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ABSTRACT

This paper reports a modified axiomatic foundation of the analytic hierarchy pro-
cess (AHP), where the reciprocal property of paired comparisons is broken. The
novel concept of reciprocal symmetry breaking is proposed to characterize the con-
sidered situation without reciprocal property. It is found that the uncertainty ex-
perienced by the decision maker can be naturally incorporated into the modified
axioms. Some results are derived from the new axioms involving the new concept
of approximate consistency and the method of eliciting priorities. The phenomenon
of ranking reversal is revisited from a theoretical viewpoint under the modified ax-
iomatic foundation. The situations without ranking reversal are addressed and called
ranking equilibrium. The likelihood of ranking reversal is captured by introducing
a possibility degree index based on the Kendall’s coefficient of concordance. The
modified axioms and the derived facts form a novel operational basis of the AHP
choice model under some uncertainty. The observations reveal that a more flexible
expression of decision information could be accepted as compared to the judgments
with reciprocal property.
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1. Introduction

Since the Analytic Hierarchy Process (AHP) was developed as a choice model by
[21, 22], it has been more than forty years. As shown in the AHP model, the de-
composition principle is applied to construct a hierarchy of criteria, subcriteria and
alternatives when faced with a complex decision making problem. The comparison
technique of paired alternatives is used to construct a series of pairwise comparison
matrices. The priorities of alternatives are elicited from the obtained matrices by a
synthesis mechanism; then the optimal solution is reached. One can see that the in-
vestigations involving the theory and applications of the AHP choice model are never
stopped [1, 4, 9, 11, 17, 25, 26, 30].

It is worth noting that one of the important issues is the axiomatic foundation of
the AHP model; and the existing one contains four axioms [23]. The basic one of the
four axioms is the reciprocal property of pairwise comparisons. For convenience, we
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Figure 1. Five figures with different areas.

assume that there is a finite set of alternatives X = {x1, x2, · · · , xn} in a decision-
making problem. The reciprocal property means that when the relative importance of
xi over xj is determined as aij , the relative importance of xj over xi is automatically
obtained as aji = 1/aij for i, j ∈ I = {1, 2, · · · , n} [4, 11, 21]. It is obvious that the
reciprocal relation aji = 1/aij is based on the mathematical intuition [12]. We want to
ask whether the relation aji = 1/aij is really satisfied, when the comparison ratios aij
and aji in relative measurement are determined by evaluating the preference intensity
of the alternatives xi over xj and xj over xi, respectively. For example, as shown in
[25], we compare the areas of the five figures in Figure 1 by eyeballing them. If the
reciprocal property is not assumed in advance, it seems difficult to obtain the reciprocal
relation of pairwise comparisons. The underlying reason could be attributed to the fact
that various cognitive distortions of the decision maker could affect the evaluation of
her/his ratio judgements [5, 18, 19]. One can find that although the reciprocal property
is in agreement with the mathematical intuition, it may be not always satisfied in a
practical case. In other words, the reciprocal property is a strict mathematical relation
under an ideal case, and there is some deviation from the flexible expression of human-
originated information. Motivated by the above consideration, we attempt to analyze
the case without the reciprocal property to form a novel axiomatic foundation of the
AHP model. The concept of reciprocal symmetry breaking is introduced to capture
the flexible case without reciprocal property such that the uncertainty experienced by
the decision maker can be naturally coped with.

Moreover, it is noted that the AHP model has also incurred some criticisms [2, 3,
6, 7, 31]. One of the criticisms comes with the phenomenon of ranking reversal. This
means that when adding or deleting an alternative and/or a criterion, the ranking
of the old or the remaining alternatives could be changed. That is, the ranking of
alternatives is sensitive to the actions of adding and/or deleting an alternative and/or a
criterion, even if the comparison ratios are all consistent. The AHP model was criticized
as an arbitrary method and it should be corrected by synthesizing the concepts of
multi-attribute utility theory or the others [6, 7]. The defenders considered that the
phenomenon of ranking reversal is acceptable in a practical case and exhibits the
structural dependence [12, 13, 24, 27]. A further comment showed that the situation of
applying the AHP method should be identified by comparing the multi-attribute utility
theory and carrying out an example in the field of voting [20]. It seems that there does
not exist a widely accepted conclusion for the serious controversy [10, 32]. Fortunately,
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it has shown that the decision-making procedure based on the AHP model is reliable
according to the recent results [4]. Moreover, from the existing discussions about the
ranking reversal phenomenon, numerical examples are always carried out and it is a
lack of a formally theoretical analysis except for the finding by [28]. In this study, we
revisit the phenomenon of ranking reversal through a theoretical investigation under
the modified axiomatic foundation. The concept of ranking equilibrium is introduced to
characterize the situations without ranking reversal. The likelihood of ranking reversal
is quantified by proposing a possibility degree index such that the decision maker can
be reminded for the occurrence of ranking reversal in terms of a percentage.

The structure of the paper is organized as follows. In section 2, the axiomatic foun-
dations of the AHP model are focused on. The novelty comes with the modified axioms
and the concept of reciprocal symmetry breaking of pairwise comparisons. Section 3
gives some interesting results derived from the modified axioms. Some important issues
are addressed such as the properties of reciprocal symmetry breaking, the approximate
consistency of pairwise comparison matrices and the priorities of alternatives. Section
4 offers a theoretical analysis for the phenomenon of ranking reversal. The novel con-
cept of ranking equilibrium is proposed to describe the ideal cases without ranking
reversal. The breaking degree of ranking equilibrium is captured by introducing a mea-
surement index. In section 5, a practical case of decision making is restudied and some
comparisons are offered to show the difference from the typical AHP model. The main
conclusions are covered in Section 6.

2. Axiomatic foundations of the AHP model

In this section, we first recall the existing axioms of the AHP model proposed by [23].
Then it is an attempt to modify the basic one such that some uncertainty of human-
originated information can be captured naturally. It is considered that there are a
finite set of alternatives X = {x1, x2, · · · xn} and a criterion C in a decision-making
problem. The binary relation of alternatives with respect to C can be quantified by
defining a mapping as follows:

PC : X× X 7→ R
+, (1)

where R+ stands for the set of positive real numbers. Then the fundamental scale in
relative measurement satisfies the following rules [23]:

(I) PC(xi, xj) = aij ∈ R+;
(II) aij > 1 if xi is strictly preferred to xj under the criterion C, or xi ≻C xj;
(III) aij = 1 if xi is equivalent to xj under the criterion C, or xi ∼C xj;

with ∀i, j ∈ I. In particular, one has aii = 1 since xi is equivalent to xi. Some discus-
sions about the existence of the ratio scales have been widely made [4, 6, 21]. Here we
follow the observations in [4] that the ratio scales could be derived according to the
modern theory of subjective measurement.

2.1. The initial axiomatic foundation

In the following, let us recall the four axioms defined by [23] in terms of the above
primitive notions. The basic one is the reciprocal property of pairwise comparisons:
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Axiom 2.1 (Axiom 1.). (Reciprocal property) The preference intensities between the
alternatives xi and xj satisfy the following relation:

aij = 1/aji, i, j ∈ I. (2)

When explaining the reciprocal property (2), [23] stated that ”if one stone is judged
to be five times heavier than another, then the other is automatically one fifth as heavy
as the first because it participated in making the first judgment.” It is seen that the
reciprocal property is mainly based on the mathematical intuition. Moreover, from
the theory of subjective measurement in mathematical psychology [4], the reciprocal
property is not necessarily satisfied. The main reason is based on the fact that when
separately evaluating the preference intensities aij and aji, some uncertainty could
be existing from the viewpoint of human psychology. In addition, to cope with the
uncertainty experienced by the decision maker, the interval judgements have been
proposed by [29] to evaluate pairwise comparisons. In this study, it will be proved that
the pairwise comparisons without reciprocal property are equivalent to the interval
judgements in a sense. Therefore, when the reciprocal property is considered to be not
necessary, the axiomatic foundation of the AHP model should be modified.

