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Abstract—This paper shows that deep neural network (DNN)
can be used for efficient and distributed channel estimation,
quantization, feedback, and downlink multiuser precoding for a
frequency-division duplex massive multiple-input multiple-output
system in which a base station (BS) serves multiple mobile users,
but with rate-limited feedback from the users to the BS. A
key observation is that the multiuser channel estimation and
feedback problem can be thought of as a distributed source
coding problem. In contrast to the traditional approach where
the channel state information (CSI) is estimated and quantized
at each user independently, this paper shows that a joint design
of pilots and a new DNN architecture, which maps the received
pilots directly into feedback bits at the user side then maps the
feedback bits from all the users directly into the precoding matrix
at the BS, can significantly improve the overall performance. This
paper further proposes robust design strategies with respect to
channel parameters and also a generalizable DNN architecture
for varying number of users and number of feedback bits.
Numerical results show that the DNN-based approach with short
pilot sequences and very limited feedback overhead can already
approach the performance of conventional linear precoding
schemes with full CSI.

Index Terms—Channel estimation, deep neural network
(DNN), distributed source coding (DSC), downlink precoding,
feedback frequency-division duplex (FDD), massive multiple-
input multiple-output (MIMO), quantization.

I. INTRODUCTION

Machine learning methods, especially deep neural networks
(DNNs), have recently shown great potential in dealing with
complex optimization problems in various wireless communi-
cations settings, e.g., MIMO detection [1], massive multiple-
input multiple-output (MIMO) hybrid precoding [2], constel-
lation design [3], [4], user scheduling [5], etc. The data-driven
approach has an advantage from both performance and com-
plexity perspectives, especially when the models are uncertain
and when conventional optimization approaches have high
complexity. This paper aims to show the effectiveness of the
deep learning framework for obtaining optimized feedback
and beamforming strategies for the frequency-division duplex
(FDD) massive MIMO system design. The key observation of
this paper is that the multiuser channel estimation, quantization
and feedback problem can be thought of as a distributed
source coding (DSC) problem for which the optimal solution
is analytically intractable, but where the machine learning
approach can have an important advantage.
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(e-mails:{fsohrabi, kattiah, weiyu}@ece.utoronto.ca). This work is supported
by Huawei Technologies Canada. The source code for this paper are available
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Massive MIMO is an indispensable technology for address-
ing the ever-increasing demand for data rate in the next gen-
erations wireless networks [6]. The canonical massive MIMO
system operates in the time-division duplex (TDD) mode in
which the BS can exploit the uplink-downlink channel reci-
procity via uplink training to acquire channel state information
(CSI) and subsequently use the CSI for downlink precoding
[7]. However, many existing wireless networks operate in FDD
mode in which uplink-downlink channel reciprocity cannot
be assumed. For these FDD systems, the channels need to
be estimated in the downlink, then fed back to the BS for
precoding. The question of how to optimally design such a
channel feedback strategy is crucial for the wide adoption of
FDD massive MIMO in wireless networks [8].

This paper focuses on a multiuser FDD downlink massive
MIMO system in a limited-scattering environment, e.g., in
millimeter wave (mmWave) band [9], where sparsity can be
exploited for channel estimation. But instead of considering
channel estimation as a stand-alone module, we consider the
end-to-end system including the design of the downlink pilot,
the channel estimation and quantization strategy under limited
feedback, as well as the design of the downlink precoding
matrix at the BS. We make a crucial observation that because
the downlink channel estimation and quantization take place
in a distributed fashion across the users, yet are fed back to
a centralized location at the BS for precoding purpose, the
overall system is akin to a DSC scheme. While traditional
wireless system design always performs independent quanti-
zation of each user’s channel and never takes the distributed
nature of channel quantization into consideration, this paper
shows that:

• Optimized distributed channel compression strategy can
significantly outperform the conventional independent
CSI estimation and feedback scheme;

• Joint design of channel feedback and precoding has
significant advantage;

• Deep neural network (DNN) can play a crucial role
for the effective design of such a joint precoding and
distributed channel compression strategy.

The information theoretic considerations of DSC have ap-
peared in the literature since 1970s. The celebrated Slepian-
Wolf Theorem shows that optimal lossless DSC of two or
more correlated sources with separate encoders and a joint
decoder can be much more efficient than independent encod-
ing/decoding [10]. Their strategy of using binning to take ad-
vantage of the correlation between sources is further extended
to lossy compression by Wyner and Ziv [11]. While many
results in DSC aim to recover the correlated sources at the
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decoder [12], [13], the concept of DSC can also be extended
to computing a function of the sources [14]–[17]. For example,
[14] characterizes the rate region for distributed compression
of two correlated uniform binary sources for computing their
modulo-2 sum. It is important to note that the benefit of the
DSC strategy can come from exploiting not only the correla-
tion between the sources, but also the fact that a function of
the sources (rather than the sources themselves) is desired at
the decoder. For example, [15] examines the distributed source
coding problem for classification and [16], [17] show that the
benefit of DSC comes from designing separate encoders and
joint decoder that exploit a match between the quantization
scheme and the function to be computed. Such benefit exists
even for the case where the sources are independent.

To further illustrate the benefit of DSC for the case where
the sources are uncorrelated, consider the following example
inspired by a scenario considered in [18]. Suppose that we
have independent x1 and x2 at the two encoders, both uni-
formly distributed in [0, 1]. If the decoder needs to reconstruct
both x1 and x2, then since they are independent, the best
strategy is just the independent and uniform quantization of
x1 and x2 separately. But, now consider the case in which the
decoder needs to compute max(x1, x2). Clearly, the uniform
quantization is no longer optimal. This is because max(x1, x2)
has a distribution tilted toward the higher range of [0, 1]. Here,
the optimal quantizer should have more levels in the upper
range and fewer levels in the lower range. This is an example
where the quantizers at the distributed sources need to be
designed to take into account that a function of the sources
needs to be computed at the decoder, even when the sources
are independent.

A key insight of this paper is the recognition that the end-
to-end design of a downlink FDD precoding system can be
regarded as a DSC problem of computing a function (i.e., the
downlink precoding matrix) of independent sources (i.e., chan-
nels) under finite feedback rate constraints. This paper makes
the case that by designing an optimized DSC strategy, we can
significantly reduce the amount of feedback as compared to
the conventional design based on separate CSI estimation and
feedback of each user. The design of the optimal DSC strategy
is, however, a difficult problem in general, even for the case
in which the source distributions are completely known and
the blocklength is large. This motivates us to use the deep
learning technique to tackle such an optimization problem.

The deep learning framework is well suited to tackle
the DSC design problem because of the following. First,
as different from the conventional communications system
design methodology which optimizes different blocks of a
communication system separately, the deep learning frame-
work can jointly design all the components for end-to-end
performance optimization, making it suitable for designing
DSC strategies in which the goal is to compute a function of
the sources. Second, unlike the classical DSC which requires
customized source coding design for each different scenario,
the deep learning framework implicitly learns the channel
distributions in a data-driven fashion in the process of optimiz-
ing the end-to-end communications system, without requiring
tractable mathematical channel models. Third, computation

using trained DNN can be highly parallelized, so that the
computational burden of DNN is manageable.

