
Continuous-time finite-horizon ADP for automated
vehicle controller design with high efficiency

Ziyu Lin
School of Vehicle and Mobility

Tsinghua University
Beijing, China

linzy17@mails.tsinghua.edu.cn

Jingliang Duan
School of Vehicle and Mobility

Tsinghua University
Beijing, China

djl15@mails.tsinghua.edu.cn

Shengbo Eben Li
School of Vehicle and Mobility

Tsinghua University
Beijing, China

lishbo@tsinghua.edu.cn

Haitong Ma
School of Vehicle and Mobility

Tsinghua University
Beijing, China

maht19@mails.tsinghua.edu.cn

Yuming Yin
School of Vehicle and Mobility

Tsinghua University
Beijing, China

yinyuming89@gmail.com

Bo Cheng
School of Vehicle and Mobility

Tsinghua University
Beijing, China

chengbo@tsinghua.edu.cn

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The design of an automated vehicle controller can be
generally formulated into an optimal control problem. This paper
proposes a continuous-time finite-horizon approximate dynamic
programming (ADP) method, which can synthesis off-line near-
optimal control policy with analytical vehicle dynamics. Lying
on the general Policy Iteration framework, it employs value and
policy neural networks to approximate the mappings from the
system states to value function and control inputs, respectively.
The proposed method can converge to the near-optimal solution
of the finite-horizon Hamilton-Jacobi-Bellman (HJB) equation.
We further applied our algorithm to the simulation of automated
vehicle control for the path tracking maneuver. The results
suggest that the proposed ADP method can obtain the near-
optimal policy with 1% error and less calculation time. What is
more, the proposed ADP algorithm is also suitable for nonlinear
control systems, where ADP is almost 500 times faster than the
nonlinear MPC ipopt solver.

Index Terms—Automated Vehicle Control, Approximate Dy-
namic Programming, Continuous-time Systems, Finite-horizon
HJB

I. INTRODUCTION

Automated vehicles have promising potentials in safety, fuel
economy, and traffic efficiency [1], [2]. As one of the critical
components in the automated driving systems, motion control
directly dominates a vehicle’s driving performance. At present,
the optimal motion controller has become an indispensable
capability for high-level automated vehicles. Considering the
capability in handling system nonlinearities and constraints,
Model Predictive Control (MPC) is the top of the list for
controller design [3]. MPC predicts the future evolution of
the system and solves the control inputs online in a receding
horizon fashion.

This study is supported by International Science & Technology Cooperation
Program of China under 2019YFE0102200, Beijing NSF with JQ18010. Spe-
cial thanks should be given to TOYOTA for their support on this study. Ziyu
Lin and Jingliang Duan contribute equally to this work. All correspondences
should be sent to S. Li with email: lisb04@gmail.com.

Consequently, MPC has received growing attention in the
field of autonomous driving. Borrelli et al. (2005) proposed
the nonlinear MPC control framework to perform the double
lane change with active steering based on NPSOL software
package. The simulation shows that under the condition of
real-time computation, MPC can only obtain suboptimal so-
lutions [4]. Verschueren et al. (2014) built on the generalized
Gauss-Newton method to handle the real-time nonlinear MPC
and got calculation time by an experiment on a Real-time
Debian system [5]. Borrelli et al. (2014) presented the robust
invariant set to satisfy robust MPC constraints of states and
inputs, and did experiment on dSPACE [6]. Gerdes et al.
(2016) proposed MPC with the constraint-based approach of
envelope control, which ensures vehicle safety and brings
the shared control scheme [7]. Siampis (2017) solved the
nonlinear MPC problem with the Real-Time Iteration scheme
and the Primal-Dual Interior-Point method, and experimented
on dSPACE too [8]. Kayacan (2018) presented a real-time
fast iteration scheme implemented for the nonlinear MPC
framework and compared the performance and computational
complexity with a linear MPC framework [9]. Batkovic et
al. (2019) took the constraints of moving pedestrians into
consideration for motion planning and control with MPC,
which was also validated on Volvo XC90 [10]. This algorithm
sacrifices solving precision to ensure real-time performance.

