each block of

this code are given in the table below.

IV. NEW CODES

We found two types of new codes from an implementation

of the algorithm. We have found 5 QT codes that are new

among all linear codes according to the database [1]. They

are listed in the table below.

Note
RECORD BREAKING QT CODES

[n, k, d]q α N m Polynomials

1 [85, 16, 45]5 1 2142 17 g1= [1331311000103332]

g2= [2030141001241411]

g3= [3412143022013031]

g4= [1123200013130012]

g5= [4233002104312041]

2 [84, 19, 41]5 1 840 21 g1= [44010311002304111222]

g2= [141032024233443231]

g3= [1310443344442044020]

g4= [4011113222243123010]

3 [84, 13, 48]5 1 3276 14 g1= [34030034422424]

g2= [4023414111414]

g3= [10342023404034]

g4= [44300024241344]

g5= [3221030030213]

g6= [433111043203]

4 [65, 12, 39]7 1 35100 13 g1= [2322660251501]

g2= [4415215004556]

g3= [1551620013551]

g4= [4030032120616]

g5= [4626364150311]

5 [78, 13, 47]7 1 4680 13 g1= [6536106450546]

g2= [640410515651]

g3= [32251003506]

g4= [524220205542]

g5= [520330333466]

g6= [15211116242]

The second type of codes we have found are new in

the class of QC and QT codes as presented in the online

database [2]. Often times, these codes have the parameters

of the BKLCs given in [1] and at the same time have more

simple construction than the BKLCs in the database. For

example, consider the code with parameters [66, 11, 40]7 in

the table below (number 4). It has the same parameters as

the BKLC given in [1] but the construction of the code in the

database is indirect and complicated, involving many steps and

manipulations of other codes. The code that we have is QC,

so it has a more useful and desirable construction. We have

found a large number of such codes. The table below contains

40 of them. In this table, ⋆ delineates a new QC code for the

online database of QT codes [2], ⋆⋆ delineates a new QT code

for the online database of QC codes [2], and ◦ delineates a

code with better construction than what is given in [1]

[n, k, d]q α N m Polynomials

1 [75, 16, 41]7 * 1 29700 25 g1= [263433044421333266145152]

g2= [315432322306666040522014]

g3= [423226456521644016532614]

2 [70, 10, 45]7 * 1 1530 10 g1= [6303410364]

g2= [2050420624]

g3= [2210321115]

g4= [45041324]

g5= [435123455]

g6= [231612611]

g7= [651163446]

3 [50, 12, 28]7 * 1 1650 25 g1= [540452551353554052546141]

g2= [641633425035353011331645]

4 [66, 11, 40]7 *◦ 1 1650 11 g1= [2322660251501]

g2= [4415215004556]

g3= [1551620013551]

g4= [4030032120616]

g5= [4626364150311]

5 [77, 11, 49]7 * 1 1650 11 g1= [564114442]

g2= [2461136364]

g3= [1516121646]

g4= [6616204266]

g5= [1645256106]

g6= [261414153]

g7= [5230445332]

6 [84, 11, 54]7 *◦ 1 2340 14 g1= [444322262213]

g2= [554352030341]

g3= [10166310604]

g4= [15346150532]

g5= [61316462321]

g6= [32314565553]

g7= [15302241541]

7 [63, 21, 27]7 * 1 3276 21 g1= [124023403431134343212]

g2= [213132232321244113304]

g3= [43103444244422211142]

8 [75, 15, 42]7 * 1 4680 15 g1= [2322660251501]

g2= [4415215004556]

g3= [1551620013551]

g4= [4030032120616]

g5= [4626364150311]

9 [76, 10, 50]7 *◦ 1 5586 19 g1= [5031221102660240321]

g2= [2363456125525046026]

g3= [261352230616301205]

g4= [645316064010314463]

10 [60, 19, 27]7 *◦ 1 7020 20 g1= [15443624352620433401]

g2= [50055310242611250602]

g3= [2424542451060242561]