A. Main Contributions

This paper shows that the end-to-end downlink precoding
design problem for an FDD massive MIMO system can be
viewed as a DSC problem. More specifically, the channels
from the BS to the different users can be considered as the
“sources”, and the objective of the DSC scheme is to recover
a function of these sources, namely, an optimal precoder at the
BS that maximizes a system objective, e.g., the sum rate of
all the users, based on the rate-limited feedback. To tackle
this challenging DSC design problem, this paper proposes
a data-driven approach wherein the channel estimation, dis-
tributed compression, feedback at the user side, and multiuser
precoding at the BS side can be efficiently designed jointly
by training a DNN at each user and a DNN at the BS. In
particular, we propose a novel neural network architecture
that encapsulates all the components of the FDD downlink
precoding system. By properly training the proposed neural
network, we jointly optimize the downlink pilots and channel
estimation process, the uplink channel quantization and rate-
limited feedback scheme at each user, and the multiuser
downlink precoding scheme at the BS for each user.

The training of the proposed DNN is however also challeng-
ing. In the proposed DNN architecture, the feedback informa-
tion bits are modeled as the outputs of binary neurons. Without
any adjustments to the conventional back-propagation algo-
rithm, these binary neurons would have vanishing gradients
during training, which inhibit the training of network parame-
ters. To overcome this issue, we alternatively approximate the
gradients of the binary layer with a variant of straight-through
(ST) estimator [19]–[21]. In the numerical experiments, the
proposed neural network architecture trained with the ST
approximation technique exhibits outstanding performance,
especially when the channel training and feedback are severely
rate limited. These results confirm that the deep learning
framework can indeed be utilized to obtain near-optimal, yet
practical, DSC strategies which are in general hard to achieve
using conventional heuristic methods. Further, the results show
that the performance gain comes from the overall joint DSC
and precoding design that bypasses individual explicit channel
estimation at each user.

While the proposed DNN has excellent performance when
the DNN is trained and tested under the same environment,
one of the main questions about any data-driven approach,
including the proposed DNN, is whether or not its performance
is generalizable to unseen system environments. Towards
addressing this question, this paper discusses in detail how
to make the proposed architecture generalizable for different
system parameters. In general, we categorize the system pa-
rameters into two categories: i) the system parameters that only
change the input distribution of the DNN, e.g., the number
of paths in the sparse channel model and the signal-to-noise
ratio (SNR), and ii) the system parameters that also change
the input/output dimensions of some layers in the proposed
DNN, e.g., the feedback rate limits and the number of users.
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For the first category of the system parameters, we numeri-
cally show that training the DNN on a wider range of system
parameters can help design more robust systems when prior
knowledge about these parameters is not available. For the
second category, however, training a DNN that can operate
for different system dimensions is more challenging. In this
regard, this paper proposes to modify the neural network
architecture and its training procedure as a way to enhance
the generalizability of the proposed DNN with respect to
the feedback rate limits as well as the number of users
as follows. We propose a novel two-step training approach
to design a common neural network that can operate over
a wide range of feedback rate limits. In the first step of
the modified approach, we train a modified version of the
proposed neural network in which the outputs of the user-side
DNNs are soft binary values1 (instead of binary values). The
trained modified network is used to obtain parameters such
as the pilot sequences and the channel estimation scheme.
In the second step, we fix the user-side DNN, but apply
different quantization resolutions to the user-side DNN output
to account for different feedback rates. For each feedback rate,
we conduct another round of training in which only the BS-
side DNN parameters are trainable. Numerical results show
that this two-step training approach performs almost as well
as the architecture that requires one separate trained DNN on
both the BS-side and user-side for each value of the feedback
rate.

This paper proposes to address the generalizability of the
DNN with respect to the number of users using a similar
idea. In particular, we propose the following two-step training
procedure. First, all different users are assumed to adopt a
common set of DNN weights and biases. We then seek to
design those weights and biases together with the channel
estimation pilot sequences using end-to-end training of a
single-user system. As the second step, we seek to design the
BS-side DNN by training a K-user system in which all the
user-side DNNs are fixed to the parameters obtained from the
single-user case. This novel two-step training approach has the
desirable property that the user-side operations do not depend
on the number of users in the network; we only need to train
and store different BS-side DNNs to handle varying number
of users in the network. Numerical experiments show that
for independent and identically distributed (i.i.d.) channels,
the DNN trained using such a two-step training method can
approach the performance of the original DNN in a typical
scenario.

B. Related Work

Most of the exiting schemes for limited feedback multiuser
FDD MIMO systems fall into two categories [22]. The first
category of works focus on reducing feedback overhead by
exploiting the spatial and/or temporal correlation of CSI
[23]–[26]. In particular, since channels in the correlated CSI
scenarios can be represented as a function of uncorrelated

1This paper uses the term binary to denote variables taking values of either
-1 or +1, and soft binary to denote variables taking values between -1 and
+1.

sparse vector in some bases (e.g., angular domain for mmWave
channels), users can employ sparse recovery algorithms (i.e.,
compressed sensing (CS) [27], [28]) to recover the sparse
channel parameters and subsequently feed back the quantized
version of those parameters to the BS, e.g., [29]. To design
the precoding matrix, the BS reconstructs the channels from
the quantized sparse channel parameters and then employs
a conventional linear precoding scheme, e.g., maximum-ratio
transmission (MRT) or zero forcing (ZF). Such a CS-based
feedback protocol in essence adopts a separate source coding
strategy of independent quantization of each user’s channel.
But, as discussed earlier, since the precoding matrix is a
function of all users’ channels, information theory consid-
eration suggests that we can do better by adopting a DSC
strategy. The main points of this paper are to show that a
deep learning framework can effectively undertake such a DSC
design and to show by extensive numerical simulations that the
proposed learning-based precoding scheme, which bypasses
explicit channel estimation, can indeed achieve a significantly
better performance as compared to the conventional approach
of separate channel estimation and precoding, especially when
downlink training and feedback resources are limited.

The second category of limited feedback precoding works
is codebook based [22], with discrete Fourier transform (DFT)
matrix as a common choice for the precoding codebook
[30]. In the training phase of the codebook-based precoding
schemes, the BS first transmits along the possible precoding
directions, and each user then sends feedback about the indices
of the top-p strongest received signals and their corresponding
SNRs. The feedback information is finally processed at the
BS for selecting the precoder of each user from the codebook.
If p is set to be one, then the best possible performance of
this approach is the performance of the MRT since there is
no mechanism for interference management [30], [31]. On
the other hand, if p is sufficiently large such that interference
management becomes feasible (e.g., [32]), then a large amount
of feedback bits per user is required. A thorough compar-
ison between the CSI feedback scheme and the codebook-
based precoding method for MIMO systems in rich-scattering
environments is provided in [33]. This comparison shows
that CSI feedback is preferred in scenarios with very limited
feedback rates. The advantage of the CSI feedback scheme in
very limited downlink training and feedback resources can be
even more remarkable for massive MIMO systems in limited-
scattering environments. This is because CSI estimation, quan-
tization, and feedback of a few sparse channel parameters
is much more efficient in terms of downlink training and
feedback resource utilization, as compared to the codebook-
based precoding scheme in which the number of codewords
typically would have to scale with the number of antennas.
For this reason, we only consider the comparison to the CSI
feedback based precoding methods in this paper.