On the other hand, within the framework of the AHP model, a complex decision
making problem is decomposed as a hierarchy structure with criteria, subcriteria and
alternatives. The hierarchic axioms form the bases of the hierarchy structure. First,
the concept of a partially ordered set should be mentioned:

Definition 2.2. A set S with a binary relation ” � ” is partially ordered, when the
following conditions are satisfied:

• Reflexive: x � x for ∀x ∈ S;
• Transitive: If x � y and y � z, then x � z for ∀x, y, x ∈ S;
• Antisymmetric: If x � y and y � x, then x ∼ y for ∀x, y ∈ S.

Then the boundedness, the supremum and the infimum of a partially ordered set
can be further defined. Following the concept of the partially ordered set, the definition
of a hierarchy is given as follows [23]:

Definition 2.3. A hierarchy H satisfies the following conditions:

• H is a finite partially ordered set with the largest element b.
• H can be partitioned as h subsets called levels {Lk, k = 1, 2, · · · , h} with L1 =

{b}.
• If x ∈ Lk, one has L−

x = {y|y ≺ x} ⊆ Lk+1 (k = 1, 2, · · · , h − 1) and L+
x =

{y|x ≺ y} ⊆ Lk−1 (k = 2, 3, · · · , h), where the symbol ” ≺ ” stands for ”less
preferred than.”

In connect with the AHP model, the second axiom is given as the following form:

Axiom 2.4 (Axiom 2.). (ρ-homogeneity) Assume that ρ ≥ 1 is a positive real number
and H is a hierarchy. L−

x ⊆ Lk+1 is of ρ-homogeneity with respect to x ∈ Lk ⊆ H for
k = 1, 2, · · · , h− 1 under the following condition:

1/ρ ≤ PC(y1, y2) ≤ ρ, ∀y1, y2 ∈ L
−
x . (3)

The ρ-homogeneity characterizes the comparability of similar things belonging to
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the same level. When the reciprocal property is not necessary, the condition (3) should
be changed correspondingly.

Furthermore, it is seen that the dependence of different levels should be considered
by extending the notions of the fundamental scale. The concepts of outer dependent
and inner dependent are introduced as follows:

Definition 2.5. A set A is outer dependent on the set C if one can define a funda-
mental scale on A with respect to each C ∈ C.

Definition 2.6. Assume that A is outer dependent on the set C. The elements in A

are inner dependent with respect to C ∈ C if for some A ∈ A, A is outer dependent
on A.

The relation between the levels Lk and Lk+1 should satisfy the following axiom:

Axiom 2.7 (Axiom 3.). (Dependence) Let Lk (k = 1, 2, · · · , h) be the levels of a
hierarchy H. Then Lk and Lk+1 (k = 1, 2, · · · , h − 1) have the following dependence
relations:

• Lk+1 is outer dependent on Lk;
• Lk+1 is not inner dependent with respect to all x ∈ Lk;
• Lk is not outer dependent on Lk+1.

Axiom 3 is not related to the reciprocal property; and it holds when pairwise com-
parisons are not reciprocal.

At the end, it is considered that the decision maker usually has an expectation
about the outcome of a decision-making problem. The constructed hierarchy should
be compatible with the expectation. Hence, the fourth axiom is expressed as follows:

Axiom 2.8 (Axiom 4.). (Expectation) The constructed hierarchy includes all crite-
ria and alternatives; and the derived priorities are compatible with the expectations
represented in the hierarchical structure.

The above four axioms provide the theoretical basis of the typical AHP choice model
[23]. In what follows, we mainly modify the first axiom about the reciprocal property
of pairwise comparisons to establish a new axiomatic foundation of the AHP model
under uncertainty.

2.2. A modified axiomatic foundation

As shown in [12], Axiom 1 is based on the mathematical intuition where the relations
of xi = aijxj and xj = xi/aij should be simultaneously satisfied for aij > 0. However,
the reciprocal property (2) could not always hold for a practical case, which can
be explained from the two views of point. One is based on the paired technique of
comparing alternatives. When the decision maker evaluates the preference intensities
of the alternatives xi over xj and xj over xi, the uncertainty could be experienced
[29]. In fact, the reciprocal property (2) reflects the strict logical relation between
aij and aji, which is incompatible with the uncertainty being experienced by the
decision maker. The other comes with the subjective measurement of the ratio scales
[4]. Some cognitive distortions of the decision maker could affect the evaluation of
her/his ratio judgements. Therefore, the reciprocal property (2) should be relaxed to
naturally capture the uncertainty exhibited in paired comparisons.
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Figure 2. The mirror mechanism between the cases of 0 < a−
ij
a−
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≤ 1 and a+
ij
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≥ 1.

When softening the equality (2), there are two situations to be considered. One is
0 < aijaji ≤ 1 and the other is aijaji ≥ 1. For the two considered situations, we can
introduce a factor θij such that θij = aijaji. Hence the concept of reciprocal symmetry
breaking is proposed in the following definition:

Definition 2.9. Suppose that there are a finite set of alternatives X =
{x1, x2, · · · , xn}. The symbols aij and aji stand for the preference intensities of xi
over xj and xj over xi, respectively. If there exist a pair of preference intensities aij
and aji such that

θij = aijaji 6= 1, (4)

the pairwise comparisons on X are of reciprocal symmetry breaking.

In general, we can consider that the reciprocal symmetry breaking reflects some
uncertainty in pairwisely comparing alternatives. In addition, it is interesting to recall
the interval-valued comparison matrix provided by [29]:

Definition 2.10. An interval-valued comparison matrix is represented as:

Ã = (ãij)n×n =









[1, 1]
[

a−12, a
+
12

]

· · ·
[

a−1n, a
+
1n

]

[

a−21, a
+
21

]

[1, 1] · · ·
[

a−2n, a
+
2n

]

· · · · · · · · · · · ·
[

a−n1, a
+
n1

] [

a−n2, a
+
n2

]

· · · [1, 1]









. (5)

Hereafter ãij =
[

a−ij , a
+
ij

]

means that the preference intensity of xi over xj is located

between a−ij and a+ij . The values satisfy a−ij · a+ji = a+ij · a−ji = 1 and 0 < a−ij ≤ a+ij for
i, j ∈ I.

Definition 2.10 shows the following relations:

a−ija
−
ji ≤ 1, a+ija

+
ji ≥ 1, i, j ∈ I. (6)

Moreover, letting

θ−ij = a−ija
−
ji, θ+ij = a+ija

+
ji, (7)
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we have

θ−ijθ
+
ij = 1. (8)

As shown in Figure 2, the mirror mechanism has been built for the transformation
between the cases of 0 < a−ija

−
ji ≤ 1 and a+ija

+
ji ≥ 1. In other words, when we give a+ij

and a+ji with a+ija
+
ji ≥ 1 by comparing xi and xj, the comparison ratios a−ij and a−ji

with 0 < a−ija
−
ji ≤ 1 have been determined by using the relation a−ij · a+ji = a+ij · a−ji = 1.

This means that it is sufficient to consider one of the two cases with 0 < θ−ij ≤ 1 and

θ+ij ≥ 1, where the reciprocal symmetry (8) is satisfied. In order to form an axiomatic
foundation of the AHP model under some uncertainty, Axiom 1 is modified as follows:

Axiom 2.11 (Axiom 1′.). (Reciprocal symmetry breaking) The preference intensities
of the alternatives xi over xj and xj over xi satisfy the following relation:

0 < aijaji ≤ 1, i, j ∈ I. (9)

Clearly, Axiom 1 is the particular case of Axiom 1′ with reciprocal property. In a
similar manner, Axiom 2 should be further adjusted and we give the following axiom:

Axiom 2.12 (Axiom 2′.). (ρ-homogeneity) Let ρ ≥ 1 and H be a positive real number
and a hierarchy, respectively. L−

x ⊆ Lk+1 is of ρ-homogeneity with respect to x ∈ Lk ⊆
H for k = 1, 2, · · · , h− 1 and the following conditions:

1/ρ ≤ PC(y1, y2) ≤ ρ, 1/ρ ≤ PC(y2, y1) ≤ ρ ∀y1, y2 ∈ L
−
x . (10)

As compared to Axiom 2, the pairwise comparisons PC(y1, y2) and PC(y2, y1) are all
considered in Axiom 2′. Furthermore, since Axiom 3 is only related to the fundamental
scale satisfying the three rules (I)-(III), it does not need to be modified. Additionally,
Axiom 4 holds, even when the irrational behavior of the decision maker emerges [23].
In a word, Axioms 1′, 2′, 3 and 4 form the modified axiomatic foundation of the AHP
model under some uncertainty.

