
Safety-Critical Model Predictive Control with Discrete-Time
Control Barrier Function

Jun Zeng*, Bike Zhang* and Koushil Sreenath

Abstract— The optimal performance of robotic systems is
usually achieved near the limit of state and input bounds. Model
predictive control (MPC) is a prevalent strategy to handle
these operational constraints, however, safety still remains
an open challenge for MPC as it needs to guarantee that
the system stays within an invariant set. In order to obtain
safe optimal performance in the context of set invariance,
we present a safety-critical model predictive control strategy
utilizing discrete-time control barrier functions (CBFs), which
guarantees system safety and accomplishes optimal perfor-
mance via model predictive control. We analyze the stability and
the feasibility properties of our control design. We verify the
properties of our method on a 2D double integrator model for
obstacle avoidance. We also validate the algorithm numerically
using a competitive car racing example, where the ego car is
able to overtake other racing cars.

I. INTRODUCTION

A. Motivation

Safety-critical optimal control and planning is one of
the fundamental problems in robotic applications. In order
to ensure the safety of robotic systems while achieving
optimal performance, the tight coupling between potentially
conflicting control objectives and safety criteria is considered
in an optimization problem. Some recent work formulates
this problem using control barrier functions, but only us-
ing current state information without prediction, see [1]–
[3], which yields a greedy control policy. Model predictive
control can give a less greedy policy, as it takes future
state information into account. However, the safety criteria
in a predictive control framework is usually enforced as
distance constraints defined under Euclidean norms, such as
the distance between the robot and obstacles being larger
than a safety margin. This distance constraint will not be
active in the optimization until the reachable set along the
horizon intersects with the obstacles. In other words, the
robot will not take actions to avoid the obstacles until it
is close to them. One way to solve this problem is to use
a larger horizon, but that will increase the computational
complexity in the optimization.

We address this challenge above by directly unifying
model predictive control with discrete-time control barrier
functions together into one optimization problem. This re-
sults in a safety-critical model predictive control formulation,
called MPC-CBF in this paper. In this formulation, the CBF

* Authors have contributed equally and names are in alphabetical order.
Jun Zeng, Bike Zhang and Koushil Sreenath are with the

Department of Mechanical Engineering, University of California,
Berkeley, CA, 94720, USA, {zengjunsjtu, bikezhang,
koushils}@berkeley.edu

(a) Snapshot of first overtake [whole track (left) vs. zoom-in (right)]

(b) Snapshot of second overtake [whole track (left) vs. zoom-in
(right)]

Fig. 1: The proposed safety-critical model predictive control is
applied to a competitive car racing example. Snapshots of the
ego car (brown) are shown overtaking other racing cars (orange)
from both right and left sides while maintaining a target speed.
The closed-loop trajectory and predicted open-loop trajectory are
colored in black and red respectively, and the blue line depicts the
boundary of racing track.

constraints could enforce the system to avoid obstacles even
when the reachable set along the horizon is far away from the
obstacles. We validate this control design using a 2D double
integrator for obstacle avoidance, and also demonstrate that
this method enables a racing car to safely compete with other
cars in a racing competition, shown in Fig. 1.

B. Related Work

1) Model Predictive Control: MPC is widely used for
robotic systems, such as autonomous driving, robotic ma-
nipulation and locomotion [4]–[6], to achieve optimal per-
formance while satisfying different constraints. One of the
most important criteria to deploy robots for real-world tasks
is safety. There is some existing work about model predictive
control considering system safety [7], [8]. The safety criteria
in the context of MPC is usually formulated as constraints
in an optimization problem [9]–[11], such as obstacle con-
straints and actuation limits. One concrete scenario regarding
safety criteria for robots is obstacle avoidance. The majority
of literature focuses on collision avoidance using simplified

ar
X

iv
:2

00
7.

11
71

8v
1

 [
ee

ss
.S

Y
]

 2
2

Ju
l 2

02
0

models, and considers distance constraints with various Eu-
clidean norms [12]–[14], which we call MPC-DC in this
paper.

However, these obstacle avoidance constraints under Eu-
clidean norms might not be active until the robot is relatively
close to the obstacles. To make the robot take actions to
avoid obstacles even far away from it, we usually need a
larger horizon which increases the computational time in the
optimization. This encourages us to formulate a new type of
model predictive control, which can guarantee safety in the
context of set invariance with CBF constraints being active
in the optimization.

2) Control Barrier Functions: CBFs have recently been
introduced as a promising way to ensure set invariance
by considering the system dynamics and implying forward
invariance of the safe set. Futhermore, a safety-critical con-
trol design for continuous-time systems was proposed by
unifying a control Lyapunov function (CLF) and a control
barrier function through a quadratic program (CLF-CBF-QP)
[2], [15]. This method could be deployed as a real-time
optimization-based controller with safety-critical constraints,
shown in [1], [16], [17]. The adaptive, robust, and stochastic
cases of safety-critical control with CBFs have been consid-
ered in [18]–[21], and exponential CBFs could be used for
high relative degree safety constraints for nonlinear systems
[22]. Besides the continuous-time domain, the formulation
of CBFs was generalized into discrete-time systems (DCLF-
DCBF) in [3], and systems evolving on manifolds [16].
Recently in [23], model predictive control is introduced with
control Lyapunov functions to ensure stability.