It is noteworthy that the use of DNNs in FDD systems with
limited feedback has been adopted in some recent works, e.g.,
[34]–[39]. However, these works either focus only on a single-
user scenario with no interference [34]–[36], or they focus on
the CSI reconstruction problem at the BS under the assumption
that the perfect CSI is available at the users [36]–[39]. The
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work presented herein provides a more general treatment as:
i) we consider the multiuser case in which each user can only
sense and feedback its own channel, yet the precoding process
is a function of all users’ channels; ii) we provide end-to-end
training of all system parameters, including downlink pilot
sequences, while accounting for CSI estimation error in order
to directly enhance the downlink spectral efficiency.

C. Paper Organization and Notations

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model and the problem formu-
lation for the end-to-end multiuser FDD downlink precoding
system design. Section III shows how to represent the FDD
downlink precoding system by a neural network architecture,
and further discusses how to train the neural network. Sec-
tion IV provides discussions on the generalizability of the pro-
posed DNN, and Section IV demonstrates the implementation
details of the DNN. Section VI presents the simulation results.
Finally, conclusions are drawn in Section VII.

This paper uses lower-case letters for scalars, lower-case
bold face letters for vectors and upper-case bold face letters for
matrices. The real part, the imaginary part, and the dimensions
of a complex matrix V are respectively given by <(V), =(V),
and dim(V). We use the superscripts (·)T , (·)H , and (·)−1 to
denote the transpose, the Hermitian transpose, and the inverse
of a matrix, respectively. The identity matrix with appropriate
dimensions are denoted by I. Further, Cm×n denotes an m
by n dimensional complex space, CN (0,R) represents the
zero-mean circularly symmetric complex Gaussian distribution
with covariance matrix R, and U(a, b) represents a uniform
distribution on the interval [a, b]. The notations Tr(·), log2(·),
log10(·), and E[·] represent the trace, binary logarithm, decimal
logarithm, and expectation operators, respectively. Finally, ‖ ·
‖2 indicates the Euclidean norm of a vector.

II. SYSTEM MODEL

A. Signal Model and Problem Formulation

Consider the downlink scenario in an FDD massive MIMO
system in which a BS with M transmit antennas serves
K single-antenna users, where K < M . In this paper, we
assume that the multiuser scheduling phase has already been
performed at upper layer (typically based on considerations
such as traffic priority, delay constraints, and user queuing
status), so that in each time-frequency resource block, we
have K < M . Further, we assume that the BS employs linear
precoding so that the transmitted signal can be written as:

x =

K∑
k=1

vksk = Vs, (1)

where vk ∈ CM is the precoding vector for the k-th user and
forms the k-th column of the precoding matrix V ∈ CM×K ,
which satisfies the total power constraint, i.e., Tr(VVH) ≤ P ,
and sk is the symbol to be sent to the k-th user which is
normalized so that E

[
ssH

]
= I. By adopting a narrowband

block-fading channel model, the received signal at the k-th
user in data transmission phase can be written as:

yk = hHk vksk +
∑
j 6=k

hHk vjsj + zk, (2)

where hk ∈ CM is the vector of downlink channel gains
between the BS and user k and zk ∼ CN (0, σ2) is the additive
white Gaussian noise. Given the received signal model at the
k-th user in (2), the achievable rate of user k is:

Rk = log2

(
1 +

|hHk vk|2∑
j 6=k|hHk vj |2 + σ2

)
. (3)

This paper aims to design the precoding matrix V at the BS
so as to maximize some network-wide utility. For simplicity,
the rest of the paper uses the sum rate of the system as the
design objective, i.e.,

R =
∑
k

Rk. (4)

In order to design the optimal precoding matrix, it is crucial
for the BS to have access to instantaneous CSI. In this paper,
we assume that the BS and the users have no prior knowledge
of the channel state realizations, and they must acquire the
CSI via downlink training and feedback. In particular, to
obtain the required information for downlink precoding at
the BS, we consider a downlink training phase, prior to the
data transmission phase, in which the BS sends training pilots
X̃ ∈ CM×L of length L, and accordingly, the k-th user
observes ỹk ∈ C1×L as:

ỹk = hHk X̃ + z̃k, (5)

in which the transmitted pilots in the `-th pilot transmis-
sion (`-th column of X̃) satisfies the power constraint, i.e.,
‖x̃`‖22 ≤ P , and z̃k ∼ CN (0, σ2I) is the additive white
Gaussian noise at user k. The k-th user then seeks to obtain the
useful information in (5) for the purpose of multiuser downlink
precoding and subsequently to feed back this information to
the BS in the form of B information bits as:

qk = Fk (ỹk) , (6)

where the function Fk : C1×L → {±1}B represents the
feedback scheme adopted at user k.

Finally, the BS collects the feedback bits from all K users,
i.e., q , [qT1 ,q

T
2 , . . . ,q

T
K ]T , and seeks to design the precoding

matrix V as a function of those feedback bits as:

V = P (q) , (7)

where the function P : {±1}KB → CM×K represents
the downlink precoding scheme. We remark that once the
precoding matrix is designed at the BS, coherent detection
is enabled by an additional downlink pilot transmitted along
each beamforming vector to allow the receivers to calibrate
detection boundaries. This procedure, which is called dedi-
cated training phase, typically requires only a small amount
of pilot transmission [40]. In this paper, we make a simplifying
assumption that the dedicated training phase is performed
perfectly without any significant overhead and accordingly the
rate expression in (3) is achievable.
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Fig. 1: (a) The end-to-end FDD downlink precoding design problem can be viewed as a DSC problem in which the downlink training pilots and the feedback
schemes adopted at the users can be thought of as the source encoders and the precoding scheme adopted at the BS can be thought of as the decoder. (b)
The conventional channel feedback scheme can be regarded as a separate source coding strategy of independent quantization of each user’s channel.