Existing MPC optimizers usually adopt the online cal-
culation, which can not satisfy policy accuracy and the
millisecond-level time requirements of onboard standard con-
trollers, simultaneously. Taking the computing power of the
Audi A8 L3 level autopilot controller, zFAS, as the benchmark,
the calculation time of MPC algorithms mentioned above (
[6], [10], [8], [9], [5]) is 203.4 ms, 103.6 ms, 98.9 ms, 98.4
ms, and 41.6 ms respectively. In general, the computing time
assigned to the automated vehicle motion control task is less
than 10ms due to the limited computing capability. The fastest
single-step computing time of the five MPC algorithms listed

ar
X

iv
:2

00
7.

02
07

0v
1

 [
ee

ss
.S

Y
]

 4
 J

ul
 2

02
0

is 41.6 ms, which is obviously difficult to meet the controller’s
real-time requirements.

At present, the methods with off-line calculation have been
expected to improve MPC calculation time. Approximate
Dynamic Programming (ADP) method seeks approximated
control policy off-line, and then apply it for online execu-
tion as a low-dimensional parameterized function [11]. The
usage of ADP could significantly reduce the online comput-
ing burden. Its basic principle is to solve Hamilton-Jacobi-
Bellman (HJB) equation off-line by implementing the policy
iteration framework [12]–[14]. Meanwhile, existing methods
transform continuous-time systems into discrete-time families,
represented by MPC. Practically, the vehicle system works
in a continuous-time way, which preserves significant merits
in theoretical analysis and controller synthesis. In conclusion,
solving the continuous-time nite horizon optimal control prob-
lem analytically with high efficiency becomes an urgent task.
However, there are few existing ADP techniques on solving
the optimal solution for finite-horizon control, especially for
continuous-time systems. It is intractable to solve the nonlinear
partial differential HJB equation.

This paper proposes a continuous-time finite-horizon ADP
algorithm as the fast computation technique for automated
vehicles motion control. It can handle the general nonlinear
systems with known dynamic. It employs value and policy
neural networks to approximate the mappings from the sys-
tem states to value function and control inputs, respectively,
lying on the policy iteration framework. We demonstrate our
algorithm with simulations on the vehicle-tracking control
problem. The main contribution can be summarized as follows:

(1) We propose a finite-horizon variant of ADP algorithm,
which can be used to find a nearly optimal policy off-line for
a given continuous-time nonlinear system.

(2) The online operation efficiency of the off-line policy is
500 times faster than the nonlinear MPC solver.

The paper is organized as follows. Section II provides the
formulation of the general optimal control problem for the
vehicle controller, followed by the derivate of the reshaped
HJB equation. Section III introduces the general finite-time
continuous-time ADP framework with parameterized function.
Section IV demonstrates the effectiveness by the simulations
with a linear-quadratic system and a nonlinear system. Section
V concludes the paper.

II. PROBLEM FORMULATION

In this section, we introduce the linear vehicle model used in
the vehicle controller design, and then the formulation for the
vehicle-tracking controller is built. Subsequently, we propose
the finite-horizon version of the HJB equation.

A. Vehicle model

The two degrees-of-freedom linear model is adopted to
describe the vehicle dynamic shown in Fig. 1. The continuous-

time vehicle dynamic equations in an inertial frame can be
derived as:

ϑ̇ = r,

ṙ =
a2k1 + b2k2

Izzvx
r +

ak1 − bk2
Izzvx

vy −
ak1
Izz

δ,

v̇y =

(
ak1 − bk2
mvx

− vx
)
r +

k1 + k2
mvx

vy −
k1
m
δ.

(1)

Mathematical notations are listed in Table I.

TABLE I
VEHICLE PARAMETERS NOTATION

Inertial heading angle ϑ
Yaw rate at the center of gravity (CG) r
Constant longitudinal velocity vx
Distance from mass center to front & rear axle a, b
Front and rear wheel cornering stiffness k1, k2
Mass m
Moment of inertia around the z-axis Izz

Fig. 1. The simplified vehicle dynamical model.