However, all the previous work on CBFs only uses the
information of the current state. Inspired by the idea of model
predictive control, DCLF-DCBF can be improved by taking
future state prediction into account, yielding a better control
policy. This motivates us to investigate the control design of
predictive control under the constraints imposed by CBFs.
In this paper, we foucs on the discrete-time formulation of
control barrier functions applied to model predictive control,
which encodes the safety from discrete-time CBFs in MPC.

C. Contribution

The contributions of this paper are as follows.
• We present a MPC-CBF control design for safety-

critical tasks, where the safety-critical constraints are
enforced by discrete-time control barrier functions.

• We analyze the stability of our control design with suffi-
cient conditions, and qualitatively discuss the feasibility
in terms of set intersections between reachable sets of
MPC and safe sets enforced by CBF constraints along
the horizon.

• Our proposed method is shown to outperform both
MPC-DC and DCLF-DCBF. It enables prediction ca-
pability to DCLF-DCBF for performance improvement,
and it also guarantees safety via discrete-time CBF
constraints in the context of set invariance.

• We verify the properties of our control design using
a 2D double integrator for obstacle avoidance. Our

algorithm is generally applicable and also validated in
a more complex scenario, where MPC-CBF enables a
car racing on a track while safely overtaking other cars.

D. Paper Structure

This paper is organized as follows: in Sec. II, we present
the background of model predictive control and control
barrier functions. In Sec. III, we introduce the safety-critical
model predictive control design using discrete-time control
barrier functions (MPC-CBF). The analysis of stability and
feasibility properties is presented and the relations with
DCLF-DCBF and MPC-DC are also discussed. To validate
the control design and verify the properties of our formu-
lation, a 2D double integrator for obstacle avoidance and a
car racing competition example are demonstrated in Sec. IV.
Sec. V provides concluding remarks.

II. BACKGROUND

Our proposed safety-critical model predictive control de-
sign builds on model predictive control and control barrier
functions. We now present necessary preliminaries.

A. Model Predictive Control

Consider the problem of regulating to the origin of a
discrete-time control system

xt+1 = f(xt, ut), (1)

where xt ∈ X ⊂ Rn represents the state of the system at
time step t ∈ Z+, ut ∈ U ⊂ Rm is the control input, and f
is locally Lipschitz.

Assume that a full measurement or estimate of the state
xt is available at the current time step t. Then a finite-
time optimal control problem is solved at time step t. When
there are safety criteria, such as obstacle avoidance, the
obstacles are usually formulated using distance constraints.
The finite-time optimal control formulation is shown in (2).

MPC-DC:

J∗t (xt) = min
ut:t+N−1|t

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t, ut+k|t) (2a)

s.t. xt+k+1|t = f(xt+k|t, ut+k|t), k = 0, ..., N−1 (2b)
xt+k|t ∈ X , ut+k|t ∈ U , k = 0, ..., N−1 (2c)

xt|t = xt, (2d)
g(xt+k|t) ≥ 0, k = 0, ..., N−1. (2e)

Here xt+k|t denotes the state vector at time step t + k
predicted at time step t obtained by starting from the current
state xt (2d), and applying the input sequence ut:t+N−1|t to
the system dynamics (2b). In (2a), the terms q(xt+k|t, ut+k|t)
and p(xt+N |t) are referred to as stage cost and terminal cost
respectively, and N is the time horizon. The state and input
constraints are given by (2c), and distance constraints for
safety criteria are represented by function g, in (2e), which
could be defined under various Euclidean norms.

Let u∗t:t+N−1|t = {u∗t|t, ..., u
∗
t+N−1|t} be the optimal solu-

tion of (2) at time step t. The resulting optimized trajectory
using u∗t:t+N−1|t is referred as an open-loop trajectory. Then,
the first element of u∗t:t+N−1|t is applied to system (1). This
feedback control law is given below,

u(t) = u∗t|t(xt). (3)

The finite-time optimal control problem (2) is repeated at
next time step t + 1, based on the new estimated state
xt+1|t+1 = xt+1. It yields the model predictive control
strategy. The resulting trajectory using (3) is referred as a
closed-loop trajectory. More details can be referred to in [24].

B. Control Barrier Functions

We now present discrete-time control barrier functions that
will be used together with model predictive control for our
control design, which will be introduced in Sec. III.

For safety-critical control, we consider a set C defined as
the superlevel set of a continuously differentiable function
h : X ⊂ Rn → R,

C = {x ∈ X ⊂ Rn : h(x) ≥ 0}. (4)

Throughout this paper, we refer to C as a safe set. The

function h becomes a control barrier function if
∂h

∂x
6= 0 for

all x ∈ ∂C and there exists an extended class K∞ function
γ such that for the control system (1) satisfies,

∃ u s.t. ḣ(x, u) ≥ −γ(h(x)), γ ∈ K∞. (5)

This condition can be extended to the discrete-time domain
which is shown as follows.