With the above communication models in place, the problem
of maximizing the sum rate of a limited-feedback FDD system
can be summarized as:

maximize
X̃, {Fk(·)}∀k, P(·)

K∑
k=1

log2

(
1 +

|hHk vk|2∑
j 6=k|hHk vj |2 + σ2

)
(8a)

subject to V = P
([

qT1 , . . . ,q
T
K

]T)
, (8b)

qk = Fk(hHk X̃ + z̃k), ∀k, (8c)

Tr(VVH) ≤ P, (8d)

‖x̃`‖22 ≤ P, ∀`, (8e)

in which the downlink training pilots X̃, feedback scheme
adopted at the users {Fk(·)}Kk=1, and the precoding scheme
P(·) adopted at the BS can be optimized to enhance the
spectral efficiency. As illustrated in Fig. 1(a), this overall
problem, which involves designing the downlink pilots, the
users’ channel estimation, quantization, and feedback schemes,
jointly with the BS’s downlink precoding scheme, can be
viewed as a DSC problem. This is because the channel
estimation and quantization take place in a distributed fashion
across the users, and the feedback bits of all users are then
processed at a central node, i.e., BS, in order to construct the
precoding matrix. This is a challenging task, because designing
information theoretically optimal DSC strategy is in general
a difficult problem. Simple heuristic, such as independent
codebook-based quantization of the channel vector at each
user, is likely to be far from the optimum. The main goal
of this paper is to show that a data-driven machine learning
approach can be used to efficiently design such a DSC scheme.

B. Channel Model and Conventional Approaches

This paper considers an FDD massive MIMO system oper-
ating in mmWave propagation environment [9] in which the
number of scatterers is limited. Accordingly, the sparse chan-

nel of the k-th user is typically modeled with Lp propagation
paths, e.g., [41]:

hk =
1√
Lp

Lp∑
`=1

α`,kat(θ`,k), (9)

where α`,k is the complex gain of the `-th path between the
BS and user k, θ`,k is the corresponding angle of departure
(AoD), and at (·) is the transmit array response vector. For a
uniform linear array with M antenna elements, the transmit
array response vector is:

at (θ) =

[
1, ej

2π
λ d sin(θ), . . . , ej

2π
λ d(M−1) sin(θ)

]T
, (10)

where λ is the wavelength and d is the antenna spacing.
The sparsity of mmWave channels in the angular domain

can be exploited in designing the feedback scheme. In partic-
ular, a conventional feedback scheme typically involves quan-
tizing the estimated values of the sparse channel parameters
[29]. This means that each user first employs a sparse recovery
(i.e., compressed sensing) algorithm to estimate the sparse
channel parameters then feeds back the quantized version of
those parameters to the BS. Subsequently, the BS collects the
quantized channel parameters from all K users, reconstructs
the imperfect channel estimates based on these parameters, and
finally employs one of the conventional linear beamforming
methods, e.g., MRT or ZF, given the imperfect CSI. Such a
conventional approach typically leads to a good performance
only for systems with (i) sufficiently large pilot length L in
which a decent sparse parameter estimation can be achieved
via compressed sensing, and (ii) sufficiently large number of
feedback bits B where the quantization error can be made
sufficiently small.

This paper aims to show that it is possible to design an FDD
system with excellent performance even with short training
sequences and small amount of limited feedback informa-
tion bits. The above conventional channel feedback scheme
illustrated in Fig. 1(b) has room for improvement, because it
amounts to a separate source coding strategy of independent
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quantization of each user’s channel. However, because the
estimated channels from all the users are used jointly at the BS
to compute a downlink precoding matrix, a distributed source
coding strategy can do better [13], [14], [16]. This is true even
if the channels to each user are uncorrelated [16]. The design
of DSC strategy is however quite challenging. In this paper,
we propose a deep learning framework to undertake such a
design. In particular, we propose a neural network architecture
employing a DNN at each user to map the received pilots
directly into feedback bits, and a DNN at the BS to map the
feedback bits from all the users directly into the precoding
matrix.

We note that the proposed neural network architecture also
takes the design of downlink training pilots into account by
modeling X̃ as a linear neural network layer. The block
diagram of the proposed neural network architecture that
represents an end-to-end FDD downlink system is illustrated in
Fig. 2. The details of the proposed neural network architecture
are discussed in the next section.

III. FDD DOWNLINK PRECODING SYSTEM DESIGN USING
DEEP LEARNING

In this section, we present how to use neural networks
to model an FDD downlink system described in Section II,
which involves two phases: (i) downlink training and uplink
feedback phase, and (ii) downlink data transmission phase.
Further, we discuss how to train the proposed neural network
architecture in order to jointly design the downlink training
pilots X̃, the feedback scheme adopted at each user Fk(·),∀k,
and the downlink precoding scheme P(·).

A. DNN Representation of DSC Strategy
In order to represent the FDD downlink precoding system

described in Section II as a neural network, we need to model
downlink pilot transmission and the users’ operations in the
downlink training phase as well as the BS’s operations in the
data transmission phase.

1) Downlink Pilot Training: We begin by modeling the first
part of the downlink training phase, i.e., downlink pilot trans-
mission, in which the BS sends training pilots X̃ ∈ CM×L
in L downlink transmissions, and consequently the k-th user
observes ỹk = hHk X̃ + z̃k. By considering hHk as the input,
it is easy to see that the received signal at each user in the
downlink training phase can be modeled as the output of a
fully-connected neural network layer with linear activation
function, in which the weight matrix is X̃ and the bias vector
is zero, followed by an additive zero-mean noise with variance
σ2.

To ensure that the designed weight matrix X̃ satisfies
the per-transmission power constraint P , we adopt a weight
constraint under which each column of X̃ satisfies ‖x̃`‖22 ≤ P .
We remark that in the machine learning literature weight
constraints are employed as means of regularization to reduce
overfitting in DNNs, e.g., [42]. However, in this paper, we
adopt a particular choice of weight constraint explained above
to model the physical constraint on the transmit power level of
a cellular BS. The further implementation details are provided
in Section V.

2) Uplink Feedback: Upon receiving ỹk in the downlink
training phase, the main objective of user k is to summarize
its observation from ỹk and to feed back that summary as
B information bits to the BS for the purpose of downlink
precoding. This procedure can be represented by an R-layer
fully-connected DNN in which the feedback bits of user k can
be written as:

qk =

sgn
(
W

(k)
R σR−1

(
· · ·σ1

(
W

(k)
1 ȳk + b

(k)
1

)
· · ·
)

+ b
(k)
R

)
,

(11)

where qk ∈ {±1}B , {W(k)
r ,b

(k)
r }Rr=1 is the set of the

trainable parameters for user k, σr is the activation function
for the r-th layer, and the sign function sgn(·) is the activation
function of the last layer to generate bipolar feedback bits for
each component of qk. In this paper, we adopt the rectified
linear unit (ReLU) activation function at the hidden layers,
i.e., σr(·) = max(·, 0). In (11), the real representation of ỹk,
i.e.,

