
Safety-Critical Model Predictive Control with Discrete-Time
Control Barrier Function

Jun Zeng*, Bike Zhang* and Koushil Sreenath

Abstract— The optimal performance of robotic systems is
usually achieved near the limit of state and input bounds. Model
predictive control (MPC) is a prevalent strategy to handle
these operational constraints, however, safety still remains an
open challenge for MPC as it needs to guarantee that the
system stays within an invariant set. In order to obtain safe
optimal performance in the context of set invariance, we present
a safety-critical model predictive control strategy utilizing
discrete-time control barrier functions (CBFs), which guar-
antees system safety and accomplishes optimal performance
via model predictive control. We analyze the feasibility and
the stability properties of our control design. We verify the
properties of our method on a 2D double integrator model for
obstacle avoidance. We also validate the algorithm numerically
using a competitive car racing example, where the ego car is
able to overtake other racing cars.

I. INTRODUCTION

A. Motivation

Safety-critical optimal control and planning is one of
the fundamental problems in robotic applications. In order
to ensure the safety of robotic systems while achieving
optimal performance, the tight coupling between potentially
conflicting control objectives and safety criteria is considered
in an optimization problem. Some recent work formulates
this problem using control barrier functions, but only using
current state information without prediction, see [1], [2],
which yields a greedy control policy. Model predictive
control can give a less greedy policy, as it takes future
state information into account. However, the safety criteria
in a predictive control framework is usually enforced as
distance constraints defined under Euclidean norms, such as
the distance between the robot and obstacles being larger
than a safety margin. This distance constraint will not confine
the optimization until the reachable set along the horizon
intersects with the obstacles. In other words, the robot will
not take actions to avoid the obstacles until it is close to them.
One way to solve this problem is to use a larger horizon,
but that will increase the computational complexity in the
optimization.

We address this challenge above by directly unifying
model predictive control with discrete-time control barrier

* Authors have contributed equally and names are in alphabetical order.
All authors are with the Department of Mechanical Engineering, Uni-

versity of California, Berkeley, CA, 94720, USA, {zengjunsjtu,
bikezhang, koushils}@berkeley.edu

This work was partially supported through National Science Foundation
Grant CMMI-1931853.

Code is available at https://github.com/HybridRobotics/
MPC-CBF

(a) Snapshot of first overtake [whole track (left) vs. zoom-in (right)]

(b) Snapshot of second overtake [whole track (left) vs. zoom-in (right)]

Fig. 1: The proposed safety-critical model predictive control is
applied to a competitive car racing example. Snapshots of the ego
car (brown) are shown overtaking other racing cars (orange) from
both right and left sides while maintaining a specified target speed.
The closed-loop trajectory and predicted open-loop trajectory are
colored in black and red respectively, and the blue solid lines depict
the boundary of racing track.

functions together into one optimization problem. This re-
sults in a safety-critical model predictive control formulation,
called MPC-CBF in this paper. In this formulation, the CBF
constraints could enforce the system to avoid obstacles even
when the reachable set along the horizon is far away from the
obstacles. We validate this control design using a 2D double
integrator for obstacle avoidance, and also demonstrate that
this method enables a racing car to safely compete with other
cars in a racing competition, shown in Fig. 1.

B. Related Work

1) Model Predictive Control: MPC is widely used for
robotic systems, such as robotic manipulation and locomo-
tion [3], [4], to achieve optimal performance while satisfying
different constraints. One of the most important criteria to
deploy robots for real-world tasks is safety. There is some
existing work about model predictive control considering
system safety [5]–[7]. The safety criteria in the context of
MPC is usually formulated as constraints in an optimization
problem [8], [9], such as obstacle constraints and actuation
limits. One concrete scenario regarding safety criteria for
robots is obstacle avoidance. The majority of literature
focuses on collision avoidance using simplified models, and
considers distance constraints with various Euclidean norms

ar
X

iv
:2

00
7.

11
71

8v
3

 [
ee

ss
.S

Y
]

 2
3

M
ar

 2
02

1

https://github.com/HybridRobotics/MPC-CBF
https://github.com/HybridRobotics/MPC-CBF

[10]–[12], which we call MPC-DC in this paper.
However, these obstacle avoidance constraints under Eu-

clidean norms will not confine the robot’s movement unless
the robot is relatively close to the obstacles. To make the
robot take actions to avoid obstacles even far away from
it, we usually need a larger horizon which increases the
computational time in the optimization. This encourages
us to formulate a new type of model predictive control,
which can guarantee safety in the context of set invariance
with CBF constraints confining the robot’s movement during
the optimization. Recently in [13], model predictive control
is introduced with control Lyapunov functions to ensure
stability.

