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ABSTRACT. The group testing problem is concerned with identifying a small set of infected individuals in a
large population. At our disposal is a testing procedure that allows us to test several individuals together. In
an idealized setting, a test is positive if and only if at least one infected individual is included and negative
otherwise. Significant progress was made in recent years towards understanding the information-theoretic
and algorithmic properties in this noiseless setting. In this paper, we consider a noisy variant of group test-
ing where test results are flipped with certain probability, including the realistic scenario where sensitivity
and specificity can take arbitrary values. Using a test design where each individual is assigned to a fixed
number of tests, we derive explicit algorithmic bounds for two commonly considered inference algorithms
and thereby naturally extend the results of Scarlett & Cevher (2016) and Scarlett & Johnson (2020). We pro-
vide improved performance guarantees for the efficient algorithms in these noisy group testing models —
indeed, for a large set of parameter choices the bounds provided in the paper are the strongest currently
proved.



1. INTRODUCTION

1.1. Motivation and background. Suppose we have a large collection of n people, a small number k of
whom are infected by some disease, and where only m « n tests are available. In a landmark paper [16]
from 1943, Dorfman introduced the idea of group testing. The basic idea is as follows: rather than screen
one person using one test, we could mix samples from individuals in one pool, and use a single test for
this whole pool. The task is to recover the infection status of all individuals using the pooled test results.
Dorfman’s original work was motivated by a biological application, namely identifying individuals with
syphilis. Subsequently, group testing has found a number of related applications, including detection
of HIV [51], DNA sequencing [29, [37] and protein interaction experiments [35} [49]. More recently, it
has been recognised as an essential tool to moderate pandemic spread [12], where identifiying infected
individuals fast and at a low cost is indispensable [32]. In particular, group testing has been identified as a
testing scheme for the detection of COVID-19 [2,[17,21]. From a mathematical perspective, group testing
is a prime example of an inference problem where one wants to learn a ground truth from (possibly
noisy) measurements [1}, 8, [15]. Over the last decade, it has regained popularity and a significant body
of research was dedicated to understand its information-theoretic and algorithmic properties (9} 13} 14,
44}, 145} [46]. In this paper, we provide improved upper bounds on the number of tests that guarantee
successful inference for the noisy variant of group testing.

1.2. Related Work.

1.2.1. Noiseless Group Testing. In the simplest version of group testing, we suppose that a test is positive
if and only if the pool contains at least one infected individual. We refer to this as the noiseless case. In
this setting, each negative test guarantees that every member of the corresponding pool is not infected,
so they can be removed from further consideration. However, a positive test only tells us that at least
one item in the test is defective (but not which one), and so requires further investigation. Dorfman’s
original work [16] proposed a simple adaptive strategy where a small pool of individuals is tested, and
where each positive test is followed up by testing every individual in the corresponding pool individually.
Since then it has been an important problem to find the optimal way to recover the whole population’s
infection status in the noiseless case (see [7] for a detailed survey). A simple counting argument (see for
example [7, Section 1.4]) shows that to ensure recovery with zero error probability, since every possible
defective set must give different test outcomes, the following must hold in the noiseless setting:

n 0 1
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This can be extended to the case of recovery with small error probability, for example with the bound
(see [7, Eq. (1.7)]) that the success probability

2m
(1.2) P(suc) = =+,
(&)
meaning that the success probability must decay exponentially with the number of tests below m?nf.
Hwang [24] provided an algorithm based on repeated binary search, which is essentially optimal in terms
of the number of tests required in that it requires m?nf+ O(k) tests, but may require many stages of testing.
The question of whether non-adaptive algorithms (or even adaptive algorithms with a limited number of
stages) can attain the bound remained open until recently. [4}[14] showed that the answer depends
on the prevalence of the disease, for example on the value of 0 € (0,1) in a parameterisatiorﬂ where the
number of infected individuals k ~ n. Non-adaptive testing schemes can be represented through a

IThe result of [14] is two-fold. On the one hand, it provides a method to recover infected individuals w.h.p.as well as attaining
for a certain range of 6 < 8*. On the other hand they show that cannot be attained by any testing procedure for larger
0> 0*. One finds 6* =log(2)- (1 +log(2))’1.
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binary (m x n)-matrix that indicates which individual participates in which test. Significant research was
dedicated to see which design attains the optimal performance, although much of the recent research
analysed the performance of randomized designs. Initial research focused on the case where the matrix
entries are i.i.d. [3}[5}[46], which we will refer to as Bernoulli pooling. Later work considered a constant
column design where each individual is assigned to a (near-)constant number of tests [6, 13, [14} [26].
Indeed [14] showed that such a design is information-theoretically optimal in the noiseless setting and
it is to be expected that this remains true for the noisy case. To recover the ground truth from the test
results and the pooling scheme, this paper focuses on two non-adaptive algorithms, COMP and DD, which
are relatively simple to perform and interpret in the noiseless case. We describe them in more detail
below, but in brief COMP [10] simply builds a list of all the individuals who ever appear in a negative test
and are hence certainly healthy, and assumes that the other individuals are infected. DD [5] uses COMP as
a first stage and builds on it by looking for individuals who appear in a positive test that only otherwise
contains individuals known to be healthy. While the noiseless case provides an interesting mathematical
abstraction, it is clear that it may not be realistic in practice [40].

1.2.2. Noisy Group Testing. In medical applications [42] the two occurring types of noise in a testing
procedure are related to sensitivity (the probability that a test containing an infected individual is in-
deed positive) and specificity (the probability that a test with only healthy individuals is indeed nega-
tive), and in that language we cannot assume the gold standard of tests with unit specificity and sen-
sitivity. Thus, research attention in recent years has shifted towards the noisy version of group testing
(10,43} 44, 46,47, [48]. On the one hand, the adaptive noisy case was considered in [43}[44]. On the other
hand [10} 27, 28,33} 46,47, 48] looked at the non-adaptive noise case from different angles (for instance
linear programming, belief propagation, and Markov Chain Monte Carlo). In [46} [47,/48] the algorithmic
performance guarantees within noisy group testing under Bernoulli pooling are discussed. First of all
[46] obtained a converse as well as a theoretical achievability bound, but stated the practical recovery as
an direction for further research. In the following [47, 48] shed light on this question by using Bernoulli
poolingEI In this paper we focus on the COMP and DD algorithms, since it is possible to deduce explicit
performance guarantees for them. The original COMP and DD were designed for the noiseless case and
do not automatically carry over to general noisy models. However, recent work of Scarlett and Johnson
[48] showed that noisy versions of these algorithms can perform well under certain noise models using
ii.d. (Bernoulli pooling) test designs, particularly focusing on Z channel and reverse Z channel noise.
As common medical tests have different values for sensitivity and specificity [31] the analysis of a gener-
alized noise model beyond the Z and reverse Z channel is warranted.

1.2.3. Model Justification. As described for example in pandemic plans developed by the EU, US and
WHO [19}138}139], and in COVID-specific work [36], adaptive strategies may not be suitable for pandemic
prevention. For example, if a test takes one day to prepare and for the results to be known, then each
stage will require an extra day to perform, meaning that adaptive group testing information can be re-
ceived too late to be useful. Hence the need to perform large-scale testing to identify infected individuals
fast relative to the doubling time [12} 32} [36] can make adaptive group testing unsuitable to prevent an
infectious disease from spreading. Furthermore it may be difficult to preserve virus samples in a usable
state for long enough to perform multi-round testing [22]. Due to its automation potential and the fact
that tests can be completed in parallel (for example by the use of 96-well PCR plates [18]), the main ap-
plications of group testing such as DNA screening [11} 29, 37], HIV testing [51] and protein interaction

2[47) introduced an approach based on separate decoding of items for symmetric noise models. While this approach works

well for small 0 (in particular 6 — 0), the performance drops dramatically for larger 6. For most 6 this approach is worse off
than the noisy DD discussed in [48]. Note there exist some noise levels with the very strong restriction assuming p = g where
[47] improve over our results in the 0 very close to 0 regime. Due to the generality of our model we will from now on focus on
[48] as benchmark for our results.
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analysis [35,/49] are non-adaptive, where all tests are specified upfront and performed in parallel. For ex-
ample, while group testing strategies appear to be useful to identify individuals infected with COVID-19
(see for example [17}[21]), testing for the presence of the SARS-CoV-19 virus is not perfect [52], and so we
need to understand the effect of both false positive and false negative errors in this context, with non-
identical error probabilities. For this reason, we consider a general p—¢g noise model in this paper. Under
this model, a truly negative test is flipped with probability p to display a positive test result, while a truly
positive test is flipped to negative with probability g (Figure[l). Its formulation is sufficiently general
to accommodate the recovery of the noiseless results (p = g = 0), Z channel (p = 0), reverse Z channel
(g = 0) and the Binary Symmetric Channel (p = q). However, our results include the case of non-zero
p and g without having to make the somewhat artificial assumption that false negative and false posi-
tive errors are equally likely. We note that it may be unrealistic to assume that the noise parameters are
known exactly, and more sophisticated models may be needed to understand the real world. Neverthe-
less our analysis of a generalised noise model serves as a starting point towards a full understanding of
the difficulties occurring while implementing group testing algorithms in laboratories.
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FIGURE 1. The p — g-noise model: the result of each standard noiseless group test is
transmitted independently through the given noisy communication channel.