ȳk , [< (ỹk) ,= (ỹk)]
T
, (12)

is considered as the input of the DNN since most of the exist-
ing deep learning libraries only support real-value operations.
Further, the dimensions of the trainable weight matrices and
the bias vectors in (11) are respectively:

dim (Wr) =


`r × 2L, r = 1,

`r × `r−1, r = 2, . . . , R− 1,

B × `r−1, r = R,

(13)

and

dim (br) =

{
`r × 1, r = 1, . . . , R− 1,

B × 1, r = R,
(14)

where `r is the number of neurons in the r-th hidden layer.
3) Downlink Precoding Design: Under the assumption of

an error-free feedback channel between each user and the BS,
the BS collects the information bits of all users, then designs
the precoding vectors as a function of these information bits.
Analogous to the user side, the operations at the BS can be
modeled by another DNN with T dense layers, where the t-th
layer includes `′t neurons. In particular, the real representation
of the collection of the precoding vectors, i.e.,

v =
[
vec (< (V))

T
, vec (= (V))

T
]T
, (15)

can be written as:

v = σ̃T

(
W̃T σ̃T−1

(
· · · σ̃1

(
W̃1q + b̃1

)
+ · · ·

)
+ b̃T

)
,

(16)
where σ̃t, W̃t, and b̃t are the activation function, the weights,
and the biases in the t-th layer, respectively, and the collection
of feedback bits of all K user, i.e., q = [qT1 , . . . ,q

T
K ]T , is the

input vector to the DNN. In order to ensure that the total power
constraint is satisfied, a normalization layer with activation
function:

σ̃T (·) =
√
P ·
‖·‖2 (17)
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Fig. 2: The block diagram of the proposed neural network architecture that represents an end-to-end K-user FDD downlink precoding system.

is employed at the last layer of the DNN. For the other layers
of the BS’s DNN, we adopt the ReLU activation function.

We remark that if some prior knowledge about the channel,
such as sparsity level of the channel, angular domain informa-
tion, and pathloss, is available, we can consider them as the
input to the user-side DNNs and/or BS-side DNN, and possibly
enhance the performance of the overall network. However, in
this paper, we consider the most challenging setup where the
BS has no explicit information about the channel parameters,
and it should learn the statistics of those parameters from the
training data.

The block diagram of the overall proposed neural network
architecture that represents an end-to-end two-phase FDD
downlink precoding system is illustrated in Fig. 2. In this
neural network the trainable parameters are the training pilot
matrix X̃, the DNN parameters Θ

(k)
R , {W(k)

r ,b
(k)
r }Rr=1 at

the user side, and the DNN parameters ΘT , {Wt,bt}Tt=1 at
the BS side.

B. DNN Training with a Hidden Binary Layer

We now describe the training of the DNN architecture in
Fig. 2 for the sum rate maximization objective as stated in the
following:

max
X̃,{Θ(k)

R }Kk=1,ΘT

EH,z̃

∑
k

log2

1 +
|hHk vk|2∑

j 6=k

|hHk vj |2 + σ2


 ,
(18)

where the expectation is over the distribution of the channels,
i.e., H , [h1, . . . ,hK ]H , and the distribution of the noise
in the downlink training phase, i.e., z̃ , [z̃1, . . . , z̃K ]T . The
parameter space consists of the training pilot matrix, the users’
feedback schemes, and the BS’s precoding scheme.

We assume certain distributions of the channels and the
noise in the downlink training phase and accordingly generate
a large set of channel and noise realizations for the training

purpose. The training problem for (18) can then be efficiently
tackled by employing stochastic gradient descent (SGD) al-
gorithms in which the expectation in (18) is approximated
with the empirical average over the training samples. SGD-
based training algorithms require partial derivatives of the loss
function, here the sum rate expression, with respect to all
the trainable parameters in order to update the parameters in
each iteration. The partial derivatives are computed via back-
propagation method which is an efficient implementation of
the chain rule in directed computation graphs.

Due to the fact that the derivative of the output of a
binary thresholding neuron is zero almost everywhere (with
the exception of the origin where the function is not differ-
entiable), the conventional back-propagation method cannot
be directly used to train the neural layers prior to that binary
layer. A common practice in the machine learning literature to
overcome this issue is to approximate the activation function
of a binary thresholding layer by another smooth differen-
tiable function during the back-propagation phase [19]–[21].
Such approximation of a binary layer in the back-propagation
phase, which is first introduced in [19], is known as straight-
through (ST) estimation. A variant of the ST estimator, called
sigmoid-adjusted ST, is to replace the derivative factor with
the gradient of the function 2 sigm(u)− 1, where sigm(u) =
1/(1 + exp(−u)) is the sigmoid function. It is shown in [21]
that the performance of the sigmoid-adjusted ST estimator can
be further improved by adopting the slope-annealing trick, in
which the slope of the sigmoid function is gradually increased
as training progresses. In particular, the sigmoid-adjusted ST
with slope annealing estimator approximates the sign function
sgn(u) in the back-propagation phase with a properly scaled
sigmoid function as:

2 sigm(α(i)u)− 1 =
2

1 + exp(−α(i)u)
− 1, (19)

where α(i) is the annealing factor in the i-th epoch satisfying
α(i) ≥ α(i−1). In this paper, we adopt the sigmoid-adjusted ST
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with annealing during the back-propagation phase to compute
the gradients of the binary layer considered at the last stage
of the user side in the neural network in Fig. 2. Further
implementation details are provided in Section V.

IV. GENERALIZABILITY

A. Towards Robust DNN Design

The training of the proposed DNN architecture assumes a
specific channel environment. The natural question that arises
for any deep learning-based algorithm, is then how generaliz-
able the proposed DNN is, if it is trained under one set of sys-
tem parameters, but tested under a different set of parameters.
For the problem under consideration, we can group the system
parameters into two categories. The first category consists of
the parameters that only change the input distribution, e.g.,
the channel parameters and the noise statistics. For these
parameters, training under a variety of system parameters
typically enhances robustness. By considering the number of
channel paths Lp as an example, we numerically show in
Section VI that by training the proposed DNN over different
number of paths, the robustness of the proposed DNN can be
enhanced. However, for the second category of the system
parameters, which also change the input/output dimensions
of some layers of the DNN, training the DNN to operate
for different system dimensions is more challenging. In this
case, modification of the proposed DNN architecture and/or
devising novel training procedures are needed. In the next two
subsections, we explain how to enhance the generalizability of
the proposed DNN with respect to the number of feedback bits
B and the number of users K.