2) Control Barrier Functions: CBFs have recently been
introduced as a promising way to ensure set invariance
by considering the system dynamics and implying forward
invariance of the safe set. Furthermore, a safety-critical
control design for continuous-time systems was proposed by
unifying a control Lyapunov function (CLF) and a control
barrier function through a quadratic program (CLF-CBF-
QP) [14]. This method could be deployed as a real-time
optimization-based controller with safety-critical constraints,
shown in [1], [15], [16]. Besides the continuous-time domain,
the formulation of CBFs was generalized into discrete-time
systems (DCLF-DCBF) in [2].

3) Model Predictive Control with Control Barrier Func-
tions: There is some existing work that tries to combine
the advantages of MPC and CBFs. Barrier functions have
been used in MPC in [17], which converts constraints to
cost but not related to safety-critical control. In [5], they use
continuous-time CBFs as constraints inside a discrete-time
MPC. MPC and CBFs are organized as a high-level planner
and a low-level tracker in [6]. This method treats MPC and
CBFs separately at different levels.

Inspired by the previous work of model predictive control
and control barrier functions, DCLF-DCBF can be improved
by taking future state prediction into account, yielding a
better control policy. This motivates us to investigate the
control design of predictive control under the constraints
imposed by CBFs. In this paper, we focus on the discrete-
time formulation of control barrier functions applied to
model predictive control, which encodes the safety obtained
from discrete-time CBFs in MPC.

C. Contribution

The contributions of this paper are as follows.

• We present a MPC-CBF control design for safety-
critical tasks, where the safety-critical constraints are
enforced by discrete-time control barrier functions.

• We analyze the stability of our control design, and
qualitatively discuss the feasibility in terms of set inter-
sections between reachable sets of MPC and safe sets
enforced by CBF constraints along the horizon.

• Our proposed method is shown to outperform both
MPC-DC and DCLF-DCBF. It enables prediction ca-
pability to DCLF-DCBF for performance improvement,

and it also guarantees safety via discrete-time CBF
constraints in the context of set invariance.

• We verify the properties of our control design using
a 2D double integrator for obstacle avoidance. Our
algorithm is generally applicable and also validated in
a more complex scenario, where MPC-CBF enables a
car racing on a track while safely overtaking other cars.

D. Paper Structure

This paper is organized as follows: in Sec. II, we present
the background of model predictive control and control
barrier functions. In Sec. III, we introduce the safety-critical
model predictive control design using discrete-time control
barrier functions (MPC-CBF). The analysis of stability and
feasibility properties is presented and the relations with
DCLF-DCBF and MPC-DC are also discussed. To validate
the control design and verify the properties of our formu-
lation, a 2D double integrator for obstacle avoidance and a
car racing competition example are demonstrated in Sec. IV.
Sec. V provides concluding remarks.

II. BACKGROUND

Our proposed safety-critical model predictive control de-
sign builds on model predictive control and control barrier
functions. We now present necessary preliminaries.

A. Model Predictive Control

Consider the problem of regulating to the origin of a
discrete-time control system described by,

xt+1 = f(xt,ut), (1)

where xt ∈ X ⊂ Rn represents the state of the system at
time step t ∈ Z+, ut ∈ U ⊂ Rm is the control input, and f
is locally Lipschitz.

Assume that a full measurement or estimate of the state
xt is available at the current time step t. Then a finite-
time optimal control problem is solved at time step t. When
there are safety criteria, such as obstacle avoidance, the
obstacles are usually formulated using distance constraints.
The finite-time optimal control formulation is shown in (2).

MPC-DC:

J∗t (xt) = min
ut:t+N−1|t

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t) (2a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (2b)
xt+k|t ∈ X ,ut+k|t ∈ U , k = 0, ..., N−1 (2c)

xt|t = xt, (2d)
xt+N |t ∈ Xf , (2e)
g(xt+k|t) ≥ 0, k = 0, ..., N−1. (2f)

Here xt+k|t denotes the state vector at time step t + k
predicted at time step t obtained by starting from the current
state xt (2d), and applying the input sequence ut:t+N−1|t to
the system dynamics (2b). In (2a), the terms q(xt+k|t,ut+k|t)

and p(xt+N |t) are referred to as stage cost and terminal
cost respectively, and N is the time horizon. The state and
input constraints are given by (2c), and distance constraints
for safety criteria are represented by function g, in (2f),
which could be defined under various Euclidean norms. The
terminal constraint is enforced in (2e).