1.3. Contribution. This paper provides a simultaneous extension of [13] and [26} 48], by analysing noisy
versions of COMP and DD under more general noise models for constant-column weight designs. In con-
trast to prior work [5} 26] assuming sampling with replacement, in this paper we use sampling without
replacement, meaning that our designs have exactly the same number of tests for each item, rather than
approximately the same as in those previous works. This makes little difference in practice, but may be
closer to the spirit of LDPC codes for example.

We provide explicit bounds on the performance of these algorithms in a generalized noise model.
We will prove that (noisy versions of) COMP as well as DD succeed with ©(klog(n/k)) tests. Our analysis
reveals the exact constants to ensure the recovery with these two inference algorithms. The main results
will be stated formally in Theorems and but we would like to give the reader a first insight of
what will follow. We analyze Algorithms [1] and |2| for the constant degree model, where there are m =
cklog(n/k) tests performed and each individual chooses A = cdlog(n/ k) tests uniformly at random. Let
p,g=0,p+g<lande>0.

We start with the performance of COMP (Algorithm([I), as stated in Theorem[2.1}

Forany A := A(c,d) wefind a threshold a := a(d, p, q) such that COMP succeeds in inferring the infected
individuals if the number of tests

m=(1+emcomp = miélmax{bl(a, d), by (a,d)} klog(n/k)
a,

The next step on our agenda is the performance of DD (Algorithm[2), as stated in Theorem[2.1}
For any A := A(c, d) we find thresholds a := a(d, p, q) and B := B(d, q) such that DD succeeds in infer-
ring the infected individuals if the number of tests

m=(1+€&)mpp(n,0,p,q) = n}ﬁi%maX{cl(a, d),co(a, d), c3(B, d), ca(a, B, d)} klog(n/ k)
a,p,
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For all typical noise channels (Z, reverse Z and BSC) we compare the constant-column and Bernoulli
design and find for all such instances that the required number of tests in the former is lower than the
number needed in the latter thereby improving on results from [48], and providing the strongest perfor-
mance guarantees currently proved for efficient algorithms in noisy group testing.

As group testing offers an essential tool for pandemic prevention [32] and as the the accuracy of med-
ical testing is limited [31} [40] this paper provides the natural next step in the group testing literature.

1.4. Testdesign and notation. To formalize our notation, we write n for the number of individuals in the
population, ¢ for a binary vector representing the infection status of each individual, k (the Hamming
weight of o) for the number of infected individuals and m for the number of tests performed. We assume
that k is known for the purposes of matrix design, though in practice (see [7, Remark 2.3]) it is generally
enough to know k up to a constant factor to design a matrix with good properties. In this paper, in line
with other work such as [5], we consider a scaling k ~ n? for some fixed 6 € (0, 1), referred to in [7, Remark
1.1] as the sparse regimeﬂ In addition to the interesting phase transitions observed using this scaling,
this sparse regime is particularly relevant as it was found suitable to model the early state of a pandemic
150].

Let us next introduce the test design. With V = (x;);¢[,) denoting the set of n individualﬁ and F =
(ai)icym) the set of m tests, the test design can be envisioned as a bipartite factor graph with » variable
nodes "on the left" and m factor nodes "on the right". We draw a configuration o € {0, 11V, encoding the
infection status of each individual, uniformly at random from vectors of Hamming weight k. The set of
healthy individuals will be denoted by Vj and the set of infected individuals by V;. In symbols,

VWw={xeV:o(x)=0} and Vi=V\Vy={xeV.o(x) =1}

The lower bound from suggests that in the noisy group testing setting it is natural to compare the
performance of algorithms and matrix designs in terms of the prefactor of klog(n/k) in the number of
tests required. To be precise, we carry out m tests, and each item is assigned to exactly A tests chosen
uniformly at random without replacement. We parameterize m and A as

(1.3) m = cklog(n/k) and A =cdlog(n/k)

for some suitably chosen constants ¢,d = 0.

Let 0x denote the set of tests that individual x appears in and da the set of individuals assigned to test
a. The resulting (non-constant) collection of test degrees will be denoted by the vector I = (T'y) ge[m)-
Further, let

ae[m] ae[m]

Throughout, G = G(n, m,A) describes the random bipartite factor graph from this construction.

Now consider the outcome of the tests. Recall from above that a standard noiseless group test a gives
a positive result if and only if there is at least one defective item contained in the pool, or equivalently if
Y xe0a O (x) = 1. Even in the noisy case, this sum is a useful object to consider. Writing 1 for the indicator
function, we define

(1.5) o*(a) = 1{ Y o)z 1}

xeda

to be the outcome we would observe in the noiseless case using the test matrix corresponding to G. We
will say that test a is truly positiveif 0* (a) = 1 and truly negative otherwise.

However, we do not observe the values of o * (a) directly, but rather see what we will refer to as the
displayedtest outcomes & (a) — the outcomes of sending the true outcomes o * (a) independently through

3Note that the analysis directly extends to k = ©(n?) as a constant factor in front does not influence the analysis.
4[n] will be used as an abbreviated notation for the set {1,..., n}.
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the p — g channel of Figure[l] Since in this model a truly positive test remains positive with probability
1 — g and a truly negative test is displayed as positive with probability p we can write

(1.6) 6(a=1{Be(p)=1}(1-0"(@)+1{Be(1-q) =1}0"(a)

where Be(r) denotes a Bernoulli random variable with parameter 7 independent of all other randomness
in the model. For models with binary outputs, this is the most general channel satisfying the noisy de-
fective channel property of [7, Definition 3.3], though more general models are possible under the only
defects matter property [7, Definition 3.2], where the probability of a test being positive depends on the
number of infected individuals it contains.

Note that if p + g > 1, we can preprocess the outputs from by flipping them, i.e. setting p=1-p
and g = 1—q, where p+ g < 1. Hence without loss of generality we will assume throughout that p+¢g < 1.
In the case p + g = 1, the test outcomes are independent of the inputs, and we cannot hope to find the
infected individuals - see Corollary[2.3]

With mg being the number of truly negative tests, let mg be the number of truly negative tests that are

flipped to display a positive test result and mg be the number of truly negative tests that are unflipped.

Similarly, define m; as the number of truly positive tests, of which m{ are flipped to a negative test result

and of which mi‘ are unflipped. For reference, for ¢ € {0, 1} we write

m;=|{a:0"(a) =t}

m{=|{a:a*(a):t,&(a);£t}| and m}={a:0% (@) =16(a) =1t}

Here we use bold letters to indicate random variables. Throughout the paper, we use the standard Lan-
dau notation o(:), O(-),0(-), Q(-),w(-) and define 0log0 = 0. Furthermore we say that a property 2 holds
with high probability (w.h.p.), if P (2?) = 1 as n — oo. In order to quantify the performance of our algo-
rithms, for any 0 < r # s < 1, we write

1.7) Dit (Flls) := rlo (f)+(1—r)lo (ﬂ)
' KL =108 S 8 1-s)’

for the relative entropy of a Bernoulli random variable with parameter r to a Bernoulli random variable
with parameter s, commonly referred to as the Kullback-Leibler divergence. Here and throughout the
paper we use log to denote the natural logarithm. For r or s equal to 0 or 1 we define the value of Dy (-]|-)
(possibly infinite) on grounds of continuity, so for example Dp, (0]s) = —log(1 — s).

2. MAIN RESULTS

With the test design and notation in place, we are now in a position to state our main results. The-
orems are the centerpiece of this paper, featuring improved bounds for the noisy group testing
problem for the general p — g model. We follow up in Section [2.2with a discussion of the combinatorics
underlying both algorithms, and provide a converse bound in Section[2.3] Subsequently, in Section 2.4
we show how the bounds simplify when we consider the special cases of the Z, the reverse Z and Bi-
nary Symmetric Channel. Finally, in Section[2.5/we derive sufficient conditions under which DD requires
fewer tests than the COMP algorithm and compare the bounds of our constant-column design against the
Bernoulli design employed in prior literature.
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2.1. Bounds for Noisy Group Testing. We will consider two well-known algorithms from the noiseless
setting to identify infected individuals in this paper. First, we study a noisy variant of the COMP algorithm,
originally introduced in [10].

1 Declare every individual that appears in @A or more displayed negative tests as healthy.
2 Declare all remaining individuals as infected.

Algorithm 1: The noisy COMP algorithm

Note that for @A = 1 the formulation of Algorithm(I|coincides with the standard COMP algorithm where
an individual is classified as healthy if it appears in at least one displayed negative test which constitutes
a sufficient condition in the noiseless case. We now state the first main result of this paper.

Theorem 2.1 (Noisy COMP). Letp,q =0, p+q<1,d € (0,00),a € (q,e”%(1-p)+ (1- e‘d) q). Suppose that
0<0<1andlet

mcomp = mcomp(n, 0, p, q) = I}xli;lmax{bl(a, d), ba(a,d)} klog(n/k)

1

h bi(a,d) =
where 1(a,d) 1—9dDKL(0£||q)

1
1-0 dDgy (ale=?(1-p)+(1-e4)q)

and by(a,d) =

Ifm= (1+&)mcopmp for some e > 0, noisy COMP will recover & w.h.p. given test design G and test results G.

The noisy variant of the DD algorithm of [5] was introduced in [48] and reads as follows:

1 Declare every individual that appears in aA or more displayed negative tests as healthy and
remove such individual from every assigned test.

2 Declare every yet unclassified individual who is now the only unclassified individual in SA or
more displayed positive tests as infected.