B. Towards Generalizability for B

In the proposed neural network architecture in Fig. 2, it
appears that we have to train a different DNN for each value
of feedback rate limit B since the dimension of the output
of each user’s DNN and accordingly the dimension of the
input to the BS’s DNN are determined by the value of B.
This would be a tedious task for practical implementation if
the amount of feedback can possibly vary. In practical system
design, it is desirable to train a common neural network that
can operate over a wide range of feedback capacities. To
address this need, we propose the following two-step training
approach. We propose to first train a modified version of the
proposed neural network in which the output of the user-
side DNN is not binary anymore and instead is soft binary
valued, i.e., real numbers belongs to [−1, 1], generated by S
neurons with hyperbolic tangent (tanh) activation functions.
After this modified network has been trained, we obtain the
empirical probability distribution function (PDF) of the output
of the tanh layer, then design the optimal scalar quantizer for
this distribution for different values of quantization bits (i.e.,
Q) according to the Lloyd-Max algorithm. After the encoder
parameters including the training pilot sequences and the user-
side DNN parameters are obtained, as the second step of the
training procedure, we seek to design the decoder parameters
at the BS to generate the precoding matrix. In particular, the
BS receives a Q-bit quantized version of S soft binary signals

from each user, and the task of the BS-side DNN is to map
these K×S quantized signals to the precoding matrix such that
the average sum rate is maximized. The weights and biases
of the BS-side DNN can be learned using the SGD-based
training. Note that in this scheme the amount of feedback
per user is equal to B = S × Q, hence by varying different
quantization levels Q, we can train the same DNN to operate
for different values of B.

C. Towards Generalizability for K

The proposed architecture has a separate DNN at each user.
At a first glance, it may appear that they need to be trained
separately; further, their trained parameters would also depend
on the total number of users in the system. However, our
experimental results suggest that in some scenarios where the
channel distribution for different users are i.i.d., one common
user-side DNN can be adopted, regardless the number of users
in the system. Motivated by this observation, we propose to
first learn the encoding parameters (including the pilot matrix
and the channel estimation/feedback scheme) by training a
single-user system. Then we adopt the same encoding DNN
for all users, and only train the parameters of the BS-side
DNN separately depending on the total number of users in
the system. Such a design is much more efficient than training
different user-side DNNs at different users for different sys-
tems. Only at the BS side, we need to train and store different
DNNs for handling different numbers of users in the network.

V. IMPLEMENTATION DETAILS

We implement the proposed neural network in Fig. 2 using
two open-source deep learning libraries, namely TensorFlow
[43] and Keras [44]. We then follow the training procedure in
Algorithm 1 to learn the parameters of the proposed DNN.
In this section, we provide the implementation details of
the proposed DNN in Fig. 2 and its training procedure in
Algorithm 1.

We employ a variant of the SGD-based training method,
called Adam optimizer [45], with a mini-batch size of Nb =
1024 and a learning rate η progressively decreasing from
10−3 to 10−5. Unless otherwise stated, we use 4-layer fully-
connected DNN at the user side as well at the BS side,
i.e., R = T = 4, while the number of hidden neurons
of different layers at the user side and at the BS side
are [`1, `2, `3, `4] = [1024, 512, 256, B] and [`′1, `

′
2, `
′
3, `
′
4] =

[1024, 512, 512, 2MK], respectively. For faster convergence,
each dense layer is preceded by a batch normalization
layer [46]. In the simulations, we slowly increase the an-
nealing parameter in the i-th epoch according to α(i) =
max{1.001α(i−1), 10} where α(0) = 0.5 and each epoch
consists of Nbatch = 200 mini-batches.

In order to optimize the downlink training pilot matrix X̃,
we define X̃ as a training variable in TensorFlow whose initial
value is randomly generated according to i.i.d. complex Gaus-
sian distribution with zero mean and variance

√
P/M such

that the transmitted pilots in the `-th pilot transmission satisfy
the power constraint, i.e., ‖x̃`‖22 ≤ P . To ensure that the final
designed pilot matrix also satisfies such a power constraint,
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Algorithm 1: Training procedure of the proposed DNN
to design an FDD downlik precoding system

Input: K,L,M,B, σ2 // System parameters;
Nv, Nb // Validation set size and batch size;
Nbatch // Number of batches per epoch;
Nep,max // Max epochs with no improvement;
α(0), η(0) // Initial annealing and learning rates;

Initialization:
i← 0;
Generate validation set Sv of size Nv;
best rate ← average sum rate on Sv;

DNN Training:
while i < Nep,max do

for t = 1 . . . , Nbatch do
Generate a training mini-batch S(t)

b of size Nb;
Update weights and biases using GD (with the

annealed sigmoid-adjusted ST approximation
for the binary layer) on S(t)

b ;
end
current rate ← average sum rate on Sv;
if current rate > best rate then

Save {W(k)
r ,b

(k)
r }Rr=1, ∀k, {W̃t, b̃t}Tt=1, X̃;

best rate ← current rate;
i← 0, // reset no-improvement counter;

else
i← i+ 1, // update no-improvement counter;

end
Increase annealing rate;
Decrease learning rate;

end

we always normalize the updated X̃ in each iteration such
that ‖x̃`‖22 = P .

We fix the distribution of the channels as well as the distri-
bution of the noise in the downlink training phase, so that we
can generate as many data samples as needed for training the
DNN. This assumption enables us to investigate the ultimate
performance of the deep learning-based precoding design for
FDD systems with limited feedback. The investigation on the
minimal size of the training data set that leads to a reasonable
performance is a direction for future work.

We monitor the generalization performance of the DNN
during training by computing the achieved average sum rate
by the DNN for a holdout validation data set of Nv = 104

samples, and keep the model parameters that have achieved the
best generalization performance so far. The training procedure
is terminated when the generalization performance for the
validation data set has not improved over a large number of
(e.g., Nep,max = 300) epochs. After the proposed DNN in
Fig. 2 is trained, we have access to the design of the training
pilot matrix X̃, the feedback scheme for each user Fk(·), and
the BS’s precoding scheme P(·).

VI. NUMERICAL RESULTS

We now illustrate the performance of the proposed deep
learning-based precoding method for FDD systems with lim-

ited feedback. We compare the performance of the proposed
deep learning-based precoding framework with that of the
conventional MRT and ZF precoding methods. For each of the
MRT and ZF precoding baseline methods we consider four
different system settings: (i) perfect CSI at the BS and the
users; (ii) perfect CSI at the users with limited-feedback links
between each user and the BS; (iii) no prior CSI available
at either the BS or the users with infinite-capacity feedback
links; and (iv) no prior CSI available at either the BS or the
users with limited-capacity feedback links. Before presenting
the numerical results, we first provide a brief explanation of
each of the baseline methods.

A. Baseline Methods

1) MRT/ZF with Full CSI at Transmitter (CSIT): If full
CSI is available at the transmitter (e.g., the BS), conventional
multiuser linear precoding schemes such MRT or ZF can be
used, in which the precoding matrix is respectively given by:

VMRT = γMRTH
H , (20)

VZF = γZFH
H(HHH)−1, (21)

where H is the instantaneous CSI, and γMRT and γZF are
constants ensuring that the power constraint is satisfied.