3. Results from the modified axioms

It is noted from the results in [23] that the reciprocal property is the necessary con-
dition of a consistent binary relation. When the reciprocal property is broken, the
pairwise comparisons must be inconsistent. This implies that the inconsistency is the
natural property of pairwise comparisons according to Axiom 1′. The above observa-
tion is in agreement with the practical situation, since one always provides inconsistent
judgements when pairwisely comparing alternatives [22]. In the following, we derive
some interesting results from the modified axiomatic foundation.

3.1. Properties of reciprocal symmetry breaking

It is convenient to propose the concept of pairwise comparison matrices with reciprocal
symmetry breaking.
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Definition 3.1. A pairwise comparison matrix A = (aij)n×n is of reciprocal symmetry
breaking, if the derived matrix

Θ = (θij)n×n 6= E, (11)

where θij = aijaji (i, j ∈ I) and E stands for the matrix whose entries are all ones.

Hereafter, when we say pairwise comparison matrices, it means that the reciprocal
property could be breaking. In terms of (11), it gives θij = θji (i, j ∈ I), meaning that
the constructed matrix Θ is symmetrical. When Θ = E, the matrix A = (aij)n×n is
with reciprocal property. This implies that the matrix Θ characterizes the reciprocal
property of a pairwise comparison matrix. For the sake of distinguishing, we give the
following definition:

Definition 3.2. If a pairwise comparison matrix A = (aij)n×n is with reciprocal
property, it is called a multiplicative reciprocal matrix.

Moreover, the degree of reciprocal symmetry breaking of a pairwise comparison
matrix A = (aij)n×n can be quantified by using the matrix Θ. We define the following
index:

Definition 3.3. Suppose that A = (aij)n×n is a pairwise comparison matrix. The
degree of reciprocal symmetry breaking is defined by the following equality:

SBD(A) =
2

n(n− 1)

n
∑

i=1

n
∑

j=i+1

θij, n ≥ 2, (12)

where θij = aijaji for i, j ∈ I.

In addition, the index of SBD(A) has the property as follows:

Theorem 3.4. The degree of reciprocal symmetry breaking of a pairwise comparison
matrix A = (aij)n×n satisfies the relation of 0 < SBD(A) ≤ 1. A = (aij)n×n is a
multiplicative reciprocal matrix if and only if SBD(A) = 1.

Proof. Proof of Theorem 3.4. In terms of Axiom 1′ and Definition 3.3, it follows
0 < θij ≤ 1 and θij = θji for i, j ∈ I. We further have

0 < SBD(A) =
2

n(n− 1)

n
∑

i=1

n
∑

j=i+1

θij ≤ 1. (13)

If SBD(A) = 1, then θij = 1 for i, j ∈ I and j > i. In virtue of θij = θji and θii = 1,
one has Θ = (θij)n×n = E, meaning that A = (aij)n×n is a multiplicative reciprocal
matrix (Definition 8). On the other hand, if A = (aij)n×n is with reciprocal property,
then θij = aijaji = 1. The application of (12) leads to SBD(A) = 1.

Under Axiom 1′, the proposed index SBD(A) reflects the breaking degree of recip-
rocal property of a pairwise comparison matrix. The more the value of SBD(A), the
less the breaking degree of reciprocal property is. It can be further explained as the
subjective probability to give a pairwise comparison matrix with reciprocal property
from the viewpoint of the philosophical discussion. In other words, when SBD(A) = 1,

8



it implies that the subjective probability of giving a pairwise comparison matrix with
reciprocal property is 1. With the decreasing of the value of SBD(A), the subjective
probability of providing a multiplicative reciprocal matrix is decreasing. Furthermore,
since an interval-valued comparison matrix can be used to capture the uncertainty
experienced by the decision maker [29], the following result is achieved:

Theorem 3.5. A pairwise comparison matrix A = (aij)n×n with reciprocal symmetry

breaking is equivalent to an interval-valued comparison matrix Ã = (ãij)n×n.

Proof. Proof of Theorem 3.5. If A = (aij)n×n is with reciprocal symmetry breaking,
we have 0 < θij = aijaji ≤ 1 under Axiom 1′ for ∀i, j ∈ I and Θ 6= E according to
Definition 3.1. Then it follows

aij ≤
1

aji
. (14)

Letting

a−ij = aij , a+ij = 1/aji,

and

ãij = [a−ij , a
+
ij ],

one obtains the interval-valued comparison matrix Ã = (ãij)n×n.

On the contrary, when an interval-valued comparison matrix Ã = (ãij)n×n with
ãij = [a−ij , a

+
ij ] is given, the pairwise comparison matrix A = (aij)n×n with reciprocal

symmetry breaking is derived by assuming aij = a−ij for i, j ∈ I under the consideration

of Axiom 1′.

The equivalence shown in Theorem 2 reveals that the uncertainty exhibited in an
interval-valued comparison matrix can be equivalently captured by a pairwise com-
parison matrix with reciprocal symmetry breaking. In addition, following the idea in
Definition 3.3, an uncertainty index of Ã = (ãij)n×n can be constructed as

UI(Ã) =
2

n(n− 1)

n
∑

i=1

n
∑

j>i

a−ija
−
ji. (15)

Then the following result is obtained:

Theorem 3.6. Assume that Ã = (ãij)n×n is an interval-valued comparison matrix

with ãij = [a−ij , a
+
ij ] for i, j ∈ I. Ã = (ãij)n×n degenerates to a multiplicative reciprocal

matrix if and only if the value of the constructed uncertainty index UI(Ã) is equal to
1.

Proof. Proof of Theorem 3.6. On the one hand, if Ã = (ãij)n×n degenerates to a
multiplicative reciprocal matrix, then a−ij = a+ij and a−ija

−
ji = 1 for i, j ∈ I. Using

the formula (15), one has UI(Ã) = 1. On the other hand, if UI(Ã) = 1, the result
of Theorem 3.4 shows that the matrix AL = (a−ij)n×n is a multiplicative reciprocal
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matrix. This means that a−ija
−
ji = 1 and a−ij = 1/a−ji = a+ij. That is, Ã = (ãij)n×n

degenerates to a multiplicative reciprocal matrix AL.

It is seen from the above observations that the uncertainty experienced by the
decision maker has been naturally incorporated into Axiom 1′. Therefore, the modified
axiomatic foundation can be considered as the basis of the AHP model under some
uncertainty.

3.2. Approximate consistency of pairwise comparison matrices

It is worth noting that the concept of consistent pairwise comparison matrices is
important and it is recalled as follows [22, 23]:

Definition 3.7. A pairwise comparison matrix A = (aij)n×n is consistent if

aijajk = aik, i, j, k ∈ I. (16)

In this study, it is noted that a pairwise comparison matrix could be with the break-
ing of reciprocal property. Hence, the consistency is only a particular property of a
pairwise comparison matrix and a softened version of consistency should be further
developed. It is noted that the concept of approximate consistency has been proposed
to characterize the consistency property of interval-valued comparison matrices [16].
Following the idea in [16], the concept of approximate consistency of a pairwise com-
parison matrix is proposed:

Definition 3.8. A pairwise comparison matrix A = (aij)n×n is approximately con-
sistent, if the same ranking of alternatives can be obtained by using each row and
column vectors in A = (aij)n×n.

In Definition 3.8, the restrictive quantitative relation among paired comparisons in
Definition 3.7 has been neglected and the ranking of alternatives is directly used. For
example, let us consider a pairwise comparison matrix as follows [25]:

A1 =

















C x1 x2 x3 x4 x5
x1 1 9 2 3 5
x2 1/9 1 1/5 1/3 1/2
x3 1/2 5 1 3/2 3
x4 1/3 3 2/3 1 3/2
x5 1/5 2 1/3 2/3 1

















.