Let u∗t:t+N−1|t = {u∗t|t, ...,u
∗
t+N−1|t} be the optimal so-

lution of (2) at time step t. The resulting optimized trajectory
using u∗t:t+N−1|t is referred as an open-loop trajectory. Then,
the first element of u∗t:t+N−1|t is applied to system (1). This
feedback control law is given below,

u(t) = u∗t|t(xt). (3)

The finite-time optimal control problem (2) is repeated at
next time step t + 1, based on the new estimated state
xt+1|t+1 = xt+1. It yields the model predictive control
strategy. The resulting trajectory using (3) is referred as a
closed-loop trajectory. More details can be referred to in [18].

B. Control Barrier Functions

We now present discrete-time control barrier functions that
will be used together with model predictive control for our
control design, which will be introduced in Sec. III.

For safety-critical control, we consider a set C defined as
the superlevel set of a continuously differentiable function
h : X ⊂ Rn → R:

C = {x ∈ X ⊂ Rn : h(x) ≥ 0}. (4)

Throughout this paper, we refer to C as a safe set. The
function h is a control barrier function (CBF) [1] if ∂h

∂x
6= 0

for all x ∈ ∂C and there exists an extended class K∞
function γ such that for the control system (1), h satisfies

∃ u s.t. ḣ(x,u) ≥ −γ(h(x)), γ ∈ K∞. (5)

This condition can be extended to the discrete-time domain
which is shown as follows

∆h(xk,uk) ≥ −γh(xk), 0 < γ ≤ 1, (6)

where ∆h(xk,uk) := h(xk+1)−h(xk). Satisfying constraint
(6), we have h(xk+1) ≥ (1− γ)h(xk), i.e., the lower bound
of control barrier function h(x) decreases exponentially with
the rate 1− γ.

Remark 1: Note that in (6), we defined γ as a scalar
instead of a K∞ function as in (5). Generally, for the discrete-
time domain, γ could also be considered as a class K function
that also satisfies 0 < γ(h(x)) ≤ h(x) for any h(x).
However, we will continue to use the scalar form γ in this
paper to simplify the notations for further discussions.

Besides the system safety, we are also interested in sta-
bilizing the system with a feedback control law u under a
control Lyapunov function V , i.e.,

∃ u s.t. V̇ (x,u) ≤ −α(V (x)), α ∈ K. (7)

We can also generalize it to the discrete-time domain,

∆V (xk,uk) ≤ −αV (xk), 0 < α ≤ 1, (8)

where ∆V (xk,uk) := V (xk+1) − V (xk). Similarly as
above, the upper bound of control Lyapunov function de-
creases exponentially with the rate 1− α.

The discrete-time control Lyapunov function and con-
trol barrier function can be unified into one optimiza-
tion program (DCLF-DCBF), which achieves the control
objective and guarantees system safety. This formulation
was first introduced in [2] and is presented as follows

DCLF-DCBF:

u∗k = argmin
(uk,δ)∈Rm+1

uTkH(x)uk + l · δ2 (9a)

∆V (xk,uk) + αV (xk) ≤ δ, (9b)
∆h(xk,uk) + γh(xk) ≥ 0, (9c)
uk ∈ U , (9d)

where H(x) is a positive definite matrix, that is pointwise
differentiable in x. l is positive, and δ ≥ 0 is a slack variable
that allows the control Lyapunov function to grow when the
CLF and CBF constraints are conflicting. The safe set C
in (4) is invariant along the trajectories of the discrete-time
system with controller (9) if h(x0) ≥ 0 and 0 < γ ≤ 1.

III. CONTROL DESIGN

After presenting a background of model predictive control
and control barrier functions, we formulate the safety-critical
model predictive control logic in this section.

A. Formulation

Consider the problem of regulating to a target state
for the discrete-time system (1) while ensuring safety in
the context of set invariance. The proposed control logic
MPC-CBF solves the following constrained finite-time op-
timal control problem with horizon N at each time step t

MPC-CBF:

J∗t (xt)= min
ut:t+N−1|t

p(xt+N |t)+
N−1∑
k=0

q(xt+k|t,ut+k|t)

(10a)
s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (10b)

xt+k|t ∈ X ,ut+k|t ∈ U , k = 0, ..., N−1 (10c)
xt|t = xt, (10d)

xt+N |t ∈ Xf , (10e)
∆h(xt+k|t,ut+k|t) ≥ −γh(xt+k|t), k = 0, ..., N−1 (10f)

where (10d) represents the initial condition constraint,
(10b) describes the system dynamics, and (10c) shows the
state/input constraints along the horizon. The terminal set
constraint is imposed in (2e). The CBF constraints in (10f)
are designed to guarantee the forward invariance of the
safe set C associated with the discrete-time control barrier
function, where ∆h is as introduced in (6). Here we have

∆h(xt+k|t,ut+k|t) = h(xt+k+1|t)− h(xt+k|t).

