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Abstract—Flow velocity is an important characteristic of
the fluidic mediums. In this paper, we introduce a molec-
ular based flow velocity meter consisting of a molecule
releasing node and a receiver that counts these molecules.
We consider both flow velocity detection and estimation
problems, which are employed in different applications.
For the flow velocity detection, we obtain the maximum
a posteriori (MAP) decision rule. To analyze the perfor-
mance of the proposed flow velocity detector, we obtain the
error probability, its Gaussian approximation and Cher-
noff information (CI) upper bound, and investigate the
optimum and sub-optimum sampling times accordingly.
We show that, for binary hypothesis, the sub-optimum
sampling times using CI upper bound are the same.
Further, the sub-optimum sampling times are close to the
optimum sampling times. For the flow velocity estimation,
we obtain the MAP and minimum mean square error
(MMSE) estimators. We consider the mean square error
(MSE) to investigate the error performance of the flow
velocity estimators and obtain the Bayesian Cramer-Rao
(BCR) and expected Cramer-Rao (ECR) lower bounds.
Further, we obtain the optimum sampling times for each
estimator. It is seen that the optimum sampling times for
each estimator are nearly the same. The proposed flow
velocity meter can be used to design a new modulation
technique in molecular communication (MC), where in-
formation is encoded in the flow velocity of the medium
instead of the concentration, type, or release time of the
molecules. The setup and performance analysis of the pro-
posed flow velocity detector and estimator for molecular
communication system need further investigation.

I. INTRODUCTION

Measuring medium flow velocity is an important prob-
lem with many applications; in molecular communica-
tion (MC) (for finding the channel state information), in
industry (for abnormality detection), or in health-care
(for measuring the blood flow velocity). The channel
state information (CSI) is needed at the receivers of
MC systems [1]. The parameters of the channel that
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specify the CSI in flow-assisted diffusion-based systems
include the distance between the transmitter and the
receiver, diffusion coefficient of the molecules, and the
flow velocity of the medium. There are multiple works
that consider distance estimation in MC, including [2]–
[6]. Joint estimation of the channel parameters is in-
vestigated in [7], and estimation of the channel impulse
response is considered in [1], [8]. However, to the best
of our knowledge, there is no work that specifically
considers either flow velocity estimation or detection in
MC. Regarding the application in industry, flow meters
are used in oil and gas industry for anomaly detec-
tion [9]. In healthcare, measuring blood flow velocity
is important for monitoring heart function [10]. The
classic flow meters are mechanical devices which have
certain applications based on the passing fluid, whose
velocity is intended to be measured [11]. One of the
important applications of flow meters is to measure the
flow velocity of the blood. As stated above, blood flow
velocity measurement is important in medical applica-
tions for monitoring heart function in order to diagnose
cardiovascular or other vascular diseases [10]. Some
traditional blood flow velocity measurement methods
are indicator method [12]–[14], finger plethysmography
[15], and electromagnetic based method [16]. In [12]–
[14], the blood flow velocity is measured by injecting
indicator molecules and using mass balance equation.
In [17], skin temperature measurement after receiving
acupuncture manipulations is used to measure the blood
flow velocity. In [15], the finger blood flow velocity is
measured using finger plethysmography. These methods
have low resolution. Methods with higher resolution,
based on the microfluidic technology, are ultrasonic
doppler method and laser doppler method [10].

In this paper, we use a molecular transmitter-receiver
setup to measure the medium flow velocity. The
molecules, which exist in the medium or released from
a molecular source, can provide significant information,
for instance, to design the molecular flow meter. Since
the medium flow velocity affects the concentration of the
received molecules, the flow velocity can be measured
by monitoring the concentration changes. To this end,
a molecular receiver can be employed to sense the
concentration of the received molecules, and measure
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the flow velocity. This resembles a MC structure where
a transmitter releases some molecules and a receiver
senses the concentration of these molecules. MC has
advantages in mediums that are more compatible with
bio or chemical molecules like the human body or envi-
ronmental applications. MC systems have been studied
from different aspects, e.g., system modeling [18]–[21]
capacity analysis [22]–[24], coding and modulation tech-
niques [21], [25]–[27], inter-symbol interference (ISI)
mitigation techniques [27]–[33], and channel estimation
[1], [7], [8]. The idea of sensing the concentration of
molecules to measure the flow velocity was also used
in the indicator method, which has been first introduced
in 1824 by Hering to measure the blood flow velocity.
In this method, some indicator molecules are injected
to the blood vessel and sampled from other part of the
vascular system. Then using the mass balance equation,
the mean value of the blood flow velocity is measured.
In other words, the mean flow velocity is measured as
the change in the fluid volume per unit time. When the
change in the concentration of the indicator molecules is
fixed, the mean flow velocity is written as the change in
the indicator quantity per unit time divided by the change
in the concentration of the indicator molecules. Hence,
in this method, the steady state behavior of the system is
considered. Further, the indicator method is just devoted
to blood flow velocity measurement and is studied in
physiology. In this paper, using a MC analysis setup, we
introduce a molecular flow meter, which can measure
the flow velocity in any fluidic medium with laminar
flow, i.e., Raynold number less than 2100 (Re < 2100).
Further, we assume that the movement of the molecules
is affected by both flow velocity and diffusion, and
none of them is fully dominated. Hence, we consider
the advection-diffusion equations to obtain the average
value of the received concentration. Then, we determine
the flow velocity by applying the conventional detection
or estimation methods. As an important application,
this flow velocity meter can be used to design a new
modulation method in MC, i.e., instead of encoding the
information on the properties of the released signal (con-
centration, type, or the release time of the molecules),
we can encode the information on the properties of the
medium specifically on the medium flow velocity, and at
the receiver, we can decode the information by detecting
the medium flow velocity. This modulation method can
have advantages on the prior methods in the sense of
simplicity of the transmitter.

The degrees of freedom in designing the proposed flow
meter include the sensing times of the molecular receiver,
which need to be optimized for better performance of
the flow meter. For performance investigation, different

metrics, such as the time it takes to detect a change in
the velocity, and the error probability of the flow meter
can be considered. The samples taken at the receiver
are statistically dependent in general, and obtaining the
optimum sampling times is a challenging work. Further,
the restrictions in some receivers, like Ligand receivers
which have memories, make the problem more challeng-
ing. We remark that the medium flow velocity that we
want to measure may be a random process, which either
exists in the medium or is intentionally generated for
communication purposes.

We consider both flow velocity detection and estima-
tion problems with different applications and assump-
tions. In some applications, like designing the flow-based
modulation in MC, which is described above, the flow
velocity can belong to a finite set with a cardinality equal
to the number of messages transmitted per channel use,
and we need to design a detector to obtain the flow
velocity, and hereby decode the message. In this case,
we assume M hypotheses for the velocity (M different
functions of time and location) and use hypotheses
testing methods, [34], to detect the function. In some
applications, like finding the channel state information
in MC, the medium flow velocity can take a real value
in general and we need to design an estimator to obtain
its value. In this case, we assume a constant flow velocity
(both in time and location), which is chosen from a
prior probability distribution function (PDF), and apply
estimation methods, [34], to obtain the flow velocity.
In this paper, we mostly focus on the flow velocity
detection, and at the end of the paper, we briefly consider
the flow velocity estimation.

The design of a general flow meter requires knowing
the exact statistics of the medium and the existing
molecules in the medium, i.e., how molecules are gen-
erated and propagated. To study the effect of certain
parameters on the performance of the flow meter, we
need to simplify the reality by adopting a simple model.
Hence, we make a few assumptions and study the effect
of sampling time on the performance of the flow meter.
We assume that the source of molecules is a node that
releases some fixed molecules in some specific time
instances, and the receiver is a transparent receiver, [35],
with a sampling decoder, i.e., we assume that the receiver
has a volume that counts the number of molecules inside
its volume at some time instances. We consider an L-
sample receiver and further assume that the samples at
the receiver are statistically independent, which can be
achieved if the samples are taken with some time apart.
Also, we assume that there is no boundary condition
on the medium, since obtaining the channel impulse
response of the medium with time variant flow is a
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challenging work in presence of boundary conditions in
the medium. Our main contributions are as follows:

• We design a molecular flow velocity meter, count-
ing the number of arrived molecules affected by
the flow of the medium. Our setup consists of a
molecule releasing node and a receiver that samples
the number of counted molecules.

• For the molecular flow velocity detecter:
– We obtain the maximum-a-posteriori (MAP) deci-
sion rule and for the one-sample decoder, we obtain
the optimum threshold.
– We consider the performance analysis of the
proposed detector. For this purpose, we derive the
error probability, its Gaussian approximation, and
Chernoff information (CI) upper bound on the error
probability.
– We obtain the optimum and sub-optimum sam-
pling times by minimizing the error probability, its
Gaussian approximation, and the CI upper bound.
For M = 2, it is seen that the sub-optimum
sampling times using CI upper bound are equal. For
M > 2, when the number of samples, L → ∞, it
is seen that the sub-optimum sampling times yield
to
(
M
2

)
times with

(
M
2

)
weights.