3 Declare all remaining individuals as healthy.

Algorithm 2: The noisy DD algorithm [48]

Note that the formulation of Algorithm [2[reduces to the noiseless version of DD introduced in [5] by
taking aA = BA = 1. This is because in the noiseless setting a single negative test or a single positive
test with just individuals already classified as uninfected is sufficient in the noiseless case. Furthermore
note that for § = 0 noisy DD and noisy COMP are the same. From now on we assume f > 0. The proof of
Theorem 2.1|can be found in Appendix[B| We now state the second main result of the paper.



Theorem 2.2 (Noisy DD). Letp,q =0, p+q<1,d € (0,00),a € (q,e"*(1-p)+(1-e ) q) and B € (0, (1-
q)) and definew =e % p+(1—-e %) (1 - q). Suppose that0 < 6 <1 and let

mpp = mpp(n,0,p,q) = (rxnﬁiré max{c;(a,d), c2(a,d), c3(B, d), cala, B,d)} klog(n/k)

0 1
where cl(a,d) =
! 1-60 dDx. (05”6])
1
d d)=——
and el = o @l - w)
1

and  c3(B,d) =

1-6 dDxy (BlI(1 - g)e9)

1 1
and  cy(a,p,d) = 1—Ic1x1<a§<l{ 1-6 d(DKL (zl W)+1{'6 > W}ZDKL(QH e';’”)) }

Ifm=(1+¢€e)mpp for some e > 0, then noisy DD will recover o w.h.p. given test design G and test results &.

The proof of Theorem[2.2|can be found in Appendix[Cl While the bounds appear cumbersome at first
glance, the optimization is of finite dimension and for every specific value of p and g can be efficiently
solved to arbitrary precision yielding explicit values for mcomp and mpp. For illustration purposes, we
will calculate those bounds for several values of p, g and 6.

2.2. The combinatorics of the noisy group testing algorithms. In the following, we outline the combi-
natorial structures that Algorithm|1|and 2| take advantage of.

We start with defining the three types of tests that are relevant for the classification of an individual x;
while using COMP and DD. In the first stage we find

» Type DN: Displayed negative tests
» Type DP: Displayed positive tests
Note that the only available information during the first stage of the algorithms is the test result and
the pooling structure — no information about the individuals’ infection status is available. We give an
illustration on the left hand side of Figure 2| After this step COMP terminates by declaring all remaining
individuals as infected.
The DD algorithm continues with a second step which considers just the displayed positive tests. From
the first step of the algorithm one receives the estimate of the set of non-infected individuals obtained in
the first round. Now distinguish the following two types, illustrated on the right hand side in Figure[2}

» Type Displayed-Positive-Single (DP-S): Displayed positive tests in which all other individuals are
already declared as uninfected.

» Type Displayed-Positive-Multiple (DP-M): Displayed positive tests with at least one other indi-
vidual that is not contained in the estimated set of uninfected individuals.

2.2.1. The noisy COMP algorithm. To get started, let us shed light on the combinatorics of noisy COMP
(Algorithml[I). For the noiseless case, the COMP algorithm classifies each individual that appears in at least
one negative test as healthy and all other individuals as infected, since the participation in a negative test
is a sufficient condition for the individual to be healthy.

For the noisy case, the situation is not as straightforward, since an infected individual might appear in
displayed negative tests that were flipped when sent through the noisy channel. Thus, a single negative
test is not definitive evidence that an individual is healthy. Yet, we can use the number of negative tests
to tell the infected individuals apart from the healthy individuals.

Clearly, noisy COMP (Algorithm [I) using a threshold aA succeeds if no healthy individual appears in
fewer than aA displayed negative tests and no infected individual appears in more than aA displayed
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negative tests. To this end, we define
2.1) Ny=|{a€dx:o(a) =0}

for the number of displayed negative tests that item x appears in. In terms of Figure [2} the algorithm
determines the infection status by counting the number of tests of Type DN.

FIGURE 2. The relevant neighborhood structures for the analysis of the algorithms, on
the left for the first stage and on the right for the second step. Rectangles represent tests
(displayed positive in red, displayed negative in blue). Blue circles represent individuals
that have been classified as healthy in the first step of DD (or by COMP). White circles repre-
sent individuals that are unclassified in the current stage. We refer to displayed negative
tests as Type DN, displayed positive tests as Type DP, displayed positive with a single
unclassified individual as Type DP-S and displayed positive with a multiple unclassified
individual as Type DP-M

2.2.2. The noisyDD algorithm. As in the prior section, let us first consider the noiseless DD algorithm. The
first step is identical to COMP classifying all individuals that are contained in at least one negative test
as healthy. In a second step, the algorithm checks each individual to see if it is contained in a positive
test as the only remaining unclassified individual after the first step of the algorithm and thus must be
infected.

Again, the situation is more intricate when we add noise, since neither a single negative test gives us
confidence that an individual is healthy nor does a positive test where the individual is the single re-
maining unclassified individual after the first step of the algorithm inform us that this individual must
be infected. Instead we count and compare the number of such tests. The first step of the noisy DD algo-
rithm is identical to noisy COMP, but we are not required to identify all healthy individuals in the first step
(we are able to keep some unclassified for the second round). Thus, after the first step, we are left with all
infected individuals V; (as the algorithm did not try to classify any individual as infected in the first step)
and a set of yet unclassified healthy individuals (as some of them might exhibit a first neighbourhood
that is not sufficient for a clear first round classification) which we will denote by V, pp.These are healthy
individuals who did not appear in sufficiently many displayed negative tests to be declared healthy with
confidence in the first steﬂﬂ In symbols, for some a € (0,1)

V(),pD={x€ Vo: Ny <alA}

To tell V; and Vj pp apart, we consider the number of displayed positive tests P, where the individual x
appears on its own after removing the individuals , which were declared healthy already, Vp \ Vj pp from
the first step, i.e.

2.2) P,=|{acdx:6(a)=1andda\{x} < Vo \ Vopp}|
Referring to Figure |2} the second step of the algorithm is based on counting tests of Type DP-S. Tests
of Type DP-M contain another remaining unclassified individual after the first step of the algorithm

from Vj, pp U V. The noisy DD algorithm takes advantage of the fact that it is less likely for an individ-
ual x € Vp pp to appear as the only yet unclassified individual in a displayed positive test than it is for an

SNote that the bounds are taken in a way such that no infected individual is classified as uninfected in the first round.
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individual in x € V. For x € Vj pp such a test would be truly negative and would have been flipped (which
occurs with probability p) to display a positive test result. Conversely, an individual x € V; renders any of
its tests truly positive and thus the only requirement is that the test otherwise contains only individuals
which were declared healthy already, and is not flipped (which occurs with probability 1 — g). For this
reason, we will see that the distribution of P, differs between x € V7 and x € V pp, and the difference
(1-¢g)— p >0 helps determine the size of this difference. The second step of DD exploits this observation
by counting tests of Type DP-S.

2.3. The Channel Perspective of noisy group testing. Motivated by (I.I), we can describe the bounds
in terms of rate, in a Shannon-theoretic sense. That is, we follow the common notion to define the rate
(bits learned per test) of an algorithm in this setting (for instance as in [9]) to be
n._ 108(;) _ Kklog(n/k)
" mlog2  mlog2

(Recall that we take logarithms to base e throughout this paper). For example the fact that Theorems|2.1
and [2.2| show that noisy COMP and DD respectively can succeed w.h.p. ; with m = (1 +€)cklog(n/k) tests
for some c is equivalent to the fact that R = 1/(clog2) is an achievable rate in a Shannon-theoretic sense.

We now give a counterpart to these two theorems by stating a universal converse for the p — g channel
below, improving on the universal counting bound from (L.I). The starting observation (see [7, Theorem
3.1]) is that no group testing algorithm can succeed w.h.p. with rate greater than Ccpay,, the Shannon
capacity of the corresponding noisy communication channel. Thus, we cannot hope to succeed w.h.p.
with m < (1 —¢€)cklog(n/k) tests where ¢ = 1/(Cchan log2). Hence as a direct consequence of the value of
the channel capacity of the p — g channel, we deduce the following statement.

Corollary 2.3. Letp,q=0, p+qg <1 ande >0, write h(-) for the binary entropy in nats (logarithms taken
tobasee) and = p(p,q) = (h(p) —h(q))/(1-p—q). If we define

1
D1 (qll1/(1+ e®))

then for m < (1 —e€)mcount no algorithm can recover o w.h.p. for any matrix design.

MCOUNT = ) klog(n/k),

Remark 2.4. This result follows from Lemmal|E] derived in Appendix[H below. As discussed there, this
derivation (combined with the fact that each test is negative with probability e %) suggests a choice of
density for the matrix:

1
1+e? q) '
While a choice of A = c- d7, -log(n/k) is not necessarily optimal, it may be regarded as a sensible heuristic
that provides good rates for a range of p and q values.

d=d} =log(l-p-q)-log

2.4. Applying the results to standard channels. With Theorem[2.1Jand Theorem[2.2|we derived achiev-
able rates for the generalized p-g-model (see Figure[l). Prior research considered the Z channel where
p =0and g > 0, the Reverse Z channel where p > 0 and g = 0 and the Binary Symmetric Channel with
p = q > 0. These channels are common models in coding theory [41], but are also often considered in
medical applications [30, 31] concerned with taking imperfect sensitivity (g > 0), specificity (p > 0) or
both (p > 0 and g > 0) into account. As a consequence we also compare our results with the most re-
cent results of Johnson and Scarlett [48]. In the following section we will demonstrate how performance
guarantees on these channels can directly be obtained from our main theorems.