Fig. 2: Feasibility of MPC-CBF. The reachable set Rk propagates
along the horizon from the initial condition xt. For horizon step k
in the open-loop, the level sets ∂Scbf,k are shown in different colors
with three choices of γ and each corresponding Scbf,k lies on the
left hand side of level sets, indicated by the arrows in different
colors.

The optimal solution to (10) at time t is a sequence of
inputs as u∗t:t+N−1|t = [u∗t|t, ...,u

∗
t+N−1|t]. Then, the first

element of the optimizer vector is applied

u(t) = u∗t|t(xt). (11)

This constrained finite-time optimal control problem (10) is
repeated at time step t+ 1, based on the new state xt+1|t+1,
yielding a receding horizon control strategy: safety-critical
model predictive control (MPC-CBF).

The dynamics constraint in (10b) could be linear if we
have a linear system, and (10c) could also be linear if X
and U are defined as polytopes in the state and input space,
respectively. The discrete-time control barrier functions con-
straints in (10f) are generally non-convex unless the CBFs are
linear. This makes the whole optimization in (10) generally
become a nonlinear programming problem (NLP).

B. Stability

In DCLF-DCBF, control Lyapunov functions are intro-
duced as optimization constraints (9b) with corresponding
slack variable as additional term in the cost function (9a).
This allows for the achievement of control objectives rep-
resented by CLFs and unifies the formulation under one
optimization with CBFs. In our MPC-CBF control design, we
have the terminal cost p(xt+N |t) in (10a) as a control Lya-
punov function, which can be used to guarantee the stability
of the closed-loop system by satisfying mild assumptions in
the context of linear systems [18, Thm. 12.2]. In general, a
rigorous proof of nonlinear MPC stability as well as MPC-
CBF still remains an open challenge. More detailed analysis
could be found in [19].

C. Feasibility

Recursive feasibility is generally not guaranteed for MPC-
DC defined in (2) [18], [20] and other general NLP [21,
Chap. 11]. In this paper, we qualitatively analyze the feasi-
bility problem of MPC-CBF based on set analysis. Since the
optimization (10) could be a NLP, we are interested in finding
under which circumstances this optimization becomes feasi-
ble, i.e., the feasible set under the constraints (10b)-(10f) is
not empty.

Given the current state xt in (10d), the reachable set
at horizon step k is defined as a reachable region in the
state space, satisfying system dynamics in (10b), input/state
constraints in (10c) and initial condition in (10d). This
reachable set Rk is defined as follows for the horizon step
k:

Rk = {xt+k|t ∈ X : ∀i = 0, ..., k − 1,

xt+i+1|t = f(xt+i|t,ut+i|t),

xt+i|t ∈ X ,ut+i|t ∈ U ,xt|t = xt}.
(12)

We also define the set of state space satisfying the CBF
constraints in (10f) and initial condition in (10d) as

Scbf,k = {x ∈ X :

h(x)−h(xt+k−1|t)≥−γh(xt+k−1|t)
}
,

(13)

where Scbf,k describes superlevel sets of h satisfying the
control barrier function constraints (10f) at each time step
along the open-loop trajectory. Scbf,k also depends on the
value of optimal value xt+k−1|t, which depends on the states
and the inputs of previous nodes before the index k − 1.

We illustrateRk and Scbf,k in the state space shown in Fig.
2, given the initial condition xt. Then, the feasibility of the
optimization in (10) turns out to be whether the intersection
between the feasible set at each horizon step, Rk, and the
superlevel set of h(x) satisfying the CBF constraints, Scbf,k,
is nonempty for all k = 1, ..., N .

Remark 2: Note that Scbf,k is not empty when h is a valid
control barrier function. Furthermore, Rk is also guaranteed
to be nonempty, if we choose X as a control invariant set as
discussed in [18, Thm. 11.2].

In order to better understand this problem, we illustrate
the level sets of control barrier function constraints as

∂Scbf,k = {x ∈ X : h(x) = (1− γ)h(xt+k−1|t)},

with several choices of γ. The superlevel set Scbf,k are the
regions illustrated on the left hand side of these level sets,
with an example where the robot approaches the obstacle
from the left to the right, shown in Fig. 2. We can see that,
if γ becomes relatively small, Scbf,k will be smaller. In this
case, the system tends to be safer as the decar-rate of CBF
becomes smaller, but the intersection between Rk and Scbf,k
might be infeasible if γ becomes too small. When the γ
becomes larger, the region of Scbf,k in the state space will
be increased. This will make the optimization more likely
to be feasible, however, the CBF constraints might not be
active during the optimization, if γ is too large. In this case,
Rk will become a proper subset of Scbf,k.

