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Abstract

We put forth new models for universal channel coding. Unlike standard codes which are
designed for a specific type of channel, our most general universal code makes communication
resilient on every channel, provided the noise level is below the tolerated bound, where the
noise level t of a channel is the logarithm of its ambiguity (the maximum number of strings
that can be distorted into a given one). The other more restricted universal codes that we
introduce still work for large classes of natural channels. In a universal code, encoding is
channel-independent, but the decoding function knows the type of channel. We allow the
encoding and the decoding functions to share randomness, which is unavailable to the channel.
There are two scenarios for the type of attack that a channel can perform. In the oblivious
scenario, codewords belong to an additive group and the channel distorts a codeword by adding
a vector from a fixed set. The selection is based on the message and the encoding function,
but not on the codeword. In the Hamming scenario, the channel knows the codeword and is
fully adversarial. For a universal code, there are two parameters of interest: the rate, which
is the ratio between the message length k and the codeword length n, and the number of
shared random bits. We show the existence in both scenarios of universal codes with rate
1 − t/n − o(1), which is optimal modulo the o(1) term. The number of shared random bits
is O(log n) in the oblivious scenario, and O(n) in the Hamming scenario, which, for typical
values of the noise level, we show to be optimal, modulo the constant hidden in the O(·)
notation. In both scenarios, the universal encoding is done in time polynomial in n, but the
channel-dependent decoding procedures are in general not efficient. For some weaker classes of
channels which produce the distortion based on short blocks of the codeword (rather than the
entire codeword), we construct universal codes with polynomial-time encoding and decoding.
Furthermore, for channels that work in the memoryless oblivious scenario, where they choose
the noise vector for each block randomly (rather than adversarially) and independently, there
exists a universal code with deterministic polynomial-time encoding/decoding.
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1 Introduction

In the problem of channel coding a sender needs to communicate data over a noisy channel to a
receiver. In the most general setting a message m is encoded into a codeword x. This codeword is
transmitted over the channel who distorts x into x̃. Then a decoder tries to reconstruct m from x̃.

m −−−−−−−−→
Encoder

x −−−−−−−−−−−−−−→
Channel

x̃ −−−−−−−−→
Decoder

m

The channel is viewed as an adversary and is characterized by the type of operations it uses
to produce the noise, and by a parameter t, which quantitatively describes the maximum noise
that we want to tolerate. Roughly speaking, most studies have focused on channels defined by a
fixed set T of possible operations that add noise and by setting t to be the maximum number of
operations from T that the (encoder, decoder) pair can handle. Perhaps the most investigated
setting is the theory of error-correcting codes, where T consists of the single operation of 1-bit
flip (0 7→ 1, 1 7→ 0). In this case, t is the maximum Hamming distance between x and x̃ that is
tolerated. Another case where there has recently been significant progress is when T consists of
the operations of 1-bit flip, 1-bit deletion, and 1-bit insertion. In this case, t is the maximum edit
distance between x and x̃ that is tolerated. Still another case is when T consists of the erasure
operation which transforms a bit into “?”. Other types of channel that distort in various ways
have also been investigated.

Our setting is different in two important ways. Firstly, we consider channels that can do
arbitrary distortion. We consider two different scenarios on how the channel does the distortion,
depending on whether it “knows” the codeword or only the message.

– In the Hamming scenario a channel is defined by a bipartite graph where left nodes represent
codewords that are inputs of the channel, and right nodes represent distorted codewords that are
outputs. A left and a right element are connected, if the channel may distort the codeword at
the left, to the one at the right. The level t of the noise in the channel is the logarithm of the
maximal degree of a right node, i.e., the logarithm of the maximal number of input codewords of
the channel that can produce the same distorted codeword. All left degrees are at least 1. No
other assumptions are made on the channel.

– In the oblivious scenario a channel takes as input codewords from an additive group. The
channel is defined by a set of error vectors. On input a codeword for a message, it will add a
vector from this set to the codeword. The choice of the error vector does not depend on the
codeword, but on the message. The level t of the noise is the logarithm of the size of the set.

Secondly, our goal for each scenario is to have a single encoding function that is channel-
independent. We call this a universal code. Differently said, a universal code is resilient to any
type of distortion, provided the noise level is within the tolerated bound. On the other hand, for
every channel there is a corresponding decoding function.1

In order to construct universal codes, we assume a special set-up for the communication
process: the universal encoder and the decoder functions are probabilistic and share random bits.
Such codes are called private codes. They have been introduced by Shannon [Sha58] (under the
name random codes), and more recently studied by Langberg [Lan04] (see also [Smi07, GS16]).

1For any given decoding function. one can construct a channel that defeats it, and thus, unlike the encoding
function, it is impossible to have a single decoding function for all channels as well. Anyway, decoding happens after
the channel attack, and typically in theoretical and practical applications, the decoder knows the type of attack,
or, at least, has a few candidates for it.
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The channel does not have access to the random shared bits, although, in the Hamming setting,
the codeword might reveal some information about the randomness indirectly.

There are two important parameters. The first is the rate of the code, which is defined by
logK/ logN , where K is the number of messages that we can send, and N is the number of
codewords that the channel can transmit. The second is the shared randomness of the code,
which is the number of random bits that the encoder and decoder share. Given a noise level
t = log T , we want to maximize the rate and minimize the shared randomness.

It is not difficult to show that for a universal code, the value of the product KT can not be
larger than N/(1− ǫ), where ǫ is the error probability of the reconstruction of the message. This
implies that the rate of such a code is at most 1 − t/n − o(1), where n = logN , see section 4.1.
We construct universal codes with rates that converge to the optimal value and have small shared
randomness. The following simplified statements are valid for constant probability error.

Theorem 1.1 (Main Result - informal statement).

(a) There exists a universal code in the Hamming scenario with rate 1 − t/n − o(1) and shared
randomness O(n).

(b) There exists a universal code in the oblivious scenario with rate 1 − t/n − o(1) and shared
randomness O(log n).

One would expect the rate of a universal code to be lower than the rate of a code that is
optimal for a specific channel. However, the 1− t/n− o(1) upper bound is valid for every channel
in a large class of channels in the Hamming scenario, defined by graphs in which the left degrees
are not much smaller than the maximum right degree (see Remark 8). This class includes all
channels in the oblivious scenario. Therefore, surprisingly, the universal codes in Theorem 1.1
have (asymptotically) optimal rate even among codes that are specifically tailored for each channel
satisfying the above condition on left degrees.

For both codes in Theorem 1.1, the universal encoding function is polynomial-time computable,
but decoding depends on the channel and requires exponential time. In some settings we obtain
polynomial time decoding. First, in the oblivious scenario, if t = O(log n) the corresponding
decoding functions run in polynomial time. Secondly, using concatenation schemes, we obtain
universal codes with efficient encoding and decoding for weaker classes of channels in which the
channel acts on short blocks of the codeword, rather than on the entire codeword. Furthermore,
in a relaxed version of the oblivious scenario, in which the distortion vector is chosen at random
and independenly on blocks of the codeword, no shared randomness is required: there exists a
universal code with encoding and decoding functions computable by deterministic polynomial-
time algorithms. These results together with the full details of the corresponding models are
presented in Section 2.5 and Section 3.3.

We prove lower bounds for the amount of shared randomness in both scenarios. When t is a
constant fraction of n, which is typical in most applications, the amount of shared randomness
is optimal, among universal codes with optimal rate, according to our precise model for shared
randomness.2 Thus, for t = Ω(n), the universal codes in Theorem 1.1 are optimal for both rate
and randomness.

2In this model we assume that all randomness is shared, thus no non-shared randomness is used. We are
currently investigating a model that allows the encoder to use both shared and nonshared randomness. Our results
indicate that the codes presented here, also use an optimal amount of shared randomness in this more general
model. However, the analysis is more difficult and a trade-off between rate and shared randomness exists. The
analysis will be given in an upcoming extended version of this paper. An explicit code without shared randomness
and non-optimal rate is given in appendix A.5.
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Theorem 1.1 (b) shows that the oblivious scenario is a way to restrict channels to allow
universal codes with optimal rate and logarithmic shared randomness. Another sensible way to
restrict channels is to bound the computational power of the channel. Under a common hardness
assumption which implies the existence of an appropriate type of pseudo-random generators, we
show that there is a universal code with optimal rate, that uses only O(log n) randomness and is
resilient to all channels that distort adversarially like in the Hamming scenario except that they
use space bounded by a fixed polynomial (for the exact statement, see Theorem 3.3).

Note that one can always remove the shared randomness by letting the decoder try all possible
random strings. In this way we obtain a list decodable code in which encoding is still probabilistic
but decoding is deterministic and with list size exponential in the randomness of the code (the
list has one element for each possible random string). Thus, Theorem 1.1 (b) implies a universal
list decodable code for the oblivious scenario with a deterministic decoder that produces a list of
polynomial size, which, with high probability, contains the message that was encoded. The same
implication can be derived from Theorem 3.3 for channels that compute in bounded space, as
described above.

In general, by simple random coding one can easily obtain private codes, but this method uses
many random bits. In the proof of Theorem 1.1 (a) the number of shared random bits is reduced
by standard pairwise independent hashing. The proof of Theorem 1.1 (b) is more involved and
uses some recently established properties of condensers related to bipartite matching.

We next present the full details of our model and state the main results formally.

1.1 Definitions and results

– A Hamming channel from a set X to X̃ is a bipartite graph with left set X and right set X̃ .
The set X represents the set of codewords that are the input of the channel, and X̃ the distorted
outputs returned by the channel. On input x ∈ X the channel may output x̃ ∈ X̃ if (x, x̃) is an
edge of the graph. The distortion T of the channel is the maximal right degree. We assume that
the left degree of each node is at least 1.

– Let X be an additive group. An oblivious channel is a subset E of X . On input a codeword
from X , the channel adds a codeword from E. The distortion T is the size of E.

Example. Consider a bit flip channel that has n-bit strings as input and output, and may flip
at most k bits. This channel can be represented as a Hamming channel. Indeed, we have X =
X̃ = {0, 1}n and a left node is connected to a right node if its Hamming distance is at most k.
The distortion T of the channel is equal to the size of a Hamming ball of radius k. The bit
flip channel can also be viewed as an oblivious channel. The sum of two bitstrings is defined by
bitwise addition modulo 2, and the set E contains all strings of Hamming weight at most k.

An encoding function is a mapping Enc: M × R → X , where the second argument is used
for the shared randomness. A decoding function is a mapping Dec : X̃ × R → M. We use the
notation Encρ(x) = Enc(x, ρ) and Decρ(x) = Dec(x, ρ). A channel function Ch of a Hamming
channel is a mapping from left nodes to right nodes.

Definition 1.2. A private code Enc: M×R → X is (t, ǫ)-resilient in the Hamming scenario if
for every X̃ and every Hamming channel from X to X̃ with distortion at most 2t, there exists a
decoding function Dec : X̃ × R → M such that for all channel functions Ch of this channel and
all m ∈ M

Pr
ρ∈R

[Decρ(Ch(Encρ(m))) = m] ≥ 1− ǫ.
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Figure 1: Hamming scenario

ρ

m

Ch

Enc + Dec m

e

x x̃ = x+ e

Figure 2: Oblivious scenario

Definition 1.3. Let X be an additive group. A private code Enc: M×R → X is (t, ǫ)-resilient
in the oblivious scenario if for every oblivious channel E ⊆ X of size at most 2t, there exists a
decoding function Dec : X ×R → M such that for all m ∈ M and e ∈ E

Pr
ρ∈R

[Decρ(Encρ(m) + e) = m] ≥ 1− ǫ. (1)

We can limit resilience to a class of channels C by replacing in the above definitions “every
Hamming (oblivious) channel” by “every Hamming (oblivious) channel in C”. In Section A.6 we
analyze an intermediate model, called the additive Hamming scenario, in which the universal code
belongs to an additive group and is resilient to all Hamming channels that add an error vector
from a fixed set E.

The next two theorems restate the two claims in Theorem 1.1 with full specification of parameters.

Theorem 1.4. For every n, t and ǫ > 0, there exists a polynomial time computable private code
Enc : {0, 1}k × {0, 1}d → {0, 1}n that is (t, ǫ)-resilient in the Hamming scenario such that

• k ≥ n− t− ⌈log 1
ǫ ⌉ ,

• The encoder Enc and the decoder functions Dec share d = 2n random bits.