• For the molecular flow velocity estimator:
– We obtain the MAP estimator and for the one-
sample receiver, we obtain a closed-form estimator.
– We obtain the minimum mean square error
(MMSE) estimator and further simplify the equa-
tions for the linear MMSE (LMMSE) estimator.
– We investigate the mean square error (MSE) of the
above estimators. Further, we obtain the Bayesian
and expected Cramer-Rao lower bounds on the
MSE.
– We obtain the optimum sampling times that
minimize the MSE. When L → ∞, it can be seen
that the sampling times for the MAP estimator yield
to two times with two weights.

The structure of the paper is as follows: In Section
II, we describe the proposed molecular flow velocity
detector/estimator setup. In Section III, we consider the
flow velocity detector and obtain the MAP decision
rule, and derive its performance. Further, we obtain the
optimum and sub-optimum sampling times. In Section
IV, we consider the flow velocity estimator and obtain
the MAP estimator. Then, we obtain the estimation
error and the optimum sampling times. The numerical
results are given in Section V. Finally, in Section VI we
conclude the paper.

Notation: Throughout the paper, vectors are shown
with bold letters and their magnitudes, i.e., norm 2 of

Fig. 1: The system model of the flow velocity meter

the vectors, are shown with non-bold letters.

II. MOLECULAR FLOW METER

We propose a molecular flow velocity meter to
measure the medium flow velocity in a flow-assisted
diffusion-based system. To do this, we assume that there
is a node at the origin, which releases some constant
number of molecules in some time instances, and there
is a molecular receiver in point r0, which receives
these molecules and computes the medium flow velocity.
Hence, r0 is a vector which connects the releasing
node to the receiver. We note the direction of this
connecting line with d and its value with r0. Hence,
r0 = r0d (see Fig. 1). The releasing node may have
different behaviors. Assume g(r, t) be the concentration
of released molecules at point r and in time t. In the
following, we mention some of the possibilities of the
releasing node:

i) Burst releasing: a burst of molecules, noted by ζ, is
released at time instance t = tr. For this releasing node
we have g(r, t) = ζδ(t− tr)δ(r).

ii) Pulse releasing: the molecules with rate γ are
constantly released starting at t = tr. For this releasing
node we have g(r, t) = γδ(r)u(t− tr).

In this paper, we assume the burst releasing node.
Channel model: In the flow-assisted diffusion-based

system, the movement of molecules is affected by both
flow velocity and diffusion. Hence, the concentration of
molecules at point r and in time t, noted by c(r, t), in a
medium with flow velocity v(r, t) satisfies the following
advection-diffusion equation:
∂

∂t
c(r, t) +∇.(v(r, t)c(r, t)) = D∇2c(r, t) + g(r, t),

(1)
where D is the diffusion coefficient of molecules. When
the medium flow is location invariant, i.e., v(r, t) =
v(t) (which means that the flow velocity is the same in
every point of the medium and the change in the flow
velocity of one point propagates to other points quickly),
the advection-diffusion equation in (1), reduces to:
∂

∂t
c(r, t) + v(t).∇c(r, t) = D∇2c(r, t) + g(r, t). (2)

Reception model: We assume that the receiver is
modeled by a sphere in 3-D with volume VR (radius
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rR) and consider a transparent receiver, i.e., the receiver
can perfectly count all molecules that fall into its volume.
nDenoting the mean number of received molecules in the
l-th sample as Λl, the number of molecules counted by
the receiver (noted by Yl) follows a Poisson distribution
with parameter Λl, i.e., Yl ∼ Poiss(Λl) [35]. If the radius
of the receiver is sufficiently small compared to the
distance between the transmitter and the receiver, c(r, t)
can be assumed uniform inside the receiver volume and
Λl can be approximated using the concentration of the
received molecules at the origin of the receiver volume as
Λl ≈ VRc(r0, tl) [7], [36]. For simplicity of analysis, we
assume that the observations Y1, ..., YL are independent.
This assumption can be made if the samples are taken
with some time apart, i.e., the sampling times have
sufficient distance from each other [37].

The impulse response of this system, h(r, t), is
defined as the concentration of molecules at point r
and in time t, which is the solution of (2), for input
g(r, t) = δ(r)δ(t − tr). The channel impulse response
when the medium flow velocity is location invariant (i.e.,
v(r, t) = v(t)) is obtained in [38] using Ito’s calculus
for the mean location of molecules, i.e., if m(t) is the
mean location of molecules, using Ito’s calculus we have
m(t) =

∫ t
tr
v(τ)dτ . Hence, for 3-D diffusion,

h(r, t) =
1[t > tr]

(4πD(t− tr))3/2
exp(−||r −m(t)||2

4D(t− tr)
).

The impulse response of the channel with time variant
flow velocity can be written using the impulse response
of the channel without flow velocity, noted by h0(r, t),
as follows:

h(r, t) = h0(r −
∫ t

tr

v(τ)dτ, t), (3)

where

h0(r, t) =
1[t > tr]

(4πD(t− tr))3/2
exp(− ||r||2

4D(t− tr)
). (4)

Now, using the channel impulse response we obtain
Λl. Assuming the burst releasing node, we have c(r, t) =
ζh(r, t) and hence, Λl = VRc(r0, tl) = ζVRh(r0, tl).
Thus, according to (3), we obtain

Λl = ζVRh0

(
r0 −

∫ tl

tr

v(τ)dτ, tl
)
. (5)

III. FLOW VELOCITY DETECTOR

Consider M hypotheses H0, H1, ...,HM−1 corre-
sponding to the flow velocities v0(r, t), v1(r, t), ...,
vM−1(r, t). We let I = {0, ...,M − 1} and denote
the mean number of counted molecules at the receiver
in sampling time tl for the hypothesis Hi as λi,l, i ∈

I, l = 1, ..., L. For the location invariant flow veloc-
ity and the transparent receiver, from (5), we have
λi,l = VRζh0(r0 −

∫ tl
tr
vi(τ)dτ, tl). We assume that

the prior probabilities of the hypotheses are equal, i.e.,
P(Hi) = 1

M , i ∈ I .

Lemma 1. For a molecular flow velocity detector with
M hypotheses, and L-sample decoder at the receiver,
the optimum MAP decision rule is obtained as

î = arg max
i∈I

L∑
l=1

yl ln(λi,l)− λi,l, (6)

Proof. Using MAP decision rule with equal prior prob-
abilities for the hypotheses, we have

î = arg max
i∈I

P(y1, y2, ..., yL|Hi).

For the independent observations, P(y1, y2, ..., yL|Hi) =∏L
l=1 P(yl|Hi). The conditional probability distribution

of Yl given Hi assuming counting noise at the receiver
is Poiss(λi,l) for i ∈ I, l = 1, ..., L. Hence,

î = arg max
i∈I

L∏
l=1

(λi,l)
yl exp(−λi,l)
yl!

= arg max
i∈I

L∏
l=1

(λi,l)
yl exp(−λi,l)

= arg max
i∈I

L∑
l=1

yl ln(λi,l)− λi,l. (7)

Corollary 1.1. For binary hypothesis, the optimum de-
cision rule is simply obtained as

L∑
l=1

wlyl
H0

≷
H1

β, (8)

where wl = ln(λ0,l

λ1,l
) and β =

∑L
l=1(λ0,l − λ1,l). For

L = 1, the optimum decision rule is a simple threshold

rule as y1

H0

≷
H1

T , with the threshold T = λ0,1−λ1,1

ln
(
λ0,1

λ1,1

) .
Lemma 2. The error probability in detecting the flow
velocity, with M hypotheses and L-sample decoder at
the receiver, is obtained as follows:

Pe = 1− 1

M

M−1∑
i=0

∞∑
y1,...,yL=0,∑L

l=1 wi,j,lyl>βi,j ,
j∈I, j 6=i

L∏
l=1

(λi,l)
yl exp(−λi,l)
yl!

,

(9)
where wi,j,l = ln(λi,lλj,l

) and βi,j =
∑L

l=1(λi,l − λj,l).

Proof. The proof is provided in Appendix A.
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Corollary 2.1. For binary hypothesis, the error proba-
bility is simplified as:

Pe =
1

2

[
1−

∞∑
y1,...,yL=0,∑L
l=1 wlyl>β

( L∏
l=1

(λ0,l)
yl exp(−λ0,l)

yl!

−
L∏
l=1

(λ1,l)
yl exp(−λ1,l)

yl!

)]
, (10)

where wl and β are defined in Corollary 1.1. Further,
the Gaussian approximation on the error probability is
obtained as

Pe ≈ Pe,G =
1

2

[
1−Q(

β −
∑L

l=1wlλ0,l√∑L
l=1w

2
l λ0,l

)

+Q(
β −

∑L
l=1wlλ1,l√∑L
l=1w

2
l λ1,l

)
]
, (11)

where Q(x) = 1
2π

∫∞
x exp(−u2

2 )du. For L = 1, the error
probability reduces to

Pe =
1

2

[
1−

bT c∑
y1=0

(λ0,1)y1 exp(−λ0,1)− (λ1,1)y1 exp(−λ1,1)

y1!