∆h(xk, uk) ≥ −γh(xk), 0 < γ ≤ 1, (6)

where ∆h(xk, uk) := h(xk+1)−h(xk). Satisfying constraint
(6), we have h(xk+1) ≥ (1− γ)h(xk), i.e, the lower bound
of control barrier function h(x) decreases exponentially with
the rate 1− γ.

Remark 1: Note that in (6), we defined γ as a scalar
instead of a K∞ function as in (5). Generally, for the discrete-
time domain, γ could also be considered as a class K function
that also additionally satisfies 0 < γ(h(x)) ≤ h(x) for any
h(x). However, we will continue to use the scalar form γ in
this paper to simplify the notations for further discussions.

Besides the system safety, we are also interested in sta-
bilizing the system with a feedback control law u under a
control Lyapunov function V , i.e.,

∃ u s.t. V̇ (x, u) ≤ −α(V (x)), α ∈ K. (7)

We can also generalize it to discrete-time domain,

∆V (xk, uk) ≤ −αV (xk), 0 < α ≤ 1, (8)

where α > 0 and ∆V (xk, uk) := V (xk+1) − V (xk).
Similarly as above, the upper bound of control Lyapunov
function decreases exponentially with the rate 1− α.

The discrete-time control Lyapunov function and con-
trol barrier function can be unified into one optimiza-
tion program (DCLF-DCBF), which achieves the control

objective and guarantees system safety. This formulation
was first introduced in [3] and is presented as follows,

DCLF-DCBF:

u∗k = argmin
(uk,δ)∈Rm+1

uTkH(x)uk + l · δ2 (9a)

∆V (xk, uk) + αV (xk) ≤ δ (9b)
∆h(xk, uk) + γh(xk) ≥ 0 (9c)
uk ∈ U , (9d)

where l is positive, and δ ≥ 0 is a slack variable that
allows the Lyapunov function to grow when the CLF and
CBF constraints are conflicting. The safe set C in (4) is
invariant along the trajectories of the discrete-time system
with controller (9) if h(x0) ≥ 0 and 0 < γ ≤ 1.

III. CONTROL DESIGN

After presenting a background of model predictive control
and control barrier functions, we formulate the safety-critical
model predictive control logic in this section.

A. Formulation

Consider the problem of regulating to a target state for
the discrete-time system (1) while ensuring safety in the
context of set invariance. The proposed control logic MPC-
CBF solves the following constrained finite-time optimal
control problem with horizon N at each time step t,

MPC-CBF:

J∗t (xt)= min
ut:t+N−1|t

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t, ut+k|t) (10a)

s.t. xt+k+1|t = f(xt+k|t, ut+k|t), k = 0, ..., N−1 (10b)
xt+k|t ∈ X , ut+k|t ∈ U , k = 0, ..., N−1 (10c)

xt|t = xt, (10d)
∆h(xt+k|t, ut+k|t) ≥ −γh(xt+k|t), k = 0, ..., N−1 (10e)

where (10d) represents the initial condition constraint,
(10b) describes the system dynamics, and (10c) shows the
state/input constraints along the horizon. The CBF con-
straints imposed in (10e) are designed to guarantee the for-
ward invariance of the safe set C associated with the discrete-
time control barrier functions, where ∆h is introduced in (6).
Here we have

∆h(xt+k|t, ut+k|t) = h(xt+k+1|t)− h(xt+k|t).

The optimal solution to (10) at time t is a sequence of
inputs as u∗t:t+N−1|t = [u∗t|t, ..., u

∗
t+N−1|t]. Then, the first

element of the optimizer vector is applied,

u(t) = u∗t|t(xt). (11)

This constrained finite-time optimal control problem (10) is
repeated at time step t+ 1, based on the new state xt+1|t+1,

Fig. 2: Feasibility of MPC-CBF. The reachable set R(xt,X ,U , k)
propagates along the horizon from the initial condition xt. For
horizon step k in the open-loop, the level sets ∂Scbf (k) are shown
in different colors with three choices of γ and each corresponding
Scbf (k) lies on the left hand side of level sets.

yielding a receding horizon control strategy: safety-critical
model predictive control.

The system dynamics constraint in (10b) could be linear
if we have a linear system, and (10c) could also be linear
if X and U are defined as polytopes in the state and input
space, respectively. The discrete-time control barrier func-
tions constraints in (10e) are generally non-convex unless the
CBFs are linear. This makes the whole optimization in (10)
generally become a nonlinear programming problem (NLP).

B. Stability

In DCLF-DCBF, control Lyapunov functions are intro-
duced as optimization constraints (9b) with corresponding
slack variable as additional term in the cost function (9a).
This allows for the achievement of control objectives rep-
resented by CLFs and unifies the formulation under one
optimization with CBFs. In our MPC-CBF control design,
we have the terminal cost p(xt+N |t) in (10a) as a control
Lyapunov function, which guarantees the stability of the
system along the closed-loop trajectory. This stability of the
closed-loop system is guaranteed if the following holds,

p(f(xt+k|t, ut+k|t))− p(xt+k) + q(xt+k, ut+k) ≤ 0, ∀t, k.
(12)

This inequality provides the sufficient conditions for the
stability, and comes from the function J∗t that should de-
crease along the closed-loop trajectories, where we have
J∗t (xt+1) ≤ J∗t (xt). The proof of stability based on (12)
could be found in [24, Thm. 12.2].