For the results regarding the oblivious scenario, we view {0, 1}n as the vector space (F2)
n in

the natural way.

Theorem 1.5. There exist constants c, c′ such that for every n, tmax, ǫ > 0, there exists a
polynomial-time computable private code Enc : {0, 1}k×{0, 1}d → {0, 1}n that is (tmax, ǫ)-resilient
in the oblivious scenario such that

• k ≥ n− tmax − c
(
tmax

logn · log(1/ǫ) + log(n/ǫ)
)
,

• The encoder Enc and the decoder functions Dec share d ≤ c′(log n+ log(1/ǫ)) random bits.

Note that if log(1/ǫ) = o(log n), then the rate of the code is k/n ≥ 1− tmax/n− o(1).
The next code for the oblivious scenario has even better rate (for tmax larger than log4 n) but

uses more shared random bits.
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Theorem 1.6. There exist constants c, c′ such that for every n, tmax, ǫ > 0, there exists a
polynomial-time computable private code Enc : {0, 1}k×{0, 1}d → {0, 1}n that is (tmax, ǫ)-resilient
in the oblivious scenario such that

• k ≥ n− tmax − c(log3(n/ǫ)),

• The encoder Enc and the decoder functions Dec share d ≤ c′(log3(n/ǫ)) random bits.

Remark 1. Given E as a list, the decoding algorithms in Theorems 1.5 and 1.6 run in time
polynomial in the size of E and space polynomial in n. Similarly, in Theorem 1.4, the decoding
algorithm runs in time polynomial in the time needed to enumerate all left neighbors of a right
node of the channel. Given oracle access to the channel, it runs in space polynomial in n.

Remark 2. The codes of Theorems 1.5 and 1.6 are linear for fixed randomness, i.e., Enc(x+y, ρ) =
Enc(x, ρ) + Enc(y, ρ) over F2. The code in Theorem 1.4 is affine.

1.2 Related works and comparison with our results

The setting of our results has two distinctive features: there is no restriction on the type of channel
distortion, and the codes we construct are universal, meaning that the encoder does not know the
type of channel he has to cope with.

Channels with general distortion capabilities have been studied starting with the paper of
Shannon [Sha48] that has initiated Information Theory, and which contains one of the most basic
results of this theory, the Channel Coding theorem. In [Sha48], a channel is given by probability
mass functions p(y |x) (one such function for each symbol x in a given finite alphabet), with the
interpretation that when x is transmitted, y (also a symbol from a finite alphabet) is received
with probability p(y |x). In Shannon’s paper, the channel is memoryless: when the n-symbol
string x1x2 . . . xn is transmitted, the string y1y2 . . . yn is received with probability

∏n
i=1 p(yi |xi).

The Channel Coding theorem determines the maximum encoding rate for which decoding is
possible with error probability converging to 0 as n grows. Csiszár and Körner [CK11, Theorem
10.8] show with a non-explicit construction the existence of an encoder that does not know the
memoryless channel. Verdù and Han [VH94] prove a Channel Coding theorem for channels that
are not required to be memoryless (in their model p(y |x) is defined for x and y being blocks of
n symbols). We note that to achieve maximum rate, the encoding function in [VH94] knows the
values p(y |x), and therefore it is not universal.

General channels have also been studied in Zero-Error Information Theory, a subfield in which
the goal is that encoding/decoding have to succeed for all transmitted messages. A channel is
given by the set of pairs S = {(x, y) | p(y |x) > 0}. S can be viewed as the set of edges of
a bipartite graph, with the same interpretation as in our definition for the Hamming scenario:
when a left node x is transmitted, the receiver gets one of x’s neighbors, chosen by the channel.
One can retain just the graph (ignoring the conditions p(y |x) > 0, so that the channel behaves
adversarially), and obtain a pure combinatorial framework. Two left nodes x1, x2 are separated
if they have no common neighbor, and encoding amounts essentially to finding a set of strings
that are pairwise separated, so that they form the codewords of a code. This model is very
general, but most results assume that the bipartite graph has certain properties, see the survey
paper [KO98]. To the best of our knowledge, all the results assume that the encoding function
knows the bipartite graph, and thus it is not universal. The settings in Zero-Error Information
Theory and our study have some similar features: besides modeling a channel by a bipartite
graph, both of them do not assume any stochastic process and, furthermore, both of them require
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encoding/decoding to succeed for all messages (in our setting the success is with high probability
over the shared random bits).

Guruswami and Smith [GS16] study channels in the oblivious scenario (they call them oblivious
channels or additive channels) and in the Hamming scenario, similar to our definitions, except
that the channel may only add noise vectors of Hamming weight at most t, while in our setting,
we may add noise vectors from an arbitrary but fixed set E (of the same size as a Hamming ball
of radius t and this set is only known to the decoder). In their setting, the encoder is probabilistic
and the decoder is deterministic. They obtain codes in the oblivious scenario with polynomial-
time encoding and decoding and optimal rate. In our results, the encoder and the decoder share
randomness and the decoder is not efficient, but the codes are universal and are resilient to a more
general type of noise, because the set E of noise vectors may contain vectors of any Hamming
weight.

The concept of a universal code in the Hamming scenario is directly inspired from the universal
compressor in [BZ19]. There, a decompressor D is a (deterministic) partial function mapping
strings to strings. For a string x, the Kolmogorov complexity CD(x) is the length of a shortest
string p such that D(p) = x. The probabilistic compression algorithms have a target length ℓ
and a target error probability ǫ as extra inputs. More precisely, a compressor C maps every triple
(error probability ǫ, length ℓ, string x) to a string Cǫ,ℓ(x) of length ℓ, representing the compressed
version of x. Such a compressor is universal with overhead ∆ if for every decompressor D there
exists another decompressor D′ such that for all triples (ǫ, ℓ, x) with ℓ ≥ CD(x) + ∆, we have
D′(Cǫ,ℓ(x)) = x with probability 1− ǫ.

It is shown in [BZ19], that there exists a universal compressor computable in polynomial time
and having polylogarithmic overhead ∆. In other words, for every compressor/decompressor pair
(C,D), no matter how slow C is, or even if C is not computable, the universal compressor produces
in polynomial time codes that are almost as short as those of C (the difference in length is the
polylogarithmic overhead). The cost is that decompression from such codes is slower.

The universal compressor also provides an optimal solution to the so-called document exchange
problem.3 In this problem, Alice holds x, the updated version of a file, and Bob holds y, an obsolete
version of the file. Using the universal compressor, Alice can compute in polynomial time a string
q of length t which she sends to Bob, and if t ≥ CD(x | y) + ∆ (for some decompressor D), then
Bob can compute x from y and q. What is remarkable is that Alice does not know y. Moreover,
she does not know D. The connection to our setting comes from the fact that a decompressor D
is equivalent to a bipartite graph as in our definitions, and the condition CD(x | y) < t is the same
as saying that x is the left neighbor of the right node y, which has degree less than 2t.

As we have already mentioned, the proof of Theorem 1.4 for the Hamming scenario uses ran-
dom coding and the well-known technique of pairwise-independent hashing to reduce the number
of shared random bits from exponential to linear in n. Using a pseudo-random generator and
a hardness assumption, we can further reduce this to O(log n) for channels that are computable
within some space bound. More precisely, for each polynomial we obtain a code that is resilient to
all channels that can be computed with space at most this polynomial. The hardness assumption
is that there exists a set computable in E = DTIME(2O(n)) that is not solvable in subexponential
space. The same or similar hardness assumptions and derandomization arguments have been used
before in coding and compression [TV00, CSW06, AFPS07, VZ15].

The rest of this section regards the proofs of Theorem 1.5 and Theorem 1.6 for the oblivious
scenario, which use more advanced techniques to reduce the number of shared random bits to

3This problem is also called information reconciliation. In the Information Theory literature it is typically called
compression with side information at the receiver or asymmetric Slepian-Wolf coding.
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logarithmic in n (respectively, polylogarithmic). These proofs are based on a similarity that exists
between the document exchange problem and channel coding. In both problems, the receiver needs
to reconstruct x from y, which is close to x in the sense that CD(x | y) < t, or, in this paper, x is
one of the at most 2t neighbors of y in the bipartite graph that represents the channel (this holds
for the Hamming scenario; in the oblivious scenario, a similar “closeness” relation exists). The
difference is that in the document exchange problem, the receiver holds y before transmission,
while in channel coding, y is received via transmission and is the channel-distorted version of x.

The connection between the two problems has been exploited in several papers starting with
the original proof of the Slepian-Wolf theorem [SW73], which solves the document exchange
problem using codes obtained via the standard technique in the Channel Coding Theorem.
Wyner [Wyn74] gives an alternative proof using linear error correcting codes and syndromes,
and there are other papers that have used this idea [Orl93, GD05, CR18]. Our approach is similar
but works in the other direction: we take linear codes obtained via the method from [BZ19] for
the document exchange problem and use them for channel coding.

The technique used in [BZ19] is based on condensers and is related to previous solutions for
several versions of the document exchange problem which used a stronger tool, namely extrac-
tors [BFL01, Muc02, MRS11, BMVZ18, BZ14, Zim17]. We remark that all these previous papers
do not require linear codes, which are crucial for the method in this paper.

It is common to first obtain non-explicit objects using the probabilistic method and then to
attempt explicit constructions. In our case, however, it is not clear how to show the existence
of linear extractors with the probabilistic method. Instead of extractors, we use condensers, and
fortunately, a random linear function is a condenser. Moreover, the explicit condensers obtained
by Guruswami, Umans, and Vadhan [GUV09], Ta-Shma and Umans [TU12], and Raz, Reingold
and Vadhan [RRV02] (this one is actually an extractor) happen to be linear.

There are well known similarities between extractors (or their poor relatives, condensers) and
error correcting codes (see the discussion in [Vad12, Chapt. 8]). In fact the condensers that we
use are based on Reed-Solomon codes and Parvaresh-Vardy codes. Closer to our technique is the
work of Cheraghchi [Che09], who, like us, uses linear condensers, linear extractors and the method
of syndrome decoding. He obtains codes for the class of binary symmetric channels, which are
channels that distort by adding a random noise vector from a given set. In contrast, our codes
for the oblivious scenario defeat channels that add noise adversarially, and, moreover, their rates
are close to optimal within an additive o(1) term (see Theorem 1.1, (b)).

2 Universal codes for the oblivious scenario

In this section we first prove Theorem 1.5 and Theorem 1.6. We also show that in case the noise
vector is chosen randomly and independently on blocks of the codeword there is a universal code
with polynomial-time deterministic encoding and decoding.

2.1 Proof overview

The basic idea of our constructions is to take the code to be a linear subspace of (F2)
n picked at

random from a class of subspaces. More precisely, the codewords belong to the null space of a
random linear function H, i.e., Hx = 0 for all codewords x, where H is chosen at random from
a certain set of matrices H. The encoder and the decoder share H. The decoder receives the
noisy x̃ = x + e, and, since Hx̃ = H(x + e) = Hx +He = He, he knows He, which we view as
a random fingerprint of e (also called the syndrome of e in the terminology of linear codes). If
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H has certain properties, this allows him to find e, assuming that e is within the tolerated noise
level. The next result implements this idea in a simple way by taking H to consist of all matrices
of appropriate size. It has a short proof and produces a universal code for the oblivious scenario
with close-to-optimal rate for large n. It has the disadvantage that the number of shared random
bits is more than linear in n.

Proposition 2.1. For every n, t, ǫ > 0 such that t+log(1/ǫ) < n, there exists a private code that
is (t, ǫ)-resilient in the oblivious scenario, with rate 1− t/n− δn, where δn = log(1/ǫ)/n.

The encoder and the decoder share (t+ log(1/ǫ))n random bits.

Proof. The encoder and the decoder share a random linear function H : {0, 1}n → {0, 1}t+log(1/ǫ).
Since H has rank at most t + log(1/ǫ), the null space of H has dimension at least k = n − (t +
log(1/ǫ)). The encoder Enc maps every message m ∈ {0, 1}k into the m-th element of the null
space of H (for details, see Remark 3).