]
,

(12)
for λ0,1 > λ1,1, where T is defined in Corollary
1.1. Further, the Gaussian approximation on the error
probability for L = 1 is obtained as

Pe =
1

2

[
1 +Q(

T − λ0,1√
λ0,1

)−Q(
T − λ1,1√

λ1,1

)
]
, (13)

Proof. The proof is provided in Appendix B.

In the following, we obtain the Chernoff information
(CI) upper bound on the error probability for the MAP
detecter [39], [40]. Chernoff uses the inequality

min(a, b) ≤ asb1−s ∀s ∈ [0, 1], (14)

to upper bound the error probability of the MAP detector.

Lemma 3. The CI upper bound on the error probability
with M hypotheses and L-sample decoder is obtained
as follows:

Pe ≤ Pe,CI =
M − 1

2
max
i1,i2∈I,
i1 6=i2

min
si1,i2∈[0,1]

e−Di1,i2 (si1,i2 ),

(15)
where Di1,i2(si1,i2) =

∑L
l=1[λi1,lsi1,i2 +λi2,l(1−si1,i2)−

λ
si1,i2
i1,l

λ
1−si1,i2
i2,l

]. The optimum value of si1,i2 is the solu-
tion of the following equation:

L∑
l=1

[
λi1,l − λi2,l − λi1,l(

λi1,l
λi2,l

)si1,i2 ln(
λi1,l
λi2,l

)
]

= 0.

(16)

Proof. The proof is provided in Appendix C.

There is no closed form solution for the optimum
value of si1,i2 in (16). In Corrollary 3.1, we use Holder’s
inequality, [41], to simplify the bound and obtain a
closed form solution for the sub-optimum value of si1,i2 .

Corollary 3.1. Using Holder’s inequality on the CI
upper bound, the error probability is upper bounded as
follows:

Pe ≤ Pe,HCI =
M − 1

2
max
i1,i2∈I,
i1 6=i2

min
si1,i2∈[0,1]

e−Ki1,i2 (si1,i2 ),

(17)
where K(si1,i2) = (

∑L
l=1 λi1,l)si1,i2 + (

∑L
l=1 λi2,l)(1 −

si1,i2) − (
∑L

l=1 λi1,l)
si1,i2 (

∑L
l=1 λi2,l)

1−si1,i2 . The opti-
mum value of si1,i2 is obtained as

s∗i1,i2 =
ln(

∑L
l=1 λi1,l∑L
l=1 λi2,l

− 1)− ln ln(
∑L
l=1 λi1,l∑L
l=1 λi2,l

)

ln(
∑L
l=1 λi1,l∑L
l=1 λi2,l

)
. (18)

Proof. The proof is provided in Appendix D.

Corollary 3.2. For binary hypothesis, the CI upper
bound in (15) reduces to

Pe ≤ Pe,u =
1

2
min
s∈(0,1)

exp(−D(s)), (19)

where D(s) =
∑L

l=1[λ0,ls + λ1,l(1 − s) − λs0,lλ
1−s
1,l ].

The optimum value of s is the solution of the following
equation:

L∑
l=1

[
λ0,l − λ1,l − λ0,l(

λ0,l

λ1,l
)s ln(

λ0,l

λ1,l
)
]

= 0. (20)

For L = 1, the CI upper bound is simplified as

Pe ≤ Pe,u =
1

2
e−(λ0,1s∗+λ1,1(1−s∗)−λs∗0,1λ

1−s∗
1,1 ), (21)

where

s∗ =
ln(λ0,1

λ1,1
− 1)− ln ln(λ0,1

λ1,1
)

ln(λ0,1

λ1,1
)

. (22)

Optimum and Sub-optimum sampling times: The
optimum sampling times, which minimize the error
probability, are

[t∗1, t
∗
2, ..., t

∗
L] = arg min

t1,t2,...,tL
Pe, (23)

where Pe is given in (9). Since the above optimization
problem is hard to solve in general case, the optimum
sampling times should be obtained numerically. We use
the Gaussian approximation and CI upper bound on the
error probability and obtain the sub-optimum sampling
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times as the solutions of the following optimization
problems:

[t1,G, t2,G, ..., tL,G] = arg min
t1,t2,...,tL

Pe,G, (24)

[t1,CI, t2,CI, ..., tL,CI] = arg min
t1,t2,...,tL

Pe,CI = (25)

arg max
t1,t2,...,tL

min
i1,i2∈I,
i1 6=i2

max
si1,i2

Di1,i2(si1,i2),

where Pe,G is defined in (11) and Pe,CI, Di1,i2 are
defined in (15). In Lemma 4, using the extension of
Caratheodory’s theorem [42], we obtain the sub-optimum
sampling times using CI upper bound, when L→∞, in
Lemma 5, we obtain the sub-optimum sampling times
for binary hypothesis using Gaussian approximation of
the error probability, and in Lemma 6, we obtain the sub-
optimum sampling times for binary hypothesis using CI
upper bound.

Lemma 4. The sub-optimum sampling times using CI
upper bound when L → ∞ are

(
M
2

)
times, tl, l =

1, ...,
(
M
2

)
, with weight wl, i.e., Lwl sampling times are

equal to tl, where tls and wls are obtained from the
following optimization problem:

max
w1,...,w(M2 )

max
t1,...,t(M2 )

min
i1,i2∈I,
i1 6=i2

max
si1,i2

(M2 )∑
l=1

wlfi1,i2(tl, si1,i2),

(26)
where fi1,i2(tl, si1,i2) = λi1,lsi1,i2 + λi2,l(1 − si1,i2) −
λ
si1,i2
i1,l

λ
1−si1,i2
i2,l

.

Proof. To obtain the optimum sampling times using CI
upper bound in (15), we must solve

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

max
si1,i2

Di1,i2(si1,i2), (27)

where Di1,i2(si1,i2) =
∑L

l=1[λi1,lsi1,i2 +λi2,l(1−si1,i2)−
λ
si1,i2
i1,l

λ
1−si1,i2
i2,l

]. λi,l is a function of the sampling time
tl. Hence, Di1,i2(si1,i2) =

∑L
l=1 fi1,i2(tl, si1,i2). For each

sampling time tl, l = 1, ..., L, al =
(
f0,1(tl, s0,1), ...,

fM−1,M (tl, , sM−1,M )
)

is a point in R(M2 ).
The average of these points is 1

L

∑L
l=1 al =(

1
L

∑L
l=1 f0,1(tl, s0,1), ..., 1

L

∑L
l=1 fM−1,M (tl, sM−1,M )

)
.

When L → ∞, we have infinite points and the average
point is in the convex hull of a set in R(M2 ). Using the
extension of Caratheodory’s theorem for connected sets,
[42], every point in the convex hull of a set T in Rn
can be expressed as a convex combination of at most n
points of T . Here, n =

(
M
2

)
, and we denote these

(
M
2

)
points by bl =

(
f0,1(t

′

l, s0,1), ..., fM−1,M (t
′

l, , sM−1,M )
)
,

l = 1, ...,
(
M
2

)
. Hence, 1

L

∑L
l=1 al =

∑(M2 )
l=1 wlbl. Thus,

for a fixed si1,i2 and i1, i2 ∈ I, i1 6= i2, we have

1
L

∑L
l=1 fi1,i2(tl, si1,i2) =

∑(M2 )
l=1 wlfi1,i2(t

′

l, si1,i2), and
hence,

lim
L→∞

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

1

L

L∑
l=1

fi1,i2(tl, si1,i2) =

max
w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

wlfi1,i2(t
′

l, si1,i2). (28)

Now, we are required to show the following expression:

lim
L→∞

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

max
si1,i2

1

L

L∑
l=1

fi1,i2(tl, si1,i2) = (29a)

max
w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

max
si1,i2

(M2 )∑
l=1

wlfi1,i2(t
′

l, si1,i2).

(29b)

Let s∗i1,i2 be the optimum value of si1,i2 for the optimiza-
tion problem in (29a). Then,

lim
L→∞

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

max
si1,i2

1

L

L∑
l=1

fi1,i2(tl, si1,i2)

≥ lim
L→∞

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

1

L

L∑
l=1

fi1,i2(tl, s
∗
i1,i2)

(a)
= max

w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

wlfi1,i2(t
′

l, s
∗
i1,i2)

= max
w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

max
si1,i2

(M2 )∑
l=1

wlfi1,i2(t
′

l, si1,i2),

(30)
where (a) follows from (28). If s∗∗i1,i2 is the optimum
value of si1,i2 for the optimization problem in (29b),

max
w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

max
si1,i2

(M2 )∑
l=1

wlfi1,i2(t
′

l, si1,i2)

≥ max
w1,...,w(M2 )

max
t
′
1,...,t

′

(M2 )

min
i1,i2∈I,
i1 6=i2

(M2 )∑
l=1

wlfi1,i2(t
′

l, s
∗∗
i1,i2)

(b)
= lim

L→∞
max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

1

L

L∑
l=1

fi1,i2(tl, s
∗∗
i1,i2)

= lim
L→∞

max
t1,...,tL

min
i1,i2∈I,
i1 6=i2

max
si1,i2

1

L

L∑
l=1

fi1,i2(tl, si1,i2),

(31)
where (b) follows from (28). Hence, using (30) and (31),
we obtain (29).
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Remark 1. From the above lemma, for binary hypoth-
esis, i.e., M = 2, it can be easily seen that the sub-
optimum sampling times when L → ∞ are the same
(t1,CI = ... = tL,CI) and equal to the sampling time when
L = 1. This result is also true for the limited values of
L, which is shown in Lemma 6.1