2.4.1. Recovery of the noiseless model. Note that the bounds Corollary[2.5/and Corollary [2.6|are already

known [10,26]. We would like to give the reader an idea of how one can see that our cumbersome looking

bounds relate to the more accessible bounds given for the noiseless case. First, we show the noiseless

bounds can be simply recovered by letting p, g — 0. In the noiseless setting, it is sufficient, by definition
10



of the algorithm, to set both aA = 1 and A = 1. To see why, observe that in the absence of noise a
single negative test is sufficient evidence that an individual is healthy. Conversely, a single positive test
where the individual only appears with individuals , which were declared healthy already, implies that
particular individual must surely be infected. As shown in [13] the optimal parameter choice for the
density parameter d in the constant-column design in the noiseless setting is log(2). Applying these
values to Theorem [2.1]we recover the noiseless bound for COMP.These bounds were first stated in [10].

Corollary 2.5 (COMP in the noiseless setting). Let p,q — 0,0 <60 <1 and € > 0. Further, let
1
(1-6)log?2
Furthermore let mcowp (1,0, p, q) be defined as in Theorem Then we find

klog(n/k).

McoMp, noiseless =

Mmeowe (1,0, pq) o ’0 McoMP, noiseless

Proof. We start by taking the bounds b; (a, d) and bz(a, d). To see how this boils down to mcoup noiseless
we start with using the well-known fact that within the near constant column design d = log(2) is the
optimal choice [13]. Now by taking both p, g — 0 one realizes that b; (a,log(2)) vanishes as log(p) — —oco
as p — 0. Turning our focus to the second bound we see that it boils down to

1
(1-0)log(2) log(2) + alog(a) + (1 — a)log(l — a)
On the one hand we realize that alog(a) + (1 — a)log(1 — a) is negative for all a € (0, 1). This leads to

by (a,10g(2)) > b,(0,10g(2))

b (a,log(2))) =

On the other hand we realize that in the noiseless case a single negative test is sufficient for a classifi-
cation as uninfected. Therefore we may choose a > 0 sufficiently small. One indeed realizes that for
each a we can choose ¢ := ¢(a) > 0 appropriately, such that the bounds given in Theorem 2.1|recover the
noiseless case. g

We also recover the noiseless bounds for the DD algorithm as stated in [26].

Corollary 2.6 (DD in the noiseless setting). Let p,q — 0,0 <8 <1 and € > 0. Further, let
1
log®2
Furthermore let mpp (1,0, p, q) be defined as in Theorem Then we find

Mpp, noiseless = max{ 1, m } klog(n/k).

mpp (1,0, pq) pq_’o Mpp, noiseless

Proof. We start with taking ¢ (a,d), cx(a, d), c3(B, d) and c4(a, B, d) as defined in Theorem First of all
we take c4(a, B, d). By assumption we find § > 0 and therefore the indicator is 1 as soon as we let p — 0.
Furthermore for p — 0 we get —log(p) — oo and find ¢4 — 0. Second of all we take c; (a, d). With a similar
argument as before we see that c; (a,d) — 0 for g — 0 as in this case we find —log(g) — oco. Therefore we
are left with ¢» (B, d) and c3(a, B, d). Again, we use the well known fact that in the noiseless case d = 1log(2)
is the optimal choice. Therefore with p, g — 0 the two remaining bounds read as follows:

1
log(2) (log(2) + alog(a) + (1 — a)log(1 - a))
1
(1-0) log(2) (log(2) + Blog(B) + (1 — B)log(1 - B))
11

c(a,log(2)) =

c3(a, B,log(2)) =




Again we see that xlog(x) + (1 — x)log(1 — x) is negative for x € (0, 1). Therefore we find

c2(a,log(2)) > ¢2(0,10g(2))

cs(a,log(2)) > ¢3(0,1og(2))
Now as as before in this case again a single negative test as well as a single test with only already classified
uninfected individuals is sufficient. Therefore we can choose a, § > 0 sufficiently small. One indeed real-

izes that for each a, § > 0 one can choose € := ¢(a, ) appropriately such that the bounds of Theorem|2.2]
recover the noiseless case. ]

2.4.2. The Z channel. In the Z channel, we have p = 0 and g > 0, i.e. no truly negative test displays a
positive test result. Thus, in this case finding one positive test with only one unclassified individual is a
clear indication, therefore we again can choose f > 0 sufficiently small and remain agnostic about a and
d. The bounds for COMP and DD thus read as follows.

Corollary 2.7 (Noisy COMP for the Z channel). Let p—0,0< g <1,0<80 <1 and e > 0. Further, let
Mcowp, 7z = mi;lmax{bl(a, d), b2 (a,d)} klog(n/k)
a,

0 L and b(a,d) = ! !
1-0 dDg. (allq) 2 1-0dDy(alled+(1-ed)q)

with by(a,d) =

Ifm> (1+ €)mcowp,z, noisy COMP will recover o w.h.p. given G, 6.
Corollary 2.8 (Noisy DD for the Z channel). Let p—0,0< g <1,0<68 <1 and ¢ > 0. Further, let
Mpp,z = mi;lmax{cl (a, d), ca(a, d), c3(d)} klog(n/ k)
a,

0 1 1

ﬂ’l ,d = d )d =

wih el = aba (alg) " YT b (ale T+ (-9 g)
1

0
1-6 —dlog(1-e4(1-¢q))

and c3(d) =

Ifm> (1+ &)mpp,z, noisyDD will recover o w.h.p. given G, 4.

Proof. The bounds c¢; and ¢, follow directly from Theorem [2.2| by letting p — 0. An immediate conse-
quence of p — 0 is that due to the fact that —log(p) — oo and one finds that c; — 0, thus being trivial in
this case. For c3 we use the fact that we can choose 8 > 0 sufficiently small we find Dy, («|| e 41— Q) =
—log(l —e 41 - q)) —6(p) for 6(B) > 0. Note that by definition of the noise model, we may choose an
arbitrary Bmin very close to zero and as a consequence f = Bnin leading to 6(8) — dmin. The assertion
follows as for each § we may choose ¢ := £() > 0 such that (1 + €) > (1 + & (Bmin))- O

An illustration of the bounds from Corollary[2.7]and 2.8|for sample values of g is shown in Figure

2.4.3. Reverse Z channel. In the reverse Z channel, we have g = 0 and p > 0, i.e. no truly positive test
displays a negative test result. Thus, we may choose a > 0 sufficiently small and remain agnostic about
f and d. The bounds for the noisy COMP and DD thus read as follows.

Corollary 2.9 (Noisy COMP for the Reverse Z channel). Let0<p <1,q —0,0<0 <1 ande > 0. Further, let
1 . { 1

m = min

CHPIVZ=1-9 "a | -dlog(1-e-4(1-p))

If m> (1 + €)mcowp, rev z, N0isy COMP will recover o w.h.p. given G,6.
12
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Proof. The corollary follows from Theorem and the fact that for ¢ — 0 one finds that Dgp, (| 0) di-
verges, Thereby b; — 0 just gives a trivial bound in this case. Furthermore for sufficiently small a > 0 we
get Di (alle™@(1-p)) — —log(1-e (1 - p)) - §(a). Due to the noise assumption, we may choose an
arbitrary amin very close to zero and a = ani, which leads to () — 6 (@min). The assertion follows by
choosing € := g(a) > 0 such that (1 +€) > (1 + &€ (@min))- O

Note that Corollary[2.9|does not yield an immediate closed form expression for the optimal value of d.
Corollary 2.10 (Noisy DD in the Reverse Z channel). Let 0<p<1,q—0,0<0 <1 and e > 0. Further, let
MDD, rev 2 = r;}lidnmaX{CZ(d), c3(B,d), ca(B,d)} klog(n/k)

1 0 1

ith c;(d) = d 4=
with cz(d) —dlog(1-e=4(1-p)) and - es(fa) 1-0 dDx(Blle™?)

1
1-0 a(-1og(1-e~4(1 - p)) + Dic (Bl s )

If m > (1 + €)mpp, ey 7z, nOIsy DD will recover o w.h.p. given G, 6.

and cy(B, d) =

Proof. First of all we assume g — 0. Therefore we find ¢; — 0 as —log(g) — co. The bounds c¢», c3 fol-
low from Theorem and the same manipulations as above. For c4, we again see that by definition
of the noise model we may choose a > 0 as close to zero as we like. Therefore we get (1 — a) close
to 1, which leads to z — 1. The assertion follows as for each @ we can choose € := ¢(a) > 0 such that
(1+¢)> 1+ e(amin))- O

An illustration of the bounds of Corollary[2.9]and for sample values of p is shown in Figure|[6}

2.4.4. Binary Symmetric Channel. In the Binary Symmetric Channel (BSC), we set p = g > 0. Even
though information-theoretic arguments would suggest setting d = log2, we formulate the expression
below with general d. We also keep the threshold parameters a@ and . The bounds for the noisy DD and
COMP only simplify slightly.