Consider now an oblivious channel E of size at most 2t and a message m. Let x = Enc(m,H)
be the codeword for m, and let x̃ = x+ e, where e ∈ E is the noise added by a channel. Observe
that

Hx̃ = H(x+ e) = Hx+He = He. (2)

The decoder Dec works as follows. On input x̃ and H, he first computes p = Hx̃. He knows
that He = p (by (2)), and he also knows that e belongs to E. For each e1 ∈ (F2)

n different from
e, the probability over H that He = He1 is ǫ2−t. By the union bound, with probability 1 − ǫ,
there is only one element e′ in E such that He′ = p, namely e. Consequently, Dec can find e with
probability 1 − ǫ, by doing an exhaustive search. Next he finds x = x̃+ e, and finally from x he
finds m.

The rate of the code is k/n = 1− t/n− log(1/ǫ)/n.

Remark 3. The encoder function Enc in Proposition 2.1 can be computed in time polynomial
in n as follows. First we compute k independent vectors v1, . . . , vk in the null space of H by
finding k solutions of the equation Hx = 0 with vi having in the last k coordinates the values
(0, . . . , 0, 1, 0 . . . 0) (the single 1 is in position i). Next, we form the k-by-n matrix G having rows
v1, . . . , vk and finally Enc(m,H) = mG.

On the other hand, the computation of the decoder function Dec is slow, because it requires
the enumeration of all the elements in E.

The codes in Theorem 1.5 and Theorem 1.6 are constructed using pseudo-randomness tools to
reduce the space from which H is selected and consequently reduce the number of shared random
bits to logarithmic in n (respectively, polylogarithmic in n). The construction of the codes in
these two theorems is done in two steps:

In Step 1, we show that a linear invertible function (a concept introduced in [BZ19]) can be
converted into a universal private resilient code. Step 1 is presented in Section 2.2.

In Step 2, we show how condensers (a type of functions that have been studied in the theory
of pseudorandomness) can be used to construct invertible functions. This step is based on the
technique in [BZ19] and is presented in Section 2.3.

Theorem 1.5 and Theorem 1.6 are obtained by taking condensers built by Guruswami, Umans,
and Vadhan [GUV09], Ta-Shma and Umans [TU12] and Raz, Reingold, and Vadhan [RRV02],
and using Step 2 to obtain invertible functions, followed by Step 1, to obtain the codes. The
details are presented in Section 2.4.
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2.2 Construction of private universal codes in the oblivious scenario from

linear invertible functions

A (t, ǫ)-invertible function is a probabilistic function that on input x produces a random fingerprint
of x. The invertibility property requires that there exists a deterministic algorithm that on input
a random fingerprint of x and a list S, the “list of suspects,” of length at most 2t that contains x,
with probability 1− ǫ correctly identifies x among the suspects. To be useful in the construction
of codes, we need the invertible function to be linear for any fixed value of randomness. Also, in
order to obtain codes with good rates, we want the length of the fingerprint to be t+∆, for small
∆.

Definition 2.2. 1. A function F : {0, 1}n × {0, 1}d → {0, 1}t+∆ is (t, ǫ)-invertible if there
exists a partial function g mapping a set S of n-bit strings and a (t + ∆)-bit string y into
gS(y) ∈ {0, 1}n such that for every set S containing at most 2t strings and every x in S

Pr
ρ
[gS(F (x, ρ)) = x] ≥ 1− ǫ. (3)

2. F is linear if for every ρ ∈ {0, 1}d, the function F (·, ρ) is linear, i.e., for every x1, x2 ∈
{0, 1}n, F (x1 + x2, ρ) = F (x1, ρ) + F (x2, ρ), where we view x1 and x2 as elements of the
linear space (F2)

n, and the output of F as an element of the linear space (F2)
t+∆.

The next proposition shows that, as announced, a linear, (t, ǫ)-invertible function can be
used to construct a (t, ǫ)-resilient private code in the oblivious scenario (and also in the additive
Hamming scenario discussed in section A.6). In the oblivious scenario, the encoder and the
decoder share the random bits used by the invertible function (in the additive Hamming case,
they share more random bits, namely n+ the random bits of the invertible function).

Proposition 2.3 (Invertible function → code in the oblivious scenario). If there exists a linear
(t, ǫ)-invertible function F : {0, 1}n × {0, 1}d → {0, 1}t+∆, then there exists a private code Enc
that is (t, ǫ)-resilient in the oblivious scenario, with rate 1− (t+∆)/n, and such that the encoder
and the decoder share d random bits.

Proof. Since F (·, ρ) is a linear function, it is given by a (t + ∆)-by-n matrix Hρ with entries in
F2, such that F (x, ρ) = Hρx (recall that we view x as an n-vector over F2). The matrices Hρ are
viewed as parity-check matrices of linear codes.

The encoding and decoding procedures are as follows:

1. The encoder Enc and the decoder Dec share a random string ρ ∈ {0, 1}d.
2. Enc on input a message m of length n − (t + ∆) computes the codeword x of length n as

follows:

(a) View m as a positive integer in the natural way (based on the base 2 representation of
integers).

(b) The codeword x is obtained by picking the m-th element in the null space of Hρ (so
Hρx = 0). Note that the dimension of the null space of Hρ is at least n − (t + ∆),
because the rank of Hρ is at most t+∆. Thus the encoder is well defined.

3. Consider an oblivious channel E of size at most 2t.

4. The decoder Dec, on input x̃ = x + e, where e ∈ E is the noise added by the channel,
attempts to find m as follows:
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(a) Dec computes p = Hρx̃ (i.e., p is the syndrome of x̃).

(b) Note that
Hρx̃ = Hρ(x+ e) = Hρx+Hρe = Hρe.

Thus p is also the syndrome of e, and, consequently, F (e, ρ) = p.

(c) Dec uses the inverter function g given by (3). It runs g on input p = F (e, ρ) and list E,
and with probability 1− ǫ, obtains e. Next, x = x̃+ e, and finally from x, he finds m.

The rate of the code is

r =
|m|
|x| =

n− (t+∆)

n
.

Remark 4. We make the following observations regarding the complexity of the encoder function
Enc and decoder functions Dec in Proposition 2.3. The invertible function is assumed to be linear
and thus F (x, ρ) = Hρx, for some matrix Hρ. If the mapping ρ 7→ Hρ is computable in time
polynomial in n, then Enc is computable in time polynomial in n. This can be shown in the same
way as in Remark 3.

For the invertible F in Theorem 2.9 and the one in the proof of Theorem 1.6, the corresponding
inverters g run in time polynomial in a standard encoding of S, y, and t (the latter written in
unary). With such a g, a simple inspection of the description in part 4, reveals that Dec runs in
time polynomial in the time it takes to enumerate E.

If the inverter g of F can be evaluated in polynomial space with oracle access to S, then Dec
is computable in polynomial space given oracle access to the oblivious channel E. This is the case
for all invertible functions constructed with explicit condensers, obtained through the method in
Corollary 2.13 in [BZ19], which is also used in this paper (this follows from Remark 3 in [BZ19]).

An interesting approach to define channels is to use conditional Kolmogorov complexity. We
might consider the set E of all distortion vectors that satisfy C(e |n) < t, and there exist at most
2t such vectors. The corresponding channel is not computable, but on input n and t, the set E
can be enumerated. If F is online-invertible, then the decoding algorithm explained above can
be used with a simple modification of step 4, (c). Each time an element is enumerated in E,
we rerun the monotone inverse g with the augmented set E. If one of the runs of g halts with
some output, then Dec also halts with the same output. Note that when e is enumerated in E, g
on input E, p = F (e, ρ) and t returns e with probability 1 − ǫ. By the monotonicity of g, later
updates of E can not change a given value of g once it has been generated, and this implies that
with probability 1− ε, no previous runs of g generated a different output. Thus Dec also returns
e with probability 1− ǫ.

2.3 Construction of invertible functions from condensers

A condenser is a type of function that has been studied in the theory of pseudorandomness,
which can be seen as a relaxation of randomness extractors (see [Vad12]). Informally speaking, a
condenser maps a random variable that is “sufficiently random” and ranges over a large set, to
another random variable that is “sufficiently random” and ranges over a smaller set.

A random variable has min-entropy t if each value has probability at most 2−t. The statistical
distance between two measures P and Q is sup |P (S)−Q(S)| for a set S. Given a set B, we denote
UB to be a random variable that is uniformly distributed on B. A condenser uses an additional
random variable, which is uniformly distributed over the set of d-bit strings, for some small d.
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Definition 2.4. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a t →ǫ t
′ condenser, if for every

S ⊆ {0, 1}n of size at least 2t, the random variable X = C(US, U{0,1}d) is ǫ-close to a random

variable X̃ that has min-entropy at least t′.

The quantity t + d − t′ is called the entropy loss of the condenser, because the input has
min-entropy t + d and the output is close to having min-entropy t′. We view C as a bipartite
graph G in the usual way: the left nodes are the strings in {0, 1}n, the right nodes are the strings
in {0, 1}m and for each x ∈ {0, 1}n, ρ ∈ {0, 1}d there is an edge (x,C(x, ρ)) (thus, for some x, y,
there may exist multiple edges (x, y)).

Conversely, we sometimes view a bipartite graph G as a function having the left side as the
domain and the right side as the range and defined by G(x, ρ) = y if the ρth neighbor of x is y
(assuming some fixed ordering of neighbors, and interpreting the binary string ρ as the writing
in binary of a positive integer).

The invertible function is constructed by concatenating the outputs of two condensers, namely
a condenser of Ta-Shma and Umans [TU12] and a condenser of Guruswami, Umans, and Vad-
han [GUV09] (the latter with a small modification involving simple hashing - see the proof of
Corollary 2.13 in [BZ19]).

Let G = (L∪R, E) be a bipartite graph, where we allow E to be a multiset (i.e., there may be
several edges beween two vertices). We say that G admits (ℓ, r) matching up to size K if for any
set S ⊆ L of size at most K, if it is possible to assign to each vertex x in S a set Ax containing
at least ℓ of its right neighbors (including in the count multiplicities), such that every vertex in
R belongs to at most r sets in the family {Ax}x∈S . In particular if G admits (ℓ, 1) matching, the
sets assigned to vertices in S are pairwise disjoint.

We use functions that are condensers for an entire range of min-entropies. More precisely,
we use families of functions {Cn} indexed by n with parameters d, ǫ,m, tmax functions of n (all,
except ǫ being positive integers) and satisfying

Cn has type Cn : {0, 1}n × {0, 1}d → {0, 1}m, and

Cn is an explicit t →ǫ t+ d− e condenser for all t ≤ tmax such that 2t ∈ N.
(4)

As usual we drop the subscript n in the notation. Note that C has entropy loss bounded by
e for inputs with min-entropy t for all t ≤ tmax such that 2t ∈ N.

Theorem 2.5. Let C be a condenser as in (4). Then the corresponding graph admits ((1 −
4ǫ)2d, 2 · tmax · 2e) matching up to size 2tmax .

Theorem 2.6. Let C be a condenser as in (4). Then there exists an explicit bipartite graph
G′ = (L′∪R′, E ′) with left degree D′ = 2d ·u, L′ = {0, 1}n, |R′| = 2m ·u2 that admits ((1−5ǫ)D′, 1)
matching up to size 2tmax , where u = O(1/ǫ · n · tmax · 2e).

If C is linear then G′ (viewed as a function) is linear as well.

As announced, we use the following condensers.

Theorem 2.7 ([TU12], Theorem 3.2, also Theorem 4.1). For every n, tmax ≤ n, ǫ ≥ 0 there
exists an explicit function CTU : {0, 1}n × {0, 1}d → {0, 1}m such that

1. For every t ≤ tmax, CTU is a t →ǫ t + d − eTU condenser, with eTU = O((tmax/ log n) ·
log(1/ǫ) + log n),

2. d = O(log n) and m ≤ tmax.
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3. CTU is linear. More precisely, for each y ∈ {0, 1}d, there is a m-by-n matrix Ay with entries
in F2 such that CTU(x, y) = Ayx. Furthermore the mapping y 7→ Ay is computable in time
polynomial in n.

Theorem 2.8 ( [GUV09], Theorem 4.3, also Theorem 1.7). For every n, tmax ≤ n, ǫ ≥ 0 and
constant α, there exists an explicit function CGUV : {0, 1}n × {0, 1}d → {0, 1}m such that

1. For every t ≤ tmax, CGUV is a t →ǫ t+ d condenser.

2. d = (1 + 1/α)(log n+ log tmax + log(1/ǫ)) +O(1) and m ≤ (1 + α)tmax + 2d.