11 [88, 10, 59]7 * 1 9900 10 g1= [5203436246]

g2= [51043451221]

g3= [12401350525]

g4= [41243403]

g5= [53444636644]

g6= [1031143125]

g7= [33452534051]

g8= [22465515122]

12 [60, 22, 24]7 *◦ 1 23400 30 g1= [36635456033343033602466243345]

g2= [656321204662143163155634466551]

13 [66, 22, 28]7 *◦ 1 23760 22 g1= [6563251503162345354255]

g2= [533056566022662664544]

g3= [54064355203553654613]

14 [50, 20, 20]7 * 1 23400 25 g1= [4443213452310165035153651]

g2= [1630165556635256134420642]

15 [78, 23, 33]5 ** 2 1638 39 g1= [13032111444411404203244031330204130]

g2= [424210422221110200143114323340030334]

16 [84, 13, 47]5 *◦ 1 2394 42 g1= [130321114444114042032440313302041302]

g2= [424210422221110200143114323340030334]

17 [63, 14, 32]5 *◦ 1 2394 21 g1= [321343402000310324]

g2= [34343420432104113431]

g3= [11021044124132020034]

18 [70, 13, 38]5 *◦ 1 2520 14 g1= [14442024404443]

g2= [4003124334114]

g3= [31142014342]

g4= [4233234211104]

g5= [4133124411213]

[n, k, d]q α N m Polynomials

19 [57, 10, 33]5 * 1 2394 19 g1= [4001122202200132343]

g2= [2001010134034202224]

g3= [423311200332331241]

20 [54, 16, 24]5 * 1 2520 18 g1= [111112401404020422]

g2= [210103420211004144]

g3= [430443201130124111]

21 [57, 18, 24]5 * 1 2394 19 g1= [12023114004324224]

g2= [31032100304014224]

g3= [140212320140240333]

22 [70, 12, 39]5 * 1 2394 14 g1= [22011333323034]

g2= [2122232302344]

g3= [23043423422123]

g4= [14114212211]

g5= [3130431234204]

23 [57, 19, 23]5 * 1 2394 19 g1= [21201010102211234]

g2= [24014322314212313]

g3= [120021024011344434]

24 [54, 17, 23]5 * 1 2394 18 g1= [111142143224042044]

g2= [13203240213132332]

g3= [43013432321002133]

25 [54, 15, 25]5 * 1 2394 18 g1= [21201010102211234]

g2= [24014322314212313]

g3= [120021024011344434]

26 [48, 21, 16]5 * ◦ 1 840 24 g1= [43220423003100340303233]

g2= [1420414002032004203044]

27 [63, 21, 25]5 *◦ 1 1638 21 g1= [301304303123033402013]

g2= [143331010304032042133]

g3= [22102000202342013201]

28 [48, 20, 17]5 *◦ 1 840 24 g1= [4112013131321102321333]

g2= [20221032200410113034424]

29 [48, 19, 18]5 *◦ 1 840 24 g1= [4132313101410322242343]

g2= [2234233102121102440302]

30 [98, 14, 56]5 * 1 840 14 g1= [30434340014012]

g2= [404230140102]

g3= [12113334213201]

g4= [3042242213423]

g5= [4144330200204]

g6= [1400023210111]

g7= [1140211211241]

31 [54, 18, 22]5 * 1 2520 18 g1= [104230420440014]

g2= [1002400240424024]

g3= [440320311201032]

32 [54, 16, 24]5 * 1 2394 18 g1= [213013442013241243]

g2= [343444014210104]

g3= [1141401024010033]

33 [63, 20, 26]5 *◦ 1 840 21 g1= [433230444340230011144]

g2= [330024240231414133442]

g3= [30222313400013211232]

34 [63, 19, 27]5 *◦ 1 1638 21 g1= [234410410332004300314]

g2= [14213013022200423341]

g3= [20003430124131132214]