Corollary 2.11 (Noisy COMP in the Binary Symmetric Channel). Let0<p =g <1/2,0<0 <1 ande > 0.
Further, let

Mcomp, BSC = miélmax{h (a,d), b (ar, d)} klog(n/k)
a,
7] 1 1 1
d b(a,d)= .
1-0 dDxy. (alp) an 2(@,d) 1-0 dDxy (alle 4+ p—2e~dp)

Ifm > (1 + &) mcomp, sc, noisy COMP will recover o w.h.p. given G, 6.

with bi(a,d) =

Corollary 2.12 (Noisy DD in the Binary Symmetric Channel). Let0<p=g<1/2,0<0 <1 ande >0 and
definev=1-e"%—p+2e %p. Further, let
Mpp, BSC = (IxnﬁilﬂlimaX{cl(a,d),cZ(a,d), c3(B,d), cala, B, d)} klog(n/k)
0 1 1
with ci1(a,d) = and o(a,d) =
1@ d) 1-0 dDxy (allp) 2(a, ) dDxy (alle4 +p—2e~dp)
0 1

1-6 dDxy (BI(1 - ple=9)

and c3(B,d) =

1 1
and  cy(a,B,d) = 1—%1522(51{ 1-6 d(DKL(Z”U) +1{ﬁ> @}ZDKL (§|| e_dp)) }

v

If m > (1 + €)mpp,psc, noisy DD will recover o w.h.p. given G, .
13



Noisy COMP vs. DD bounds for Z channel Noisy COMP vs. DD bounds for the Binary Symmetric Channel

—— DD g=0 —— DD p=q=0
COMP =0 COMP p=q=0
DD ¢=0.01 DD p=q=0.01
08 -== COMP q=0.01 0.8 -== COMP p=q=0.01
—— DD g=0.1 —— DD p=q=0.1
-== COMP q=0.1 -== COMP p=q=0.1

Rate (bits / test)
Rate (bits / test)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Value 6 such that k = O(n?) Value # such that k = ©(n’)

FIGURE 3. Comparison of the bound for noisy DD and noisy COMP in the Z-channel and
the Binary Symmetric Channel for different noise level. (Note for black and white prints:
The lines in the diagram are in the same order as given in the legend from top to bottom)

An illustration of the bounds of Corollary and is shown in Figure[7}

2.5. Comparison of noisy COMP and DD. An obvious next question is to find conditions under which the
noisy DD algorithm requires fewer tests than the noisy COMP. For the noiseless setting, it can be easily
shown that DD provably outperforms COMP for all 6 € (0,1). For the noisy case, matters are slightly more
complicated.

Recall that noisy COMP classifies all individuals appearing in less than aA displayed negative tests as
infected while noisy DD additionally requires such individuals to appear in more than A displayed pos-
itive tests as the only yet unclassified individual. Thus, it might well be that an infected individual is
classified correctly by noisy COMP, while it is missed by the noisy DD algorithm.

That being said, our simulations indicate that noisy DD generally requires fewer tests than noisy COMP,
but for the reason mentioned above we can only prove that for the reverse Z channel while remaining
agnostic about the Z channel and the Binary Symmetric Channel, as the next proposition evinces.

Proposition 2.13. Forall p,q =0 with p+ q <1 thereexistsad” € (0,00) such that mcopp = mpp as long
—d*
ase”® p=gq.

In terms of the common noise channels Proposition gives the following corollary.
Corollary 2.14. In the reverse Z channel, mcoymp = Mpp.

The proof can be found in Appendix D} Our simulations suggest that this superior performance of
noisy DD holds as well for the Z channel and Binary Symmetric Channel. Please refer to Figure|3|for an
illustration.

2.6. Relation to Bernoulli testing. In [48] sufficient bounds for noisy group testing and a Bernoulli test
design where each individual joins every test independently with some fixed probability were derived.
Thus, the variable degrees fluctuate and we end up with some individuals assigned only to few tests.
In contrast, we work under a model in this paper where each individual joins an equal number of tests
A chosen uniformly at random without replacement. For the noiseless case, it is by now clear that the
near-constant-column design better facilitates inference than the Bernoulli test design [13}26]. We find
that the same holds true for the noisy variant of the COMP algorithm. Let us denote by mgf)rMP the number
of tests required for the noisy COMP to succeed under a Bernoulli test design.

Proposition 2.15. Forall p+ q <1, we have

Ber
mCOMP = mcomp
14



We see the same effect for the noisy variant of the DD algorithm for all simulations, but for technical
reasons only prove it for the Z channel.

Proposition 2.16. For the Z channel wherep =0 and0< q <1, we have

Ber

mpp > Mpp

For an illustration on the magnitude of the difference, we refer to Figure[4and Figure|[§]

1.0

Rate (bits / test)

Noisy DD bounds for reverse Z channel: CC vs. Bernoulli

—— p=0.001 CC
p=0.001 Bernoulli

—— p=0.1CC

--- p=0.1 Bernoulli

0.2 0.4 0.6 0.8 1.0

Value 6 such that k = O(n?)

Rate (bits / test)

0.6

0.4

0.0

Noisy DD bounds for the Binary Symmetric Channel: CC vs. Bernoulli

—— p=q=0.001 CC
p=q=0.001 Bernoull

0.0 0.2 0.4 0.6 0.8 1.0

Value # such that k = ©(n’)

FIGURE 4. Comparison of DD bounds under a Bernoulli test design ([48]) and constant
column test design (present paper) for the reverse Z and Binary Symmetric Channel.
(Note for black and white prints: The solid lines as well as the dashed lines in the diagram
are in the same order as given in the legend from top to bottom)
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APPENDIX

The core of the technical sections is the proof of Theorems[2.1]and Theorem[2.2] Some groundwork
with standard concentration bounds and group testing properties can be found in Section [Al We con-
tinue with the proof of Theorems [2.1 and [2.2] in Sections [B] and [C, respectively. The structure of the
proofs follows a similar logic. First, we derive the distributions for the number of displayed positive and
negative tests for infected and healthy individuals. Second, we threshold these distributions using sharp
Chernoff concentration bounds to deduce the bounds stated in Theorem 2.1l and Theorem There-
after, we proceed to the proof of Proposition[2.13]in Section[D} while the proofs of Propositions and
[2.16]follow in Section[E} The proof of Corollary[2.3|can be found in Section [} Additional illustrations of
our results for the different channels can be found in Section[Gl

APPENDIX A. GROUNDWORK

For starters, let us recall the Chernoff bound for binomial and hypergeometric distributions.

Lemma A.1 (Chernoff bound for the binomial distribution [25]). Let p < g <r € (0,1) and X ~ Bin(n, q)
be a binomially distributed random variable. Then

P(X <[pnl)=exp(-(1+n V) nD(plq))
P(X=[rnl)=exp(-(1+ niQ“)) nDx(rlq))

Lemma A.2 (Chernoff bound for the hypergeometric distribution [23]). Letp < g<r € (0,1) and Y ~
H(N, Q, n) be a hypergeometrically distributed random variable. Further, let g = Q/N. Then

P(Y < [pnl) =exp (- (1+n V) nDx (plq))
P(Y = [rn]) =exp (- (1+n D) nDg (r1q))

The next lemma provides that the test degrees, as defined in above, are tightly concentrated.
Recall from that the number of tests m = cklog(n/k) and each item appears in A = cdlog(n/k)
tests.

LemmaA.3. With probability 1 - o(n~?) we have
dnlk—vdnl/klogn <Tnin <Tmax<dn/k+vdnl/klogn

Proof. The probability that an individual x is assigned to test a is given by

m

-1
) =A/m=dlk
A

A1) [P’(xeaa):I—P(xetaa):l—(mA_l)(

Since each individual is assigned to tests independently, the total number of individuals in a given test
follows the binomial distribution Bin (n,d/k). The assertion now follows from applying the Chernoff
bound for this binomial distribution at the expectation (LemmalA.I). H

Next, we show that the number of truly negative tests m (and thus the number of truly positive tests
m,) is tightly concentrated.

LemmaA.4. With probability 1 — o(n~%) we have mg = e~ m + O(,/mlog® n).
Proof. Recall from that
P(xeda)=dlk
Since infected individuals are assigned to tests mutually independently, we find for a test a that

P(Vinda=@)=PBin(k,d/k)=0)=(1-d/ "= (1+n"V)e 9,
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Consequently, E [my] = (1 + n~?Y) e~4 m. Finally, changing the set of tests for a specific infected individ-
ual shifts the total number of negative tests by at most A. Therefore, the McDiarmid inequality (Lemma
1.2 in [34]) yields

2
P -k >1N<2 -—.
(Imo —E[mo]| = 1) eXp( 4kA2)
The lemma follows from setting ¢ = O (y/mlog® n). O
With the concentration of my and m; at hand, we readily obtain estimates for mg ,ym, m{ and my'.

We remind ourselves that these are the number of flipped, unflipped negative tests and the number of
flipped, unflipped positive tests as defined in Sec.

Corollary A.5. With probability 1 — o(n~2) we have

) mof =e 9pm+ O(\/ﬁlog3 n)
(i) m¥=e"91-p)m+0(y/mlog’n)
(iii) m{ =(1-eYgm+0(y/mlog® n)
(iv) m{=(1- e HA-qm+ O(\/ﬁlog3 n)

Proof. Since each testis flipped with probability p and g independently, the claims follow from LemmalA.4]
and the Chernoff bound for the binomial distribution (LemmalA.T). ]

In the following, let & be the event that the bounds from LemmalA.4Jand[A.5/hold. Note that & holds
with high probability.