3. CGUV is linear. More precisely, for each y ∈ {0, 1}d, there is a m-by-n matrix Ay with
entries in F2 such that CGUV(x, y) = Ayx. Furthermore the mapping y 7→ Ay is computable
in time polynomial in n.

Remark 5. The linearity of CTU and CGUV are not stated explicitly in [TU12] and [GUV09]. We
give some explanations in the appendix, Section A.2 and Section A.3.

Theorem 2.9. For every t ≤ n and ǫ > 0, there exists a linear (t, ǫ) invertible function F :
{0, 1}n ×{0, 1}d → {0, 1}t+∆ with d = O(log n+ log(1/ǫ)) and ∆ = O( t

logn · log(1/ǫ) + log(n/ǫ)).
Moreover, the inverter g satisfying (3) runs in time polynomial in the length of a standard encoding
of S and F (x, ρ).

Proof. The invertible function is obtained by combining the condensers CTU and CGUV, with
parameters set as follows.

• For the CTU condenser, we take the parameters ǫ, and tmax set to be t. CTU uses a random
string ρ1 of length d1 = O(log n), the output length is m1 ≤ t and it has entropy loss bounded
by eTU = c1((t/ log n) · log(1/ǫ1) + log n), for some constant c1. The graph GTU corresponding to
CTU admits ((1− 4ǫ)D1, 2 · t · 2eTU) matching up to size 2t, by Theorem 2.5. Let

t1 = ⌈eTU + log t+ 1⌉.

• For the CGUV condenser, we take the parameters ǫ, tmax set to t1 and α set to 1. CGUV

uses a random string of length d2 = 2(log n + log t1 + log(1/ǫ)) + O(1), its output length is
m2 ≤ 2t1 + O(log n/ǫ), and it has zero entropy loss. The graph G′

GUV corresponding to CGUV

according to Theorem 2.6 (which guarantees matching with no sharing) has left degree 2d
′

2 = 2d2 ·u
and the size of its right side is 2m

′

2 = |2m2 | ·u2, where u = O(1/ǫ ·n · t1). The graph G′
GUV admits

((1− 5ǫ)2d
′

2 , 1) matching up to size 2t1 . We view G′
GUV as a function in the standard way.

We now define the invertible function F : {0, 1}n × {0, 1}d1+d′
2 → {0, 1}m1+m′

2 , by

F (x, (ρ1, ρ2)) = CTU(x, ρ1) ◦G′
GUV(x, ρ2)

We have used ◦ to denote string concatenation. Let us check that F is an invertible function
with the parameters claimed in the statement of the theorem.

Consider S ⊆ {0, 1}n of size |S| ≤ 2t and let us fix x ∈ S. Since GTU admits ((1− 4ǫ)2d1 , 2t1)
matching up to size 2t, there is a function that assigns to every element in S a set of (1− 4ǫ)2d1

of its right neighbors in GTU, such that no right element is assigned to more than 2t1 elements
in S. Thus if we take ρ1 random in {0, 1}d1 , with probability 1 − 4ǫ, CTU(x, ρ1) has at most
2t1 neighbors in S, one of them being obviously x. Let S1 be the set of neighbors of CTU(x, ρ1)
in GTU and let A be the event that the size of S1 is bounded by 2t1 . We have argued that the
probability of A is at least 1− 4ǫ.
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Since G′
GUV admits ((1 − 5ǫ)2d

′

2 , 1) matching up to size 2t1 , conditioned on A, there is a
function that assigns to each element in S1 a set containing (1− 5ǫ)2d

′

2 of its neighbors in G′
GUV,

such that all these sets are pairwise disjoint. Thus, conditioned on A, if ρ2 is picked at random
in {0, 1}d′2 , with probability at least (1 − 5ǫ), G′

GUV(x, ρ2) has a single neighbor in S1, namely
x. Let B be the event that G′

GUV(x, ρ2) has a single neighbor in S1. We have argued that the
probability of B conditioned by A is (1− 5ǫ).

Let us condition by A ∩ B, which is an event that has probability at least 1− 9ǫ. Under this
condition, F (x, (ρ1, ρ2)) has with probability 1 a single neighbor in S, namely x. Thus by an
exhaustive search in S, one can retrieve x from F (x, (ρ1, ρ2)). We conclude that with probability
1− 9ǫ, one can invert F (x, (ρ1, ρ2) and find x.

F is linear because each component is linear and the assertions regarding the sizes of d and
∆ can be checked by inspection. The proof is concluded after a rescaling of ǫ.

2.4 Proofs of Theorem 1.5 and Theorem 1.6

The proof of Theorem 1.5 follows by plugging the invertible function from Theorem 2.9 into
Proposition 2.3. The assertions from Remark 1 regarding the computational complexity of the
encoder function Enc and of the decoder functions Dec follow from Remark 4.

The proof of Theorem 1.6 is similar, except that we use a condenser of Raz, Reingold, and Vad-
han [RRV02], instead of the CTU condenser from [TU12] and the CGUV condenser from [GUV09].
Note that the condenser of Raz, Reingold, and Vadhan is actually an extractor, but we only use
the condenser property (extractors have stronger properties than condensers).

Proof. of Theorem 1.6 (sketch) We use the following condenser.

Theorem 2.10 (Theorem 22, (2) in [RRV02]). For every n, tmax ≤ n, ǫ ≥ 0, there exists an
explicit function CRRV : {0, 1}n × {0, 1}d → {0, 1}tmax−∆, with the following properties:

1. For every t ≤ tmax, CRRV is a t →ǫ t−∆ condenser

2. d = O(log3(n) log2(1/ǫ)) and ∆ = O(d),

3. CRRV is linear. More precisely, for each y ∈ {0, 1}d, there is a m-by-n matrix Ay with
entries in F2 such that CRRV(x, y) = Ayx. Furthermore the mapping y 7→ Ay is computable
in time polynomial in n.

Remark 6. The linearity of CRRV is not stated explictly in [RRV02]. We give some explanations
in the appendix, Section A.4.

The CRRV condenser has entropy loss (t + d) − (t − ∆) = d + ∆ = O(d). Consider the
graph G′

RRV corresponding to CRRV according to Theorem 2.6. This graph has left degree 2d
′

=

2O(log3 n·log2(1/ǫ)), the size of the right side is 2tmax+O(log3 n·log2(1/ǫ)), and admits ((1 − 5ǫ)2d
′

, 1)
matching up to size 2tmax . We define the invertible function F , by F (x, ρ) = G′

RRV(x, ρ) (viewing
the graph as a function). We check that F is invertible. Let S ⊆ L with size at most 2tmax and let
us fix x ∈ S. By the matching property, if ρ is picked at random in {0, 1}d′ , then with probability
1− 5ǫ, G′

RRV(x, ρ) has a single neighbor in S, namely x. Therefore, if we do an exhaustive search
in S for a neighbor of F (x, ρ) , we find x with probability 1−5ǫ, which shows that F is invertible.
F is linear because G′

RRV is linear, and the other parameters follow by simple inspection.
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2.5 Universal codes with deterministic polynomial-time encoding and decod-

ing for channels with random distortion in the oblivious scenario

The universal codes for the oblivious scenario in Theorem 1.5 and Theorem 1.6 do not have efficient
decoding. In this section, we follow closely Cheraghchi [Che09] and use Justesen’s concatenation
scheme [Jus72] to turn the code from Proposition 2.1 into a code that does not use any randomness
and which has an encoder and a decoder that run in time polynomial in the codeword length.
The cost is that the code works against channels that distort at random, and are memoryless.
This means that the codeword consists of a number of blocks, the channel distorts by choosing
for each block a random noise vector (instead of the adversarial choice in Definition 1.3), and the
random choices for each block are independent.

We now present formally the model. For each h, Σh denotes the set of binary strings of
length h, which we identify in the obvious way with (F2)

h. We assume that the codewords are
tuples of elements in (F2)

n, for some natural number n. Recall that an oblivious channel with
distortion T is given by a set of noise vectors E ⊆ (F2)

n of size at most T . Let D be the number
of blocks. A D-memoryless oblivious channel takes as input a D-tuple (x1, . . . , xD) and outputs
(x1 + e1, . . . , xD + eD), where each ei is chosen uniformly at random in E, and the D random
choices are independent. The encoding function has the type Enc : (Fk

2)
S → (Fn

2 )
D, for some k

and S. The rate of the code is (S · k)/(D · n). The decoding function Dec corresponding to such
a channel has the type Dec : (Fn

2 )
D → (Fk

2)
S .

We say that Enc is a universal code (t, ǫ) resilient against D-memoryless oblivious distortion,
if for every D-memoryless oblivious channel with distortion at most 2t, there is some decoding
function Dec, such that for every m ∈ (Fk

2)
S ,

Dec(Enc(m) + e) = m, (5)

with probability 1− ǫ over e = (e1, . . . , eD) chosen uniformly at random in ED.

Theorem 2.11. For every constant α > 0, every n, every t < n− O(1) (with the O(1) constant
depending on α), there exists Enc : (Σk)S → (Σn)D a universal code (t, e−Ω(D)) resilient against
random D-memoryless oblivious distortion, such that:

1. D = 2n(t+O(1)) (with the O(1) constant depending on α),

2. S = ⌊(1− α)D⌋, k = n− t−O(1) (with the O(1) constant depending on α). Consequently,
Enc has rate S · k/D · n = (1− α)(1 − t/n− o(1)),

3. The encoder Enc is computable in time O(n2D) (so encoding runs in time quasilinear in the
bit-length of a codeword).

4. For every D-memoryless channel in the oblivious scenario with distortion at most 2t, the cor-
responding decoding function Dec runs in time ((nD)2) (so decoding runs in time quadratic
in the bit-length of a codeword).

Remark 7. How good is the rate of the universal code in Theorem 2.11? Some channels require
codes with rate at most, essentially, 1−t/n. Indeed, consider a Hamming channel G = (X , X̃ , E ⊆
X × X̃ ) with distortion at most 2t (recall that this means that all right degrees are at most 2t).
Suppose the channel has the property that all (or almost all) left degrees are at least 2t. This
is the case of any oblivious channel (where all left degrees and all right degrees are equal), and
also the case of the binary symmetric channel (BSC), for the appropriate definition of t. By a
sphere-packing argument similar to the one in the proof of Theorem 4.1 (see Remark 8), any code
that satisfies (5) has rate at most 1−t/n+log(1/(1−ǫ))/n. The universal code in Theorem 2.11 is
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quite good for such a channel because its rate is essentially within a factor 1−α of the upperbound,
and α is an arbitrarily small constant. However some channels have left degree much smaller than
the maximum right degree (for example, deletion channels). For such channels, there may exist
specific codes tailored for them with better rate than the universal code in Theorem 2.11.

Proof sketch of Theorem 2.11. For full details, we refer to Section A.1. The encoding is obtained
by concatenating an “outer” code Encout with D “inner” codes Encρ1 , . . . ,EncρD . The inner codes
are obtained from the private code Enc in Proposition 2.1, by fixing the randomness to every d-

bits string, i.e., Encρ(·)
def.
= Enc(·, ρ). Each inner code maps a k-bit string to an n-bit string. The

outer code works with words over the alphabet Σk, and maps an S-symbol word (m1, . . . ,mS)
into a D-symbol word (c1, . . . , cD). Next, in the concatenation step, each ci is encoded with the
inner code Encρi .

(m1, . . . ,mS) −−−−−−−−−→
outer code

(c1, . . . , cD) −−−−−−−−−−−−−−−−→
inner codes

(Encρ1(c1), . . . ,EncρD(cD))

As the outer code we use Spielman’s error correcting code [Spi96]. This code works over an
arbitrary alphabet, has rate (1 − α) (for arbitrary α > 0), can correct from a constant fraction
of errors, and has encoder and decoder running in time linear in the codeword bit-length. The
decoder function of the concatenated code works in the natural way. First it decodes using the
decoding functions of the inner codes. With high probability, all decoding functions, except a
small fraction, will decode correctly. Next, the decoding function of the outer code will fix the
constant fraction of errors.

3 Universal codes for the Hamming scenario

Recall that a Hamming channel is defined by a bipartite graph where the left set X represent
codewords and the right set X̃ represent distorted codewords. Each left degree is at least 1, and
the distortion is the maximal right degree. Also recall definition 1.2 of resilience in the Hamming
setting.