C. Feasibility

Since the optimization (10) could be a nonlinear program-
ming problem, we are interested in finding under which
circumstances this optimization becomes feasible, i.e., the
feasible set under the constraints (10b)-(10e) is not empty.

We analyze this feasibility problem qualitatively in the
state space. Given current state xt in (10d), the reachable
set at horizon step k is defined as a reachable region in the
state space, satisfying system dynamics in (10b), input/state
constraints in (10c) and initial condition in (10d). This

reachable set R(xt,X ,U , k) is defined as follows,

R(xt,X ,U , k) = {xt+k|t ∈ X : ∀i = 0, ..., k − 1,

xt+i+1|t = f(xt+i|t, ut+i|t),

xt+i|t ∈ X , ut+i|t ∈ U , xt|t = xt}.
(13)

We also define the set of state space satisfying CBF
constraints in (10e) and initial condition in (10d) as,

Scbf (k) = {x ∈ X :

h(x)−h(xt+k−1|t)≥−γh(xt+k−1|t)
}
,

(14)

where Scbf (k) describes superlevel sets of h satisfying the
control barrier function constraints (10e) at each time step
along the open-loop trajectory.

We illustrate R(xt,X ,U , k) and Scbf (k) in the state space
shown in Fig. 2, given the initial condition xt. Then, the
feasibility of the optimization in (10) turns out to be whether
the intersection between the feasible set at each horizon step,
R(xt,X ,U , k), and the superlevel set of h(x) satisfying the
CBF constraints, Scbf (k), is nonempty for all k = 1, ...N .

Remark 2: Note that Scbf (k) is not empty when h is a
valid control barrier function. Furthermore,R(xt,X ,D, k) is
also guaranteed to be nonempty, if we choose X as a control
invariant set as discussed in [24, Thm. 11.1 and 11.2].

In order to better understand this problem, we illustrate
the level sets of control barrier function constraints as,

∂Scbf (k) = {x ∈ X : h(x) = (1− γ)h(xt+k−1|t)},

with several choices of γ. The superlevel set Scbf (k) are the
regions illustrated on the left hand side of these level sets,
with an example where the robot approaches the obstacle
from the left to the right, shown in Fig. 2. We can see
that, if γ becomes relatively small, the safe set will be
more constrained. In this case, the system tends to be safer,
but the intersection between R(xt,X ,U , k) and Scbf (k)
might be infeasible if γ becomes too small. When the γ
becomes larger, the region of Scbf (k) in the state space will
be increased. This will make the optimization more likely
to be feasible, however, the CBF constraints might not be
active during the optimization, if γ is too large. In this case,
R(xt,X ,U , k) will become a proper subset of Scbf (k).

Remark 3: When γ becomes relatively small, the MPC-
CBF controller makes a smaller subset of the safe set C in
(4) invariant, and thus is more safer, but this might also
make the optimization infeasible. A larger γ will make
the optimization more likely to be feasible, but the CBF
constraints might not be active during the optimization.
We expect that γ is chosen appropriately, such that the
intersection between these two sets will not be empty and
becomes a proper subset of R(xt,X ,U , k). This leads to a
tradeoff between safety and feasibility in terms of the choice
of γ.

Remark 4: Given xt, X , U , we could pick a value of γ
to find a tradeoff between safety and feasibility. However,
when the system evolves, this γ might no longer satisfy
our safety demand or guarantee the optimization feasibility.
Therefore, for a given fixed γ, we generally only have

Fig. 3: For MPC-CBF, the feasible set at each horizon step k is the intersection between R(xt,X ,U , k) and Scbf (k), colored in yellow.
For MPC-DC, the feasible set at each horizon step is the intersection between R(xt,X ,U , k) and C, colored with borders in red. We see
clearly that MPC-CBF is safer than MPC with distance constraints with smaller set invariance. Moreover, distance constraints might be
inactive when the robot is still far away from obstacles, illustrated in (a), where R(xt,X ,U , k) is a subset of C. CBF constraints could
still be active with appropriate choices of γ even when the robot is far away from obstacles, shown in (a) and (b).

pointwise feasibility and a persistently feasible formulation
is still an open problem and is part of future work.

D. Relation with DCLF-DCBF

When N = 1, the formulation in (10) could be simplified
as an optimization over one step system input u∗k,

u∗k = argmin
uk∈Rm

p(f(xk, uk)) + q(xk, uk) (15a)

∆h(xk, uk) + γh(xk) ≥ 0, (15b)
uk ∈ U , (15c)

where p(f(xk, uk)) and q(xk, uk) are the terminal cost and
stage cost which we have seen previously in (10a). The
optimization (15) is similar to the DCLF-DCBF formulation
(9). The stage cost q(xk, uk) minimizes the system input,
similar as uTkH(x)uk in (9a). The terminal cost minimizes
the control Lyapunov function p(f(xk, uk)) in (15a), instead
of using CLF constraints as (9b). As we no longer use the
CLF constraint, we do not need a slack variable, such as δ
in (9a), to guarantee the feasibility.