It is easy to determine the same ranking of alternatives as x1 ≻ x3 ≻ x4 ≻ x5 ≻ x2 by
using each row and column vectors in A1, meaning that A1 is of approximate consis-
tency according to Definition 3.8. In addition, one can see that A1 is with reciprocal
property. For the purpose of agreeing with Axiom 1′, we further modify the matrix A1
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as:

Am
1 =

















C x1 x2 x3 x4 x5
x1 1 8 2 3 5
x2 1/9 1 1/5 1/3 1/2
x3 1/2 5 1 3/2 3
x4 1/3 3 2/3 1 3/2
x5 1/5 2 1/3 2/3 1

















,

where a12a21 = 8/9 < 1. The determined ranking of alternatives by using each row
and column in Am

1 still is x1 ≻ x3 ≻ x4 ≻ x5 ≻ x2, meaning that Am
1 is also a

pairwise comparison matrix with approximate consistency. Hence, due to the breaking
of reciprocal property in Am

1 , the concept of approximate consistency is a softened
version of consistency, and it is compatible with Axiom 1′. According to the standard of
choosing the best alternative, the two matrices A1 and A

m
1 are equivalent. Furthermore,

we have the following property:

Theorem 3.9. Let A = (aij)n×n be a pairwise comparison matrix with approximate
consistency. There is a permutation σ : I 7→ I such that Aσ = (aσ(i)σ(j))n×n has the
following properties:

(1) Aσ is a pairwise comparison matrix with approximate consistency;
(2) The elements in each row of Aσ are ranked by the ascending order;
(3) The elements in each column of Aσ are ranked by the descending order.

Proof. Proof of Theorem 3.9. (1) Suppose that A = (aij)n×n is with approximate
consistency. For any permutation σ, there is a unique number ik ∈ I such that σ(i) = ik
for ∀i ∈ I. When Aσ = (aσ(i)σ(j))n×n is obtained by applying a permutation σ to
A = (aij)n×n, the entries in the ith row or the jth column belonging to A = (aij)n×n

are changed to the σ(i)th row or the σ(j) column in Aσ = (aσ(i)σ(j))n×n. This means
that the ranking of alternatives determined by a row or column of A = (aij)n×n is
not changed with respect to the permutation σ. Therefore, Aσ = (aσ(i)σ(j))n×n is of
approximate consistency.

(2) For A = (aij)n×n with approximate consistency, it is assumed that the deter-
mined ranking of alternatives is xσ(1) � xσ(2) � · · · � xσ(n), where the permutation σ
is given. Then applying the permutation σ to A = (aij)n×n to give Aσ = (aσ(i)σ(j))n×n,
we have aσ(i)σ(1) ≤ aσ(i)σ(2) ≤ · · · ≤ aσ(i)σ(n) for i ∈ I when the ranking is obtained by
using the row vectors. This means that the elements in each row of Aσ are ranked by
the ascending order.

(3) Based on the findings in (2), when the ranking of xσ(1) � xσ(2) � · · · � xσ(n) is
determined by using the column vectors, it follows aσ(1)σ(j) ≥ aσ(2)σ(j) ≥ · · · ≥ aσ(n)σ(j)
for j ∈ I. That is, the elements in each column of Aσ are ranked by the descending
order.

11



Theorem 3.9 can be verified by adjusting Am
1 as the following form:

Aσ
1 =

















C x1 x3 x4 x5 x2
x1 1 2 3 5 8
x3 1/2 1 3/2 3 5
x4 1/3 2/3 1 3/2 3
x5 1/5 1/3 2/3 1 2
x2 1/9 1/5 1/3 1/2 1

















.

It is easy to see that the matrix Aσ
1 is in agreement with Theorem 3.9. In addition, we

have the following observation:

Theorem 3.10. If a pairwise comparison matrix A = (aij)n×n is consistent (Defini-
tion 3.7), it is of approximate consistency (Definition 3.8).

Proof. Proof of Theorem 3.10. Suppose that A = (aij)n×n is a consistent matrix.
Then one has rank(A) = 1 and all rows of A = (aij)n×n are identical except for
a constant factor [23]. That is, when a row of A = (aij)n×n is used to obtain the
ranking of alternatives, the other rows can be used to determine the same ranking of
alternatives. Similarly, when considering the columns of A = (aij)n×n, the same result
can be found. Furthermore, due to the reciprocal property of a consistent matrix,
the rankings of alternatives using the rows and columns are identical. Therefore, a
consistent pairwise comparison matrix is with approximate consistency.

The above observations show that a consistent pairwise comparison matrix is the
ideal case under the typical and modified axiomatic foundations of the AHP model.
A pairwise comparison matrix with approximate consistency can be considered as
the ideal case of the modified axiomatic foundation of the AHP model under some
uncertainty.

3.3. Priorities of alternatives

Another important problem is how to elicit the priorities of alternatives from a pairwise
comparison matrix A = (aij)n×n in the AHP model. Following the idea in [22], let us
assume that there is a mapping given as follows:

ψ : RM(n) 7→ [0, 1]n, (17)

where RM(n) denotes the set of pairwise comparison matrices A = (aij)n×n and [0, 1]n

stands for the n-fold Cartesian product of [0, 1]. For convenience, the priority vector of
alternatives is expressed as ω = (ω1, ω2, · · · , ωn) ∈ [0, 1]n with

∑n
i=1 ωi = 1. The meth-

ods should be studied for deriving the priority vector of alternatives from a pairwise
comparison matrix. As shown in [22, 23], the eigenvalue method has been carefully
discussed, especially for consistent pairwise comparison matrices. Here we mainly fo-
cus on the method of deriving the priority vector from a pairwise comparison matrix
with approximate consistency.

Suppose that the set of pairwise comparison matrices with approximate consistency
is written as RAC(n). The following result is given:

12



Theorem 3.11. Let A = (aij)n×n ∈ RAC(n) be obtained by pairwise comparing alter-
natives in X = {x1, x2, · · · , xn}. There exists a mapping:

ψ : A ∈ RAC(n) 7→ [0, 1]n ∋ ω = (ω1, ω2, · · · , ωn),

such that

(I) aij = εij
ωi

ωj
with εij = εji =

√
aijaji ∈ (0, 1] for i, j ∈ I.

(II) For any two alternatives xi and xj , xi � xj if and only if ωi ≥ ωj for i, j ∈ I.

Proof. Proof of Theorem 3.11. For A = (aij)n×n ∈ RAC(n), there is a permutation σ
such that the derived matrix Aσ = (aσ(i)σ(j))n×n satisfies Theorem 3.9. Without loss
of generality, it is assumed that σ = (1, 2, · · · , n) and A = (aij)n×n satisfies Theorem
3.9. This means that x1 � x2 � · · · � xn along with ai1 ≤ ai2 ≤ · · · ≤ ain and
a1j ≥ a2j ≥ · · · ≥ anj for i, j ∈ I. Therefore, there exists a weight ωi for the alternative
xi with i ∈ I such that ω1 ≥ ω2 ≥ · · · ≥ ωn. Moreover, a pairwise comparison matrix
can be constructed as follows:

Ω =















C x1 x2 · · · xn
x1

ω1

ω1

ε12
ω1

ω2

· · · ε1n
ω1

ωn

x2 ε21
ω2

ω1

ω2

ω2

· · · ε2n
ω2

ωn

...
...

...
...

...
xn εn1

ωn

ω1

εn2
ωn

ω2

· · · ωn

ωn















. (18)

Letting

aij = εij
ωi

ωj

, εij = εji,

we have

A = Ω, aijaji = ε2ij .

In terms of Axiom 1′, it gives εij ∈ (0, 1], then the results (I) and (II) follow.

In what follows, we prove that the eigenvalue method still is feasible to derive the
priority vector from a pairwise comparison matrix with approximate consistency. It is
convenient to recall a lemma as follows:

Lemma 3.12. Let A = (aij)n×n be a pairwise comparison matrix and σ be a permuta-
tion of (1, 2, · · · , n). Aσ = (aσ(i)σ(j))n×n is determined by applying σ to A = (aij)n×n.
Then the eigenvalues of A = (aij)n×n and Aσ = (aσ(i)σ(j))n×n are identical. The cor-
responding eigenvectors of Aσ = (aσ(i)σ(j))n×n are obtained by applying σ to those of
A = (aij)n×n.