Definition (Restated). A private code Enc: M × R → X is (t, ǫ)-resilient in the Hamming
scenario if for every X̃ and every Hamming channel from X to X̃ with distortion at most 2t,
there exists a decoding function Dec: X̃ × R → M such that for all channel functions Ch of this
channel and all m ∈ M

Pr
ρ∈R

[Decρ(Ch(Encρ(m))) = m] ≥ 1− ǫ.

We first prove Theorem 1.4, which states that for all n, t and ǫ > 0, there exist (t, ε)-resilient
codes with k ≥ n − t − ⌈log 1

ǫ ⌉ that use d = 2n bits of shared randomness. Next we consider
two restrictions of the Hamming scenario. In Section 3.2, we restrict the computational power of
the channel to algorithms that use space bounded by a given polynomial, and, under a hardness
assumption, we show that there exists a universal code for this class of channels that uses O(log n)
randomness. In Section 2.5, we consider weaker channels that choose the distortion on short blocks
of the codeword, rather than on the whole codeword, and we show that there is a universal code
for this class of channels with polynomial-time encoding and decoding algorithms.
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3.1 Proof of Theorem 1.4.

Theorem (Restated). For every n, t and ǫ > 0, there exists a polynomial time computable private
code Enc : {0, 1}k × {0, 1}d → {0, 1}n that is (t, ǫ)-resilient in the Hamming scenario such that

• k ≥ n− t− ⌈log 1
ǫ ⌉ ,

• The encoder Enc and the decoder functions Dec share d = 2n random bits.

Let N = 2n and T = 2t. It is enough to prove the theorem for ǫ being a power of 2. We identify the
set of messages with [K] = {1, 2, . . . ,K} where K = ǫN/T . Thus the result follows for k = logK.

We first construct a code that uses Kn shared random bits. We split these bits in K strings
of length n and denote them by

ρ = (ρ1, . . . , ρK) (6)

Thus each ρi is an n-bit string chosen independently at random. We define the encoding function
Enc by Encρ(m) = ρm, for each m ∈ [K].

We need to prove that this code is (t, ε)-resilient. Consider a channel from X to X̃ , and for
any x̃ ∈ X̃ , let Bx̃ be the set of left neighbours of x̃ in the bipartite graph. The size of Bx̃ is at
most T . For a fixed x̃ ∈ X̃ , by the union bound, the probability that there exists m′ ∈ [K] such
that Encρ(m

′) ∈ Bx̃ is at most K · T/N ≤ ǫ.
Let m ∈ [K] and let x = Encρ(m). The string x is independent of the value of Encρ(m

′), for
every m′ ∈ [K] − {m}, and thus, for every channel and every channel function Ch, the value of
Ch(x) = Ch(Encρ(m)) is also independent of Encρ(m

′). Therefore, the probability that for some
m′ 6= m we have Encρ(m

′) ∈ BCh(x), is also at most ǫ. Consequently, with probability at least
1− ǫ, one can recover m from Ch(x) and ρ by exhaustive search.

We now reduce the number of shared random bits from Kn to 2n. The observation is that in
the above argument we only need that the codewords Encρ(1), . . . ,Encρ(K) are pairwise indepen-
dent. It is well-known that if we pick at random a, b in the field F2n , and consider the function
ha,b(x) = ax + b, the values ha,b(1), ha,b(2), . . . , ha,b(N − 1) are pairwise independent. Therefore
we replace in ρ from Equation (6) each ρi by ha,b(i), for i = 1, . . . ,K. Now the encoder and the
decoder only need to share a and b and the conclusion follows.

3.2 Universal codes for space-bounded Hamming channels

In Theorem 1.4 the number of random bits has been reduced from exponential to 2n by pairwise-
independent hashing. If the graph that defines the channel is computationally bounded then the
number of random bits can be further reduced to O(log n) under a reasonable hardness assumption
that implies the existence of a convenient pseudo-random generator.

We consider channels given by graphs for which the edge relation is computable in SPACE[nℓ],
for a fixed constant ℓ. More precisely, for any ℓ, a SPACE[nℓ] computable graph is a family of
bipartite graphs (Gn), indexed by n ∈ N, where the bipartite graphs have the form Gn = (Xn =
{0, 1}n, X̃n = {0, 1}ñ(n), En ⊆ Xn × X̃n), ñ(n) is bounded by a polynomial in n, and such that
there exists an algorithm running in space bounded by nℓ that on input (x, y) returns 1 if (x, y)
is an edge in G|x|, and 0 if it is not. We say that a family of channels is in SPACE[nℓ], if the

corresponding family of graphs is in SPACE[nℓ].
We show, conditioned on a hardness assumption, that, for every constant ℓ, there exists a

private universal code resilient to all families of channels in SPACE[nℓ], that has optimal rate,
and that uses O(log n) random bits.
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Hardness asumptions and pseudo-random generators

We use pseudo-random generators that extend a seed of length O(log n) to a string of length n
in time polynomial in n, and such that the output “looks” uniformly random to certain predicates
A of bounded complexity. Formally, a pseudo-random generator g : {0, 1}c logn → {0, 1}n fools a
predicate A if, for S the uniform distribution on the domain of g, and U the uniform distribution
on the range of g,

|Pr[A(g(S)) = 1]− Pr[A(U) = 1]| < 1/n.

Klivans and van Melkebeek [KvM02], relativizing with oracles the seminal results of Impagliazzo
and Wigderson [IW97] and Nisan and Wigderson [NW94], have shown that certain hardness
assumptions imply the existence of pseudo-random generators of the type that we need. Let
f : {0, 1}∗ → {0, 1} be some function, A ⊆ {0, 1}∗ be a set (viewed also as a predicate via
the identification with its characteristic function), and let us denote CA

f (n) the size of a smallest
circuit with oracle A gates (besides the standard AND, OR, NO gates) that computes the function
f for inputs of length n. We denote E = ∪c>0DTIME[2cn]

Assumption H(A): There exists a function f in E such that, for some ǫ > 0, CA
f (n) > 2ǫn.

Let SIZEA[nk] denote the set of circuits of size at most nk which have oracle A gates besides
the standard gates AND, OR, NOT.

Theorem 3.1 (Klivans and van Melkebeek [KvM02]). If H(A) is true, then for every k, there
exists a constant c and a pseudo-random generator g : {0, 1}c logn → {0, 1}n that is computable in
time polynomial in n and fools every predicate computable by a circuit in SIZEA[nk].

In our application the set A will be some PSPACE complete problem, say TQBF. For such A,
one can replace H(A) by the following hardness assumption H1 that is less technical and is still
plausible.

Assumption H1: There exists a function f in E which is not computable in space 2o(n).

More explictly, this means that f is in E, and for every machine M that computes f there
exists a constant ǫ > 0 such that, for all sufficiently large n, M requires space at least 2ǫn, on
some input of length n.

Theorem 3.2 (Miltersen [Mil01]). For every A in PSPACE/poly, H1 implies H(A).

Theorem 3.3. Assume H(TQBF) is true. Then, for every ℓ, there exists c with the following
property: For every n, t, ǫ > 0, there exists a polynomial time computable private code Enc :
{0, 1}k × {0, 1}d → {0, 1}n that is (t, ǫ)-resilient in the Hamming scenario to every family of
channels in SPACE[nℓ] such that

• k ≥ n− t− (⌈log(1/ǫ)⌉ + log n+ 1) ,

• The encoder Enc and the decoder functions Dec share d = c log n random bits.

Moreover, given oracle access to a channel in Definition 1.2, there exists a corresponding decoding
function running in space polynomial in n.

Proof. We use the notation from the proof of Theorem 1.4, and follow the construction from this
proof. Let us fix (Gn) a family of graphs that is SPACE[nℓ] computable and also fix n. Consider
the channel defined by Gn. Recall that for a and b in F2n , we use the function ha,b(x) = ax+ b.
Each message m ∈ [K] is encoded as ha,b(m), where the pair (a, b) is the randomness shared
between the encoder and the decoder. Recall that for every message m, and for every right
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neighbor y of x = ha,b(m), with high probability of (a, b), the encoding of no message other than
m is adjacent to y. This allows decoding from y and justifies the following predicate.

We say that a pair (a, b) is good for (m, j) (where j is a natural number that is at most 2ñ(n))
if

1. x = ha,b(m) (viewed as a left node in Gn) has less than j, neighbors or

2. if y is the j-th neighbor of x, for every m′ ∈ [K]− {m}, ha,b(m′) is not a neighbor of y.

For every (m, j), we define the predicate Am,j which on input (a, b) returns 1 if (a, b) is good
for (m, j), and 0 if it is not good. There exists an algorithm that on input (m, j, a, b) computes the
predicate Am,j on (a, b) and uses space bounded by a fixed polynomial in n (which is the same for
all graphs in SPACE[nℓ]). Therefore this algorithm is computable by a circuit in SIZETQBF[nℓ′ ],
for some constant ℓ′ which, again, is the same for all graphs in SPACE[nℓ]. The last assertion holds
because in the standard proof of the PSPACE completeness of TQBF (for example, see [Sip13]),
when we reduce a problem in PSPACE to TQBF, the running time of the reduction (and therefore
also the size of the circuit computing it) depends only on the space complexity of the problem.

We work under the assumption that H(TQBF) is true. Theorem 3.1 used for A = TQBF
and k = ℓ′ gives a pseudo-random generator g that fools all the predicates Am,j (for all graphs
in SPACE[nℓ]), uses a seed of length c log n (where c is a constant that depends on ℓ), and is
computable in time polynomial in n.

It is shown in Theorem 1.4, that for all (m, j), for random (a, b), the predicate Am,j(a, b)
returns 1 with probability 1 − ǫ. Consequently, if we replace the random (a, b) by g(s) with a
random seed s, the predicate returns 1 with probability 1− ǫ′ for ǫ′ = ǫ+ 1/n. This implies that
the encoding function obtained by replacing (a, b) by g(s) in the encoding function in Theorem 1.4
satisfies the conclusion of the theorem.

3.3 Universal codes with polynomial-time encoding and decoding for piecewise

Hamming channels

The universal code in Theorem 1.4 does not have an efficient decoder. Using a concatenation
scheme, we show how to obtain a universal code in the shared randomness model with efficient
encoding and decoding for a restricted type of Hamming channels.

The restriction is that the graph G that defines a Hamming channel (see Definition 1.2) is
required to be the product of several graphs, i.e., G = G1×G2×. . .×GD. This means that the ver-
tices ofG areD-tuples (u1, . . . , uD), where every ui is a vertex ofGi, and ((x1, . . . , xD), (y1, . . . , yD))
is an edge of G if (xi, yi) is an edge in Gi, for every i ∈ {1, . . . ,D}. We call such a channel a
D-piecewise Hamming channel. We recall that such a channel distorts (xi, . . . , xD) into an ad-
versarially chosen (y1, . . . , yD), where for each i, (x1, yi) is an edge in Gi. A piecewise Hamming
channel has distortion T , if all graphs Gi have maximum right degree at most T .

A universal code E has type as given in Definition 1.2, and Eρ(m) denotes the result of encoding
the message m, when randomness ρ is used. We say that E is a universal code (t, ǫ) resilient against
D-piecewise Hamming distortion, if for every D-piecewise Hamming channel Ch with distortion
at most T = 2t, there is some decoding function Dec, such that for every m in the domain of E ,

Dec(Ch(Eρ(m), ρ) = m (7)

with probability 1− ǫ over the randomness ρ shared by E and Dec.
Using a concatenation scheme similar to the one in Theorem 2.11, we build a universal code E

that is (t, ǫ)-resilient to all D = 2n-piecewise Hamming channels, with polynomial-time encoding
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and decoding, and which has rate (1 − α)(1 − t/n − o(1)), where α > 0 is an arbitrarily small
constant.

Theorem 3.4. For every constant α > 0, every n, every t < n − O(1) (with the O(1) constant
depending on α), there exists E : (Σk)S × (Σ∆) → (Σn)D a universal code (t, e−Ω(D)) resilient
against random D-piecewise Hamming distortion, such that:

1. D = 2n, and the number of shared random bits is ∆ = 2nD,

2. S = ⌊(1− α)D⌋, k = n− t−O(1) (with the O(1) constant depending on α). Consequently,
E has rate (S · k)/(D · n) = (1− α)(1 − t/n− o(1)),

3. The encoder E is computable in time O(nD) (so encoding runs in time quasilinear in the
bit-length of a codeword).

4. For every D-piecewise Hamming channel with distortion at most 2t, the corresponding decod-
ing function Dec runs in time ((nD)2) (so decoding runs in time quadratic in the bit-length
of a codeword).