This classical bicycle model formulates the vehicle dynam-
ics in reference to an initial coordinate system. However,
for the vehicle tracking control problem, it is favorable to
predict future vehicle motion considering the known reference
trajectory. Hence, we introduce two new system states shown
in Fig. 2, which are the position error d and heading angle
error ϕ with respect to the assumed trajectory in the inertial
coordinates:

d = (y − yr) cosϑr,

ϕ = ϑ− ϑr,
(2)

where position error d is the distance between the center of
gravity (CG) and the assumed reference trajectory. It should be
noted that the assumed reference trajectory is the tangent line
passing the current vehicle preview point (x, yr(x)). yr and
θr are Y position and heading angle of the current preview
point on reference trajectory, respectively. yr is a reference
trajectory function depending on vehicle position x. x, y are
the coordinates of the vehicle CG in an absolute inertial frame
(X,Y). Therefore, the vehicle absolute position y is given by:

y = yr + d/ cosϑr (3)

With ϑ̇r = 0, the following differential equations are
satisfied:

ḋ = vx sinϕ+ vy cosϕ,

ϕ̇ = ϑ̇− ϑ̇r = r.
(4)

Fig. 2. Illustration of position and heading angle error.

We consider the vehicle trajectory tracking control problem
with linear vehicle dynamic. The system states are [d, ϕ, r, vy]
and control input is δ, listed in Table II. We assume the
system is stable when x belongs to compact set Ω. With the
assumption that ϕ is small, the bicycle model’s lateral dynamic
in the inertial frame is described as follows:

x =


d
ϕ
r
vy

 , ẋ = Ax+Bu,B =


0
0

−ak1Izz

−k1m

 ,

A =


0 vx 0 1
0 0 1 0

0 0 a2k1+b
2k2

Izz
ak1−bk2
Izzvx

0 0 ak1− ˜bk2
mvx

− vx k1+k2
mvx

.


(5)

TABLE II
STATE AND CONTROL INPUT

State Distance between CG & trajectory d
The heading angle between the vehicle & trajectory ϕ

Yaw rate at the center of gravity (CG) r
Lateral velocity vy

Input Steer angle of front wheel δ

B. Vehicle tracking problem

Generally, the design of the automated vehicle controller
can be formulated into an optimal continuous-time control
problem. The basic idea of MPC is to use the vehicle dynamic
model to predict the vehicle tracking system’s future motion.
Based on the prediction, at each time step t, the utility function
is designed to minimize the tracking errors:

l(x(τ), u(τ)) = Qd2 +Rδ2, (6)

where Q and R denote penalty coefficient of distance error
and steer angle, respectively.

Hence, the optimal control problem (OCP) for ∀x ∈ Ω, ∀t ∈
[0, T] is given by:

V ∗(x(t), t) = min
u
V (x, t) = min

u

∫ T

t

l(x(τ), u(τ))dτ

s.t. ẋ = f(x, u),

(7)

where T is the final time, t ∈ d0, T e is initial time, τ is the
virtual time in the future horizon, u ∈ Rn is the control input
(action, in other words), x ∈ Ω ⊂ Rm is the state, V is the

state value function, l(·, ·) is the utility function (l(·, ·) > 0
except for the equilibrium).

C. Reshape of HJB equation

The basic principle of continuous-time finite-horizon OCP
is to seek a policy u = π(x, t) to minimize V (x, t) for ∀x.
For this purpose, we first introduce the Hamilton function:

H(x, u, V π(x, t)) = l(x, u) +
∂V π(x, t)

∂x>
f(x, u). (8)

The Hamiltonian satisfies the following the finite-horizon
self-consistency condition

H(x, u, V π(x, t)) = −∂V
π(x, t)

∂t
, ∀t ∈ [0, T]. (9)

We have deduced that ∂V π(x,t)
∂t = −l (x(T), u(T)), where

x(T) and u(T) are obtained from x(t) according to policy
π(x, t). The optimal solution satisfies the following finite-
horizon HJB equation:

min
u

{
l(x, u) +

∂V ∗(x, t)

∂x>
f(x, u)

}
= l (x∗(T), u∗(T)) .

(10)
The optimal control π∗(x, t) for ∀x ∈ Ω, ∀t ∈ [0, T] can

be derived as

π∗(x, t) = arg min
u
H

(
x, u,

∂V ∗(x, t)

∂x>

)
. (11)

It is known that the optimal control policy for the vehicle
control system is the solution of finite-horizon HJB equation
(10), which is the sufficient and necessary condition of opti-
mality. There are two variables V ∗(x, t) and π∗(x, t). How-
ever, HJB equation is a typical nonlinear partial differential
equation, which is generally difficult to be analytically solved.

III. FINITE-HORIZON ADP ALGORITHM

In this section, we propose the continuous-time (CT) finite-
horizon ADP algorithm. It is an iterative algorithm to find
the nearly optimal solution of the HJB equation (10), which
involves computation cycles between policy evaluation based
on (9) and policy improvement (11). The value function
and policy approximation can be parameterized by neural
networks.