The proof of Lemma 3.12 can be completed by using the matrix theory [14] and
the known finding [17]. The detail procedure has been neglected here. Furthermore,
we have the following result:

Theorem 3.13. Let A = (aij)n×n ∈ RAC(n) be expressed as (18) and A′ be
a consistent pairwise comparison matrix. The principal right eigenvector of A′ is

13



written as ω′ = (ω1, ω2, · · · , ωn)
T , where T denotes the transposition. The princi-

pal right eigenvector of A corresponding to the principal eigenvalue λmax is calcu-
lated as ωa = (ωa1, ωa2, · · · , ωan)

T . A permutation σ is applied to ω′ and ωa to
get ω′

σ = (ωσ(1), ωσ(2), · · · , ωσ(n))
T and ωaσ = (ωaσ(1), ωaσ(2), · · · , ωaσ(n))

T , respec-
tively. Then there is a permutation σ such that ωaσ(1) ≥ ωaσ(2) ≥ · · · ≥ ωaσ(n) and
ωσ(1) ≥ ωσ(2) ≥ · · · ≥ ωσ(n) are satisfied simultaneously.

Proof. Proof of Theorem 3.13. Since A = (aij)n×n ∈ RAC(n), there is a permutation
σ such that Aσ = (aσ(i)σ(j))n×n with the following relations:

0 < aσ(i)σ(j) ≤ aσ(i)σ(j+1), aσ(i)σ(j) ≥ aσ(i+1)σ(j) > 0, i, j = 1, 2, · · · , n− 1, (19)

where Theorem 3.9 has been used. Making use of Lemma 3.12, we have

Aσωaσ = λmaxωaσ. (20)

This means that

n
∑

j=1

aσ(i)σ(j)ωaσ(j) = λmaxωaσ(i), i ∈ I. (21)

In virtue of (19), it follows ωaσ(1) ≥ ωaσ(2) ≥ · · · ≥ ωaσ(n). Moreover, by rewriting
A = (aij)n×n as the matrix in (18), the application of Theorem 3.11 yields ωσ(1) ≥
ωσ(2) ≥ · · · ≥ ωσ(n).

As shown in Theorem 3.13, the eigenvalue method can be used as the method
of eliciting the properties of alternatives from a pairwise comparison matrix
with approximate consistency. For example, the pairwise comparison matrix Aσ

1
with approximate consistency is utilized for numerical computations. The largest
eigenvalue and the corresponding eigenvector can be determined as 4.9824 and
(0.4565, 0.2476, 0.1523, 0.0940, 0.0496), respectively. This means that the ranking of
alternatives is x1 ≻ x3 ≻ x4 ≻ x5 ≻ x2, which is in agreement with the existing result.
In addition, it is noted that the largest eigenvalue 4.9824 is less than the order 5 of
the matrix. The observation is attributed to the breaking of reciprocal symmetry and
different from the result of [23].

4. Ranking reversal phenomenon

The phenomenon of ranking reversal has been discussed widely within the framework
of the AHP model. However, in the open literature, numerical examples are always
offered to illustrate the ranking reversal phenomenon and the theoretical investigation
is little made except for the finding in [28]. Here we attempt to give a theoretical
analysis and to reach a general result according to the modified axiomatic foundation.

4.1. Single criterion case

When a single criterion is considered to compare alternatives in pairs, the rank preser-
vation has been studied in [28]. It can be resulted that when the pairwise comparison
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matrix is consistent, the ranking of alternatives is not changed by the action of adding
or deleting an alternative [23]. In other words, the ranking reversal phenomenon should
not appear when the judgements of the decision maker are consistent. Now we consider
the case that the pairwise comparison matrix is of approximate consistency in terms
of Definition 3.8.

Theorem 4.1. Let A = (aij)n×n ∈ RAC(n). When deleting an alternative, the ob-

tained pairwise comparison matrix is written as Ad = (adij)(n−1)×(n−1). We have
Ad ∈ RAC(n−1) and the ranking of the remaining alternatives holds the same as that
determined by A.

Proof. Proof of Theorem 4.1. Since A = (aij)n×n is a pairwise comparison matrix
with approximate consistency, there is a permutation σ such that

0 < aσ(i)σ(j) ≤ aσ(i)σ(j+1), aσ(i)σ(j) ≥ aσ(i+1)σ(j) > 0, i, j = 1, 2, · · · , n− 1. (22)

When deleting any an alternative, the corresponding comparison ratios are deleted.
The remaining entries are used to construct Ad and their rankings are still kept as
(22), meaning Ad ∈ RAC(n−1). Based on Theorems 3.11 and 3.13, the ranking of the
remaining alternatives is not changed.

Theorem 4.2. Let A = (aij)n×n ∈ RAC(n). A new pairwise comparison matrix is
determined as Aa = (aaij)(n+1)×(n+1) when adding an alternative. If Aa ∈ RAC(n+1),
the ranking of the old alternatives is the same as that obtained by A.

Proof. Proof of Theorem 4.2. For A = (aij)n×n ∈ RAC(n), there exists a permutation
σ such that

xσ(1) � xσ(2) � · · · � xσ(n), (23)

with

0 < aσ(i)σ(j) ≤ aσ(i)σ(j+1), aσ(i)σ(j) ≥ aσ(i+1)σ(j) > 0, i, j = 1, 2, · · · , n− 1. (24)

When adding an alternative xn+1 and Aa = (aaij)(n+1)×(n+1) ∈ RAC(n+1), there is a

permutation σ′ such that

xσ′(1) � xσ′(2) � · · · � xσ′(n+1). (25)

Obviously, the ranking in (23) is not changed in (25).

It is convenient to reconsider the matrix Aσ
1 . For example, deleting the alternative

x5, it gives

Ad
1 =













C x1 x3 x4 x2
x1 1 2 3 8
x3 1/2 1 3/2 5
x4 1/3 2/3 1 3
x2 1/9 1/5 1/3 1













,
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where the elements corresponding to x5 in Aσ
1 have been deleted. The ranking of

alternatives is x1 ≻ x3 ≻ x4 ≻ x2 by using Ad
1, which is identical with that given by

Aσ
1 . When adding an alternative x6 to give the matrix with approximate consistency

as:

Aa
1 =





















C x1 x3 x4 x5 x6 x2
x1 1 2 3 5 6 8
x3 1/2 1 3/2 3 4 5
x4 1/3 2/3 1 3/2 2 3
x5 1/5 1/3 2/3 1 3/2 2
x6 1/6 1/4 1/2 2/3 1 3/2
x2 1/9 1/5 1/3 1/2 4/5 1





















,

it is easy to obtain the ranking of alternatives as x1 ≻ x3 ≻ x4 ≻ x5 ≻ x6 ≻ x2,
where the ranking of x1 ≻ x3 ≻ x4 ≻ x5 ≻ x2 is not changed. Although pairwise com-
parison matrices with the breaking of reciprocal property are inconsistent in nature,
the ranking reversal phenomenon does not occur under approximate consistency. As
compared to the results of [28], the present finding is based on the modified axioms.
Furthermore, it should be pointed out that when a pairwise comparison matrix is
not of approximate consistency, the ranking reversal phenomenon may not occur. For
instance, we change the value of an entry in A1 to get

A2 =

















C x1 x2 x3 x4 x5
x1 1 9 2 3 5
x2 1/9 1 1/5 1/3 1/2
x3 1/4 5 1 3/2 3
x4 1/3 3 2/3 1 3/2
x5 1/5 2 1/3 2/3 1

















,

with a13a31 = 1/2 < 1. It is seen that A2 is not of approximate consistency. But when
eliminating an alternative, the ranking of the remaining alternatives can be kept by
using the eigenvalue method. This means that the results in Theorems 4.1 and 4.2 give
some ideal cases and the occurrence of ranking reversal should be further investigated.

4.2. Multi-criteria case

When the multiple criteria should be considered in a decision making problem, a com-
plex and disordered state about the ranking of alternatives may occur after adding or
deleting an alternative. In the single criterion case, the effects of the inner dependence
of alternatives on the ranking reversal have been addressed. It can be considered that
the dependence of the elements in the same level may cause the ranking reversal phe-
nomenon. In the multi-criteria case, of much importance is to investigate the effects
of the dependence of different levels in a hierarchy structure on the ranking rever-
sal. Therefore, it is interesting to discuss the particular case where all the pairwise
comparison matrices are of approximate consistency. Suppose that there are a set of
criteria C = {C1, C2, · · · , Cm} and a set of alternatives X = {x1, x2, · · · , xn}. The
weights of criteria with respect to the goal are written as w̄ = {w1, w2, · · · , wm} and
the weights of alternatives with respect to Ci are expressed as w̄i = {w1i, w2i, · · · , wni}.
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For convenience, the following matrix is determined:

W =



















w1 w2 · · · wm

C1 C2 · · · Cm

x1 w11 w12 · · · w1m

x2 w21 w22 · · · w2m
...