Lemma 5. For binary hypothesis, the sub-optimum val-
ues of the sampling times t1, t2, ..., tL using Gaussian
approximation are the solutions of:

1

σ0
e
−(β−µ0)2

2σ2
0

[
g0,l − g1,l − (

g0,l

λ0,l
−
g1,l

λ1,l
)λ0,l(1 +

1

σ2
0

)

− wlg0,l(1 +
1

2σ2
0

)
]
− 1

σ1
e
−(β−µ1)2

2σ2
1

[
g0,l − g1,l

− (
g0,l

λ0,l
−
g1,l

λ1,l
)λ1,l(1 +

1

σ2
1

)− wlg1,l(1 +
1

2σ2
1

)
]

= 0,

(32)
for l = 1, ..., L, where µi =

∑L
l=1wlλi,l, σi =√∑L

l=1w
2
l λi,l, gi,l = d

dtl
λi,l, i = 0, 1, and β and wl

are defined in Corollary 1.1. For the location invariant
flow velocity and the transparent receiver, we have gi,l =

λi,l
[ −3

2(tl−tr) +
〈vi(tl),r0−

∫ tl
tr

vi(τ)dτ〉
2D(tl−tr) +

||r0−
∫ tl
tr

vi(τ)dτ ||2

4D(tl−tr)2
]
,

i = 0, 1.

Proof. The proof is provided in Appendix E.

Lemma 6. The sub-optimum values of the sampling
times for binary hypothesis and L sample receiver using
CI upper bound are the same and equal to the sampling
time of L = 1, noted by, t1, which is the solution of:

g0,1s+ g1,1(1− s)− sg0,1(λ1,1

λ0,1
)1−s

−(1− s)g1,1(λ0,1

λ1,1
)s = 0,

s =
ln(

λ0,1

λ1,1
−1)−ln ln(

λ0,1

λ1,1
)

ln(
λ0,1

λ1,1
)

,

(33)

where gi,1 is defined in Lemma 5.

Proof. The proof is provided in Appendix F.

IV. FLOW VELOCITY ESTIMATOR

Here, we obtain the estimation of the flow velocity
for the L-sample receiver with independent observations

1Note that the problem of finding the optimum sampling times of
the flow velocity detector can also be seen as either active hypothesis
testing or channel discrimination problems, on which there are exten-
sive literatures. In active hypothesis testing, the decision maker has
control on the actions and the goal is to find the appropriate actions.
In channel discrimination problem (with an extensive literature on
quantum channels), there are a number of channels which we want
to discriminate between and the inputs of the channels are chosen
to have minimum error probability. The actions in active hypothesis
testing and the inputs in channel discrimination problem are translated
to sampling times in our model. For M = 2, in [43], [44], it is also
shown that the actions that minimize CI upper bound are equal.

y1, ..., yL in time instances t1, ..., tL. We denote the mean
number of the received molecules in sampling time tl
for the flow velocity v as λl(v), l = 1, ..., L. For the
transparent receiver, λl(v) = VRζh0(r0− v.(tl− tr), tl).
We obtain the MAP and MMSE estimators for a ran-
domly chosen constant flow velocity, i.e., v(r, t) =
v = (vx, vy, vz). We assume that vx, vy, and vz are
independent with prior probability distribution functions
(PDF) as px(vx), py(vy), and pz(vz), respectively. To
investigate the error performance of the estimators, we
consider the minimum mean square error (MSE) of the
estimators and obtain the Bayesian Cramer-Rao (BCR)
lower bound on the MSE of the estimators.

Lemma 7. For a molecular flow velocity estimator to
estimate randomly chosen constant flow velocity, the
MAP estimator is obtained as

v̂ = arg max
v

L∑
l=1

[yl ln(λl(v))− λl(v)] + ln(px,y,z(v)),

where px,y,z(v) = px(vx)py(vy)pz(vz). Hence, if
px,y,z(v) and λl(v) are differentiable with respect to v,
v̂x, v̂y, and v̂z are the solutions of the following set of
equations:

L∑
l=1

1

λl(v)
.
∂λl(v)

∂vi
.(yl − λl(v)) +

1

pi(vi)
.
dpi(vi)

dvi
= 0.

(34)
For the transparent receiver, we have ∂λl(v)

∂vi
=

(r0,i−vi.(tl−tr))
2D λl(v), i ∈ {x, y, z}.

Proof. The proof is straightforward similar to the proof
of MAP detector in Lemma 1.

Corollary 7.1. For one-sample receiver and the location
invariant flow velocity in the direction of the connecting
line between the releasing node and the transparent
receiver, i.e, v = vd, where d = r0

r0
, with uniform

priori PDF for v in the range Sv = [vmin, vmax], the
MAP estimator of v is obtained as

v̂ =



v1, if y1 ≥ λ1(v1d), v1 ∈ Sv,
v2, if 0 < y1 < λ1(v1d), v2 ∈ Sv,
v3, if 0 < y1 < λ1(v1d), v3 ∈ Sv,
vmin, if A1 ∩B1,

vmax, if A2 ∩B2,

(35)

where v1 = r0
t1−tr , v2 =

r0+
√
−4D(t1−tr)(ln yl−ln (λ1(v1d)))

tl−tr ,

v3 =
r0−
√
−4D(t1−tr)(ln yl−ln (λ1(v1d)))

tl−tr , A1 = {y1 ≥
λ1(v1d), v1 /∈ Sv} ∪ {0 < y1 < λ1(v1d), v2 /∈
Sv, v3 /∈ Sv} ∪ {y1 = 0

}
, A2 = {y1 ≥ λ1(v1d), v1 /∈

Sv} ∪ {0 < y1 < λ1(v1d), v2 /∈ Sv, v3 /∈ Sv} ∪
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{y1 = 0
}

, B1 = {Rest,u(vmin) ≥ Rest,u(vmax)}, and
B2 = {Rest,u(vmin) ≤ Rest,u(vmax}, in which Rest,u(v) =
y1 ln(λ1(vd)) − λ1(vd). Note that when the estimator
gives two values, one of them is chosen randomly as the
estimated value.

Proof. The proof is provided in Appendix G.

Corollary 7.2. If the sampling times are equal, we have
λ1(v) = ... = λL(v). Hence, from (34), we should find
the solutions of

1

λl(v)

∂λl(v)

∂vi
.(

L∑
l=1

yl − Lλl(v)) +
1

pi(vi)

dpi(vi)

dvi
= 0,

(36)
for i ∈ {x, y, z}, to obtain the estimated values of vx, vy,
and vz . For the transparent receiver and the flow velocity
in the direction of the releasing node and the receiver
with uniform prior pdf for its magnitude, we should find
the solution of (r0−v.(t1−tr)).( 1

L

∑L
l=1 yl−λ1(vd)) =

0. Hence, the procedure to obtain the estimated value of
v is similar to the one-sample receiver which is obtained
in Corollary 7.1, with the difference that we should use
1
L

∑L
l=1 yl instead of yl in the equations, i.e., we should

take the average of the samples and replace it as the
observation value in the one-sample receiver.

Lemma 8. The MMSE estimator to estimate randomly
chosen constant flow velocity with finite mean and vari-
ance is obtained as

v̂i = E[vi|y1, ..., yL] =

∫
vi exp(Rest(v))dvzdvydvx∫
exp(Rest(v))dvzdvydvx

,

(37)
for i ∈ {x, y, z}, where Rest(v) =

∑L
l=1[yl ln(λl(v)) −

λl(v)] + ln(px,y,z(v)). The linear MMSE (LMMSE) es-
timator is obtained as:

v̂i =

L∑
l=1

Cov(Yl, vi)

Var(Yl)
(yl − E[Yl]) + E[vi], i ∈ {x, y, z},

(38)
where for l = 1, ..., L and i ∈ {x, y, z},

E[Yl] =

∫
px,y,z(v)λl(v)dvzdvydvx, (39)

E[Y 2
l ] =

∫
px,y,z(v)λl(v)(1 + λl(v))dvzdvydvx,

Cov(Yl, vi) =

∫
px,y,z(v)(vi − E[vi])λl(v)dvzdvydvx.

Proof. The proof is provided in Appendix H.

Corollary 8.1. For v = vd, with uniform prior PDF
for v in range Sv = [vmin, vmax], the MMSE estimator is
obtained as

v̂ =

∫
Sv
v exp

(∑L
l=1[yl ln(λl(vd))− λl(vd)]

)
dv∫

Sv
exp

(∑L
l=1[yl ln(λl(vd))− λl(vd)]

)
dv

,

(40)

and the LMMSE estimator is obtained as

v̂ =

L∑
l=1

Cov(Yl, v)

Var(Yl)
(yl − E[Yl]) +

v+

2
, (41)

where for l = 1, ..., L,

E[Yl] =
1

v−

∫
Sv

λl(vd)dv, (42)

E[Y 2
l ] =

1

v−

∫
Sv

λl(vd)(1 + λl(vd))dv,

Cov(Yl, v) =
1

v−

∫
Sv

(v − v+

2
)λl(vd)dv,

where v+ = vmin + vmax and v− = vmax − vmin.