Remark 3: When γ becomes relatively small, the MPC-
CBF controller makes a smaller subset of the safe set C in
(4) invariant, and thus is more safer, but this might also make
the optimization infeasible. A larger γ will make the opti-
mization more likely to be feasible, but the CBF constraints
might not be active during the optimization. We expect that
γ is chosen appropriately, such that the intersection between
these two sets will not be empty and becomes a proper subset
of Rk. This leads to a tradeoff between safety and feasibility

Fig. 3: For MPC-CBF, the feasible set at each horizon step k is the intersection between Rk and Scbf,k, colored in yellow. For MPC-DC,
the feasible set at each horizon step is the intersection between Rk and C, colored with borders in red. We clearly see that MPC-CBF is
safer than MPC-DC with smaller set invariance. Moreover, distance constraints might be inactive when the robot is still far away from
obstacles, illustrated in (a), where Rk is a subset of C. CBF constraints could still confine the robot’s reachable set Rk with appropriate
choices of γ even when the robot is far away from obstacles, shown in (a) and (b).

in terms of the choice of γ. However, it still remains an open
challenge for how to automatically choose the γ.

Remark 4: Given xt, X , U , we could pick a value of γ
to find a tradeoff between safety and feasibility. However,
when the system evolves, this γ might no longer satisfy
our safety demand or guarantee the optimization feasibility.
Therefore, for a given fixed γ, we generally only have
pointwise feasibility and a persistently feasible formulation
is still an open problem and is part of future work.

D. Relation with DCLF-DCBF

When N = 1, the formulation in (10) could be simplified
as an optimization over one step system input u∗k

u∗k = argmin
uk∈Rm

p(f(xk,uk)) + q(xk,uk) (14a)

∆h(xk,uk) + γh(xk) ≥ 0, (14b)
uk ∈ U , (14c)

where p(f(xk,uk)) and q(xk,uk) are the terminal cost and
stage cost which we have seen previously in (10a). The
optimization (14) is similar to the DCLF-DCBF formulation
(9). The stage cost q(xk,uk) minimizes the system input,
similar as uTkH(x)uk in (9a). The terminal cost minimizes
the control Lyapunov function p(f(xk,uk)) in (14a), instead
of using CLF constraints as (9b). As we no longer use the
CLF constraint, we do not need a slack variable, such as δ
in (9a), to guarantee the feasibility.

Remark 5: As the CLF constraints in (9b) are transferred
into the cost function in (14) with N = 1, the formulation in
(14) becomes similar to DCLF-DCBF. To sum up, our MPC-
CBF formulation operates in a similar manner of DCLF-
DCBF with prediction N = 1.

E. Relation with MPC-DC

When γ approaches its upper bound of 1, the CBF
constraints in (10f) becomes,

h(xt+k+1|t) ≥ 0.

If g(x) in (2f) and h(x) are the same, these CBF constraints
are almost the same as distance constraints defined in (2f)

except for one horizon step difference. In other words, the
CBF constraints are at the next predicted horizon step instead
of the current horizon step. Moreover, the feasible set at
each horizon step k in MPC-DC formulation becomes Rk ∩
C. While, as we have seen previously, the feasible set in
MPC-CBF formulation at each horizon step k is Rk∩Scbf,k.
Note that Scbf,k is a subset of C. Therefore, the MPC-CBF
formulation in (10) has a smaller safe set than MPC-DC.

In the case the reachable set Rk is a proper subset of
the safe set C, then the distance constraints in (2f) are not
active in the optimization (2), as shown in Fig. 3a. In other
words, the distance constraints will not be active in the
optimization (2) until the reachable set along the horizon
intersects with the unsafe regions, i.e., the reachable set
intersects the obstacles as shown in Fig. 3b. Using our MPC-
CBF formulation, the CBF constraints in (10f) could always
confine the reachable set Rk with an appropriate choice of
γ whenever the robot tends to approach the obstacles. In this
case, even when the reachable set Rk is a proper subset of
the safe set C, the reachable set could still be constrained by
its intersection with Scbf,k, as shown in Fig. 3a.

Remark 6: We discuss the constraint activation only in the
cases when the robot is moving towards the obstacles, i.e.,
there exists a control input u such that h(f(x,u)) < h(x).
When the robot is moving away from the obstacles, both
distance constraints and CBF constraints are inactive, which
is intuitive since the robot is always safe in this case.

Remark 7: Our MPC-CBF formulation is safer than MPC-
DC in the context of smaller set invariance, where we can
see that Rk ∩ Scbf,k is a proper subset of Rk ∩ C, as shown
in Fig. 3.

Remark 8: In practice, we may need to use a smaller
horizon for speeding up the optimization. To achieve a
similar performance compared to the MPC-DC formulation
in (2), we could apply smaller γ in our MPC-CBF control
design in (10) and use a smaller horizon. This could help
us to reduce the complexity of the optimization for obstacle
avoidance, as will be shown in Fig. 4e.