35 [63, 18, 28]5 *◦ 1 1638 21 g1= [212000340143014102304]

g2= [10040010022420444214]

g3= [11432313222320030332]

36 [63, 15, 31]5 * 1 2310 21 g1= [333410132012211231111]

g2= [1341022300043442024]

g3= [300211014411004001]

37 [84, 15, 45]5 * 1 2310 21 g1= [342412033421313430222]

g2= [100211424324222410432]

g3= [223300414213401242213]

g4= [11214331334014103314]

38 [72, 22, 30]5 * 1 2520 24 g1= [30204234204423333414224]

g2= [20030300341134112302]

g3= [1203004014301110344232]

39 [48, 16, 21]5 * 1 6552 24 g1= [30131044301202334202204]

g2= [34041432001111423440011]

40 [52, 14, 25]5 ** 2 9828 26 g1= [422412211222002300041024]

g2= [4112244244422042111422143]

REFERENCES

[1] M. Grassl, Code Tables: Bounds on the parameters of of codes, [online
server], http://www.codetables.de/

[2] E. Chen, Online Database of Quasi-Twisted Codes [online server],
http://www.tec.hkr.se/ chen/research/codes/

[3] N. Aydin, N. Connolly, and J. Murphree, “New binary linear codes from
QC codes and an augmentation algorithm, AAEC, vol. 28, no. 4, pp.
339-350, 2017.

[4] N. Aydin, N. Connolly, and M. Grassl, “Some results on the structure of
constacyclic codes and new linear codes over GF (7) from quasi-twisted
codes“, Advances in Mathematics of Communication, vol. 11, no. 1, pp.
245-258, 2017.

[5] N. Aydin and D. Foret, “New Linear Codes over GF (3), GF (11), and
GF (13)”, Journal of Algebra Combinatorics Discrete Structures and

Applications, vol. 6, no. 1, pp. 13-20, 2019
[6] N. Aydin, G. Bakbouk, and J. Lambrinos, “New Linear Codes over non-

Prime Fields“, Cryptography and Communications, 2018.
[7] N. Aydin, J. Lambrinos, and Oliver VandenBerg, “On Equivalence of

Cyclic Codes, Generalization of a Quasi-Twisted Search Algorithm, and
New Linear Codes, Designs, Codes and Cryptography, 2019.

[8] N. Aydin,T Guidotti, P.Liu, A Shaikh, O VandenBerg, “Some Gen-
eralizations of the ASR Search Algorithm for Quasi-Twisted Codes”,
Involve, Vol 13, no 1, pp. 137-148, 2020.

[9] Magma computer algebra system, [online],
http://magma.maths.usyd.edu.au/

[10] A. Vardy, “The intractability of computing the minimum distance of a
code“, IEEE Trans. Inform. Theory, vol. 43, no. 6, pp. 1757-1766, 1997.

[11] N. Aydin, I. Siap , and D. K. Ray-Chaudhuri, “The structure of
1-generator quasi-twisted codes and new linear codes”, Des. Codes
Cryptogr., vol. 24, no. 3, pp. 313326, 2001.

[12] V. Bhargava, G. Seguin and J. Stein.: “Some (mk, k) cyclic codes in
quasi-cyclic form“, IEEE Trans. Inform. Theory, vol. 24, no. 5, pp. 630-
632, 1978.

[13] E. Z. Chen, “Quasi-cyclic codes derived from cyclic codes”, Proceedings

of the International Symposium on Information Theory and its Applica-

tions, pp. 162-165, 2004.
[14] E. Z. Chen, “Computer construction of quasi-twisted two-weight codes“,

Sixth International Workshop on Optimal Codes and Related Topics, pp.
62-68, 2009.

[15] E. Z. Chen, “A new iterative computer search algorithm for good quasi-
twisted codes”, Des. Codes Cryptogr., vol. 76, pp. 307323, 2015.

	I Introduction
	II Preliminaries
	III Our Contribution
	IV New Codes
	References