APPENDIX B. PROOF OF COMP BOUND, THEOREM[2.T]

Recall from that we write N for the number of displayed negative tests that item x appears in
(as illustrated by the right branch of Fig.[2). The proof of Theorem is based on two pillars. First,
Lemmas and provide the distribution of N, for healthy and infected individuals, respectively.
We will see that these distributions differ according to the infection status of the individual. Second,
we will derive a suitable threshold aA via Lemma [B.3| and [B.4| to tell healthy and infected individuals
apart w.h.p. We start by analysing individuals in the infected set V7. Throughout the section, we assume
ae(ge?d-p+(1-e9q.

Lemma B.1. Given x € V1, its number of displayed negative tests N is distributed as Bin(A, g).

Proof. Any test containing an infected individual is truly positive because of the presence of the infected
individual. Since an infected individual is assigned to A different tests and each such test is flipped with
probability g independently, the lemma follows immediately. U

Next, we consider the distribution for healthy individuals. Recall that & denotes the event that the
bounds from Lemma[A.4]and Corollary[A.5/hold.

Lemma B.2. Given x € Vy and conditioned on &, the total variation distance of the distribution of N, and
T}, that is distributed as H(m, m (e’d(l -p)+(1- e’d) q),A) tends to zero with n, that is

dry(Ny, Tp) = n~ W

Proof. Since x is healthy, the outcome of all the tests remains the same if it is removed from consideration
(if we perform group testing with n — 1 items and the corresponding reduced matrix).
17



Thus, given &, we find that with x removed the mg ,ymg, m{ ,m! still satisfy the bounds from Corol-

lary[A.5] As a result the number of displayed negative tests (which consist of unflipped truly negative
tests and flipped truly positive tests) is given by

B.1) mé+m! = (e_d(l—p)+(l—e_d)q)m+O(Mlog3 n)

Now, adding x back into consideration: x € V; chooses A tests without replacement independently of

this. Hence, given that the random quantity m + m{ = ¢, the N, (the number of displayed negative
tests that item x appears in) is distributed as H(m, ¢, A). Hence, a conditioning argument shows that the
linear combination of distribution functions

;P(mg+ m{ = 0| P(H (m,¢,A) < x)

f

tends to the distribution function of H (m, m (e~ (1 - p) +ﬁ— e~%) q),A) in total variation distance, due
1

to the concentration of mg + m; as obtained in Corollary (Il

Moving to the second pillar of the proof, we need to demonstrate that no infected individual is as-
signed to more than aA displayed negative tests as shown by the following lemma.

LemmaB.3. Ifc>(1+ n)%m for some smalln >0, Ny < aA forall x € Vi w.h.p.
Proof. We have to ensure that P(3x € V; : Ny = aA) = o(1). By Lemmaand the union bound, we thus
need to have
01)=k-P(Ny=aA:xeV;)=k-P(Bin(A, q) = aA) = k-exp (- (1+ A V) ADy (el g)),
by the Chernoff bound for the binomial distribution (Lemma. Since k ~ n? and A = cd(1-0)logn
the following must hold
0—cd(1-0)Dxy(allg) <0

The lemma follows from rearranging terms and the fact that if we choose the number of tests slightly
above the required number of tests (larger by a factor of 1+ 1 for n > 0), the assertion holds w.h.p. as
n — oo. ]

We proceed to show that no healthy individual is assigned to less than aA displayed negative tests.

1
~d(1-p)+(1-e

LemmaB.4. Ifc>(1+ n)ﬁ A (ale ) for some smalln >0, N, > aA forall x € Vo w.h.p.

Proof. We need to ensure that P(3x € V : Ny < aA) = o(1). Since & occurs w.h.p. by Lemma and
Corollary[A.5} we need to have by Lemma(B.2]and the union bound that

(B.2) (n—k)-P(Ny<aAlxe Vp,8)<n-P(T,<al)=o0().

We remind ourselves that T}, ~ H(m,m(e_d(l -p)+(1- e_d) q),A) and together with the Chernoff
bound for the hypergeometric distribution (Lemma this leads to the following conditiorﬂ

1-cd(1-0) Dy (a1~ ple™+ (1 - e")q) <0

in a similar way to the proof of Lemma|B.3] The lemma follows from rearranging terms and the fact that
if we choose the number of tests slightly above the required number of tests (larger by a factor of 1+ for
1 > 0), the assertion holds w.h.p. as n — oo. O

Proof of Theorem|2.1, The theorem is now an immediate consequence of Lemma|B.3|and[B.4Jwhich guar-
antee that w.h.p. classifying individuals according to the threshold aA for negative displayed tests recov-
ers g, and the fact that the choice of a and d is at our disposal. O

6Note that the additive rule of the logarithm allows us to move the error term from inside the KL-divergence to outside
18



APPENDIX C. PROOF OF DD BOUND, THEOREM|[2.2]

The proof of Theorem follows a similar two-step approach as the proof of Theorem by first
finding the distribution of P, (the number of displayed positive tests where individual x appears on its
own after removing the individuals, which were declared healthy already, V\ V4 pp, illustrated by DP-S
in Fig.[2). We then threshold the distributions for healthy and infected individuals. To get started, we
revise the second bound from Theorem [2.1|to allow kn~%®" healthy individuals to not be classified yet
after the first step of DD. Recall that, we assume « € (g, e 41— p)+ (1 - e’d) g) and B € (0, e 41— q)).

LemmaC.l1. If

1

c>1+n)
" dDxy(alle(1-p)+(1-e"%)q)

or some smalln > 0, we have |V pp| = kn™ W w.h.p.
f n ) p

Proof. The lemma follows immediately by replacing the r.h.s. of with kn~? for some small § = § (1),
rearranging terms and applying Markov’s inequality. U

For the next lemmas, we need an auxiliary notation denoting the number of tests m q that only
contain individuals from Vj \ Vj pp. In symbols,

Mond = |[{a€ F:0acVy\ Vopp}|.
Lemma C.2. If

1
dDxy (alle4(1-p)+(1-e"9)q)

c>1+n)

for some smalln > 0, we have mg, pq = (1 - n=*Y) e~ m with probability 1 — o(n"?).

Proof. As in the proof of Lemma B.2] above, we consider the graph in two rounds: in the first round we
consider the tests containing infected individuals. Since each healthy individual x € V; does not impact
the number of positive and negative tests, we know by Lemmathat with probability 1-o(n~?) we find
that the number of truly negative tests mg = e “m+ O (vVm log* n) after the first round. Furthermore the
presence of a healthy individual has no impact on the number of displayed negative tests, as unflipped
negative tests remain unflipped and flipped positive tests remain flipped. In the second round, we con-
sider the effect of adding healthy individuals into the tests. Knowing the number of negative tests w.h.p.
we can think of the participation of individuals x € Vj pp in these tests as a balls into bins experiment.
Starting with the number of truly negative tests m (given by the first round) we conduct a worst case
analysis to see how many of those tests may include one of the x € V pp. Consider some particular truly
negative test a. We are interested in the probability that none of the elements of Vj pp is contained. The
probability that a given individual x € V pp (knowing that it participates in N, < aA displayed negative
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tests, which is of lower order than m) is assigned to this test is given byﬂ
(C.1)

P (x € aalx € V(),pD) =1-P (.XI ¢ aalx € VO,PD)

oA _ m-1\( m "
(C.2) _1—;)P(Nx_z|xevo,p,3) A (A_i)
al 1 A-i
(C.3) <1-(1+n ") Y P(N,=ilxe VO,pD)(l—%)
i=0
a4 1\% A d
(C.4) <1-(1+n )Y P(N,=ilxe Vopp) (1 - —) =(1+n90) (— + O(k‘z)) =—+0(k™?
pr m m k

We can now calculate the probability that no individual x € Vj pp is assigned to a, bearing in mind that
the size of Vp pp is random, and that each such individual is assigned to tests mutually independently.
Using (C.4), and decomposing the sum into two parts, this is given by (for a given V)

P({Vopp nda} = @) = i P([Vorn| = /)P ({Vorpnoa} = ¢| Vopn|= )

(=)

~.

: z p(|Voro| =f)(1—%+otk-2))j+j:§+lu»(|vo,pn|:j)(l—%+o(k-2))j
- z P ([Voro| = )1~ 2 +0(k2) =B ([Voun| < V)1~ % +o(k?)

By Lemma we can choose V = kn~?1 such that P (| V(),pl)| < V) is arbitrarily close to 1, and knowing
v
that (1 -44+0 (k‘z)) ~exp(—dV/k) = exp(—dn~*V) we find

P({Voppnda}=9)=1- W

By combining this with the findings of Lemma |A.4| we find E[mg 4] = (1-n"?") e ¥m. The lemma
follows by a similar application of the McDiarmid inequality as used in the proof of LemmalA.4}
O

Note that, changing the set of tests for a specific individual x € V; U V pp shifts m nq by at most A.
Thus, such an individual choosing from this set is not affecting the order of my nq.
Let & be the event that mg g = (1—n~ W) e %m. By Lemma P(F)=1-0n"2if
1
dDxy (alle4(1-p)+(1-e"%)q)
for some small 77 > 0. With Lemma|C.2]at hand, we are in a position to describe the distribution of P, for
healthy and infected individuals (recall the definition of P, in (2.2)). Let us start with infected individuals.

c>(1+mn)

Lemma C.3. Given x € V| and conditioned on &, the total variation distance between P, and Qg, a
random variable with hypergeometric distribution H (m, me 41— q), A), tends to zero with n, that is

drv (Px,Qy)=n"0,

"We refer the reader to [20] for two results we use while obtaining (apply Claim 7.3 to the binomial coefficients) as well
as (apply Claim 7.4 as error corrected version of Bernoulli’s inequality).Please note that these bounds in particular hold for
A =0(log(n)) and k ~ n?.
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Proof. We are interested in the neighborhood structure of one given infected individual x € V7, and we
check how the remaining individuals influence the test types. In particular we are interested in the num-
ber of tests a € F such that da c Vy \ V pp are contained in the neighborhood of an infected individual
x. Knowing the total number of tests m and fixed degree A, for a given value of the random quantity
my nq = ¢, we find that this quantity of interest follows a H (m, ¢, A)-distribution. Given &, Lemma|C.2
gives that my 4 is highly concentrated,

—Q(l)) e—d

Mona=(1-n m

with high probability. Hence a conditioning argument, similar to Lemma B.2, shows that the linear com-
bination of distribution functions

Y Pmgpa=OP(H(m,(,A) < x)
¢

tends to the distribution function of H (m, me™%,A) in total variation distance, due to the concentration
result obtained in Lemma|C.2] Since each test featuring x will truly be positive (as we assume x to be
infected) and will be displayed positive with probability 1 — g independently, the lemma follows imme-
diately. O

To describe the distribution of P, for healthy individuals, let us introduce the random variable P (P),
which is P, conditioned on the individual appearing in P displayed positive tests, as follows:

P(P.(P)=1)=P(Py=t|Ny=A-P)
Then, we find for healthy individuals the following conditional distribution.