A. Basic principle

The formulation of MPC is a useful tool to understand the
basic principle of ADP. MPC and ADP share very similar
receding horizon control procedure, yet differs on how to find
optimal action. ADP first computes optimal policy off-line and
then applies it online. Differently, MPC calculates optimal
action in the way of receding horizon optimization. Hence,
ADP can efficiently reduce online computation since it moves
most of the computation to the off-line stage.

We can always divide the implementation of OCP into
two steps: (a) objective optimization, and (b) action imple-
mentation. ADP minimizes the objective function off-line and
implements optimal action online. This two-step procedure can
also be understood from the viewpoint of receding horizon

control, i.e., define a problem in virtual time and use optimal
policy in real time, shown in Fig. 3.

For this algorithm, at each time step t, a performance index
is optimized with respect to a sequence of future steering
moves in order to follow the given trajectory. The first of such
optimal moves is the control action applied to the plant at time
t. At time t + 1, a new optimization is solved over a shifted
prediction horizon.

Fig. 3. Receding horizon control for ADP execution.

B. Iterative ADP Framework

The key point for the proposed algorithm is to solve HJB
equation (10) iteratively. Lying on general policy iteration
framework, it iteratively performs two steps shown in Fig. 4:

(1) Policy Evaluation (PEV)
PEV is to solve the value function V π(x, t), which is the

solution of the self-consistency condition in (9). Given a policy
πk(·) , the V π(x, t) can be solved by

H

(
x, u,

∂V π(x, t)

∂x>

)
= l(x(T), u(T)). (12)

In addition, V π(0) = 0 is an initial condition when
solving (8). Here, Hamiltonian H is a little different from
true Hamiltonian, in the fact that optimal value V ∗(x, t) is
replaced with estimated value V π(x, t).

(2) Policy Improvement (PIM)
PIM is to find a better policy πk+1(x, t) by minimizing

the ”weak” HJB equation. Here, ”weak” means that optimal
V ∗(x, t) in true Hamiltonian is replaced by estimated V π(x, t)
at each ADP iteration.

πk+1(x, t) = arg min
u

{
H

(
x, u,

∂V π(x, t)

∂x>

)}
(13)

where V π(·), x, t are known, and πk+1(·) is unknown to be
solved.

Fig. 4. CT finte-horizon ADP with parameterized function

C. Value Function and Policy Approximation

To get the nearly optimal solution quickly, both value
function and policy are parameterized by the approximation
functions:

V (x, t) ∼= V (x, t;w),

u ∼= π(x, t; θ).
(14)

The value function (i.e., critic) is a parameterized function
with parameter w, and the policy (i.e., actor) is a parameterized
function with parameter θ. Value function and policy are
updated by designing the loss functions using the gradient
descent method. The operation of each approximate function
is described below.

1) Parameterized Value Function Updating rule
The critic is to minimize the following average square error

based on self-consistency condition at k-step iteration PEV:

JCritic = E
x,t∼dx,t

{
1

2
(H − l(x(T), u(T)))2

}
. (15)

where dx,t denotes the state-time pair distribution over x ∈ Ω
and t ∈ d0, T e. The true-gradient of critic function equals to:

∂JCritic

∂w
= E
x,t∼dx,t

(H − l(x(T), u(T)))
∂
(
∂Vwk
∂x> f

)
∂w

 .

(16)
2) Parameterized Policy Updating rule
The parameterized actor is to minimize weak HJB equation:

JActor = E
x,t∼dx,t

{
H

(
x, π(x, t; θk),

∂V
(
x, t;wk

)
∂x>

)}

= E
x,t∼dx,t

{
l
(
x, π(x, t; θk)

)
+
∂Vwk

∂x>
f
(
x, π(x, t; θk)

)}
.

(17)
The gradient of JActor is

∂JActor

∂θ
= E
x,t∼dx,t


∂l(x, u)

∂u
+
∂
(
∂V

wk

∂x> f
)

∂u

 ∂π(x, t; θk)

∂θ

 .