The decoder is polynomial-time efficient because it replaces the exhaustive search in the space
of all possible codewords from Theorem 1.4, with searches in each segment that forms the piecewise
space of codewords. With a high probability, a small fraction of these “local” searches return
incorrect results, but these few errors are repaired by the outer code. Since each segment contains
n-bit strings and we take D = 2n segments, this process requires D · 2n = D2 steps, which is
less than quadratic in the length of the codeword (which is nD). The details are presented in
Section A.1.

4 Bounds

In this section we present two kind of bounds for universal codes: upper bounds for the rate, and
lower bounds for the amount of shared randomness.

4.1 Upper bounds for the rate of universal codes

If the encoder and the decoder do not use randomness, an upper bound for the rate can be derived
via the following standard sphere-packing argument. Consider an oblivious channel defined by a
set E of size T . The maximal number of messages we can send with N codewords is equal to N/T ,
because for any 2 messages m1 and m2, the sets Enc(m1)+E and Enc(m2)+E must be disjoint.
The same holds for the Hamming scenario, because we can view the channel as a bipartite graph,
(2 nodes are connected if their difference is in E), and the right degree is at most T as well. In
the next theorem, we adapt this argument for private codes.

Theorem 4.1. Let Enc : {0, 1}k × R → {0, 1}n be a private code that is (t, ǫ)-resilient in the
oblivious scenario, or in the Hamming scenario. Then

k

n
≤ 1− t

n
+

1 + log(1/(1 − ǫ))

n
.

Proof. We consider the oblivious scenario. For the Hamming scenario, the argument is similar.
Let E be a set of size exactly T . For a random selection of e ∈ E, m ∈ {0, 1}k and ρ ∈ R, we
have

Pr
e,m,ρ

[Decρ(Encρ(m) + e) = m] ≥ 1− ǫ .
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For ρ ∈ R, consider the set

Aρ =
{
(m, e) : Decρ(Encρ(m) + e) = m

}
.

For a random ρ, we have

E

[
#Aρ

2k · 2t
]
≥ 1− ǫ,

because the left-hand side is precisely the probability above. This implies that there must exist
a ρ ∈ R for which #Aρ ≥ (1− ǫ)2k+t. Fix such a ρ. Note that for no two pairs (m, e) in Aρ, the
value of Encρ(m) + e can be equal. Hence, 2n ≥ #Aρ. The statement of the theorem follows by
combining these 2 inequalities.

Remark 8. The argument in the above proof establishes a stronger assertion. Consider a Hamming
channel defined by a bipartite graph G, and assume that every left node has degree at most 2t

(note that the noise level is defined using the degree of right nodes). Let Enc be an encoding that
defeats this channel, i.e., Enc : {0, 1}k × R → {0, 1}n, and there exists Dec such that for every
m ∈ {0, 1}k , with probability 1 − ǫ of ρ ∈ R, for all neighbors x̃ of Enc(m,ρ), Dec(x̃, ρ) = m.
Then, the argument shows the same upper bound for the rate k/n, as the one in Theorem 4.1.
Thus, the upper bound holds not only for universal codes which have to defeat all Hamming
channels, but also for codes that defeat any single Hamming channel satisfying the above left
degree condition. This class of codes includes all channels in the oblivious scenario, because for
such channels the left degree and the right degrees are equal.

4.2 Lower bounds for the randomness of universal codes

We first note that there exist universal codes in which the encoder is randomized and the decoder
is deterministic, and, thus they do not share randomness. We provide a non-explicit construction
of such a code in Appendix A.5. This code does not achieve an optimal rate. In an upcoming
extended version of this paper, we show that for some choices of k in the oblivious scenario, any
universal code that is (ε, t)-resilient and has optimal rate must use shared randomness. In general
the trade-off between shared randomness and rate for universal codes is very intricate and for a
(lengthy) discussion we refer to the extended version.

Therefore, in what follows we restrict to private codes, i.e., to the model in which the universal
encoder and the channel-dependent decoders share randomness, and the encoder does not have
access to other types of randomness. We show lower bounds for the number of random bits in
both the Hamming and oblivious scenarios.4

We first show that for any private universal code in the oblivious scenario, the encoding
function must use at least Ω(log t) random bits, regardless of rate, where t is the noise level. The
universal code for the oblivious scenario in Theorem 1.5 has O(log n) random bits, and has optimal
rate in the asymptotical sense. Thus the number of random bits in Theorem 1.5 matches the lower
bound (up to the constant hidden in the O(·) notation), in the case of noise level t = Ω(n), which
is typical.

Theorem 4.2. If #M ≥ 2, ǫ < 1/2 and Enc: M × R → X is a private (t, ǫ)-resilient code in
the oblivious scenario, then #R > t, i.e., Enc requires more than log t random bits.

Proof. It is enough to prove the theorem for only 2 messages. Let M = {a, b} and R =
{1, 2, . . . ,D}. Consider the channel defined by the set E given by the span of the vectors

v1 = Enc1(a)− Enc1(b), . . . , vD = EncD(a)− EncD(b).

4In Appendix A.6, we discuss a different model, which is intermediate between oblivious and Hamming.
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Thus, E has size at most 2D. We need to select m ∈ M and e ∈ E such that the probability
in (1) is at most 1/2. In the requirement (1), the only relevant values of Dec are vectors of the
form

Encρ(a) + c1v1 + · · ·+ cDvD,

with ρ ∈ R and c ∈ {0, 1}D . Select ρ and c randomly and consider the value of Decρ on the above
vector, which is a value in M. Note that if we used message b instead of a in the expression above,
then the probabilities with which the messages appear do not change (since this corresponds to
flipping all bits of c). Assume that the value b appears with probability at least 1/2. If this is not
the case, we flip the roles of a and b in the expression above and the explanations below. There
exists a choice of c ∈ {0, 1}D such that for at least half of the values ρ ∈ R, the value of Decρ for
the above vector is equal to b. Let e = c1v1 + · · · + cDvD ∈ E be the corresponding vector. For
m = a, the probability in (1) is at most 1/2. Hence, for ε < 1/2 the inequality is false, and this
implies that if D ≤ t equation (1) can not be satisfied.

We prove a similar result for the Hamming scenario.

Theorem 4.3. If #M ≥ 2, 2t ≤ #X , ǫ < 1/3 and Enc: M×R → X is a private (t, ǫ)-resilient
code in the Hamming scenario, then #R > 22t−2, i.e., Enc requires more than 2t−2 random bits.

Again, it is enough to prove the statement for two messages. Let M = {a, b} and R =
{1, 2, . . . ,D}. Thus, we are given a universal code Enc : M × [D] → [N ] for some arbitrary N
and the code is resilient in the Hamming scenario up to distortion 2T with probability ǫ, where
T = 2t−1. This means that for every bipartite graph with N left nodes and N right nodes, with
degree of every right node ≤ 2T , the event (when ρ is chosen at random in [D])

Enc(a, ρ) and Enc(b, ρ) have a common neighbor. (*)

has probability at most ǫ. We show in the next lemma that if ε < 1/3, then D > T 2, from which
the conclusion follows

Lemma 4.4. For every encoding function Enc: {a, b}× [T 2] → [N ], there exists a bipartite graph
of the above type such that the event in (*) has probability at least ε ≥ 1/3.

Proof. We construct a bipartite graph with the set of left nodes and right nodes both equal to [N ],
and with left and right degrees at most 2T (thus the lower bound is valid even for channels where
the left degree is also bounded by 2T ). Consider the matrix obtained by setting the (x, y)-th
entry equal to the number of random strings ρ for which Enc(a, ρ) = x and Enc(b, ρ) = y. Since
there are T 2 strings ρ, the sum of all entries of this matrix is T 2 as well.

The weight of a column is the sum of all its entries. Similarly for the weight of a row. A
column is heavy if its weight is ≥ T and a heavy row is defined in the same way. Note that there
are at most T heavy rows and at most T heavy columns. We consider 3 cases:

• The set of heavy columns have total weight at least T 2/3.

• The set of heavy rows have total weight at least T 2/3.

• None of the conditions above are true.

In the last case the construction is easy. We set all entries of heavy columns and rows equal to
zero. The remaining matrix has weight at least T 2/3, and all its rows and columns have weight
less than T (because they are not heavy).

We define the bipartite graph in which a left node x is connected to a right node y if x = y or
the (x, y) entry of the matrix is positive.
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Since the matrix contains nonnegative integers, every column has less than T positive entries,
and hence every left node has degree at most T . By a symmetric argument with rows, we conclude
that also the right degrees are at most T .

We prove that the event (*) has probability at least 1/3. Indeed, select ρ randomly, and let
x = Enc(a, ρ) and y = Enc(b, ρ). With probability at least 1/3 the entry (x, y) is positive, and
this implies that x is a neighbor of both x and y. In the last case the lemma is satisfied.

Note that the first and second case are symmetric after flipping the first and second message
in Enc. Hence, it remains to prove the claim for the second case. In the matrix, we set all rows
that have weight less than T equal to zero. The assumption states that the remaining matrix has
weight at least T 2/3.

The idea to prove (*), is to consider a set of T values y, which we call pointers. We connect
each heavy row to every pointer. Each nonzero column will be connected to a single pointer as
well. Since there are at most T 2 nonzero columns, we can indeed satisfy the degree bound using
at most T pointers. Finally, choose Ch(y) to be this pointer for each nonzero column y. Now the
inequality fails for m = 2, since with probability 1/3, we have that Enc(a, ρ) is a heavy row and
that Enc(b, ρ) is a nonzero column. Hence, they are both connected to the pointer Ch(Enc(b, ρ)).
Now the details.

By the assumption N ≥ 2T and taking into account that there are at most T heavy rows, we
can select T rows containing only zeros. The T choosen rows are called pointers. We assign to
each nonzero column a pointer so that no pointer is assigned to more than T columns. Note that
there are at most T 2 nonzero columns and T pointers, and thus this assignment is possible.

The bipartite graph connects a left node x to a right node y

• if x is a heavy row and y is a pointer, or

• if x is a nonzero column and y is its associated pointer.

The conditions on the degree are satisfied, because every left node is only connected to pointers,
and there are at most T of them. Every right node y has degree at most 2T , because we only need
to check this for pointers y, and they are connected to T heavy rows and to at most T nonzero
associated columns.

Finally, we need to prove that the event (*) has probability at least 1/3. For each nonzero
column y, let Ch(y) be the associated pointer, and so also a neighbor of y. With probability 1/3
for a random ρ, the value of Enc(a, ρ) will be a heavy row and Enc(b, ρ) a nonzero column. This
means that Ch(Enc(b, ρ)) is a pointer, and hence connected to all heavy rows, thus in particular it
is also a neighbor of Enc(a, ρ). Thus, the event in (*) happens with probability at least 1/3.

5 Final comments

In our main results, Theorem 1.4, Theorem 1.5, and Theorem 1.6, the encoding function is com-
putable in time polynomial in n, but the channel-dependent decoding functions are not efficiently
computable (except for the special cases that have been mentioned). This is to be expected given
the strong universality property of the code. We have shown that for memoryless oblivious chan-
nels, and also for piecewise Hamming channels, there are universal codes with polynomial-time
encoding and decoding (Theorem 2.11 and Theorem 3.4). It would be interesting to find other
classes of channels that admit efficient universal codes. It seems natural to consider codes that
are resilient to channels that compute the distortion using algorithms with low computational
complexity. We have in mind channels that are similar to the computational channels proposed
by Lipton [Lip94], but which are more general because the distortion is bounded using our general
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setting for the Hamming scenario or the oblivious scenario, not by the Hamming weight of the
error vector as in [Lip94]. Obtaining codes that are resilient to all channels with general distortion
capabilities, that are computable by algorithms in a given complexity class (say, LOGSPACE, or
NC1, or finite automata) and that have efficient encoding and decoding would be very interesting
even if they have non-optimal rate.
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A Appendix

A.1 Proofs of Theorem 2.11 and Theorem 3.4

Proof of Theorem 2.11. The construction uses the Justesen concatenation scheme, which
combines an outer code, with several inner codes. First the message written with symbols from
the alphabet Fk

2 (for some integer k) is mapped by the encoder of the outer code into a codeword
over the same alphabet, and next each symbol of the codeword is mapped using the encoder of
one the inner codes.