...
...

...
...

xn wn1 wn2 · · · wnm



















. (26)

Following [23], the final weights of alternatives are computed by using the following
formula:

ωi =

m
∑

j=1

wjwij , i ∈ I. (27)

Without loss of generality, it is further assumed that w1 ≥ w2 ≥ · · · ≥ wm. Then we
have the following results:

Theorem 4.3. Let the weights of criteria and alternatives be expressed as the matrix
W. The rankings of alternatives with respect to all criteria are assumed to be iden-
tical. When deleting an alternative or a criterion, the final ranking of the remaining
alternatives is not changed.

Proof. Proof of Theorem 4.3. It is convenient to assume

w1j ≥ w2j ≥ · · · ≥ wnj, ∀j ∈ {1, 2, · · · ,m}. (28)

Then we have ω1 ≥ ω2 ≥ · · · ≥ ωn and x1 � x2 � · · · � xn by using (27) and
w1 ≥ w2 ≥ · · · ≥ wm. When deleting an alternative, the ranking of the remaining
alternatives with respect to any a criterion is not changed according to Theorem 4.1.
This means that the ranking of the remaining alternatives holds by using (27). In
addition, when deleting a criterion, the ranking of the remaining criteria is still kept.
The final ranking of the alternatives is not changed in terms of (27).

Theorem 4.4. The weights of criteria and alternatives are assumed to be expressed as
the matrix W, and there is the same ranking of alternatives with respect to all criteria.
When adding an alternative xn+1, if the rankings of n + 1 alternatives are identical
with respect to all criteria, the ranking of the old alternatives is not changed. When
adding a criterion Cm+1, if the ranking of the alternatives with respect to Cm+1 is the
same as the previous one, the final ranking of alternatives is not changed.

Proof. Proof of Theorem 4.4. Following Theorem 4.2 and (27), the results are satisfied
and the detail procedure has been omitted here.

The above observations show some ideal cases without the ranking reversal. As an
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example, we consider the following matrix:

W1 =













0.25 0.25 0.25 0.25
C1 C2 C3 C4

x1 1/18 1/11 1/14 1/9
x2 9/18 9/11 9/14 5/9
x3 8/18 1/11 4/14 3/9













.

It is seen from W1 that x2 � x3 � x1 for all criteria. If adding an alternative and
giving the new matrix:

W2 =

















0.25 0.25 0.25 0.25
C1 C2 C3 C4

x1 1/22 1/12 1/16 1/12
x2 9/22 9/12 9/16 5/12
x3 8/22 1/12 4/16 3/12
x4 4/22 1/12 2/16 2/12

















,

we can obtain the ranking of x2 � x4 � x3 � x1, meaning that the ranking of
x2 � x3 � x1 holds.

4.3. Likelihood of ranking reversal

The findings in Theorems 4.1-4.4 have revealed some basic facts related to the ranking
reversal phenomenon. For convenience, we propose the following concept:

Definition 4.5. If the ranking of alternatives in a hierarchy structure is not changed
by the actions of adding or deleting an alternative and/or a criterion, the hierarchy
structure is called to be with the ranking equilibrium.

The concept of ranking equilibrium describes the fundamental state of a hierarchy
structure without ranking reversal. As compared to the concepts of consistency in [22]
and approximate consistency in Definition 3.8, the meaning of ranking equilibrium is
intuitive and easily accessible. Theorems 4.1-4.4 can be considered as the basic cores
of the ranking equilibrium. When there is a difference among the rankings of the
alternatives with respect to different row/column vectors in a pairwise comparison
matrix or different criteria, the ranking equilibrium begins to be broken. In order
to quantify the breaking degree of ranking equilibrium, we introduce the Kendall’s
coefficient of concordance [8, 15].

Definition 4.6. Assume that ~V = (v1, v2, . . . , vn)
T is an n-dimensional vector. The

rank of the element vi is defined as:

ri =

n
∑

j=1

Ind(vj ≤ vi), (29)
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where Ind(vj ≤ vi) stands for the following indicator function:

Ind(vj ≤ vi) =

{

1, vj ≤ vi,

0, otherwise.
(30)

Then the vector ~R(~V ) = (r1, r2, · · · , rn)T is called the rank vector of ~V .

For example, the rank vector of ~V1 = (0.7, 0.4, 0.3, 0.4, 0.2)T can be determined as
~R(~V1) = (5, 3, 2, 4, 1)T . Hereafter, the first method is used to deal with the case with
the same entries such that the rank vector of an n-dimensional vector is a permutation
of (1, 2, · · · , n)T . The first method obeys the following two rules:

• The rank vector should be kept as a permutation of (1, 2, · · · , n)T ;
• For the two same entries, the rank of the entry in the first order is less than that

of the second one.

In what follows, we always assume that the rank vector of an n-dimensional vector
is a permutation of (1, 2, · · · , n)T . Moreover, the rank matrix can be defined as:

Definition 4.7. R = (rij)n×m is called the rank matrix of B = (bij)n×m, where rij is

the rank of the entry bij in the column vector ~b·j = (b1j , b2j , . . . , bnj)
T .

Then, let us define the following quantity:

r̄i =

m
∑

j=1

rij, i ∈ I. (31)

The mean value and the variance are computed as:

r̄ =
1

n

n
∑

i=1

r̄i, S =

n
∑

i=1

(r̄i − r̄)2 =

n
∑

i=1

r̄2i − nr̄2. (32)

After some computations, we further have the following results:

r̄ =
n(n+ 1)

2
, S =

n
∑

i=1

r̄2i −
m2n(n+ 1)2

4
. (33)

It is found that the maximum value of S can be obtained as

Smax =
m2n(n2 − 1)

12
, (34)

when the rankings of the entries of each column in the rank matrix are identical. Now
the Kendall’s coefficient of concordance of B = (bij)n×m is defined as:

K(B) =
S

Smax
=

12S

m2n(n2 − 1)
, n > 1. (35)

Obviously, it follows 0 ≤ K(B) ≤ 1. When K(B) = 0, the column and row vectors
of R = (rij)n×n are an identical permutation of (1, 2, · · · , n)T . The case of K(B) = 1
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means that the elements in a row vector of R = (rij)n×n are the same. In the following,
the cases with single criterion and multiple criteria are investigated, respectively.

(I) The case of a single criterion
First, let us consider the effects of the dependence of the elements in the same level

on ranking reversal. That is, when there is only a single criterion, a pairwise comparison
matrix A = (aij)n×n should be considered. Under the consideration of the reciprocal
symmetry breaking, the Kendall’s coefficient of concordance of A = (aij)n×n should
be derived by using the row and column vectors. The corresponding rank matrices are
written as:

Rc
A =















C x1 x2 · · · xn
x1 rc11 rc12 · · · rc1n
x2 rc21 r22 · · · rc2n
...

...
...

...
...

xn rcn1 rcn2 · · · rcnn















, Rr
A =















C x1 x2 · · · xn
x1 rr11 rr12 · · · rr1n
x2 rr21 rr22 · · · rr2n
...

...
...

...
...

xn rrn1 rrn2 · · · rrnn















,

where Rr
A and Rc

A stand for the rank matrices obtained by using the row and col-
umn vectors, respectively. The Kendall’s coefficient of concordance in (35) should be
rewritten as

K(A) =
Sr + Sc

2Smax

=
6(Sr + Sc)

n3(n2 − 1)
, n > 1, (36)

where

Sr =

n
∑

j=1

(r̄rj )
2 − n3(n+ 1)2

4
, Sc =

n
∑

i=1

(r̄ci )
2 − n3(n+ 1)2

4
,

with

r̄rj =

n
∑

i=1

rrij, r̄ci =

n
∑

j=1

rcij , i, j ∈ I.