Remark 5: As the CLF constraints in (9b) are transferred
into the cost function in (15) with N = 1, the formulation in
(15) becomes similar to DCLF-DCBF. To sum up, our MPC-
CBF formulation operates in a similar manner of DCLF-
DCBF with prediction N = 1.

E. Relation with MPC-DC

When γ approaches its upper bound of 1, the CBF
constraints in (10e) becomes,

h(xt+k+1|t) ≥ 0.

If g(x) in (2e) and h(x) are the same, these CBF constraints
are almost the same as distance constraints defined in (2e) ex-
cept for one horizon step difference. In other words, the CBF
constraints function are at the next predicted horizon step
instead of the current horizon step. Moreover, the feasible
set at each horizon step k in MPC-DC formulation becomes
R(xt,X ,U , k) ∩ C. While, as we have seen previously, the
feasible set in MPC-CBF formulation at each horizon step
k is R(xt,X ,U , k)∩Scbf (k). Note that Scbf (k) is a subset

of C. Therefore, the MPC-CBF formulation in (10) has a
smaller safe set than the MPC-DC formulation.

In the case the reachable set R(xt,X ,U , k) is a proper
subset of the safe set C, then the distance constraints in (2e)
are not active in the optimization (2), as shown in Fig. 3a.
In other words, the distance constraints will not be active
in the optimization (2) until the reachable set along the
horizon intersects with the unsafe regions, i.e., the reachable
set intersects the obstacles as shown in Fig. 3b. Using our
MPC-CBF formulation, the CBF constraints in (10e) could
be always active with an appropriate choice of γ whenever
the robot tends to approach the obstacles. In this case, even
when the reachable set R(xt,X ,U , k) is a proper subset of
the safe set C, the reachable set could be still constrained by
its intersection with Scbf (k), as shown in Fig. 3a.

Remark 6: We discuss the constraint activation only in the
cases when the robot is moving towards the obstacles, i.e.,
there exists a control input u such that h(f(x, u)) < h(x).
When the robot is moving away from the obstacles, both
distance constraints and CBF constraints are inactive, which
is intuitive since the robot is always safe in this case.

Remark 7: Our MPC-CBF formulation is safer than MPC-
DC in the context of smaller set invariance, where we can
see that R(xt,X ,U , k) ∩ Scbf (k) is a proper subset of
R(xt,X ,U , k) ∩ C, as shown in Fig. 3.

Remark 8: In practice, we may need to use a smaller
horizon for speeding up the optimization. To achieve a
similar performance compared to the MPC-DC formulation
in (2), we could apply smaller γ in our MPC-CBF control
design in (10) and use a smaller horizon. This could help
us to reduce the complexity of the optimization for obstacle
avoidance, as will be shown in Fig. 4e.

IV. EXAMPLES

Having presented the proposed MPC-CBF control design,
we now numerically validate it using a 2D double integrator
for obstacle avoidance and analyze its properties. We also
apply this control design to a competitive car racing problem.

(a) (b) (c) (d) (e)

Fig. 4: A 2D double integrator avoids an obstacle using different control designs. The obstacle is represented by a red circle and the
start and target positions are located at (−5,−5) and (0, 0), labelled as blue and red diamonds, respectively. (a) uses a DCLF-DCBF
controller; (b) a MPC-CBF controller with N = 1; (c) a MPC-CBF controller with N = 8 and γ = 0.5; (d) a MPC-DC controller with
N = 8 and four MPC-CBF controllers with N = 8 and different choices of γ; (e) three MPC-CBF controller with N = 5 and different
values of γ and three MPC-DC controllers with different values of horizon N .

A. 2D Double Integrator for Obstacle Avoidance

Consider a linear discrete-time 2D double integrator sys-
tem,

xk+1 = Axk +Buk, (16)

where we have

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =

1
2∆t2 0

0 1
2∆t2

∆t 0
0 ∆t

 , (17)

and the sampling time ∆t is set as 0.2s.
A MPC-CBF is designed as in (10) and (11) for 2D

double integrator to avoid an obstacle, where the stage cost
q(xk, uk) = x′kQxk + u′kRuk and terminal cost p(xN) =
x′NPxN , and Q = 10 · I4, R = I2 and P = 100 · I4. The
system is subject to state constraint X and input constraints
U ,

X = {xk ∈ Rn : xmin ≤ xk ≤ xmax},
U = {uk ∈ Rm : umin ≤ uk ≤ umax}.

The lower and upper bounds are,

xmin = −5 · I4×1, xmax = 5 · I4×1,
umin = −I2×1, umax = I2×1.

For discrete-time control barrier function constraint (10e), we
choose a quadratic barrier function for obstacle avoidance,

hk = (xk(1)− xobs)2 + (xk(2)− yobs)2 − r2obs, (18)

where xobs, yobs, and robs describe x/y-coordinate and radius
of the obstacle with xobs = −2m, yobs = −2.25m and
robs = 1.5m, shown as a red circle in Fig. 4. The start
and target positions are (−5,−5) and (0, 0), which are
labelled as blue and red diamonds. The resulting trajectories
of MPC-CBF controller with different choices of γ and N
are presented in Fig. 4.