The outer code: Following Cheraghchi [Che09], we use the linear time encodable/decodable
code constructed by Spielman [Spi96] as the outer code.

Theorem A.1 ( [Spi96]). For every constant α < 1 and every positive integer k, there exist a
constant βSpielman > 0 and an explicit family of codes (CS)S∈N over the alphabet Fk

2, such that CS

encodes messages of length S, has rate 1 − α, and is error correcting for a fraction βSpielman of
errors.The encoder and the decoder run in time that is linear in the bit-length of the codewords.

More explicly, for every S ∈ N, the encoder of CS maps (Fk
2)

S into (Fk
2)

D, with S/D ≥ 1− α,
and for every codeword x ∈ (Fk

2)
D, and every x̃ such that that the relative Hamming distance

between x and x̃ is βSpielman, the decoder on input x̃ returns the message encoded as x. The
encoder and the decoder run in time O(kD).

The inner codes: The inner codes are obtained from the universal code from Proposition 2.1.
Recall that the encoder of this code is a function Enc(m,H), whereH is a random (t+log(1/ǫ))×n
matrix H with elements in F2. For k = n− (t+log(1/ǫ), the encoder maps a k-bit message m into
an n-bit codeword, which is them-th element of the null space ofH (using some canonical ordering
of the elements in the null space). The value of ǫ will be picked later. Let d = n(t + log(1/ǫ)).
We use, as inner codes, D = 2d codes EncH1

,EncH2
, . . . ,EncHD

, which are obtained from Enc
in Proposition 2.1, by fixing the randomness to every d-bits string, i.e., for each H ∈ {0, 1}d,
EncH(·) def.

= Enc(·,H). Each inner code maps a k-bit string, viewed in the natural way as an
element of Fk

2 into an n-bit string, which similarly is viewed in the natural way as an element of
F
n
2 .
Equipped with the outer code and the inner codes, we construct a new encoder E as follows.
Concatenation scheme: First, the S-symbol input message (m1, . . . ,mS) is encoded with the

outer code into a D-symbol word (c1, . . . , cD). Next, each ci is encoded with the inner code Encρi .

(m1, . . . ,mS)y outer code encoding; each mi and ci is k-bits long

(c1, . . . , cD)y inner codes encoding

(Encρ1(c1), . . . ,EncρD(cD))

Thus E maps binary strings of length k · S into codewords that are binary strings of length
n ·D.

Consider now a D-memoryless channel Ch in the oblivious scenario adjusted def for the obliv-
ious scenario that has distortion bounded by t. Recall that this means that:

1. there is a set E ⊆ F
n
2 of size T = 2t, and

2. Ch takes as input a D-tuple (x1, . . . , xD) ∈ (Fn
2 )

D , and outputs (y1, . . . , yD), where each
yi = xi + ei, for ei chosen uniformly at random in E, independently of the other choices.
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Suppose the sender encodes the message (m1, . . . ,mS) into the codeword (x1, . . . , xD) (where
each xi ∈ F

n
2 ) and the channel distorts it into (y1, . . . , yD).

(m1, . . . ,mS)y encoding with the concatenated outer/inner code

(x1, . . . , xD)y channel distortion; yi = xi + ei, for ei randomly chosen in E

(y1, . . . , yD)

Henceforth, we consider that (x1, . . . , xD) is fixed, and (y1, . . . , yD) is a random variable de-
pending on the randomness of the channel. The decoder of the concatenated code, first calls the
decoders of the D inner codes respectively on each component of (y1, . . . , yD), which return the
word (z1, . . . , zD), and next calls the decoder of the outer code on this latter word. We show that
with high probability, this procedure reconstructs (m1, . . . ,mS).

For each e ∈ E, we say that the matrix H is good for e if He1 6= He for all e1 ∈ E − {e}.
In the proof of Proposition 2.1, it is shown that if H is good for e, then the decoder on input
x+ e reconstructs x and that for each e ∈ E, at least a fraction of (1 − ǫ) of H’s are good for e.
By a standard averaging argument, it follows that there is a set (of “good” matrices) GOODrand

containing (1 − √
ǫ) fraction of H’s in {0, 1}d and a set (of “good” noise vectors) GOODnoise

containing (1 − √
ǫ) fraction of e’s in E, such that every H in GOODrand is good for every e

in GOODnoise. By rearranging the tuple (y1, . . . , yD), we can assume that the first (1 − √
ǫ)D

components correspond to the “good” matrices. On every i in this segment of “good” components,
if ei = yi − xi is a “good” noise vector, the inner decoder on input yi correctly reconstructs xi.
Note that the probability (over the randomness of the channel) that ei is a “good” noise vector
is at least 1−√

ǫ.
Let µ be the expected number of components of (y1, . . . , yD) on which the inner decoders are

incorrect. Note that
µ ≤

√
ǫ ·D + (1−

√
ǫ) ·D ·

√
ǫ.

In the sum above, the first term corresponds to the errors made by the inner decoders in the bad
segment and the second term corresponds to the errors made by decoders in the good segment for

which the channel is choosing a bad e. Thus, µ < µH , where µH
def.
= 2

√
ǫ ·D. We take γ =

√
ǫ ·D.

Pr[# errors ≥ 3
√
ǫ ·D] = Pr[# errors ≥ µH + γ] ≤ e−2γ2/D = e−2ǫ·D.

We have used a form of the Chernoff bounds 5 for the case when we know an upperbound of the
expected value (see Exercise 1.1 (a) in [DP09])

Take ǫ such that 3
√
ǫ ≤ βSpielman. Then, with probability at least 1−e−2ǫ·D, the inner decoders

are correct on all except at most βSpielman fraction of positions. In such a case, the outer decoder
is able to reconstruct the codeword (x1, . . . , xD) and then the message that is encoded into this
codeword.

We now evaluate the runtime of the encoder and the decoder. The encoder calls first the
encoder of the outer code, which takes time O(nD), and then calls the encoders of the D inner
codes, each one running O(n2) steps (by Remark 3). Thus, the total time for encoding is O(n2D),
which is quasi-linear in nD (the bit-length of a codeword). The decoder first calls the D inner

5Let X =
∑D

i=1
Xi, where Xi, i ∈ {1, D} are independently distributed in [0, 1]. Let µH ≥ µ, where µ is the

expected value of X. Then for every γ > 0, Pr[X ≥ µH + γ] < e−2γ2/D.
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deccoders, and each one runs in time O(Tn2), so this step takes O(DTn2), which is O((nD)2)
because T = O(D). Next, it calls the decoder of the outer code, which runs in time O(nD). So
the total time is less than O((Dn)2), so quadratic in the bit-length of a codeword.

Proof of Theorem 3.4. We use again a concatenation scheme with an outer code and an
innner code. The outer code is Spielman’s error correcting code [Spi96], presented in Theorem A.1.
The inner code is the code from Theorem 1.4. Its encoder Encρ(m) maps a k-bit message m into
an n-bit codeword, and ρ represents the random string used for both encoding and decoding (we
recall that we are in the shared randomness setting). The outer code works with strings having
symbols from the alphabet Σk. The encoder of E first calls the encoder of the outer code, which
maps an S-symbol message (m1, . . . ,mS) into a D-symbol codeword (c1, . . . , cD). Next, each
ci is encoded with the inner code Encρi . The encoder and the decoder of E share randomness
ρ = (ρ1, . . . , ρD).

(m1, . . . ,mS)y outer code encoding; each mi and ci is k-bits long

(c1, . . . , cD)y inner code encoding using randomness ρ = (ρ1, . . . , ρD)

(Encρ1(c1), . . . ,EncρD(cD))

Thus, the encoder of E maps a kS-bit string into an nD-bit string, and consequently has rate
(kS)/(nD) = (S/D) · (k/n) ≥ (1− α) · (1− t/n− o(1)).

Suppose a piecewise Hamming channel with graph G = G1 × . . . × GD distorts (x1, . . . , xD)
into (y1, . . . , yD).

(x1, . . . , xD)y channel distortion; yi is a neighbor of xi in Gi, chosen adversarially

(y1, . . . , yD)

We now describe the decoder of E corresponding to G. It first calls DecGi,ρi on yi (the
decoder corresponding to the Hamming channel with graph Gi, and using randomess ρi), for all
i ∈ {1, . . . ,D}. With probability (1 − ǫ), DecGi,ρi(yi) correctly returns xi. Thus the expected
number of errors (from all inner decoders) is bounded by ǫ · D. It follows that the probability
that the number of errors is larger than 2ǫ ·D is at most e−2ǫ2D (by Chernoff bounds). We choose
ǫ so that 2ǫ ≤ βSpielman. It follows that with probability 1 − e−2ǫ2D, the fraction of errors made
by the inner decoders is smaller than the fraction of errors that can be corrected by Spielman’s
code. Therefore the decoding procedure of Spielman’s code returns the correct message with high
probability.

We next evaluate the runtime of the encoder and the decoder of E . The encoder calls the
encoder of the outer code, which runs for O(nD) steps. Next, it calls D-times the inner encoder,
and each one runs in O(n) sterps. Thus the total time is O(nD), that is the encoder runs in linear
time in the bit-length of the codeword. The decoder calls the D inner decoders, and each one
runs in 2n ·n steps. Then it calls the decoder of the outer code, which runs in O(nD). Therefore,
taking into account that D = 2n, the decoder runs in time O((nD)2), that is in quadratic time in
the bit-length of the codeword.
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A.2 The condenser from Theorem 2.8 is linear

We observe that a very minor modification of the condenser constructed by Guruswami, Umans,
and Vadhan in [GUV09, Theorem 4.3, also Theorem 1.7] converts it into a linear condenser. A
similar, but more general modification (because it works for finite fields of arbitrary characteristic,
while our version is for characteristic 2) has been made by Cheraghchi and Indyk [CI17].

The condenser C(f, y) from [GUV09] is viewing the first argument as a polynomial f ∈ Fq

of degree at most n − 1, where q = 2t, so Fq is a field of characteristic 2. More precisely if
f(Z) = f0 + f1Z + . . . + fn−1Z

n−1, then the first argument of the condenser is (f0, . . . , fn−1),
which is represented as a binary string of length nt. The second argument y is an element of Fq,
thus a binary string of length t. The condenser is also using E[Z], an irreducible polynomial of
degree n over Fq, and a parameter h which can be taken to be a power of 2. (Note: Requiring h
to be a power of 2 is the only modification from the version in [GUV09].)

The condenser is defined as

C(f, y) = [y, f(y), (fh mod E)(y), (fh2

mod E)(y), . . . , (fhm−1

mod E)(y)]. (8)

We need to show that each (fhi
(Z) mod E(Z))(y) is linear in f .

Let us fix y ∈ Fq and consider (for some aribitrary i) Ay : (F2)
nt → (F2)

t, defined by

Ay(f) = [fhi
(Z) mod E(Z)](y) = [(f0 + f1Z + . . .+ fn−1Z

n−1)h
i
mod E(Z)](y)

It is known that if a and b are elements of a field of characteristic p and h is a power of p,

(a+ b)h
i
= ah

i
+ bh

i

In our case, the coefficients of the polynomials belong to Fq, which has characteristic 2, and hi is
a power of 2. Therefore,

Ay(f + g) =
[
(f + g)h

i
(Z) mod E(Z)

]
(y)

=
[(
(f0 + g0) + (f1 + g1)Z + . . . + (fn−1 + gn−1)Z

n−1
)hi

mod E(Z)
]
(y)

=
[(
(f0 + g0)

hi
+ (f1 + g1)

hi
Zhi

+ . . .+ (fn−1 + gn−1

)hi

Z(n−1)hi
) mod E(Z)

]
(y)

=
[(
fhi

0 + fhi

1 Zhi
+ . . . + fhi

n−1Z
(n−1)hi)

mod E(Z)
]
(y)

+
[(
gh

i

0 + gh
i

1 Zhi
+ . . .+ gh

i

n−1Z
(n−1)hi)

mod E(Z)
]
(y)

=
[(
f0 + f1Z + . . .+ fn−1Z

n−1
)hi

mod E(Z)
]
(y)

+
[(
g0 + g1Z + . . . + gn−1Z

n−1
)hi

mod E(Z)
]
(y)

= Ay(f) +Ay(g).