Lemma C.4. Given x € Vj ,conditioned on & and &, the total variation distance between P, (P) and
By ~H(m (e_dp +(1-eHa- Q),m (e_dp) , P) tends to zero with n. That is

dry(Py(P),Bp) = n~ %W,

Proof. We proceed with the same exposition and reasoning as in the proof of Lemma|C.3] Due to the
fact that x is healthy we can remove it without affecting the test result. Therefore we can analyse its
neighborhood structure induced by the pooling graph while excluding it. Since by assumption individual

x € Vy is assigned to exactly P displayed positive and the total number of displayed positive test is given
by mof + my, we see that P,(P) is H (mof +m{, moynd,P)-distributed. Due to the fact that the event &
pinpoints the amount of displayed positive and negative tests we can derive the distribution of neighbors

the individual may choose from. Recalling the results of Corollary[A.5} we see that w.h.p.

g e pm+ O(vmlog® n),

and m{ = (1- e Ha-qgm+ O(\/ﬁlog3 n).

m

Furthermore we get from Lemma|C.2|that w.h.p.
my g = (1-n~90) e m.

Now we apply the concentration results obtained in Corollary[A.5|and Lemma to obtain a linear
combination of distribution functions

S P(mgpg =€, m! +m! = v)-P(H(v,¢,A) < x)

(v

that tends to H(m (e~ p+1—-e %) (1-¢q)), me %, P). The lemma follows since truly negative tests get

flipped independently with probability p. (|
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Having derived the distributions for P, for x € V; and P,(P) for x € V; we can now determine a
threshold BA of displayed positive tests where the individual appears only with individuals from the
set Vp \ Vo, pp such that we can tell V; and Vp pp apart and thus recover o. Let us start with infected indi-
viduals.

Lemma C.5. Aslongas

1 6 1
>(1+n) { ’ }
T abg (alle 70— p) + (1- e 9) q) 1~ 6 dDyr, (BI(1— e~ ?)

for some smalln >0, we have P, > BA forall x € Vi w.h.p.

Proof. We need to ensure that P(3x € V; : P, < BA) = o(1). For the bound on ¢ from the lemma, we know
that & occurs w.h.p. by Lemma|C.2] In combination with Lemma[C.3]and the union bound we need to
ensure that

(C.5) k-P(Py<PAlxe V1, F)=k-PQy < BA) +kn W =0(1),

where as before Q is a random variable with hypergeometric distribution H (m, me~(1-q), A). Using
the Chernoff bound for the hypergeometric distribution (LemmalA.2), the following condition for
to hold arises

(C.6) 0 - cd(1-0)D. (BI(1- q)e™) <0

The lemma follows from rearranging terms in and the fact that if we choose the number of tests
slightly above the required number of tests (larger by a factor of 1 +n for n > 0), the assertion holds w.h.p.
as n— oo. O

We proceed with the set of individuals Vj pp.

Lemma C.6. Aslongas

1
dDxy (alle=d(1-p)+(1-e9) q)’

c>(1+17)max{

1 1
max ~a
frasz=l { 1-04 (DKL (zle=@p+(1-e Q- q)+ 2Dk (§|| m)) }

for some smalln >0, we have P, < BA for all x € Vg pp w.h.p.

Proof. We need to ensure that P(3x € Vy pp : Py > BA) = o(1). For the bound on ¢ from the lemma, we
know that & occurs w.h.p. by Lemma|[C.2] Moreover, & occurs w.h.p. by LemmaA.4)and Corollary[A.5
We write w=e %p+ (1- e 41— ¢)) for brevity. Combining this fact with Lemma andwe need to
ensure

A
(C.7) (n-k) Y P(Ny=A-PlxeVy,8P(Px(P)=pAlxe Vpy, F)
P=(1-a)A
A
(C.8) =(1-n""Mn Y P(T,=P)-P(Byp=pA)=0()

P=(1-a)A

We remind ourselves that
Ty ~ H(m, m (e‘d(l -p)+ (1 - e_d) q),A)
and Bp~ H(m(e‘dp+ 1-eHa- q)),m(e‘dp),P).
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Now by the Chernoff bound for the hypergeometric distribution (LemmalA.2) and setting z = P/A, we
establish the following two bounds for the probability terms:

(€9 P(H(m,m(w+n"P),A) = P)=exp (-1 +n A (Dxy. (zll w)))

P (H(m (w+n D) m (e_dp + n_Q(l)) ,P) > ﬁA)
-d —-d
(C.10) = exp (— (1+n79) zA1 {ﬁ > Zew P }ZDKL (gu ¢ wp))

(Note that the indicator in (C.10) appears due to the condition given by Lemma[A.2) We reformulate the
left-hand-side of to

A -d -d
noy exp(—(l+o(1))A(DKL(z||w>+1{ﬁ>Ze ”}szL(En" ’9)))
P=(1-w)A w z w
—d —d
=(1+n7%)n_max {eXp(—u+oum(DKL<zuw)+1{ﬁ>Ze P}ZDKL(é”e v)))}
—a<z<l w z w

where the second equality follows since the sum consists of ©(A) = ©(logn) many summands. Since
P (%) =1-n" for our choice of ¢ by Lemma rearranging terms readily yields that the expression
in is indeed of order o(1).

To see this, we remind ourselves that by definition A = c¢d log(%) = (1 -0)cdlog(n). Furthermore we
plug in the definition for w=e ¥ p+ (1 - e (1 - ¢)). In the end we have to ensure that
—-d d
ze e
— - o L £ )
e dp+(1-e41-q) z e dp+(l-e?(1-q)
We solve this inequality for c. As we are only interested in a worst case bound, the assertion follows from
the non-negativity of D, (|| *).

1< (1—0)Cd(DKL(Z||w)+1{,B>

O

Proof of Theorem[2.2 The theorem is now immediate from Lemma(B.3} [C.1}|C.5]and[C.6|and the fact that
the choice of a,  and d is at our disposal. O

APPENDIX D. COMPARISON OF THE NOISY DD AND COMP BOUNDS

The following section is intented to provide sufficient conditions under which the DD algorithm attains
reliable performance requiring fewer tests than the COMP. However, these conditions are not necessary
and DD might (and for all performed simulations does) require fewer tests than COMP for even wider set-
tings.

Proof of Proposition[2.13 In order to prove the proposition, we need to find conditions under which
miélmax{bl (a,d), b (a,d)} = nl/ji%maX{cl(a,d),CZ(a,d), c3(B,d), cala, B, d)}
a, a,p,
We write a* and d* for the values that minimise the maximum of the two terms at the LHS, at which
point we know that by (a*,d*) = by(a*,d™). Then it is sufficient to show that there exists §* such that
bi(a*,d") = by(a”*,d") =z max{ci(a",d"),c(a”,d™), c3(B*,d"), cala”, B*,d")}

By inspection for any @ and d b; (a, d) = c1(a, d) and by (a, d) = c2(a, d) since 6 € (0, 1).
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Next, we will show that b» (a, d) = c4(a, B, d) for any «, B in the respective bounds and d € (0, 00). Writ-
ingw=e%p+(1-e%(1-q), and recalling that by assumption that & <1 - w (or w < 1 — &) we readily
find that

. . ze p B.ep
(D.1) Dxp(all-w)=_ min (Dg(zlw)) < min |Dx (zllw)+2z14 6> Dxp|=l———
l-a<z<l l-a<z<l w Z w

where the first equality follows since Dxp (a1 — w) = Dxy (1 — allw) and Dgr (z||w) > Dy, (1 — allw) for
any z > 1 —a. The bound follows. Note that indeed holds for any choice of a,f and d in the
respective bounds stated in the theorem.