Here rrij and rcij are the ranks of aij in the row and column vectors, respectively. We
further obtain the following result:

Theorem 4.8. Given a pairwise comparison matrix A = (aij)n×n, A = (aij)n×n ∈
RAC(n) if and only if the value of K(A) in (36) is equal to 1.

Proof. Proof of Theorem 4.8. When A = (aij)n×n ∈ RAC(n), the rankings of alterna-
tives are identical according to all row and column vectors in A = (aij)n×n. This means
that each column in Rc

A is the same permutation of (1, 2, · · · , n)T , and each row in Rr
A

is the same permutation of (1, 2, · · · , n). It can be computed that Sr = Sc = Smax,
then K(A) = 1.

On the contrary, if K(A) = 1, it follows Sr = Smax and Sc = Smax are satisfied
simultaneously. Then all column vectors in Rc

A are identical and all row vectors in Rr
A

are the same. In what follows, we prove that the same ranking of alternatives can be
obtained by using each column and row vectors of A = (aij)n×n. The proof can be
achieved by using mathematical induction.
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(1) Let n = 2, meaning that

A(2) =





C x1 x2
x1 1 a12
x2 a21 1



 ,

with 0 < a12a21 ≤ 1 under Axiom 1′. Without loss of generality, letting a21 ≤ 1,
it must have a12 ≥ 1 because the column vectors (1, a21)

T and (a12, 1)
T give the

same ranking of alternatives x1 � x2. This results 1 ≤ a12 and a21 ≤ 1, implying
that the application of the row vectors yields the same ranking of x1 � x2. That
is, the matrix A(2) is of approximate consistency.

(2) It is assumed that when n = k, the matrix A(k) = (aij)k×k is of approximate
consistency. Let us say x1 � x2 � · · · � xk with

a1j ≥ a2j ≥ · · · ≥ akj, ai1 ≤ ai2 ≤ · · · ≤ aik, i, j ∈ {1, 2, · · · , k}. (37)

(3) When n = k + 1, the matrix A(k+1) = (aij)(k+1)×(k+1) is given as

A(k+1) =



















C x1 x2 · · · xk xk+1

x1 1 a12 · · · a1k a1(k+1)

x2 a21 1 · · · a2k a2(k+1)
...

...
...

...
...

...
xk ak1 ak2 · · · 1 ak(k+1)

xk+1 a(k+1)1 a(k+1)2 · · · a(k+1)k 1



















.

By considering the same ranking of alternatives according to the column vectors
of A(k+1) and the first relation in (37), it is supposed that a1j ≥ a2j ≥ · · · ≥
akj ≥ a(k+1)j for j ∈ {1, 2, · · · , k + 1}, which yields the ranking of x1 � x2 �
· · · � xk � xk+1. Then in the (k+1)th column of A(k+1), one has ak(k+1) ≥ 1. In
virtue of the kth row of A(k+1) and the second equality in (37), it follows ak1 ≤
ak2 ≤ · · · ≤ akk ≤ ak(k+1). Moreover, it is seen that the row vectors of A(k+1)

should give the same ranking of alternatives according to the rank matrix Rr
A.

Hence, we always have ai1 ≤ ai2 ≤ · · · ≤ aik ≤ ai(k+1) for i ∈ {1, 2, · · · , k + 1},
meaning that x1 � x2 � · · · � xk � xk+1 by using each row of A(k+1).

The above procedure shows that A = (aij)n×n ∈ RAC(n) under the condition of
K(A) = 1.

Now the possibility degree of ranking reversal is defined as follows:

Definition 4.9. Let A = (aij)n×n be a pairwise comparison matrix. The possibility
degree of ranking reversal can be quantified by using the following index:

pd(A) = 1−K(A). (38)

When pd(A) = 0 along with K(A) = 1, we have A = (aij)n×n ∈ RAC(n). Based
on Theorem 4.1 the phenomenon of ranking reversal does not occur when deleting an
alternative. Under Theorem 4.2, if a pairwise comparison matrix with approximate
consistency is produced by adding an alternative, there is not the phenomenon of
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ranking reversal. The more the value of pd(A), the more the likelihood of ranking
reversal is. For example, let us investigate the matrix A1 and arrive at:

Rc
A1 =

















C x1 x2 x3 x4 x5
x1 5 5 5 5 5
x2 1 1 1 1 1
x3 4 4 4 4 4
x4 3 3 3 3 3
x5 2 2 2 2 2

















, Rr
A1 =

















C x1 x2 x3 x4 x5
x1 1 5 2 3 4
x2 1 5 2 3 4
x3 1 5 2 3 4
x4 1 5 2 3 4
x5 1 5 2 3 4

















.

It is easy to compute that pd(A1) = 0 together with K(A1) = 1, meaning that the
hierarchy structure is of ranking equilibrium. Moreover, we consider the following
matrix:

Am
2 =

















C x1 x2 x3 x4 x5
x1 1 1/9 2 3 5
x2 9 1 1/5 1/3 1/2
x3 1/4 5 1 3/2 3
x4 1/3 3 2/3 1 3/2
x5 1/5 2 1/3 2/3 1

















,

and obtain the rank matrices as:

Rc
A =

















C x1 x2 x3 x4 x5
x1 4 1 5 5 5
x2 5 2 1 1 1
x3 2 5 4 4 4
x4 3 4 3 3 3
x5 1 3 2 2 2

















, Rr
A =

















C x1 x2 x3 x4 x5
x1 2 1 3 4 5
x2 5 4 1 2 3
x3 1 5 2 3 4
x4 1 5 2 3 4
x5 1 5 2 3 4

















.

The possibility degree of ranking reversal can be calculated as pd(A
m
2 ) = 0.6160 > 0.

This means that when adding or deleting an alternative, the possibility of ranking
reversal is about 61.6%.

(II) The case of multiple criteria
Second, we investigate the effects of the dependence of different levels on ranking

reversal. For the case with multiple criteria, the matrix W in (26) only needs to be
investigated here. Then the rank matrix can be written as:

RW =



















w1 w2 · · · wm

C1 C2 · · · Cm

x1 r11 r12 · · · r1m
x2 r21 r22 · · · r2m
...

...
...

...
...

xn rn1 rn2 · · · rnm



















. (39)

Similar to Theorem 4.8, the following result is given:

Theorem 4.10. Assume that the weights of alternatives with respect to criteria are
written as the matrix W in (26). The rankings of alternatives are identical according
to all columns in W if and only if K(W ) = 1.
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Proof. Proof of Theorem 4.10. It is supposed that the rankings of alternatives based
on all columns in W are identical. It is no loss of generality to assume x1 � x2 � · · · �
xn, meaning that (r1j , r2j , · · · , rnj) = (n, n − 1, · · · , 1) for ∀j ∈ {1, 2, · · · ,m}. Then
we have K(W ) = 1 by using (35). On the other hand, let K(W ) = 1, which leads to
S = Smax in (35). That is, the rankings of the elements in all columns of RW should
be identical. Hence, the rankings of alternatives determined by applying all columns
in (26) are the same.

The Kendall’s coefficient of concordance K(W ) is used to define the possibility
degree of ranking reversal.

Definition 4.11. Assume that all pairwise comparison matrices are of approximate
consistency. The derived matrix with the priorities of alternatives and criteria is shown
as W in (26). The possibility degree of ranking reversal is computed as

pd(W ) = 1−K(W ). (40)

It is noted that the conditions in Theorems 4.3 and 4.4 correspond to the case of
pd(W ) = 0 with K(W ) = 1. The less the value of pd(W ), the less the possibility oc-
curring the ranking reversal phenomenon is. For example, let us consider the following
matrix [6]:

W3 =













0.25 0.25 0.25 0.25
C1 C2 C3 C4

x1 1/18 9/11 1/14 3/9
x2 9/18 1/11 9/14 1/9
x3 8/18 1/11 4/14 5/9













.

The corresponding rank matrix is given as:

RW3 =













0.25 0.25 0.25 0.25
C1 C2 C3 C4

x1 1 3 1 2
x2 3 1 3 1
x3 2 2 2 3













.

Then the Kendall’s coefficient of concordance K(W3) is calculated as K(W3) = 0.0625.
That is, the possibility degree of ranking reversal is pd(W3) = 0.9375, meaning that the
likelihood of ranking reversal is about 93.75% when adding or deleting an alternative.
The above result is in accordance with the known finding to some extent [6].