(a) (b) (c) (d) (e)

Fig. 4: A 2D double integrator avoids an obstacle using different control designs. The obstacle is represented by a red circle and the start
and target positions are located at (−5,−5) and (0, 0), labelled as blue and red diamonds, respectively. (a) a DCLF-DCBF controller;
(b) a MPC-CBF controller with N = 1; (c) a MPC-CBF controller with N = 8 and γ = 0.5; (d) a MPC-DC controller with N = 8 and
four MPC-CBF controllers with N = 8 and different choices of γ; (e) three MPC-CBF controller with N = 5 and different values of γ
and three MPC-DC controllers with different values of horizon N . Notice that for N = 5, MPC-DC becomes infeasible when the state
is close to the boundary of the obstacle, whose trajectory is therefore excluded from (e).

IV. EXAMPLES

Having presented the MPC-CBF control design, we now
numerically validate it using a 2D double integrator for
obstacle avoidance and analyze its properties. We also apply
this controller to a competitive car racing problem. We use
the solver IPOPT [22] in MPC-CBF/MPC-DC/DCLF-DCBF
problems [23].

A. 2D Double Integrator for Obstacle Avoidance

Consider a linear discrete-time 2D double integrator

xk+1 = Axk +Buk, (15)

where the sampling time ∆t is set as 0.2s.
A MPC-CBF is designed as in (10) and (11) for 2D double

integrator to avoid an obstacle, where the stage cost and and
terminal cost are

q(xk,uk) = x′kQxk + u′kRuk, p(xN) = x′NPxN , (16)

where Q = 10 · I4, R = I2 and P = 100 · I4. The system
is subject to state constraint X and input constraints U ,

X = {xk ∈ Rn : xmin ≤ xk ≤ xmax},
U = {uk ∈ Rm : umin ≤ uk ≤ umax}.

The lower and upper bounds are

xmax,xmin = ±5 · I4×1, umax,umin = ±I2×1.

For discrete-time control barrier function constraint (10f), we
choose a quadratic barrier function for obstacle avoidance

hk = (xk(1)− xobs)2 + (xk(2)− yobs)2 − r2obs, (17)

where xobs, yobs, and robs describe x/y-coordinate and radius
of the obstacle with xobs = −2m, yobs = −2.25m and
robs = 1.5m, shown as a red circle in Fig. 4. The start and
target positions are (−5,−5) and (0, 0), which are labelled
as blue and red diamonds in Fig. 4, respectively.

1) Comparison with DCLF-DCBF: In order to com-
pare the performance between our proposed MPC-CBF and
DCLF-DCBF, we develop a DCLF-DCBF controller for the
same obstacle avoidance task, which is based on (9).

For the design of DCLF-DCBF, we use R in (16) as H in
(9) to ensure that we have the same penalty on inputs. The
discrete-time CBF constraints of DCLF-DCBF are the same
as the ones used in MPC-CBF. Since the terminal cost p in
the model predictive control serves as a control Lyapunov
function, we choose p in MPC-CBF example as the control
Lyapunov function that is used to construct the discrete-
time CLF constraints in (9). Based on these choices, it is
fair to compare a DCLF-DCBF controller with a MPC-CBF
controller.

The simulation result of MPC-CBF and DCLF-DCBF
comparison is shown in Fig. 4a, 4b and 4c. The trajectory
is denoted in black line with small circles representing each
step. The trajectory of DCLF-DCBF controller with γ = 0.4
is presented in Fig. 4a, where the system does not start to
avoid the obstacle until it is close to it. Fig. 4b shows the
trajectory for MPC-CBF controller with horizon N = 1
and γ = 0.4. This trajectory is similar to that of DCLF-
DCBF controller. Based on our analysis in Sec. III-D, the
performances of DCLF-DCBF and MPC-CBF with N = 1
are almost the same, which is validated in this simulation.
Fig. 4c shows the trajectory of MPC-CBF controller with
horizon N = 8 and γ = 0.4. We can see that this controller
can drive the system to avoid the obstacle earlier than the
DCLF-DCBF controller. Also, among these three controllers,
it is the only one that can reach the goal position in the
limited simulation time.

2) Comparison with MPC-DC: A MPC-DC controller
is developed based on (2) using the same parameters as
MPC-CBF presented before except for the discrete-time CBF
constraint, which is replaced by a Euclidean norm distance
constraint g shown in (2f). The function g has the same
expression as h, defined in (17).