Corollary 8.2. If the sampling times are equal, the
LMMSE estimator of vi, i ∈ {x, y, z}, is obtained as

v̂i = L
Cov(viY1)

Var(Y1)
(

1

L

L∑
l=1

yl − E[Y1]) + E[vi]. (43)

In the following, we investigate the error performance
of the estimators. The estimation error is ε = v − v̂,
where εi is a random variable (vis are random variables
with prior PDF pi(vi) and v̂i is a function of Poisson ran-
dom variables Y1, .., YL). To investigate the performance
of the estimators, we consider the MSE of the estimation,
i.e., E[ε2] (where ε = ||ε||2), which is hard to compute
in general case. In Section V, we obtain the MSE of
the considered estimators numerically. In the following,
we obtain the Bayesian and expected Cramer-Rao lower
bounds on the MSE. The Bayesian Cramer-Rao (BCR)
lower bound on the MSE is defined as [45]

E[ε2] ≥ Tr{J−1
B }, JB = −Ev,Y [∇2

vv(ln(P(v,y))],
(44)

where Y = (Y1, ..., YL). JB can be divided into two
matrixes JP and JD:

JB = JD + JP , JD = Ev[JF (v)],

JP = −Ev[∇2
vv(ln(P(v))], (45)

where

JF (v) = −EY |v[∇2
vv(ln(P(Y |v))] (46)

is Fisher’s information matrix. The following conditions
must hold for the BCR lower bound:
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• ∂ ln(P(v,Y ))
∂vi

and ∂2 ln(P(v,Y ))
∂vi∂vj

, for i, j ∈ {x, y, z},
are absolutely integrable with respect to v and Y .

• limvi→±∞ b(v)P(v) = 0, for i ∈ {x, y, z}, where
b(v) is called the bias function defined as

b(v) = EY |v[v̂]− v. (47)

The BCR lower bound is obtained in the following
lemma.

Lemma 9. The BCR lower bound on the MSE to estimate
randomly chosen constant flow velocity is obtained as

E[ε2] ≥ Tr{(JD + JP )−1}, (48)

{JD}i,j =

L∑
l=1

Ev

[ 1

λl(v)
.
∂λl(v)

∂vi
.
∂λl(v)

∂vj

]
,

{JP }i,j =

{
−
∑L

l=1 Evi [
d2 ln(pi(vi)

dv2i
)
)
], i = j

0, i 6= j
, (49)

for i, j ∈ {x, y, z}, where the following conditions must
hold:
• ∂ ln(P(v,Y ))

∂vi
and ∂2 ln(P(v,Y ))

∂vi∂vj
are absolutely inte-

grable with respect to v and Y .
• limvi→±∞ b(v)px,y,z(v) = 0, where px,y,z(v) is

defined in Lemma 7 and b(v) is defined in (47).

Proof. The proof is provided in Appendix I.

Although the BCR lower bound is valid for both
biased and unbiased estimators, due to the conditions
which must hold for the BCR lower bound, this lower
bound is not valid when prior distribution is bounded
(e.g., uniform distribution). Another lower bound on the
MSE is the expected Cramer-Rao (ECR) lower bound,
defined as [46]

E[ε2] ≥ Ev[Tr{(1 + b
′
(v))J−1F (v)(1 + b

′
(v))T + ||b(v)||2}],

(50)
where, JF (v) and b(v) are defined in (46). The following
condition must hold for the ECR lower bound:
• ∂ ln(P(Y |v))

∂vi
and ∂2 ln(P(Y |v))

∂vi∂vj
, for i, j ∈ {x, y, z},

are absolutely integrable.
Since there is no condition on the distribution of v, the
ECR lower bound is valid for all distributions over v
including the bounded distributions. However, the bias
function b should be obtained for each estimator, which
might be challenging. In [46], b is optimized to obtain
a general lower bound on all estimators. For v = vd,
and bounded distributions for v, i.e, v ∈ [vmin, vmax], the
optimal bias function b(v) is the solution of the following
differential equation [46]:

JF (v)b(v) = b
′′
(v) + (1 + b

′
(v))

(d lnP (v)

dv
− d ln(JF (v))

dv

)
,

(51)
within the range v ∈ [vmin, vmax], with boundary con-
dition b

′
(vmin) = b

′
(vmax) = −1. The ECR lower

bound on the MSE is obtained in the following lemma
for the transparent receiver and v = vd with uniform
distribution for v ∈ [vmin, vmax].

Lemma 10. For L = 1 and v = vd, with uniform prior
PDF for v in range Sv = [vmin, vmax], the ECR lower
bound is obtained as

E[ε2] ≥ 1

v−

∫
Sv

[(1 + b
′
(v))2

JF (v)
+ b2(v)

]
dv, (52)

where JF (v) = 1
4D2 (r0 − v.(tl − tr))

2λ1(vd), v− is
defined in Corrollary 8.1, and the optimal bias function
b(v) is the solution of the following ordinary differential
equation:

JF (v)b(v) = b
′′
(v)− (1 + b

′
(v))

(r0 − v.(tl − tr)
2D

− 2(tl − tr)
r0 − v.(tl − tr)

)
, v ∈ (vmin, vmax), (53)

with condition b
′
(vmin) = b

′
(vmax) = −1.

Proof. The proof is straightforward from (50), (51).

Optimum and sub-optimum sampling times: Te
obtain the optimum sampling times, we minimize the
MSE, for t1, ..., tL, i.e.,

[t∗1, t
∗
2...t

∗
L] = arg min

t1,t2,...,tL
E[ε2]. (54)

However, the distribution of ε is hard to compute in
general case. In Section V, we obtain the estimation error
and the optimum sampling times numerically. In Lemma
11, when L → ∞, we obtain the optimum sampling
times for an MAP estimator of the magnitude of the
flow velocity which is in the direction of the connecting
line between the releasing node and the receiver with
uniform distribution.

Lemma 11. The optimum sampling times for an MAP
estimator of v = vd, with uniform distribution for v,
when L → ∞ are at most two distinct times t1 and t2
with weights w̃1 and w̃2, respectively, i.e., Lw̃1 sampling
times are equal to t1 and Lw̃2 sampling times are equal
to t2. The two sampling times and their weights can be
obtained from (54) numerically.

Proof. When L → ∞, if the magnitude of the flow
velocity is vr, the average value of the observations
1
L

∑L
l=1 yl approaches to λ1(vrd). Hence, if the samples

are taken at the same time, from (36), v̂ is the solution of
1
L

∑L
l=1 yl−λ1(vd) = 0, we obtain vr and vr+ 2r0

(t1−tr) as
the maximizers of Rest(vd), which means that we may
have ambiguity on the estimated flow velocity. This is
because of the fact that the function λl(vd) is not a one
by one function of v. Since logarithm of the function
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TABLE I: Simulation and numerical analysis parameters

Parameter Value
D 10−8 m2/s
ζ 10000
r0 100 µm
rR 1.5× 10−5

tr 0

λl(vd) is a Quadratic function, using two values of
λl(vd), for two different sampling times, we can obtain
v, i.e., if we have λ1(vd) = a1 and λ2(vd) = a2, we can
obtain v uniquely. Note that the flow velocity is chosen
randomly and for each flow velocity, every two different
sampling times leads to a unique estimation. Hence, we
conclude that when L → ∞, if we have two different
times, the estimation error approaches to zero.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we provide some simulation and
numerical results to evaluate the performance of the
proposed flow velocity detector and estimator. For the
evaluation, we use the parameters given in table I. In
part A, we consider the flow velocity detector, and in
part B, we consider the flow velocity estimator. In both
parts, we assume that the flow velocity is in the direction
of the connecting line between the releasing node and the
receiver.

A. Flow velocity detector

Here, we assume binary and multiple hypotheses for
the flow velocity. We assume that the hypotheses in the
flow velocity detector are location and time invariant,
i.e., vi(r, t) = vid, i ∈ I .