(18)
The neural networks can be updated with the given update

gradients, the pseudo-code of ADP in GPI framewok is shown
in Algorithm 1. The loop of PEV and PIM iteratively solve
the parameterized value function V (x, t;w) and parameterized
policy π(x, t; θ). The iteration of PEV and PIM will switch
gradually to the HJB solution. In other words, Algorithm 1
will iteratively converge to the value function, V (x, t;w∗) =
V ∗ (x, t) , and optimal control policy π (x, t; θ∗) = π∗ (x, t).

IV. SIMULATION AND RESULTS

To support the continuous-time finite-horizon ADP algo-
rithm, we apply it to the simulations with linear vehicle
dynamic. It is used to solve the nearly optimal policy for the
vehicle tracking system. CarSim supplies the vehicle model
with steering input from the controller, shown in Fig. 5. The
simulation results show that it achieves tracking the desired
trajectory. Meanwhile, for a linear problem, the algorithm

Algorithm 1 CT Finite-horizon ADP
Initial with arbitrary w0, θ0, learning rates αw and αθ
repeat

Rollout from ∀xt ∈ Ω with policy πθk
Receive and store x(T)
Step 1 Policy evaluation:
Calculate ∂JCritic

∂w using (16)
Update value function using

wk = wk − αw
∂JCritic

∂w
(19)

Step 2 Policy improvement:
Calculate ∂JActor

∂θ using (18)
Update policy using

θk = θk − αθ
∂JActor

∂θ
(20)

until w, θ converge

works as better as the traditional MPC method. However, it
can be calculated off-line, which has a promising application
prospect.

Fig. 5. Framework of Carsim verification.

A. Problem Parameters and Algorithm Details

Consider the vehicle tracking problem with linear dynamic.
The desired vehicle trajectory is shown in Fig. 8. The detailed
vehicle parameters are listed in Table III. The vehicle is
controlled by a saturating actuator, where δ ∈ d−0.35, 0.35]
rad. The vehicle longitudinal velocity vx is chosen as 15 m/s.

TABLE III
VEHICLE PARAMETERS

k1 -88000 N/rad k2 -94000 N/rad
a 1.14 m b 1.4 m
m 1500 kg Izz 2420 kg ·m2

We further set the parameters in optimal control formula-
tion, which include: the final time T is 0.5 s; the weighting
matrices: Q = 0.4, and R = 280. To approximate V (x, t;w)
and π(x, t; θ), the 3-layer fully-connected NNs with 25 units
per layer are used. For each network, the state and t input
layer is followed by one hidden layer. The exponential linear
units (ELUs) are chosen as activation functions. The output
of value networks is V (x, t;w) with softplus as the activation
function. The output of policy networks is π(x, t; θ) with tanh
function multiplied by the vector [0.35], which will satisfy the

input steering angle constraint. The learning rate αw and αθ
are both set to 0.001. We use Adam method to update the
network, and the Adam update rule is used to minimize the
loss functions.

B. Training Results on accuracy and efficiency

For the LQ problem, we can get the analytical solution for
the discrete-time system, optimal policy, in other words.

U∗ =
[
u∗0|t, u

∗
1|t, · · · , u

∗
T−1|t

]2
= −H−1 + Fxt, (21)

where,

H = 2
(
R̄+ S̄>Q̄S̄

)
, F> = 2T̄>Q̄S̄,

S̄ =


B 0 · · · 0
AB B · · · 0
· · · · · · · · · · · ·

AN−1B AN−2B · · · B

 , T̄ =


A
A2

· · ·
AN

 ,

Q̄ =


Q 0 · · · Q
0 Q · · · 0
· · · · · · · · · · · ·
0 0 · · · P

 , R̄ =


R 0 · · · Q
0 R · · · 0
· · · · · · · · · · · ·
0 0 · · · R

 .
The relative policy error is obtained by comparing with

optimal solution π∗(x, t) = u∗0|t with the equation:

eπ = E
x,t∼dx,t

 π(x, t; θ)− π∗(x, t)
max

x,t∼dx,t
π∗(x, t)− min

x,t∼dx,t
π∗(x, t)

 . (22)

The test set contains 500 states randomly selected from
the compact set Ω at the beginning of each simulation. The
algorithm was run ten times, and the mean of the training
performance is shown in Fig. 6. We plot the policy error
compared with MPC optimal solution and Hamilton of the
Algorithm at each iteration. After 30000 iterations, the policy
error is less than 1%, shown in Fig. 6. The result indicates
that the algorithm can converge policy to optimality.