Fig. 4d and 4e show the simulation result of the compari-
son between MPC-CBF and MPC-DC. In Fig. 4d, MPC-CBF
controllers with γ = 0.1, 0.2, 0.3, 1.0 are described in blue,

controller status N γ mean/std (s) min dist cost
MPC-CBF solved 5 0.1 0.028±0.012 1.483 7.620
MPC-CBF solved 5 0.2 0.028±0.011 0.791 7.464
MPC-CBF solved 5 0.3 0.028±0.011 0.441 8.314
MPC-CBF solved 5 0.4 0.028±0.011 0.288 8.292
MPC-CBF solved 5 0.5 0.028±0.010 0.110 8.813
controller status N mean/std (s) min dist cost
MPC-DC infeas. 5 NaN NaN NaN
MPC-DC solved 7 0.033±0.013 0.000 9.102
MPC-DC solved 15 0.048±0.016 0.000 8.537
MPC-DC solved 30 0.062±0.031 0.000 8.528

TABLE I: MPC-DC and MPC-CBF benchmark in terms of pre-
diction horizon, computational time, minimal distance with respect
to obstacle and cost integral. We need larger horizon for MPC-
DC, otherwise the system only has noticeable obstacle avoidance
behavior when it’s close to the obstacles.

orange, yellow and purple lines, respectively. The trajectory
of MPC-DC controller is shown in black dashed line. As
γ decreases, the system starts to avoid the obstacle earlier,
which means a smaller safe set as analyzed in Sec. III-C,
while on the other hand the trajectory of MPC-DC is the
closest to the obstacle. We also notice that the trajectories of
MPC-DC and MPC-CBF with γ = 1 are almost the same,
which validates our analysis in Sec. III-E.

The trajectories of MPC-CBF controllers with N = 5
and different choices of γ and MPC-DC controllers with
different values of horizon N are shown in Fig. 4e. We notice
that MPC-CBF controller with smaller γ and MPC-DC with
larger horizon N can make the system avoid obstacles earlier.
This verifies our analysis in Sec. III-C, since smaller γ
in MPC-CBF and larger horizon N in MPC-DC make the
trajectory deviate from obstacles earlier. We also observe that
even with an extremely large horizon N , e.g. N = 30, the
system only has noticeable obstacle avoidance behavior when
it is close to obstacles. In contrary, a relatively small γ is
able to make the system avoid obstacles even when far away
from obstacles.

In Fig. 4e, MPC-CBF with N = 5 and γ = 0.25 starts to
turn to avoid the obstacle with a similar behavior as MPC-
DC with N = 7. This property is discussed in Remark 8.
Since discrete-time CBF enforces the invariance of safe set, it
allows a smaller N for MPC-CBF with a smaller γ to achieve
a comparable performance as MPC-DC with a larger N .

In Table I, we benchmark the MPC-CBF and MPC-DC
in terms of prediction horizon, computation time, minimal
distance to the obstacle and cost integral

∑
k u

T
k uk∆t over

the trajectory. We can observe that less prediction horizon
of MPC-CBF leads to less computational time. MPC-DC
always reaches to the boundary of the obstacle, however,
MPC-CBF could automatically set a safety margin depending
on different choices of γ. For this specific scenario, the cost
integral over the trajectory of MPC-CBF is generally less
than the one of MPC-DC.

B. Competitive Car Racing

We have evaluated the MPC-CBF design using a 2D
double integrator and compared its performance with DCLF-
DCBF and MPC-DC. We proceed to implement MPC-CBF

in a more complex scenario: competitive car racing. In
some previous car racing control work [24], [25], they only
consider static obstacles on the track while we deal with
dynamic obstacles such as other cars using MPC-CBF.

1) Vehicle Model: We use curvilinear coordinates to de-
scribe vehicle states of the ego and other cars in a racing
competition. In this paper, we use the nonlinear lateral
vehicle dynamics model in [26, Ch. 2] for system dynamics

xt+1 = f(xt,ut), (18)

where xt and ut represent the state and input of the vehicle
at time step t and their definitions are as follow

xt = [vxt , vyt , φt, eφt , st, eyt]
T , ut = [at, δt]

T , (19)

where st represents the curvilinear distance travelled along
the centerline of the track, eyt and eφt

are the deviation dis-
tance and heading angle error between vehicle and path. vxt

,
vyt , φt are the vehicle longitudinal velocity, lateral velocity
and yaw rate in the curvilinear coordinates, respectively. A
representation of the state in the curvilinear coordinate is
shown in Fig. 5. The inputs are longitudinal acceleration
at and steering angle δt. In the car racing, we assume to
have K racing cars competing with the ego car, and we
use the superscript i to distinguish the i-th (i = 1, 2, ...,K)
competiting vehicle from the ego one, shown in Fig. 5. A
detailed implementation is discussed in the Appendix A.