1) Binary hypothesis (M = 2): The error probability
and its Gaussian approximation for binary hypothesis
with one-sample decoder, derived in (12) and (13),
respectively, and the CI upper bound, derived in (21),
are depicted in Fig. 2a versus the sampling time t1
for v0 = 0, v1 = 4 × 10−4 m/s. The sampling times,
which minimize the error probability, and its Gaussian
approximation and CI upper bound are t∗1 = 0.1090 s,
t1,G = 0.1097 s, and t1,CI = 0.1083 s, respectively. It is
seen that optimum and sub-optimum sampling times are
nearly the same. We assume v0 = 0 and depict the error
probability, its Gaussian approximation, and CI upper
bound for L = 1, 2, 3 in Fig. 2b versus v1 for their related
optimum and sub-optimum sampling times. As expected,
the error probability, the Gaussian approximation and the
CI upper bound decrease as v1 increases. Further, it is
seen that the Gaussian approximation is nearly the same
as the exact error probability. But, it makes distance as

the error probability reduces. The CI upper bound and
the error probability has a nearly constant gap in all
values of v1. The error probabilities and their Gaussian
approximation and CI upper bound for L = 2, 3 have
the same behavior as L = 1 with the difference that
they decrease as L increases.
The sub-optimum sampling times, using CI upper bound
and Gaussian approximation, given in Lemmas 6 and 5,
along with the optimum sampling time using the exact
error probability, are depicted versus v1 in Fig. 2c. It
is seen that the sub-optimum sampling times are nearly
the same, and decrease as v1 increases and the optimum
sampling time, which minimizes the error probability,
fluctuates around the sub-optimum value (the fluctuation
is small and because of the discrete nature of the Poisson
distribution). In Fig. 2d, the sampling times are depicted
versus v1 for a two-sample decoder. As mentioned in
the previous section, the analytic results show that for
L sample decoder, the sampling times which minimize
the CI upper bound are the same, which is verified by
simulations i.e., t1,CI = ... = tL,CI. It is seen using
simulations that the L sampling times which minimize
the error probability and its Gaussian approximation are
also equal, i.e., t∗1 = ... = t∗L and t1,G = ... = tL,G
for our simulation parameters. Further, it can be seen by
comparing Fig. 2c and Fig. 2d that the optimum sampling
times for L = 1, 2 are approximately equal.

2) Multiple hypotheses (M > 2): Here, we assume
M = 3 hypotheses. The error probability, Gaussian
approximation and CI upper bound versus the sampling
time t1 for v0 = 0, v1 = 4×10−4 m/s, and v2 = 8×10−4

m/s are depicted Fig. 3a. The sampling times that min-
imize the error probability, its Gaussian approximation
and CI upper bound are obtained as t∗1 = 0.09484 s,
t1,G = 0.09468 s, and t1,CI = 0.1008 s, respectively.
It is seen that the CI upper bound has a gap with the
error probability in all values despite the binary case due
to using union bound in multiple hypotheses case. The
optimum value and the sub-optimum values of the sam-
pling times are nearly equal. However, the sub-optimum
value using CI upper bound has made a small gap from
the optimum value compared to binary case, which may
be due to the union bound. The error probability, the
Gaussian approximation and the CI upper bound versus
v1 for the sampling times which minimize them are
provided in Fig. 3b for L = 1, 2. It is seen that as
expected, the error probability, Gaussian approximation,
and CI upper bound decrease as L increases.
The sampling times which minimize the error probabil-
ity, the Gaussian approximation, and the CI upper bound
are depicted in Fig. 3c versus v1 (we assumed v0 =
0, v2 = 2v1 and changed v1). As seen in this figure, the
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Fig. 2: Error performance and sampling times for a flow velocity detector with M = 2.
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Fig. 3: Error performance and sampling times for a flow velocity detector with M = 3.

optimum value of the sampling time fluctuates around
the sub-optimum value using Gaussian approximation.
But the sub-optimum value using CI upper bound has
a distance from these values, which decreases as v1

increases. For L = 2, we depict the two sampling times
t1 and t2 versus v1 in Fig. 3d. It is seen that similar to the
binary case, the sampling times t1 and t2 which minimize
the error probability, the Gaussian approximation, and
the CI upper bound are equal, i.e., t∗1 = t∗2, t1,G = t2,G,
and t1,CI = t2,CI. Further, the optimum and sub-optimum
sampling times are nearly the same as the values of the
optimum and sub-optimum sampling times in one sample
decoder.
For a large value of L (e.g., L = 50), we obtain the
sub-optimum sampling times which minimize the CI
upper bound using the optimization problem in (25). We
assume v0 = 0, v1 = 10−4 m/s, and v2 = 2× 10−4 m/s.
Using (25), we obtain the L = 50 sampling times as
t1 ≈ ... ≈ t50 ≈ 0.1488s. This is also confirmed by the
results of Lemma 4 (which can be obtained from (26)
equal to t1,Chernoff = t2,Chernoff = t3,Chernoff = 0.1488s).
Note that Lemma 4 anticipates that the sub-optimum
sampling times are at most

(
M
2

)
different times. This

is somehow counter-intuitive since we obtain a single

distinct sampling time, while we expect to obtain three
different sampling times. For some other simulation
parameters, the same result, i.e., a single sampling
time, is observed. Another approach to find the three
sampling times that Lemma 4 anticipates is to obtain
the optimum times that discriminate between {H0, H1},
{H1, H2}, and {H0, H2} by using one-sample decoder
and minimizing the CI upper bound. For {H0, H1}, we
get t1 = 0.1488s, for {H1, H2}, we get t2 = 0.1231s,
and for {H0, H2}, we get t3 = 0.1330s. Then, we use
these sampling times in the optimization problem in
Lemma 4 and obtain the three weights as w∗1 = 1, w∗2 =
0, w∗3 = 0, which matches the results obtained from (25)
and Lemma 4.

B. Flow velocity estimator

Here, we assume that the magnitude of v has uniform
distribution in the range [vmin, vmax]. The MSE of esti-
mation, E[ε2], normalized to E[v]2, versus the sampling
time is depicted in Fig. 4a for the MAP, MMSE, and
LMMSE estimators along with the ECR lower bound
given in Lemma 10. We assume vmin = 0, vmax = 10−3

m/s. As expected the MMSE estimator has the least
MSE. However, the LMMSE does not always have better
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Fig. 4: Normalized MSE and optimum sampling times
for a flow velocity estimator with L = 1.

performance than MAP, which is because of the force of
linearity to the estimated value in LMMSE. Further, it is
seen that the performance of the MAP estimator is near
the MMSE estimator and the ECR lower bound around
the optimum sampling time. Using this figure, the sam-
pling times which minimize E[ε2] for the MAP, MMSE,
and LMMSE estimators are obtained as t1,MAP = 0.0733
s, t1,MMSE = 0.0725 s, and t1,LMMSE = 0.0922 s,
respectively. It is seen that the optimum sampling times
of the MAP and MMSE are nearly the same. However,
the optimum sampling time of the LMMSE has a small
gap from these values. We assume vmin = 0 and depict
the optimum sampling times which minimize the MSE
of the MAP, MMSE, and LMMSE estimators versus vmax

in Fig. 4b. It is seen that the optimum sampling times
reduce as vmax increases.

VI. CONCLUDING REMARKS AND FUTURE WORKS

In this paper, we designed a molecular flow velocity
meter which consists of a molecule releasing node and
a molecular receiver to detect the medium flow velocity.
We first assumed M hypotheses for the medium flow
velocity and a L-sample decoder at the receiver and
obtained the optimum maximum-a-posteriori (MAP). We
derived the error probability, its Gaussian approximation,
and CI upper bound to analyze the performance of the
detector. Further, we obtained the optimum and sub-
optimum sampling times using the error probability, its
Gaussian approximation, and CI upper bound. When
L → ∞, we obtained an interesting result using the
CI upper bound which shows that for M hypotheses,
the sub-optimum sampling times yields to

(
M
2

)
sampling

times t1, t2, ..., t(M2 ) with
(
M
2

)
weights w1, w2, ..., w(M2 ),

i.e., Lwl sampling times are equal to tl. For the simula-
tion parameters, it is seen that these sampling times are
the sampling times which minimize the CI upper bound
for discriminating each two hypotheses. This results in
a much simpler optimization problem to obtain the sub-

optimum sampling times. Then, we assumed randomly
chosen constant flow velocity in the medium and ob-
tained the MAP and MMSE estimators for the L-sample
receiver. We considered the mean square error (MSE)
of the estimators and obtained the Bayesian Cramer-Rao
(BCR) and expected Cramer-Rao (ECR) lower bounds
on the MSE. We obtained the sampling times which
minimize the MSE numerically. We showed that when
L→∞, for the MAP estimator, two different sampling
times are enough for estimation, i.e., Lw̃1 sampling times
are t1 and Lw̃2 sampling times are t2. The molecular
flow velocity meter can have applications in health care
to monitor the function of the heart. It can also be used
to design a new modulation scheme in MC, in which
information is encoded in the medium flow velocity, i.e.,
similar to the classic communications that medium-based
communication is introduced, we can introduce flow-
based communication in MC. This makes the transmitter
much simpler which is an important challenge in MC.
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APPENDIX A
PROOF OF LEMMA 2

Let Ri =
∏L
l=1(λi,l)

yj exp(−λi,l). Using the optimum
decision rule given in (6), the error probability can be
obtained as

Pe =
1

M

M−1∑
i=0

[
1− P{∩j∈I,j 6=iRi > Rj |Hi}

]
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= 1− 1

M

M−1∑
i=0

∞∑
y1,...,yL=0,

Ri>Rj , j∈I, j 6=i

P(y1, ..., yL|Hi)

= 1− 1

M

M−1∑
i=0

∞∑
y1,...,yL=0,

Ri>Rj , j∈I, j 6=i

L∏
l=1

P(yl|Hi). (55)

The condition Ri > Rj reduces to wi,j,lyl > βi,j , where
wi,j,l = ln(λi,lλj,l

) and βi,j =
∑L

l=1(λi,l − λj,l) (similar to
(8)), and hence, Pe simplifies to

Pe = 1− 1

M

M−1∑
i=0

∞∑
y1,...,yL=0,∑L

l=1 wi,j,lyl>βi,j ,
j∈I, j 6=i

L∏
l=1

P(Yl = yl|Hi).