Finally, we need to demonstrate that c3(8*,d*) < b2(a*,d*). Since f is not an optimisation parame-
ter in bo(a*,d*) and the bound in holds for any value of 8, we can simply set it to the value that
minimizes c3(f*,d*) which is § = 1/A and for which we find

0 1
1-0 d*log(1-e 4 (1-q)

Thus, to obtain the desired inequality we need to ensure that for the optimal choice a* from COMP

0 D1 (a* le® (1-p)+ (1 - e‘d*) q) < —log(l —e - q))

c3(B*,d*) =

Using the bound
0 Dgr, (alle_d(l -p)+ (1 — e_d) q) < —Hlog(l - (e_d(l -p)+ (1 - e_d) q))
< —log(l - (e_d(l -p)+ (1 - e_d) q )
which is obtained by setting a = 1/A, we find that c¢3(8*,d™*) < bo(a™,d*) if
—log(l—e‘d*(l—q)) > —log(l—e’d*(l—p) + (l—e_d*)q) < e‘d*pz q
0

As mentioned before, due to bounding by (a*,d*) the result is not sharp. However, one immediate
consequence of Proposition is that DD is guaranteed to require fewer tests than COMP for the reverse
Z channel.

APPENDIX E. RELATION TO BERNOULLI TESTING

In the noiseless case [26] shows that the constant column weight design (where each individual joins
exactly A different tests) requires fewer tests to recover o than thei.i.d. (Bernoulli pooling) design (where
each individual is included in each test with a certain probability independently). In this section we show
that in the noisy case, the COMP algorithm requires fewer tests for the constant column weight design
than for the i.i.d. design, and derive sufficient conditions under which the same is true for the noisy DD
algorithm.

To get started, let us state the relevant bounds for the Bernoulli design, taken from [48, Theorem 5]
and rephrased in our notation.

Proposition E.1 (Noisy COMP under Bernoulli). Let p,g =0, p+q <1, d € (0,00), a € (g, e (1 - p) +
(1-e7%) ). Suppose that0 <0 < 1 and e > 0 and let

MEGup = Moupn, 0, p, @) = minmax({by (@, d), ba (@, d)} klog(n/ k)

1

where bi(a,d) =
1 ) 1-0 kDKL(ad/k”GId/k)
1

and by(a,d) =

1-0 kD (ad/kl(e=?(1-p)+ (1 —e ) q)d/k)
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Ber

Ifm> 1 +e)med,p

COMP will recover o under the Bernoulli test design w.h.p. given G, 6.

Proposition E.2 (Noisy DD under Bernoulli). Let p,q =0, p+qg <1, d € (0,00), a € (q, e (1 - p) +
(1-e7) q) and Be (e % p,e"4(1 - q)). Suppose that0 <0 < 1,{ € (0,0) and e > 0 and let

mpp = mpp(n,6,p,q) = Or}lﬁir(}maX{cl(a,d), c(a,d),c3(B,d), ca(B, d)} klog(n/k)

where  ci(a,d) = :
1 T 1-6 kDKL(ad/k“qd/k)
1-¢ 1
d yd) =
and D D (ke 10— p) + (- e Dadik)
2] 1
d ,d) =
an c3(pB, d) 1-6 k- D (Bl klle-9(1— q)dlk)
1
and  cy(B,d) = ¢

1-0 k- Dxq, (ﬁd/klle‘dpd/k)
Ifm>1+¢) mgeDr, DD will recover o under the Bernoulli test design w.h.p. given G, 6.

To compare the bounds of the Bernoulli and constant-column test design we employ the following
handy observation.

LemmakE.3. Let0< x,y <1 andd >0 be constants independent of k. As k — oo

xd yd
kDi1 (7”%) = d (D (x1ly) + v(x, 1)) + 0(1/ k)
with
-y
(E.1) vix,y)=y—-x+(1-x)log 1=« <0
Proof. Applying the definition of the Kullback-Leibler divergence and Taylor expanding the logarithm
we obtain
d yd d d
k- Dxy (% ||y7) :xdolog(g) + (k—xd) (log(l — %) —log(l — %))
x xd yd 1
= xd-log(;) + (k—xd) (—7 + - +0(P))
= d(x-log(%) - x+y) +o(1/k)
1-x
= d(DKL (xlly)+y-x-Q —x)log(ﬂ ) +o(1/k).
We can bound v(x, y) from above by writing the final term as (1 - x)log(1+ %) < (1-x)1=% = x-y,
using the standard linearisation of the logarithm. n

We are now in a position to prove Proposition and

Proof of Proposition|2.15 The lemma follows by comparing the bounds from Theorem 2.1]and Proposi-
tion|E.1|and applying LemmalE.3 O

Proof of Proposition|2.16 As evident from Corollary[2.8} the fourth bound c4(a, B, d) vanishes under the

Z channel. Now comparing the bounds from Theorem2.2]and Proposition[E.2] observing that (1-¢)/(1—

0) > 1 for { <6 and applying LemmalE.3|immediately implies the lemma. O
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APPENDIX F. NOTES ON COROLLARY[2.3]

LemmakFEl. Ifp+ q <1 the Shannon capacity of the p — q channel of Figure[l|measured in nats is

1 1
E1l C =D — |=D — 1,
(ED) Chan I<L(67|| 1+e¢’) KL (PII 1+e—¢’)

where ¢ = (h(p) — h(q))/ (1 — p— q). This is achieved by taking

1 1
(E2) P(X—O)—l_p_q(l+e¢—q).

Please note that the proof might be a standard result for readers from some research communities, but

for others it might be less standard. Therefore we state it here to prevent the interested (but unfamiliar)
reader from a long textbook search.

Proof. Write P(X =0)=yand P(Y =0) = T(y) := (1 — p)y + g(1 —y). Then since the mutual information
(E3) I(X;Y) = h(Y) - h(Y|X) = h(T(y)) - (yh(p) + A =P h(q)),
we can find the optimal T by solving

1-T(y)
T(y)

0
0=51(X;Y)=(1—P—6])10g( )—(h(p)—h(q)),
which implies that the optimal T* = 1/(1 + e?). We can solve for this for Y*=(T*"-q)/(1-p-q)tofind
the expression above. As %I (X;Y) <0itis indeed a maximum. Substituting this in we obtain that
the capacity is given by

* * _ * 1 _ *_
h(T*) = (y"h(p) + 1 -y h(q)) h(1+e¢) ((T* =)+ h(q)

log(1+e?) — (1 - q) - h(q)
Dx(qll1/ (1 +eh)

(E4)

as claimed in the first expression in above. We can see that the second expression in matches
the first by writing the corresponding expression as Dy, (1 - pll1/(1 + %)) =log(1+e?)—¢dp— h(p), which
is equal to by the definition of ¢. O

Note that this result suggests a choice of density for the matrix: since each test is negative with proba-
bility e~¢, equating this with (F2) suggests that we take

1
—_ * —_— — — — ——
d=dy =log(l-p-q) log(1+e¢ q).
This is unlikely to be optimal in a group testing sense, since we make different inferences from positive
and negative tests, but gives a closed form expression that may perform well in practice. For the noiseless

and BSC case observe that ¢ = 0, and we obtain d; =log2.
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APPENDIX G. ILLUSTRATION OF BOUNDS FOR Z, REVERSE Z CHANNEL AND THE BSC

Noisy COMP bounds for the Z channel Noisy DD bounds for the Z channel
1.0 — q=0 10 — q=0
— q=0.01 — q=0.01
— g=0.1 — g=0.1
0.8 — =03 0.8 — ¢=03
3 3
8 3
& 2
é 0.6 é 0.6
< <
g g
T 0.4 T 0.4
o« o«
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Value ¢ such that k = ©(n”) Value ¢ such that k& = ©(n”)

FIGURE 5. Illustration of achievability bounds for noisy COMP and DD under the Z chan-
nel. (Note for black and white prints: The solid lines as well as the dashed lines in the
diagram are in the same order as given in the legend from top to bottom)

Noisy COMP bounds for the reverse Z channel Noisy DD bounds rate for the reverse Z channel
L0 p=0 L0 p=0
—— p=0.01 — p=0.01
— p=0.1 — p=01
0.8 — p=03 0.8 — p=03
0 v
3 3
£ £
j{.‘\ 0.6 j{.‘\ 0.6
= =
o o
& 04 5 04
@ I3
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Value 6 such that k = ©(n’) Value 6 such that k = ©(n’)

FIGURE 6. Illustration of achievability bounds for noisy COMP and DD under the reverse Z
channel. (Note for black and white prints: The solid lines as well as the dashed lines in
the diagram are in the same order as given in the legend from top to bottom)

Noisy COMP bounds for the Binary Symmetric Channel Noisy DD bounds for the Binary Symmetric Channel
10 p=4=0 10 p=4=0
— p=q=0.01 — p=q=0
— p=q=0.1 — p=q=0.1
08 — p=q=03 08 — p=q=0
k] k]
8 8
06 06
2 2
=3 =3
Q Q
T 0.4 T 0.4
-3 @<
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Value 6 such that k = ©(n’) Value 6 such that k = ©(n’)

FIGURE 7. Illustration of achievability bounds for noisy COMP and DD under the Binary
Symmetric Channel. (Note for black and white prints: The solid lines as well as the
dashed lines in the diagram are in the same order as given in the legend from top to
bottom)
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Noisy DD bounds for the Z channel: CC vs. Bernoulli

1.0 —— g=0.001 CC
q=0.001 Bernoulli
—— g=0.1 CC

0.8 —== q=0.1 Bernoulli
il
3
? 0.6
2
S
[0}
® 0.4
o

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Value 0 such that k& = O(n")

FIGURE 8. Comparison of the noisy DD rates under Bernoulli pooling ([48]) with the DD
bounds with constant-column design as provided in the paper at hand within the Z-
Channel.(Note for black and white prints: The solid lines as well as the dashed lines in
the diagram are in the same order as given in the legend from top to bottom).
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