Fig. 6. Policy error and Hamilton of the Algorithm

For this optimal control problem with a linear model, we
can transfer it into the linear-quadratic programming (QP)
problem, and then solve it with some QP solvers, such as
OSQP [15], SCS [16] and [17]. The simulations are carried
on the personal computer with i5-8250U CPU. Fig. 7 compares

the calculation efciency of ADP and the QP solvers based on
the modeling language CVXPY [18] under different online
applications’ prediction steps. The calculation time of the QP
solvers is not only longer than ADP under the same horizon
but also increases faster as the number of predicted steps
increases. Specically, when N = 100, the calculation of the
proposed ADP is about 2000 times faster than the fastest QP
solver OSQP. This demonstrates the effectiveness of the ADP
method in linear systems control.

Fig. 7. Comparison of computation time of ADP and QP solvers

C. Test results on tracking problem

The vehicle trajectory controlled by the trained finite-
horizon ADP algorithm is shown in Fig. 8. The learned policy
can achieve following the desired trajectory quickly, which
takes about 5 s in Fig. 8. It also illustrates that the algorithm
can solve the continuous-time finite-horizon control problem
with the linear systems.

Fig. 8. Trajectory comparison with linear dynamic

Lateral position control accuracy Iyerr is defined as the root-
mean-square value of the error between the actual position
and desired position; meanwhile, Iymax represents maximum
lateral position error. They are formulated as:

Iyerr =

√√√√ 1

N

N∑
i=1

[y(i)− ydes(i)]2 ,

Iymax = max
i
{|y(i)− ydes(i)| }.

(23)

Lateral heading angle control accuracy and maximum head-
ing angle error can be denoted as:

Iϑ err =

√√√√ 1

N

N∑
i=1

[ϑ(i)− ϑdes(i)]2,

Iϑmax = max
i
{|ϑ(i)− ϑdes(i)| }.

(24)

Vehicle comfort can be evaluated as:

Iycomf =

√√√√ 1

N

N∑
i=1

r(i)2. (25)

Here we evaluate the control performance using these
indictors compared with MPC. The accuracy is similar, but
the solving speed is greatly improved.

TABLE IV
COMPARISON OF CONTROL PERFORMANCE EVALUATION

Iyerr
(m)

Iymax

(m)
Iϑ err
(rad)

Iϑmax

(rad)
Iycomf
(rad/s)

ADP 0.013 0.52 0.0006 0.1338 0.025
MPC 0.008 0.2 0.0002 0.043 0.008

In this section, the simulation demonstrates that the pro-
posed CT finite-horizon ADP algorithm can converge to the
optimal policy for the linear system. Due to it is calculated
off-line, it can improve efficiency.

D. Discussion on problems of nonlinear dynamics

We apply the CT finite-horizon ADP algorithm on a non-
input-afne nonlinear vehicle system derived as in [19] [20].
The algorithm can also achieve excellent tracking perfor-
mance, shown in Fig. 9. It demonstrates that the proposed ADP
algorithm can also be applied to nonlinear systems effectively.

Fig. 9. Tracking performance with nonlinear dynamic

The simulation aims at control problems with finite-horizon
T = 0.5 s. The frequency is 200 Hz. It is obvious that QP
solvers listed before are not suitable for this nonlinear problem.
We compare the proposed ADP algorithm with ipopt solver in
CasADi framework, which is a typical open-source software
for nonlinear optimal control [21]. Our simulation is carried on

personal computer with i7-8850H CPU. The results show that
the average calculation time of ADP algorithm is 0.2 ms in
Fig. 10, yet nonlinear MPC requires nearly 101 ms in Fig. 11.
It is easy to conclude that the proposed ADP algorithm is
almost 500 times faster than nonlinear MPC algorithm.

Fig. 10. Nonlinear ADP calculation time

Fig. 11. Nonlinear MPC calculation time

V. CONCLUSION

The paper presents the continuous-time finite-horizon ADP
algorithm for solving the general optimal control problem with
known linear and nonlinear dynamics. We further verify the
efficiency and optimality by the simulation on vehicle tracking
problems. The result shows that it can calculate the off-line
control policy for vehicle tracking problems with guaranteed
optimality. For the linear control problem, the policy error
is less than 1%. For the nonlinear problem, the one-step
calculation time of ADP is 500 times faster than the nonlinear
MPC ipopt solver.