1) Comparison with DCLF-DCBF: In order to com-
pare the performance between our proposed MPC-CBF and
DCLF-DCBF, we develop a DCLF-DCBF controller for the
same obstacle avoidance task, which is based on (9).

For the design of DCLF-DCBF, we use R in MPC-CBF
example as H in (9) to ensure that we have the same penalty
on inputs. The discrete-time CBF constraints of DCLF-
DCBF are the same as the ones used in MPC-CBF. Since the
terminal cost P is the control Lyapunov function of model
predictive control, we choose P in MPC-CBF example as the
control Lyapunov function that is used to construct discrete-
time CLF constraints in (9). Based on these choices, it is
fair to compare a DCLF-DCBF controller with a MPC-CBF
controller.

The simulation result of MPC-CBF and DCLF-DCBF
comparison is shown in Fig. 4a, 4b and 4c. The trajectory
is denoted in black line with small circles representing each
step. The trajectory of DCLF-DCBF controller with γ = 0.4
is presented in Fig. 4a, where the system does not start to
avoid the obstacle until it is close to it. Fig. 4b shows the
trajectory for MPC-CBF controller with horizon N = 1
and γ = 0.4. This trajectory is similar to that of DCLF-
DCBF controller. Based on our analysis in Sec. III-D, the
performances of DCLF-DCBF and MPC-CBF with N = 1
are almost the same, which is validated in this simulation.
Fig. 4c shows the trajectory of MPC-CBF controller with
horizon N = 8 and γ = 0.4. We can see that this controller
can drive the system to avoid the obstacle earlier than the
DCLF-DCBF controller. Also, among these three controllers,
it is the only one that can reach the goal position in the
limited simulation time.

2) Comparison with MPC-DC: A MPC-DC controller
is developed based on (2) using the same parameters as
MPC-CBF presented before except the discrete-time CBF
constraint, which is replaced by a Euclidean norm distance
constraint g shown in (2e). The function g has the same
expression as h, defined in (18).

Fig. 4d and 4e show the simulation result of the compari-
son between MPC-CBF and MPC-DC. In Fig. 4d, MPC-CBF
controllers with γ = 0.1, 0.2, 0.3, 1.0 are described in blue,
orange, yellow and purple lines, respectively. The trajectory

Controller N γ mean/std (s) min (s) max (s)
MPC-CBF 5 0.15 0.028±0.011 0.013 0.056
MPC-CBF 5 0.20 0.028±0.011 0.014 0.052
MPC-CBF 5 0.25 0.028±0.011 0.014 0.055
Controller N mean/std (s) min (s) max (s)
MPC-DC 7 0.033±0.013 0.014 0.065
MPC-DC 15 0.048±0.016 0.027 0.084
MPC-DC 30 0.062±0.031 0.018 0.136

TABLE I: Computational time for MPC-CBF and MPC-DC with
different specifications. Larger horizon increases the computation
complexity of MPC-DC and different values of γ almost do not
affect the computational time of MPC-CBF. MPC-CBF with N =
5, γ = 0.25 achieves similar obstacle avoidance performance as
MPC-DC with N = 7 shown in Fig. 4e using relatively smaller
time.

of MPC-DC controller is shown in black dashed line. As
γ decreases, the system starts to avoid the obstacle earlier,
which means a smaller safe set analyzed in Sec. III-C, while
on the other hand the trajectory of MPC-DC is the closest
to the obstacle. We also notice that the trajectories of MPC-
DC and MPC-CBF with γ = 1 are almost the same, which
validates our analysis in Sec. III-E.

The trajectories of MPC-CBF controllers with N = 5
and different choices of γ and MPC-DC controllers with
different values of horizon N are shown in Fig. 4e. We notice
that MPC-CBF controller with smaller γ and MPC-DC with
larger horizon N can make the system avoid obstacles earlier.
This verifies our analysis in Sec. III-C, since smaller γ in
MPC-CBF and larger horizon N in MPC-DC can activate
the safety constraints earlier. We also observe that that even
with an extremely large horizon N , e.g. N = 30, the system
only has visible obstacle avoidance behavior when it is close
to obstacles. In contrary, a relatively small γ is able to make
the system avoid obstacles even far away from obstacles.

In Fig. 4e, MPC-CBF with N = 5 and γ = 0.25 starts to
turn to avoid the obstacle with a similar behavior as MPC-
DC with N = 7. Note that N = 7 in MPC-DC is the
minimum horizon to make the optimization program feasible.
This property is discussed in Remark 8. Since discrete-time
CBF enforces the invariance of safe set, it allows a smaller
N for MPC-CBF with a smaller γ to achieve a comparable
performance as MPC-DC with a larger N . This property
motivates us to apply the MPC-CBF instead of MPC-DC,
since MPC-CBF could economize computational time with
smaller horizon, as illustrated in TABLE I.

B. Competitive Car Racing

We have evaluated the MPC-CBF design using a 2D
double integrator and compared its performance with DCLF-
DCBF and MPC-DC. We proceed to implement MPC-CBF
in a more complex scenario: competitive car racing.