(III) General case of a hierarchy structure
In general, the ranking reversal phenomenon could occur due to the dependence of

the elements in the same level and different levels in a hierarchy structure. In other
words, for a general case, the above two cases should be combined to consider. Then
we define the possibility degree of ranking reversal as follows:

Definition 4.12. Let a hierarchy structure have a set of criteria C =
{C1, C2, · · · , Cm} and a set of alternatives X = {x1, x2, · · · , xn}. The pairwise compar-
isons of criteria construct the matrix AC . With respect to a criterion Ci, the pairwise
comparisons of alternatives form the matrices AC(i) (i ∈ I). The relation between the
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Prestige MPG Comfort   Price

    Honda
    Civic

  Toyota
  CamryAcura TL

         Goal
  Buy best car

Figure 3. The hierarchy structure for choosing the best car.

levels of criteria and alternatives is expressed as the matrix W. The average possibility
degree of ranking reversal is computed as:

pd(G) =

n
∑

i=1

νipd(AC(i)) + νcpd(AC) + νwpd(W ), (41)

where νi, νc, νw ∈ [0, 1] for i ∈ I and

n
∑

i=1

νi + νc + νw = 1.

Definition 4.12 shows that the ranking equilibrium of a hierarchy structure is based
on all pairwise comparison matrices and the structural dependence. If there is a matrix
such that the ranking equilibrium is easily broken, the ranking reversal phenomenon
could occur. When all pairwise comparison matrices are of approximate consistency,
the ranking equilibrium could be broken by the dependence of different levels. The
formula in (41) can be used to remind the decision maker notice the likelihood of
ranking reversal in terms of a percentage.

5. Comparison and discussion

For the sake of comparison, a practical case is investigated in the following. In order to
choose the best car among three alternatives of Acura TL, Toyota Camry and Honda
Civic, four criteria with prestige, price, miles per gallon (MPG) and comfort are taken
into consideration [25]. The hierarchy structure is shown in Figure 3 and the corre-
sponding pairwise comparison matrices are presented in Tables 1-5, respectively. Using
the eigenvalue method, the priorities of criteria and alternatives are computed. It is
assumed that the final weights of three alternatives are written as ω1, ω2 and ω3, respec-
tively. The obtained results are determined as (ω1, ω2, ω3) = (0.3443, 0.2002, 0.4556).
This means that the best car is the Honda Civic [25].

The above solution procedure is typical with the loss of some flexibility about recip-
rocal property. Here the uncertainty experienced by the decision maker is considered
and some comparison ratios are assumed to be with the breaking of reciprocal prop-
erty. For example, the comparison ratios of criteria are changed and shown in Table
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Table 1. Comparisons of criteria with respect to the goal.

Goal Prestige Price MPG Comfort Priorities
Prestige 1 1/4 1/3 1/2 0.0987
Price 4 1 3 3/2 0.4250
MPG 3 1/3 1 1/3 0.1686

Comfort 2 2/3 3 1 0.3078

Table 2. Comparisons of cars with respect to prestige.

Prestige Acura TL Toyota Camry Honda Civic Priorities
Acura TL 1 8 4 0.7071

Toyota Camry 1/8 1 1/4 0.0702
Honda Civic 1/4 4 1 0.2227

Table 3. Comparisons of cars with respect to Price.

Price Acura TL Toyota Camry Honda Civic Priorities
Acura TL 1 1/4 1/9 0.0633

Toyota Camry 4 1 1/5 0.1939
Honda Civic 9 5 1 0.7429

Table 4. Comparisons of cars with respect to MPG.

MPG Acura TL Toyota Camry Honda Civic Priorities
Acura TL 1 2/3 1/3 0.1818

Toyota Camry 3/2 1 1/2 0.2727
Honda Civic 3 2 1 0.5455

Table 5. Comparisons of cars with respect to comfort.

Comfort Acura TL Toyota Camry Honda Civic Priorities
Acura TL 1 4 7 0.7049

Toyota Camry 1/4 1 3 0.2109
Honda Civic 1/7 1/3 1 0.0841
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Table 6. Comparisons of criteria with respect to the goal under some uncertainty.

Goal Price Comfort MPG Prestige Priorities
Price 1 3/2 3 3.8 0.4292

Comfort 2/3 1 3 1.5 0.3018
MPG 1/3 1/3 1 2.8 0.1683

Prestige 1/4 1/2 1/3 1 0.1007

6. It is seen from Table 6 that the order of the four criteria has been rearranged. In
terms of Definition 3.8, the judgements in Table 6 are not of approximate consistency.
One can further find that there is a possible ”mistake”, since the values of 3.8, 1.5, 2.8
and 1 in the column are not descending. This phenomenon can be used to remind the
decision maker notice the possible unreasonable behavior. The final weights of alterna-
tives can be computed as (ω1, ω2, ω3) = (0.3417, 0.1998, 0.4585) and the Honda Civic
is still the best choice. Here we want to point out that the uncertainty could yield the
inconsistency and the breaking of reciprocal reciprocity. The feedback mechanism of
reminding the decision maker could be more important than an inconsistent opinion
in a practical case, since people are bound to make mistakes.

At the end, we analyze the likelihood of ranking reversal. The comparison ratios in
Table 6 are first considered and the rank matrices are determined as:

Rc
c =













Goal Price Comfort MPG Prestige
Price 4 4 3 4

Comfort 3 3 4 2
MPG 2 1 2 3

Prestige 1 2 1 1













,

Rr
c =













Goal Price Comfort MPG Prestige
Price 1 2 3 4

Comfort 1 2 4 3
MPG 1 2 3 4

Prestige 1 3 2 4













.

In terms of the formula (38), the possibility degree of ranking reversal is pd(C) =
0.1062. Moreover, we investigate the effect of the structural dependence on ranking
reversal. The rank matrix is shown as follows:

Rpc =









Price Comfort MPG Prestige
Acura TL 1 3 1 3

Toyota Camry 2 2 2 1
Honda Civic 3 1 3 2









.

After some computations, it follows pd(W ) = 1 −K(Rpc) = 0.9375. In addition, it is
found that the possibility degrees of pairwise comparison matrices with respect to any
criterion is 1.When choosing νc = νw = 0.5 in the formula (41), the average possibility
degree of ranking reversal is computed as:

pd(G) =
1

2
(0.1062 + 0.9375) = 0.5219.
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This implies that the possibility degree of ranking reversal is about 52.19% when
adding or deleting an alternative and/or a criterion. From the above analysis, it is
found that the contribution of the structural dependence to ranking reversal is much
bigger than the dependence of criteria. This means that if adding a criterion, the
ranking of alternatives may not be changed. However, if adding a new car to choose,
the ranking of the old alternatives could be changed.

6. Conclusions

The investigations of the AHP choice model have been made for over forty years since
it was developed by [21, 22]. There are two important problems in addressing the
theory and applications of the AHP model. One is how to derive the ratio scale in rel-
ative measurement, and the other is the phenomenon of ranking reversal. The recent
work related to the former has shown that the decision-making procedure based on
the AHP model is reliable [4]. For the latter, numerical examples are always carried
out and a theoretical analysis is lacking except for the observation in [28]. Here it is
noticed that the reciprocal property in the axiomatic foundation of the AHP model
is based on the mathematical intuition. From the viewpoints of subjective measure-
ment and the uncertainty of human-originated information, a more flexible expression
of decision information is requisite. Therefore, the concept of reciprocal symmetry
breaking is proposed to allow the decision information without reciprocal property. A
modified axiomatic foundation of the AHP model under uncertainty has been formed.
Some interesting facts derived from the modified axioms have shown that the uncer-
tainty experienced by the decision maker has been incorporated naturally. Moreover,
the ranking reversal phenomenon has been reinvestigated according to the proposed
axiomatic foundation. A novel concept of ranking equilibrium has been introduced
to characterize the state without ranking reversal. The likelihood of ranking reversal
has been quantified by providing an index to reflect the possibility occurring ranking
reversal when adding or deleting an alternative and/or a criterion. The decision maker
can be reminded by using a percentage for the ranking reversal phenomenon. The
observations support the conclusion that a flexible expression of decision information
with the breaking of reciprocal property could be allowed to some degree in the AHP
choice model.
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