Thus, each component of C(f, y) from the equation (8) is linear and therefore for each y there
exists a mt-by-nt matrix Hy with entries in F2 such that C(f, y) = Hyf .
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A.3 The condenser from Theorem 2.7 is linear.

The condenser constructed by Ta-Shma and Umans has a structure similar to the condenser
from [GUV09]. The first argument is denoted f and the second argument (the “seed”) is a pair
(x, y). They use a parameter h which is a power of a prime number p.

The first argument is a polynomial of two variables of the form

f(X,Y ) =
∑

i=0,...,n−1,j=0,1

αi,jX
iY j , (9)

where the coefficients are in Fh, the fields with h elements, multiplications in Y are modulo
an irreducible polynomial P (Y ) of degree 2 (formally, Y is an element of Fh[X]/P (X)) with
coefficients in Fh, and the multiplications in X are done modulo an irreducible polynomial E(X)
with coefficients in Fq = Fh[Y ]/p(Y ) (formally, X is an element of Fq[X]/E(X)).

The second argument consists of x ∈ Fq and y ∈ Fh. The condenser is defined by

C(f, (x, y)) = (C0(f)(x, y), . . . , Cm−1(f)(x, y)),

where each component consists of a polynomial Ci(f) with variables X and Y evaluated at X = x
and Y = y. The polynomial Ci(f) has the form

α0f + α1f
h + . . .+ αm−1f

hm−1

.

For any two polynomials f1, f2 of the form (9) and for all ℓ, we have (f1 + f2)
hℓ

= fhℓ

1 + fhℓ

2 ,
because the polynomials have coefficients in a field with characteristic p and hℓ is a power of
the same prime number p, and therefore we can use the same argument as in Section A.2. This
implies that C(f1 + f2, (x, y)) = C(f1, (x, y)) + C(f2, (x, y)).

A.4 The condenser from Theorem 2.10 is linear.

The condenser CRRV : {0, 1}n × {0, 1}d → {0, 1}m from [RRV02] (which is actually an extractor)
views the first argument x as the specification of a function ux(·, ·) of two variables (in a way that
we present below), defines some functions g1(y), h1(y), . . . , gm(y), hm(y) (where y is the second
argument), each one computable in time polynomial in n, and then sets

CRRV(x, y) = ux(g1(y), h1(y)), . . . , ux(gm(y), hm(y)), (10)

i.e., the i-th bit is ux(gi(y), hi(y)). Thus, it is enough to check that fv,w(x) = ux(v,w) is linear
in x. Let us now describe ux. The characteristic sequence of ux is the Reed-Solomon code of x.
More precisely, for some s, x is viewed as a polynomial px over the field F2s . The elements of
F2s are viewed as s-dimensional vectors over F2 in the natural way. Note that in this view the
evaluation of px at point v is a linear transformation of x, i.e., px(v) = Bvx for some s-by-n matrix
Bv with entries from F2. Finally, ux(v,w) is defined as the inner product w · px(v) and therefore
ux(v,w) = (wBv)x, and thus it is a linear function in x. Now we plug hi(y) as w and gi(y) as v,
and we build the matrix Ay, by taking its i-th row to be hi(y)Bgi(y). Using the Equation (10),
we obtain that CRRV(x, y) = Ay · x.

A.5 On universal codes without shared random bits

There exists a code that is (t, ǫ)-resilient in the oblivious scenario with rate 1 − 2t/n − o(1) and
does not use shared randomness. The encoding function uses a large amount of randomness, but
it is not shared with the decoder. Unfortunately, the code is not explicit.
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Theorem A.2. There exists an encoding function Enc: M×R → X with n ≤ 2t+k+O(log(tk/ǫ))
that is (t, ε)-resilient in the oblivious scenario without shared randomness, where n = log#X and
k = log#M.

A similar result can be shown for the Hamming scenario, but in this case the rate is: 1
2 − t

n −o(1).

Proof. We show that a random code satisfies the properties. First we define some parameters for
later reference. Let T = 2t and M = #M (which equals 2k). Let N be such that

N = 2RMT/ǫ, with R = 6
ε (log(MT ) + T logN).

For each ρ ∈ R and m ∈ M, select Encρ(m) randomly in X . We show that for all sets E of
size T , all m ∈ M and all e ∈ E, we have

# (EncR(m) + e) ∩ (EncR(M\ {m}) + E) ≤ ǫR, (11)

where for M′ ⊆ M,

EncR(M′) + E =
{
Encρ′(m

′) + e′ : ρ′ ∈ R,m′ ∈ M′, e′ ∈ E
}

and similar for EncR(m) + e. This implies that given a set E, we obtain a decoding function Dec
that satisfies (1) using a greedy search, i.e., Dec(x̃) is the first message m that appears in a search
for triples (ρ,m, e) that satisfy Encρ(m)+ e = x. It remains to prove that a random function Enc
satisfies this property.

Fix some E,m, e in the condition (1). Assume we have already randomly selected EncR(m
′)

for all m′ 6= m, and we will now select Encρ(m) for all ρ ∈ R. The probability that a random
x ∈ X belongs to B := EncR(M \ {m}) + E is at most MT/N . This is bounded by ǫ/(2R) by
choice of N . Therefore, if we choose R many such elements x at random, the expected number
of them that fall in B is at most ǫ/2. The probability that more than ǫR elements are in B is at
most

exp(−ǫR/6)

by the Chernoff bound in multiplicative form. The probability that this happens for some set E
of size T , some element m ∈ M and some e ∈ E, is at most

NT ·M · T · exp(−ǫR/6)

by the union bound. By the choice of R, this is less than 1. Hence, with positive probability the
conditions are satisfied, and in particular the encoding function exists.

A.6 The additive Hamming scenario: intermediate resilience between the

oblivious and the Hamming scenarios

In the oblivious scenario, a universal code is resilient to channels that do not have access to the
transmitted codeword x and that corrupt it by adding a noise vector e from a fixed set E. In the
Hamming scenario, a universal code is resilient to channels that have access to the transmitted
codeword x and that corrupt it by adding a noise vector e which depends on x (because e = x+ x̃,
where x̃ is a neighbor of x in the bipartite graph). In this section we consider universal codes
that are resilient to an intermediate type of channels: they have access to x (like in the Hamming
scenario), but can only add e from a fixed set E (like in the oblivious scenario). In other words,
in the additive Hamming scenario we use the same definition of resilience applied to Hamming
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channels of the following special form. The bipartite graphs have left set X and right set X̃ = X ,
and the edges are given by ⋃

x∈X

{x} × ({x}+ E) ,

for some set E.

ρ

m Enc Ch Dec m
x x̃ = x+Ch(x)

Figure 3: The additive Hamming scenario: Ch(x) is chosen from a fixed set E of size 2t.

Definition A.3. Let X be an additive group. A private code Enc: M×R → X is (t, ǫ)-resilient
in the additive Hamming scenario if for every set E ⊆ X of size at most 2t, there exists a decoding
function Dec: X̃ × R → M such that for all channel functions Ch: X → E and all m ∈ M

Pr
ρ∈R

[Decρ(Encρ(m) + Ch(Encρ(m))) = m] ≥ 1− ǫ.

Recall that there exists a (t, ǫ) universal code in the oblivious scenario with rate 1− t/n−o(1)
that uses O(log n) random bits, and a (t, ǫ) universal code in the Hamming scenario with rate
1 − t/n − o(1) that uses 2n random bits. The question is how many random bits are needed for
a universal code in the additive Hamming scenario to achieve the same rate.

We show that there is a universal code in the additive Hamming scenario that uses n+O(log n)
random bits. This universal code is obtained from the following general result that shows that a
code for the oblivious scenario can be transformed into a code for the additive Hamming scenario
at the cost of using more shared randomness.

Proposition A.4. If there exists a (t, ǫ)-resilient code Enc: M×R → X in the oblivious scenario,
then there exists a (t, ǫ)-resilient code Enc′ : M×R′ → X in the additive Hamming scenario with
R′ = R×X .

The encoding function Enc′ is obtained by adding a random element from X to Enc. In this
way, for each fixed message m ∈ M, the distribution of added elements by the channel function
does not depend on the encoding function, and this allows us to apply the oblivious scenario. We
present the details.

Proof. By definition of (t, ǫ)-resilience in the oblivious scenario, we have that for all m and e ∈ E:

Pr
ρ
[Decρ(Encρ(m) + e) = m] ≥ 1− ǫ (∗)

The new encoding Enc′ evaluates Enc and adds a random z ∈ X , where ρ′ = (ρ, z). Thus
Enc′ρ′(m) = Encρ(m) + z. The new decoding Dec′ function subtracts z and evaluates Dec, thus
Dec′ρ′(x̃) = Decρ(x̃− z).

We now verify the requirement in Definition A.3 with ρ′ = (ρ, z). Let Ch be a channel function
and let m ∈ M. Note that since Enc′ adds z at the end of its evaluation, and Dec′ starts by
subtracting z, the variable z only appears in this condition through the channel function in the
term

Ch(Encρ(m) + z).
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Since ρ and z are independent, the value of Encρ(m) + z is uniform in X and independent of ρ.
Hence, we could replace the above quantity by Ch(z). Let ξ = Ch(z) be this random variable,
which has values in E. The condition of definition A.3 can now be written as

Pr
ρ,ξ

[Decρ(Encρ(m) + ξ) = m] ≥ 1− ǫ

This is a convex combination of (∗) for various e ∈ E, and hence the inequality holds.

Thus, a resilient code in the oblivious scenario for X = {0, 1}n that uses r bits of shared
randomness, can be transformed into a code for the additive Hamming scenario that has the same
rate and uses n + r bits of randomness. In particular, there exist (t, ǫ)-resilient codes that use
d = n+O(log n) randomness by Theorem 1.5. This is better than the value 2n in Theorem 1.4 for
general Hamming channel, but is far from the O(log n) value achieved by the universal code for
the oblivious scenario from Theorem 1.5. In the next theorem, we provide a lower bound, which
shows that the number of random bits has to be Ω(n) for values k, t = Ω(n) (which are typical in
most applications).

Theorem A.5. Let ǫ < 1. If a code Enc: {0, 1}k × {0, 1}d → {0, 1}n is (t, ǫ)-resilient in the
additive Hamming scenario, then d ≥ min{k, t/2} −O(1).

Proof. Fix some encoding function Enc that uses d random bits, and assume

d ≤ min{k, t/2} − c

for some constant c. We show that for large c, the code Enc can not be (t, ǫ)-resilient. We use
the incompressibility method. Let C(x) denote the Kolmogorov complexity of a string x, which is
given by the minimal length of a program that outputs x. For this we need to fix a programming
language, and we choose a language that makes the complexity function minimal up to an O(1)
constant, see [SUV17, LV19] for more background. In our proof, we assume that the programs
have an extra input which is a description of the encoding function Enc, (but we omit this in the
notation). We also assume that t/2 ≤ k (otherwise, we just take in the arguments below t = 2k).

Let 0n be the string containing n zeros. Note that C(0n) ≤ O(1), because n is a parameter of
Enc, to which our programs have access. We consider a channel in the additive Hamming scenario
that for codewords of length n adds a noise vector e ∈ E = {u ∈ {0, 1}n |C(u) < t}. Note that E
has size smaller than 2t and, thus, this channel has distortion at most 2t.

Consider a message m with

t/2 ≤ C(m) ≤ t/2 +O(1).

Such a message exists, since the total number of messages is 2k and t/2 ≤ k. Note that for all
choices of randomness ρ ∈ {0, 1}d we have6

C(Encρ(m)) ≤ C(m) + length(ρ) +O(1) ≤ t− c+O(1) < t,

where the last inequality holds for a sufficiently large large c. Thus if we denote x = Encρ(m),
then x ∈ E, and the channel can add the noise vector x to x obtaining x̃ = x+ x = 0n. On the
other hand,

C(Decρ(0
n)) ≤ length(ρ) +O(1) ≤ t/2− c+O(1) < C(m)

Thus, for large c and for all ρ, we have Decρ(0
n) 6= m.

In other words, Decρ(Encρ(m) + Ch(Encρ(m))) 6= m for all ρ, thus Enc is not (t, ǫ)-resilient
for ε < 1.

6We prove this by concatenating ρ to a program for m. From this concatenation we can always retrieve back
the splitting point, since ρ has length d, which is a parameter of Enc.
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