1) Vehicle Model: We use curvilinear coordinates to de-
scribe vehicle states of the ego and other cars in a racing
competition. The system dynamics is given as follows,

xt+1 = f(xt, ut), (19)

where xt and ut represent the state and input of the vehicle
at time step t. Furthermore, f represents the nonlinear lateral

Fig. 5: Representation of the ego car and front car in the curvilinear
coordinate frame.

vehicle dynamics model from [25, Ch. 2]. The definition of
state and input is shown as follows,

xt = [vxt , vyt , φt, eφt , eyt , st]
T , ut = [at, δt]

T , (20)

where st represents the curvilinear distance travelled along
the centerline of the track, eyt and eφt

are the deviation dis-
tance and heading angle error between vehicle and path. vxt

,
vyt , φt are the vehicle longitudinal velocity, lateral velocity
and yaw rate in the curvilinear coordinates, respectively. A
representation of the state in the curvilinear coordinate is
shown in Fig. 5. The inputs are longitudinal acceleration at
and steering angle δt.

2) Control Design: A MPC-CBF is developed for this
competitive car racing example using (10). The stage cost
function is designed as follows,

q(xt+k|t, ut+k|t) =(xt+k|t − xr)TQ(xt+k|t − xr)
+ uTt+k|tRut+k|t

(21)

where xr = (vt, 0, 0, 0, 0, 0), Q = diag(10, 0, 0, 0, 0, 10) and
R = diag(1, 10). This cost function allows ego car to track
the centerline with a target speed vt while minimizing the
tracking error from the centerline.

The motion of overtaking other racing cars is considered
as CBF constraints in (10e). Assume we have K racing cars
competing with ego car. At time step t, each CBF hit rep-
resents the safety criterion between ego car at (skt , eykt) and
i-th other racing car at (sit, eyit), described in the curvilinear
coordinates, shown in Fig. 5. We choose CBF in a quadratic
form as follows,

hit = (skt − sit)2 + (eykt − eyit)
2 − d2. (22)

where we assume all racing cars including ego car hold the
shape of rectangle with a diagonal length as d.

3) Simulation & Results: During the competition, we
expect ego car to track the centerline with a target speed
vt = 0.8m/s. MPC-CBF with a horizon N = 12 updates at
10 Hz. The system dynamics is simulated at 1000 Hz and the
controller sampling time is 0.1s. While the system dynamics
is simulated using f in (19), we use the linearized dynamics
along the centerline to formulate our control design.

In the simulation, we deploy several racing cars to compete
with ego car. In order to better illustrate results, a snapshot
of overtaking motion with a zoom-in view is shown in

(a) Speed profile

(b) Deviation distance and heading angle error

Fig. 6: Speed profile, deviation distance and heading angle error
during the car racing competition in one lap of the simulation. The
highlighted segments illustrate overtaking maneuvers. The dashed
blue line shows the desired speed v = 0.8m/s.

Fig. 1. Ego car begins with an initial speed v0 = 0.2m/s
at the origin of the centerline and two other racing cars
start in front of ego car. These two cars are simulated to
move at a constant speed 0.2m/s while keeping a constant
distance deviation eyi from the centerline, where ey1 = 0.1m
and ey2 = −0.1m. Fig. 1 demonstrates that the proposed
controller can allow ego car to safely race and overtake other
racing cars in both left and right directions.

Fig. 6a shows the speed profile, where the dashed blue
line shows the desired speed. We can see that ego car always
tries to catch up to the target speed during the competitive
car racing. In Fig. 6b, we could observe two motions of
overtaking front racing cars from eψ and ey . Since these
two racing vehicles hold opposite distance deviations from
the centerline, ego car overtakes them with right and left
turns respectively.

V. CONCLUSION

A safety-critical model predictive control design is pro-
posed in this paper, where discrete-time control barrier
function constraints are used in a receding horizon fashion
to ensure safety. We present an analysis of its stability
and feasibility, and describe its relation with MPC-DC and
DCLF-DCBF. To verify our analysis, we use a 2D double
integrator for obstacle avoidance, where we can see that
MPC-CBF outperforms both MPC-DC and DCLF-DCBF.
The proposed control logic is also applied to a more complex
scenario: competitive car racing, where our ego car can race
and safely overtake other racing cars.

ACKNOWLEDGEMENT

We would like to thank Ugo Rosolia for his insightful
discussions.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE International Conference on Decision and Control, 2014, pp.
6271–6278.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[3] A. Agrawal and K. Sreenath, “Discrete Control Barrier Functions
for Safety-Critical Control of Discrete Systems with Application to
Bipedal Robot Navigation,” in Robotics: Science and Systems, 2017.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, 2018.

[5] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile
manipulation with hybrid model predictive control,” The International
Journal of Robotics Research, 2020.

[6] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for
humanoid gait generation: Stability and feasibility,” IEEE Transactions
on Robotics, 2020.

[7] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[8] T. D. Son and Q. Nguyen, “Safety-critical control for non-affine
nonlinear systems with application on autonomous vehicle,” in IEEE
International Conference on Decision and Control, 2019.