ACKNOWLEDGMENT

We would like to acknowledge Zhengyu Liu, Hao Sun and
Yarong Wang for their valuable suggestions for this research.

REFERENCES

[1] L. D. Burns, “A vision of our transport future,” Nature, vol. 497, no.
7448, pp. 181–182, 2013.

[2] J. Duan, S. E. Li, Y. Guan, Q. Sun, and B. Cheng, “Hierarchical
reinforcement learning for self-driving decision-making without reliance
on labelled driving data,” IET Intelligent Transport Systems, vol. 14,
no. 5, pp. 297–305, 2020.

[3] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-
objective vehicular adaptive cruise control,” IEEE Transactions on
Control Systems Technology, vol. 19, no. 3, pp. 556–566, 2010.

[4] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “Mpc-
based approach to active steering for autonomous vehicle systems,”
International journal of vehicle autonomous systems, vol. 3, no. 2-4,
pp. 265–291, 2005.

[5] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch, and M. Diehl,
“Towards time-optimal race car driving using nonlinear mpc in real-
time,” in 53rd IEEE conference on decision and control. IEEE, 2014,
pp. 2505–2510.

[6] Y. Gao, A. Gray, A. Carvalho, H. E. Tseng, and F. Borrelli, “Robust
nonlinear predictive control for semiautonomous ground vehicles,” in
2014 American Control Conference. IEEE, 2014, pp. 4913–4918.

[7] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control
using safe envelopes for obstacle avoidance and vehicle stability,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp.
441–451, 2015.

[8] E. Siampis, E. Velenis, S. Gariuolo, and S. Longo, “A real-time nonlinear
model predictive control strategy for stabilization of an electric vehicle
at the limits of handling,” IEEE Transactions on Control Systems
Technology, vol. 26, no. 6, pp. 1982–1994, 2017.

[9] E. Kayacan, W. Saeys, H. Ramon, C. Belta, and J. M. Peschel,
“Experimental validation of linear and nonlinear mpc on an articulated
unmanned ground vehicle,” IEEE/ASME Transactions on Mechatronics,
vol. 23, no. 5, pp. 2023–2030, 2018.

[10] I. Batkovic, M. Zanon, M. Ali, and P. Falcone, “Real-time constrained
trajectory planning and vehicle control for proactive autonomous driving
with road users,” in 2019 18th European Control Conference (ECC).
IEEE, 2019, pp. 256–262.

[11] P. Werbos, “Approximate dynamic programming for realtime control
and neural modelling,” Handbook of intelligent control: neural, fuzzy
and adaptive approaches, pp. 493–525, 1992.

[12] P. J. Werbos, “Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 17, no. 1, pp. 7–20,
1987.

[13] J. Duan, S. E. Li, Z. Liu, M. Bujarbaruah, and B. Cheng, “Generalized
policy iteration for optimal control in continuous time,” arXiv preprint
arXiv:1909.05402, 2019.

[14] J. Duan, Z. Liu, S. E. Li, Q. Sun, Z. Jia, and B. Cheng, “Deep adaptive
dynamic programming for nonaffine nonlinear optimal control problem
with state constraints,” arXiv preprint arXiv:1911.11397, 2019.

[15] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, pp. 1–36, 2020.

[16] B. Odonoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal of
Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–1068,
2016.

[17] A. Domahidi, E. Chu, and S. Boyd, “Ecos: An socp solver for embedded
systems,” in 2013 European Control Conference (ECC). IEEE, 2013,
pp. 3071–3076.

[18] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[19] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in 2015
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015, pp. 1094–1099.

[20] R. Li, Y. Li, S. E. Li, E. Burdet, and B. Cheng, “Driver-automation
indirect shared control of highly automated vehicles with intention-aware
authority transition,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 26–32.

[21] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

	I Introduction
	II PROBLEM FORMULATION
	II-A Vehicle model
	II-B Vehicle tracking problem
	II-C Reshape of HJB equation

	III FINITE-HORIZON ADP ALGORITHM
	III-A Basic principle
	III-B Iterative ADP Framework
	III-C Value Function and Policy Approximation

	IV SIMULATION AND RESULTS
	IV-A Problem Parameters and Algorithm Details
	IV-B Training Results on accuracy and efficiency
	IV-C Test results on tracking problem
	IV-D Discussion on problems of nonlinear dynamics

	V CONCLUSION
	References