Now, by substituting the Poisson distribution for P(Yl =
yl|Hi), we obtain (9).

APPENDIX B
PROOF OF COROLLARY 2.1

For binary hypothesis, (9) is simplified as

Pe = 1− 1

2

[ ∞∑
y1,...,yL=0,∑L

l=1 w0,1,lyl>β0,1

L∏
l=1

(λ0,l)
yl exp(−λ0,l)

yl!

+

∞∑
y1,...,yL=0,∑L

l=1 w1,0,lyl>β1,0

L∏
l=1

(λ1,l)
yl exp(−λ1,l)

yl!

)]
. (56)

For this case, we have w0,1,l = −w1,0,l = wL and β0,1 =
−β1,0 = β. Hence,

Pe =
1

2

[
1−

∞∑
y1,...,yL=0,∑L
l=1 wlyl>β

L∏
l=1

(λ0,l)
yl exp(−λ0,l)

yl!

+

∞∑
y1,...,yL=0,∑L
l=1 wlyl>β

L∏
l=1

(λ1,l)
yl exp(−λ1,l)

yl!

)]
, (57)

which reduces to (10). For the Gaussian approximation,
we have

Pe =
1

2

M−1∑
i=0

[
1− P{

L∑
l=1

wlyl > β|H0}

+ P{
L∑
l=1

wlyl > β|H1}
]
. (58)

Since Yls are independent Gaussian variables, Y =∑L
l=1wlYl is a Gaussian variable with mean E[Y ] =∑L
l=1wlλi,l and variance Var(Y ) =

∑L
l=1w

2
l λi,l, for

Hi. Hence, (58) reduces to (11).

APPENDIX C
PROOF OF LEMMA 3

The error probability of the MAP detector with M
hypotheses in (55) can also be written as

Pe =
1

M

M−1∑
i=0

P{∪j∈I,j 6=iRi < Rj |Hi}. (59)

Now, we upper bound the error probability as follows:

Pe

(a)

≤ 1

M

M−1∑
i=0

M−1∑
j=0,
j 6=i

P{Ri < Rj |Hi} (60)

=
1

M

M−1∑
i=0

M−1∑
j=0,
j 6=i

∞∑
y1,...,yL=0

1
{

P(y1, ..., yL|Hi)

< P(y1, ..., yL|Hj)
}

P(y1, ..., yL|Hi)

=
1

M

M−1∑
i1,i2=0,
i1 6=i2

∞∑
y1,...,yL=0

min
{

P(y1, ..., yL|Hi1),

P(y1, ..., yL|Hi2)
}

(b)

≤ 1

M

M−1∑
i1,i2=0,
i1 6=i2

∞∑
y1,...,yL=0

P(y1, ..., yL|Hi1)
si1,i2

× P(y1, ..., yL|Hi2)
1−si1,i2

(c)
=

1

M

M−1∑
i1,i2=0,
i1 6=i2

L∏
l=1

∞∑
yl=0

P(yl|Hi1)
si1,i2 P(yl|Hi2)

1−si1,i2

(d)
=

1

M

M−1∑
i1,i2=0,
i1 6=i2

exp(−Di1,i2(si1,i2))

(e)

≤ 1

M

(
M

2

)
max
i1,i2∈I,
i1 6=i2

exp(−Di1,i2(si1,i2)),

where Di1,i2(si1,i2) =
∑L

l=1[λi1,lsi1,i2 +λi2,l(1−si1,i2)−
λ
si1,i2
i1,l

λ
1−si1,i2
i2,l

], (a) is due to the union bound, (b) is
due to eq. (14), (c) is due to assuming independent
observations at the receiver, (d) is due to Poisson distri-
bution for observations, i.e., P(yl|Hi) = (λi,l)yl exp(−λi,l)

yl!
,

i ∈ I , l ∈ {1, ..., L}, and (e) is due to substituting
the maximum term for each term of the summation.
Since the bound holds for all values of si1,i2 ∈ (0, 1),
it also holds for the optimum values of si1,i2 , which
is obtained by minimizing exp

(
− Di1,i2(si1,i2)

)
, i.e.,

maximizing Di1,i2(si1,i2) with respect to si1,i2 . Hence,
we obtain the upper bound as (15). The optimum si1,i2
is obtained by minimizing exp

(
− Di1,i2(si1,i2)

)
, i.e.,

maximizing Di1,i2(si1,i2), with respect to si1,i2 . Hence
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s∗i1,i2 is the solution of d
dsi1,i2

Di1,i2(si1,i2) = 0, which
can be simplified as (16).

APPENDIX D
PROOF OF COROLLARY 3.1

From holder’s inequality, for any positive vectors
x = (x1, x2, ..., xn) and y = (y1, y2, ...yn) and
for any p, q, satisfying p > 1 and 1

p + 1
q = 1,

we have (
∑n

i=1 x
p
i )

1

p (
∑n

i=1 y
q
i )

1

q ≥
∑n

i=1 xiyi. Us-
ing this inequality for x = (λ

si1,i2
i1,1

, ..., λ
si1,i2
i1,L

),y =

(λ
1−si1,i2
i2,1

, ..., λ
1−si1,i2
i2,L

), p = 1
si1,i2

, and q = 1
1−si1,i2

, we
have:
L∑
l=1

λ
si1,i2
i1,l

λ
1−si1,i2
i2,l

≤ (

L∑
l=1

λi1,l)
si1,i2 (

L∑
l=1

λi2,l)
1−si1,i2 .

Hence, we bound Di1,i2(si1,i2) in (15) as follows:

Di1,i2(si1,i2) ≥ (

L∑
l=1

λi1,l)si1,i2 + (

L∑
l=1

λi2,l)(1− si1,i2)

− (

L∑
l=1

λi1,l)
si1,i2 (

L∑
l=1

λi2,l)
1−si1,i2 . (61)

Let Ki1,i2(si1,i2) = (
∑L

l=1 λi1,l)si1,i2 + (
∑L

l=1 λi2,l)(1−
si1,i2)− (

∑L
l=1 λi1,l)

si1,i2 (
∑L

l=1 λi2,l)
1−si1,i2 . Then, (15)

reduces to (17). Now using this bound, the optimum
value of si1,i2 is obtained by maximizing Ki1,i2(si1,i2)
as the solution of the following equation:

d

dsi1,i2
Ki1,i2(si1,i2) =

L∑
l=1

λi1,l −
L∑
l=1

λi2,l (62)

− ln(

L∑
l=1

λi1,l)(

L∑
l=1

λi1,l)
si1,i2 (

L∑
l=1

λi2,l)
1−si1,i2

+ ln(

L∑
l=1

λi2,l)(

L∑
l=1

λi1,l)
si1,i2 (

L∑
l=1

λi2,l)
1−si1,i2 = 0,

which reduces to

si1,i2 ln(

∑L
l=1 λi1,l∑L
l=1 λi2,l

)+ln ln(

∑L
l=1 λi1,l∑L
l=1 λi2,l

) = ln(

∑L
l=1 λi1,l∑L
l=1 .λi2,l

−1).

Hence, s∗i1,i2 is obtained as (18).
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From (24), we should solve the optimization problem
maxt1,...,tL Pe,G, where Pe,G is given in (11). Hence, the
sub-optimum values of t1, ..., tL are the solutions of
∇Pe,G = [∂Pe,G

∂t1
, ..., ∂Pe,G

∂tL
] = 0. Let µi =

∑L
l=1wlλi,l

and σi =
√∑L

l=1w
2
l λi,l in (11). Hence, from ∂Pe,G

∂tl
= 0,

we obtain:

e
−(β−µ0)2

2σ2
0

(( d
dtl
β − d

dtl
µ0)σ0 − ( d

dtl
σ0)(β − µ0)

σ2
0

)
(63)

− e
−(β−µ1)2

2σ2
1

(( d
dtl
β − d

dtl
µ1)σ1 − ( d

dtl
σ1)(β − µ1)

σ2
1

)
= 0.

Let gi,l = d
dtl
λi,l. Hence, from definition of β and wl in

Corollary 1.1, we have d
dtl
β = g0,l − g1,l, and

d

dtl
µi = (

g0,l

λ0,l
−
g1,l

λ1,l
)λi,l + wlgi,l, i = 0, 1 (64)

d

dtl
σi =

wl
2σi

[
2(
g0,l

λ0,l
−
g1,l

λ1,l
)λi,l + wlgi,l

]
, i = 0, 1.