[9] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive
active steering and obstacle avoidance for autonomous ground vehi-
cles,” Control Engineering Practice, vol. 17, no. 7, pp. 741–750, 2009.

[10] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl, “An auto-generated nonlinear MPC algorithm for real-
time obstacle avoidance of ground vehicles,” in European Control
Conference, 2013, pp. 4136–4141.

[11] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle, “Torque sat-
uration in bipedal robotic walking through control Lyapunov function-
based quadratic programs,” IEEE Access, vol. 3, pp. 323–332, 2015.

[12] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Bor-
relli, “Linear model predictive control for lane keeping and obstacle
avoidance on low curvature roads,” in International Conference on
Intelligent Transportation Systems, 2013.

[13] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle
control: A nonconvex approach for obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, 2016.

[14] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, 2020.

[15] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference, 2019.

[16] G. Wu and K. Sreenath, “Safety-critical and constrained geometric
control synthesis using control lyapunov and control barrier functions
for systems evolving on manifolds,” in American Control Conference,
2015, pp. 2038–2044.

[17] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,”
in IEEE International Conference on Decision and Control, 2016.

[18] Q. T. Nguyen, “Robust and Adaptive Dynamic Walking of Bipedal
Robots,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[19] A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier
functions,” arXiv preprint arXiv:1910.00555, 2019.

[20] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of con-
trol barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[21] W. Luo and A. Kapoor, “Multi-Robot Collision Avoidance under Un-
certainty with Probabilistic Safety Barrier Certificates,” arXiv preprint
arXiv:1912.09957, 2019.

[22] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference, 2016, pp. 322–328.

[23] R. Grandia, A. J. Taylor, A. Singletary, M. Hutter, and A. D. Ames,
“Nonlinear Model Predictive Control of Robotic Systems with Control
Lyapunov Functions,” in Robotics: Science and Systems, 2020.

[24] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[25] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7040372
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7040372
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7782377
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7782377
http://roboticsproceedings.org/rss13/p73.pdf
http://roboticsproceedings.org/rss13/p73.pdf
http://roboticsproceedings.org/rss13/p73.pdf
https://ieeexplore.ieee.org/abstract/document/8558663
https://ieeexplore.ieee.org/abstract/document/8558663
https://journals.sagepub.com/doi/abs/10.1177/0278364920913938
https://journals.sagepub.com/doi/abs/10.1177/0278364920913938
https://ieeexplore.ieee.org/abstract/document/8955951
https://ieeexplore.ieee.org/abstract/document/8955951
https://www.sciencedirect.com/science/article/pii/S0005109813000678
https://www.sciencedirect.com/science/article/pii/S0005109813000678
https://ieeexplore.ieee.org/document/9029446
https://ieeexplore.ieee.org/document/9029446
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669836
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669836
https://ieeexplore.ieee.org/document/7079382
https://ieeexplore.ieee.org/document/7079382
https://ieeexplore.ieee.org/document/7079382
https://ieeexplore.ieee.org/document/6728261
https://ieeexplore.ieee.org/document/6728261
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7489011
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7489011
https://ieeexplore.ieee.org/document/9062306
https://ieeexplore.ieee.org/document/9062306
https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/abstract/document/7798370
https://ieeexplore.ieee.org/abstract/document/7798370
https://search.proquest.com/docview/2006934349?pq-origsite=gscholar
https://search.proquest.com/docview/2006934349?pq-origsite=gscholar
https://arxiv.org/pdf/1910.00555.pdf
https://arxiv.org/pdf/1910.00555.pdf
https://www.sciencedirect.com/science/article/pii/S2405896315024106
https://www.sciencedirect.com/science/article/pii/S2405896315024106
https://arxiv.org/pdf/1912.09957.pdf
https://arxiv.org/pdf/1912.09957.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7524935
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7524935
http://www.roboticsproceedings.org/rss16/p098.pdf
http://www.roboticsproceedings.org/rss16/p098.pdf
https://www.cambridge.org/core/books/predictive-control-for-linear-and-hybrid-systems/EF618BD7AFAF4D04B2044A0FD03D885A
https://www.cambridge.org/core/books/predictive-control-for-linear-and-hybrid-systems/EF618BD7AFAF4D04B2044A0FD03D885A
https://link.springer.com/book/10.1007/978-1-4614-1433-9

	I Introduction
	I-A Motivation
	I-B Related Work
	I-B.1 Model Predictive Control
	I-B.2 Control Barrier Functions

	I-C Contribution
	I-D Paper Structure

	II Background
	II-A Model Predictive Control
	II-B Control Barrier Functions

	III Control Design
	III-A Formulation
	III-B Stability
	III-C Feasibility
	III-D Relation with DCLF-DCBF
	III-E Relation with MPC-DC

	IV Examples
	IV-A 2D Double Integrator for Obstacle Avoidance
	IV-A.1 Comparison with DCLF-DCBF
	IV-A.2 Comparison with MPC-DC

	IV-B Competitive Car Racing
	IV-B.1 Vehicle Model
	IV-B.2 Control Design
	IV-B.3 Simulation & Results

	V Conclusion
	References