2) MRT/ZF with Full CSI at Receiver (CSIR) and Finite-
Capacity Feedback: Under the perfect CSI assumption at the
user side, user k has a perfect knowledge about its sparse
channel parameters, i.e., {α`,k, θ`,k}L∀`=1. User k aims to
transfer this knowledge to the BS by sending the index of the
quantized version of the channel parameters, {α̂`,k, θ̂`,k}L∀`=1,
over an error-free B-bit finite-capacity feedback link. By
using the channel model in (9), the BS can then reconstruct
the estimated channel vectors, ĥk,∀k, from those quantized
channel parameters. Finally, the MRT and ZF precoder matri-
ces can be computed respectively via expressions (20) and
(21) in which the instantaneous CSI matrix H is replaced
with the matrix of channel estimates Ĥ , [ĥ1, . . . , ĥK ]H .
In the simulations, we assume that each user allocates B

3Lp

quantization bits to each real parameter of the channel, i.e,
{<(α`,k),=(α`,k), θ`,k}

Lp

∀`=1. Further, by assuming that the
distribution of the channel parameters is known at the BS
and the user, we consider the optimal quantization scheme
for the sparse channel parameters obtained by the Lloyd-Max
quantization algorithm.

3) MRT/ZF with Downlink (DL) Training and Infinite-
Capacity Feedback: In this baseline, no prior channel knowl-
edge is initially assumed at either BS or the users. However,
each user estimates its corresponding channel vector in the DL
training phase and subsequently feeds the estimated channel
back to the BS over an infinite-capacity link. As a result, the
BS constructs the MRT/ZF precoder based on the estimated
channels at the users in the downlink training phase. For
estimating sparse channels in mmWave environment, user k
seeks to recover the sparse channel parameters by employing
CS techniques. Here, we adopt a widely-used CS algorithm
orthogonal matching pursuit (OMP) [28].
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Fig. 3: The block diagram of the neural network architecture which models the idea of per-user channel estimation. The estimated channels obtained by the
trained DNN are then used to design the linear precoders.

4) MRT/ZF with DL Training and Finite-Capacity Feed-
back: Similar to the previous case, the channel parameters
are first estimated at each user independently, then quantized
versions of the parameters are fed back to the BS via finite-
capacity feedback links. Different DL training methods are
investigated, e.g., OMP for sparse channel recovery. But
in particular, to illustrate the gain of the proposed DSC
strategy as compared to the separate source coding strategy,
we implement a scheme that uses a deep learning strategy
to perform channel estimation, quantization, feedback and
reconstruction at the BS, followed by conventional linear
precoding. We train a neural network architecture as shown
in Fig. 3 to jointly design the training pilots, feedback scheme
of the user, and the channel reconstruction function at the
BS so that the reconstructed channels at the BS for all
users are as accurate as possible under the finite capacity
feedback constraint. Accordingly, we choose the average mean
squared error (MSE) of the channels as the loss function, i.e.,
L = E

[
‖ĥk − hk‖22

]
. For implementing this neural network,

we follow the same implementation strategies described in
Section V. The estimated channels are then used to compute
the MRT and ZF precoders. Note that the channels for different
users are i.i.d., so the same DNN structure can be used for all
users.

B. Performance Comparison to Baseline Methods
The numerical simulations in this subsection demonstrate

the performance of the proposed deep learning-based precod-
ing for an FDD system as compared to the described baseline
methods. Here, we consider an FDD massive MIMO system
in which a BS with M = 64 half-wavelength-spaced antennas
serves K = 2 users in an Lp = 2 path environment. We
assume that the complex gain of each path is modeled by a
Gaussian distributed random variable, i.e., α`,k ∼ CN (0, 1),
and the corresponding AoD is modeled by a uniform dis-
tributed random variable, i.e., θ`,k ∼ U(−30◦,+30◦). We set
the signal-to-noise-ratio as SNR = 10 log10( Pσ2 ) = 10dB. We
note that some system parameters are chosen to be relatively
small, e.g., the number of users and the number of channel
paths, such that we would be able to train the proposed neural
network under different settings in a relatively short period of
time. While the numerical results for such relatively small
system parameters can indeed serve as a proof of concept
for the proposed deep learning-based precoding approach, we

also provide discussions and simulations on how to make
the proposed architecture more generalizable to larger system
parameters.

As the first experiment, we plot the average sum rate2

against per-user feedback capacity B for a system in which
the pilot length L = 8 is much smaller than the number of an-
tennas M = 64. Fig. 4 shows that the proposed deep learning-
based precoding approach with only 15-bit finite-capacity
feedback link already outperforms the MRT precoding even
for the scenario where MRT precoder is designed based on
the perfect CSI. Note that the MRT precoding approach only
seeks to maximize the useful signal power without having a
mechanism to mange the interference. So, achieving a better
performance by the proposed approach as compared to MRT
suggests that the trained DNN has learned a mechanism to
reduce the inter-user interference in a multiuser FDD system.

Further, Fig. 4 illustrates that the proposed method sig-
nificantly outperforms the MRT/ZF precoding schemes with
downlink training and conventional OMP channel sparse
recovery. This implicitly means that for scenarios that the
number of channel observations is very limited (e.g., L = 8)
and hence, a good sparse recovery may not be feasible, the op-
timal feedback scheme is quite different from first estimating
then quantizing the sparse channel parameters. The numerical
results in Fig. 4 indicates that the proposed deep learning-
based precoding method is indeed an efficient framework to
design a better feedback scheme for such scenarios.

In Fig. 4, we also illustrate the performance of a deep
learning-based approach that implements the idea of channel
recovery followed by linear MRT/ZF precoding. Fig. 4 shows
that in short-pilot-length scenarios such as L = 8, a DNN
with channel recovery-based approach can outperform the
conventional CS-based recovery methods. This is another
confirmation showing that the approach of first estimating then
quantizing the sparse channel parameters is quite suboptimal
for limited-L scenarios.

Moreover, Fig. 4 shows that the proposed DNN which
directly optimizes the sum rate and bypasses the channel
recovery procedure achieves a higher rate as compared to
the DNN that first recovers each user’s channels and then
applies MRT/ZF at the same feedback capacity constraint. To
quantify the gain of the proposed DSC strategy as compared

2In all numerical simulations, we report the average sum rate performance
of different methods over 104 channel realizations.
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M = 64 and L = 8.
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Fig. 5: Sum rate achieved by different methods in a 2-user FDD system with
M = 64 and L = 64.

to an optimized separate source coding strategy, we note that
if operating at 12 bits/s/Hz sum rate (about 80% of the sum
rate achieved with full CSIT), the DSC strategy requires only
about 7-bits of feedback, as compared to more than 20-bits of
feedback for the separate source coding strategy, whereas both
are designed using DNN. Fig. 4 also shows that the proposed
precoding method with about 20-bit finite-capacity feedback
links can already achieve almost 90% of the sum rate in the
ZF precoding method with perfect CSIT.

Finally, to show that the proposed scheme can eventually
approach the performance of ZF with perfect CSIT for suffi-
ciently large B and L, in the next experiment, we consider
the pilot length L = M = 64 in which a near perfect
channel recovery at the user side may be possible. Fig. 5 shows
that the proposed method always achieves a higher sum rate
as compared to the other limited-feedback baseline methods,
while it approaches the performance of the ZF with perfect
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Fig. 6: Sum rate achieved by different methods in a 2-user FDD system with
M = 64, B = 30, and L = 8.