Hence, we obtain the set of equations in (32). For the
location invariant flow velocity and transparent receiver,
λi,l = VRζh0(r0 −

∫ t1
t0
vi(τ)dτ, t). Using (4), we have

gi,l = VRζ
d

dtl
h0(r0 −

∫ tl

tr

vi(τ)dτ, tl)

= VRζ
d

dtl

[ 1

(4πD(tl − tr))
3

2

e
−
||r0−

∫ tl
tr

vi(τ)dτ||
2

4D(tl−tr)

]
= λi,l

[
−3

2(tl − tr)
+
〈vi(tl), r0 −

∫ tl
tr
vi(τ)dτ〉

2D(tl − tr)

+
||r0 −

∫ tl
tr
vi(τ)dτ ||2

4D(tl − tr)2

]
. (65)
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To obtain the sub-optimum sampling times using (17),
we should solve

max
t1,...,tL

max
s

L∑
l=1

[λ0,ls+ λ1,l(1− s)− λs0,lλ1−s
1,l ]. (66)

Let f(tl, s) = λ0,ls+ λ1,l(1− s)− λs0,lλ
1−s
1,l . Hence, the

optimum values of t1, ..., tL, and s are the solutions of
∇
∑L

l=1 f(tl, s) = [∂f(t1,s)
∂t1

, ..., ∂f(tL,s)
∂tL

,
∑L

l=1
∂f(tl,s)
∂s ] =

0. From ∂f(tl,s)
∂tl

= 0, l = 1, ..., L, we conclude that
t1 = ... = tL. Hence, from

∑L
l=1

∂f(tl,s)
∂s = 0, we

obtain ∂f(t1,s)
∂s = 0. Thus, s and t1 are the solutions of

[∂f(t1,s)
∂t1

, ∂f(t1,s)
∂s ] = 0. This means that the sub-optimum

values of t1, ..., tL are equal to the values when L = 1.
Now, we obtain the set of equations for the sub-optimum
sampling time when L = 1, i.e., t1. ∂f(t1,s)

∂s = 0, results

in s =
ln(

λ0,1

λ1,1
−1)−ln ln(

λ0,1

λ1,1
)

ln(
λ0,1

λ1,1
)

, and ∂f(t1,s)
∂t1

= 0, yields to

g0,1s+ g1,1(1− s)− sg0,1(
λ1,1
λ0,1

)1−s − (1− s)g1,l(
λ0,1
λ1,1

)s = 0,

where gi,l is defined in Lemma 5.
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For v = vd, and uniform distribution for v, the MAP
estimation of v is

v̂ = arg max
v∈Sv

y1 ln(λ1(vd))− λ1(vd). (67)

In the following, let Rest,u(v) = y1 ln(λ1(vd))−λ1(vd).
Hence, we should find the solutions of R

′

est,u(v) =
d
dvRest,u(v) = 0 which maximize Rest,u(v) and fall in
Sv. For the transparent receiver, we have R

′

est,u(v) =
1

2D (r0 − v.(t1 − tr)).(y1 − λ1(vd)) = 0. If there is no
maximizer in this range, we should consider vmin, vmax.
Hence, the candidates of the maximizer are the values
of v which satisfiy the equations r0 − v.(t1 − tr) = 0
and λ1(vd) = y1. From r0 − v.(t1 − tr) = 0, we
obtain v1 = r0

t1−tr . Note that v1 maximizes λ1(vd), i.e.,
λ1(vd) is a positive function with maximum λ1(v1d) =

ζVR

(4πD(t1−tr))
3
2

. For the second equation, we have three
cases:

Case 1) y1 = λ1(v1d): In this case, the only solution
of the equation λl(v1d) = y1 is equal to v1.

Case 2) y1 > λ1(v1d): In this case, the second
equation λl(vd) = y1 does not have any solutions for
v since yl is greater than the maximum value of λl(vd).

Case 3) y1 < λ1(v1d): In this case, the equation
λl(vd) = y1 has two solutions as v2 = r0+

√
∆

tl−tr and v3 =
r0−
√

∆
tl−tr , where ∆ = −4D(t1 − tr)(ln yl − ln (λ1(v1d))).

In Case 1, we have R
′

est,u(v) = 1
2D (r0 − v.(t1 −

tr)).(λ1(v1d) − λ1(vd)). Since v1 is the maximizer of
λ1(v1d), λ1(v1d) − λ1(vd) is positive for all v 6= v1.
Hence, for v < v1, R

′

est,u(v) > 0 and for v > v1,
R
′

est,u(v) < 0, and thus, v1 is the maximizer. Now, using
the second derivative of Rest,u(v), we show that in Case
2, v1 is the only maximizer of Rest,u(v) and in Case 3,
v1 is the minimizer and v2 and v3 are the maximizers of
Rest,u(v), and if both values fall in Sv, the estimator gives
one of the values v2 and v3 randomly as the estimated
value of v.
The second derivative of Rest,u(v) can be obtained as

R
′′

est,u(v) =
d2

dv2
Rest,u(v) = − 1

2D
(t1 − tr)(y1 − λ1(vd))

− 1

4D2
(r0 − v.(t1 − tr))2λ1(vd). (68)

For v = v1, we have r0 − v.(t1 − tr) = 0 and hence,

R
′′

est,u(v) = −(t1 − tr)(y1 − λ1(vd)). (69)

Now in Case 2, we have R
′′

est,u(v1) < 0, and hence, v1

is the maximizer. In Case 3, we have R
′′

est,u(v1) > 0, and
hence, v1 is the minimizer.

For v2 and v3 in Case 3, we have y1 = λ1(vd), and
hence,

R
′′

est,u(v) = − 1

4D2
(r0 − v.(t1 − tr))2λ1(vd). (70)

Since (r0 − v.(tl − tr))
2 > 0 and λl(v) is a positive

function, R
′′

est,u(v)|v=v1,v2 < 0 and hence, v2 and v3 are
the maximizers.
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For the MMSE estimator, when the mean and variance
of vi, i ∈ {x, y, z} is finite, we have v̂i = E[vi|y1, ..., yL]
[45]. For v̂x, we have

P(vx|y1, ...yL) =
P(y1, ..., yL|vx)px(vx)

P(y1, ..., yL)
(71)

=
px(vx)

∫
vy,vz

py(vy)pz(vz)P(y1, ..., yL|vx, vy, vz)dvzdvy∫
px(vx)py(vy)pz(vz)P(y1, ..., yL|vx, vy, vz)dvzdvydvx

.

For the independent observations, we have

P(vx|y1, ...yL) = (72)

px(vx)
∫
vy,vz

py(vy)pz(vz)Π
L
l=1P(yl|vx, vy, vz)dvzdvy∫

px(vx)py(vy)pz(vz)ΠL
l=1P(yl|vx, vy, vz)dvzdvydvx

.

Therefore,

v̂x = E(vx|y1, ...yL) = (73)∫
vx
vxpx(vx)

∫
vy,vz

py(vy)pz(vz)ΠL
l=1P(yl|v)dvzdvydvx∫

px(vx)py(vy)pz(vz)ΠL
l=1P(yl|v)dvzdvydvx

.

Let px,y,z(v) = px(vx)py(vy)pz(vz). Since the condi-
tional probability distribution of Yl, l = 1, ..., L given v
is Poiss(λl(v)), we obtain the equation (37).
For the LMMSE, the estimator of v can be obtained
as v̂ = yA + b, where A = C−1

Y Y CY v,y =
(y1, y2, ..., yL), b = µ− λA, in which

µ = E[v] = (E[vx],E[vy],E[vz]), (74)

λ = (E[Y1],E[Y2], ...,E[YL]),

CY Y =


Var(Y1) Cov(Y1, Y2) .... Cov(Y1, YL)

Cov(Y2, Y1) Var(Y2) .... Cov(Y2, YL)
...

...
...

Cov(YL, Y1) Cov(YL, Y2) .... Var(YL)

 ,

CY v =


Cov(Y1, vx) Cov(Y1, vy) Cov(Y1, vz)
Cov(Y2, vx) Cov(Y2, vy) Cov(Y1, vz)

...
...

...
Cov(YL, vx) Cov(YL, vy) Cov(YL, vz)

 .
Now, since the observations are assumed to be indepen-
dent, we have Cov(Yl1 , Yl2) = 0, for l1 6= l2. Hence it is
straightforward to obtain (38).
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We obtain the matrixes JD and JP in the BCR lower
bound given in (44), (45). The (i, j)-th entry of JP can
be obtained as

{JP }i,j = −Ev[
∂2

∂vi∂vj
ln(px,y,z(v))] (75)

= −Ev[
∂2

∂vi∂vj
(ln(px(vx)) + ln(py(vy)) + ln(pz(vz)))].

Hence, it is straightforward to obtain (49). The (i, j)-th
entry of the matrix JF (v) is obtained as

{JF (v)}i,j = −EY |v[
∂2

∂vi∂vj

( L∑
l=1

ln(P(Yl|v))
)
]

= −
L∑
l=1

EY |v[
∂2

∂vi∂vj

(
Yl ln(λl(v))− λl(v)

)
], (76)

which can be simplified to

{JF (v)}i,j = −
L∑

l=1

Ey|v

[( ∂
∂vi

[ 1

λl(v)
.
∂λl(v)

∂vj

])
(yl − λl(v))

+ (
1

λl(v)
.
∂λl(v)

∂vj
)(−∂λl(v)

∂vi
)

]
. (77)

Now, since EYl|v[Yl] = λ1(vd) and the second term is
not related to y, we have

{JF (v)}i,j =

L∑
l=1

1

λl(v)
.
∂λl(v)

∂vj

∂λl(v)

∂vi
. (78)

Hence, the (i, j)-th entry of the matrix JD = Ev[JF (v)]
is obtained as (48).
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