CSIT at feedback rate about B ≥ 50.

C. Towards Generalizability in Lp

In the previous subsection, we train and test the proposed
neural network for the same limited-scattering environment, in
which the number of channel paths is assumed to be Lp = 2. In
this subsection, we are interested in numerically investigating
the following two questions. (i) How does the proposed neural
network perform if there is a mismatch between the number
of paths in the channel realizations of the training data set and
that of the test data set? (ii) Can we enhance the robustness
of the proposed neural network such that it can perform well
for a wide range of channel distributions, i.e., different values
of Lp?

To numerically investigate the answers for the above ques-
tions, we consider a downlink FDD system with B = 30
while the other parameters remain the same as in the previous
experiments. For the proposed method, we train two instances
of the proposed neural network; one of them is trained over the
channel realizations with Lp = 2, and the other one is trained
using samples with Lp ∈ {2, 3, . . . , 8}. For the baselines with
imperfect CSIT, we assume that the sparse channel parameters
of the two strongest paths are estimated at the users and are fed
back to the BS. The achievable sum rates against the number
of scattering paths Lp for L = 8 and L = 64 are respectively
illustrated in Fig. 6 and Fig. 7. As it can be seen from these two
figures, the performance of the DNN that is trained only with
Lp = 2 samples is degraded when it is tested against other
values of Lp. This is because there is a mismatch between the
distribution of the training data set and that of the test data set.
This performance degradation is more severe when the training
pilot sequence is short, e.g., L = 8. This is most probably
because when the training resources are limited, the proposed
DNN does its best to fully exploit the distribution of the input
and to tailor the feedback scheme to that particular distribution.
However, when the number of training pilot sequences is not
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Fig. 7: Sum rate achieved by different methods in a 2-user FDD system with
M = 64, B = 30, and L = 64.

the bottleneck, e.g., L = 64, the trained DNN can potentially
handle a wider range of the channel distributions.

From Fig. 6 and Fig. 7, we also see that the proposed DNN
can achieve a more robust performance when it is trained with
Lp ∈ {2, 3, . . . , 8} samples. This suggests that training the
DNN on a wider range of channel parameters can help design
more robust systems when perfect prior knowledge about those
parameters are not available. Nevertheless, Fig. 6 and Fig. 7
show that the proposed DNN still significantly outperforms
the other baselines with limited feedback, even when there is
a mismatch between the channel parameters in the training set
and those in the test set.

D. Towards Generalizability in B

In Section VI-B we have presented the performance of the
proposed deep learning-based approach against the capacity of
the feedback links B. To do so, we propose to train a different
instance of the proposed neural network in Fig. 2 for each
value of B. In practice, it would be more desirable to train a
single DNN which can operate for different B’s. Accordingly,
we now illustrate the performance of the proposed two-step
training approach, presented in Section IV-B, which trains a
common DNN for different values of B. In this experiment,
we consider the same setup as in the experiment of Fig. 4.
As explained in Section IV-B, in the first step, we train a
modified DNN architecture where the tanh layer with S soft
outputs replaces the binary layer. In Fig. 8, the empirical PDF
of the tanh layer output of the trained modified network is
plotted. Interestingly, we observe that this empirical PDF is
well approximated as a Gaussian distribution. Next, we obtain
the optimal scalar quantizer for this distribution using the
Lloyd-Max method. The optimized quantization regions and
their corresponding representation points for Q = 3 bits are
shown in Fig. 8. Finally, we train the parameters of the BS-
side DNN while fixing the user-side DNN. The performance
of this two-step training approach is shown in Fig. 9. It can
be seen that there is only marginal performance degradation
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Fig. 8: The empirical PDF of the tanh layer output in a proposed modified
neural network which has been trained for a system with M = 64, K =
2, and L = 8. This figure also indicates the quantization regions and the
corresponding representation points for the optimal 3-bit quantizer.
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in adopting this training approach, which provides a common
DNN that can handle different values of B, as compared to
using the earlier approach, which requires to train a separate
DNN for each feedback capacity value. This shows that the
proposed two-step approach can indeed help improve the
generalizability of the proposed neural network with respect to
the feedback capacity, with the caveat that only integer values
of S can be supported in this two-step training approach.

E. Towards Generalizability in K

In all previous experiments, we have evaluated the perfor-
mance of the proposed DNN for K = 2. In this last exper-
iment, we investigate whether or not the proposed approach
can handle the scenarios in which the BS serves more users. In
this experiment, we consider a system with downlink training
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resources of L = 8 and B = 30. Further, to show that the
proposed method can handle a larger range of AoDs, in this
experiment we model the AoDs as θ`,k ∼ U(−60◦,+60◦).
The other system parameters remain the same as in the previ-
ous subsections. We remark that since the input dimension
of the decoding DNN is KB, for larger values of K we
need to increase the capacity of the BS’s DNN in order
to fully process the input signals. In the simulations, we
still employ a 4-layer DNN at the BS but this time with
[`′1, `

′
2, `
′
3, `
′
4] = [2048, 1024, 512, 2MK] number of neurons

per layer.
Fig. 10 plots the sum rate against the number of users

in the network, i.e., K. Fig. 10 shows that similar to the
previous experiments with K = 2, the proposed deep learn-
ing framework achieves a much higher rate as compared to
all the other conventional baselines with limited downlink
training resources. However, in the numerical simulations, we
observe that for larger values of K the training procedure
becomes slower since many parameters have to be jointly
designed. To get around with this problem, we also examine
the performance of the two-step training procedure proposed
in Section IV-C. It can be seen from Fig. 10 that for this
simulation scenario, the performance of the training approach
of Section IV-C is very similar to that of the end-to-end
training approach in which all the system parameters are
jointly designed. We remark it is somewhat surprising that
a user-side DNN trained for the single-user scenario also
works well in the multiuser scenario; but this is found to
be true experimentally in this simulation example. Note that
in this example the different users all have i.i.d. channels.
Investigating the cases where the channels are correlated or
the channel distributions of different users are different can be
considered as an interesting direction for future work.

VII. CONCLUSION

This paper proposes a deep learning approach to design a
downlink FDD massive MIMO system with limited feedback

which is formulated as a DSC problem. In particular, this
paper presents an end-to-end FDD downlink precoding system,
including the downlink training phase, the uplink feedback
phase, and the downlink precoding phase, using a user-side
DNN and a BS-side DNN. We propose a machine learning
framework to jointly design the pilots in the downlink training
phase, the channel estimation and feedback strategy adopted
at the users, and the multiuser precoding scheme at the BS.
This paper also investigates how to make the proposed DNN
architecture more generalizable to different system parameters.
Numerical results show that the proposed DSC strategy for
FDD precoding, which bypasses explicit channel estimation,
can achieve an outstanding performance especially for the
scenarios in which the downlink training pilot length and/or
the feedback capacity are very limited.
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