Fig. 5: Representation of the ego car and front car in the curvilinear
coordinate frame.

2) Control Design: A MPC-CBF is developed for this
competitive car racing example using (10). The stage cost
function is designed as follows

q(xt+k|t,ut+k|t) =(xt+k|t − xr)
TQ(xt+k|t − xr)

+ uTt+k|tRut+k|t,
(20)

where xr = (vt, 0, 0, 0, 0, 0), Q = diag(10, 0, 0, 0, 0, 10)
and R = diag(1, 1). This cost function allows the ego car to
track the centerline with a target speed vt while minimizing
the tracking error from the centerline.

The motion of overtaking other racing cars is considered
as CBF constraints in (10f). At time step t, each CBF hit
represents the safety criterion between ego car at (st, eyt) and
i-th other racing car at (sit, e

i
yt), described in the curvilinear

coordinates, shown in Fig. 5. We choose CBF in a quartic
form as follows

hit =
(st − sit)4

(2l1)4
+

(eyt − eiyt)
4

(2l2)4
− 1, (21)

Fig. 6: Speed profile during the car racing competition in one lap
of the simulation. The dashed black line shows the desired speed
vt = 0.6m/s.

where we assume all racing cars including ego car hold the
shape of rectangle with a length as 2l1 and width as 2l2.
Notice that we assume that we have perfect estimation about
(st, eyt) and (sit, e

i
yt).

3) Simulation & Results: During the competition, we
expect ego car to track the centerline with a target speed
vt = 0.6m/s. MPC-CBF with a horizon N = 12 updates
at 10 Hz. The system dynamics is simulated at 1000 Hz
and the controller sampling time is 0.1s. Our ego vehicle is
simulated with the nonlinear lateral vehicle dynamics model
and we use the linearized dynamics along the centerline to
formulate our control design. In the simulation, we deploy
several racing cars to compete with ego car. In order to better
illustrate results, a snapshot of overtaking motion with a
zoom-in view is shown in Fig. 1. Ego car begins with an
initial speed v0 = 0.2 m/s at the origin of the centerline and
two other racing cars start in front of the ego car. Two cars
are simulated to move at 0.2 m/s while keeping a constant
distance deviation eiy from the centerline, where e1y = 0.1 m
and e2y = −0.1 m. Fig. 1 demonstrates that the MPC-CBF
allows ego car to safely race and overtake other cars in both
left and right directions. Fig. 6 shows the speed profile, where
the dashed black line shows the desired speed. We can see
that ego car always tries to catch up to the target speed during
the competitive car racing. In Fig. 1, we observe two motions
of overtaking front racing cars. Since two racing vehicles
hold opposite distance deviations from the centerline, ego
car overtakes them with right and left turns respectively.

V. CONCLUSION

A safety-critical model predictive control design is pro-
posed in this paper, where discrete-time control barrier
function constraints are used in a receding horizon fashion
to ensure safety. We present an analysis of its stability
and feasibility, and describe its relation with MPC-DC and
DCLF-DCBF. To verify our analysis, we use a 2D double
integrator for obstacle avoidance, where we can see that
MPC-CBF outperforms both MPC-DC and DCLF-DCBF.
The proposed control logic is also applied to a more complex
scenario: competitive car racing, where our ego car can race
and safely overtake other racing cars.

ACKNOWLEDGEMENT

We thank Ugo Rosolia for his insightful discussions.
REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE International Conference on Decision and Control, 2014.

[2] A. Agrawal and K. Sreenath, “Discrete Control Barrier Functions
for Safety-Critical Control of Discrete Systems with Application to
Bipedal Robot Navigation,” in Robotics: Science and Systems, 2017.

[3] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile
manipulation with hybrid model predictive control,” The International
Journal of Robotics Research, 2020.

[4] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for
humanoid gait generation: Stability and feasibility,” IEEE Transactions
on Robotics, 2020.

[5] T. D. Son and Q. Nguyen, “Safety-critical control for non-affine
nonlinear systems with application on autonomous vehicle,” in IEEE
International Conference on Decision and Control, 2019.

[6] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging
control barrier functions and model predictive control policies,” IEEE
Control Systems Letters, vol. 5, no. 3, pp. 1007–1012, 2020.

[7] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multi-rate control:
from low level actuation to high level planning,” arXiv preprint
arXiv:2012.06558, 2020.

[8] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive
active steering and obstacle avoidance for autonomous ground vehi-
cles,” Control Engineering Practice, vol. 17, no. 7, pp. 741–750, 2009.

[9] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl, “An auto-generated nonlinear MPC algorithm for real-
time obstacle avoidance of ground vehicles,” in European Control
Conference, 2013, pp. 4136–4141.

[10] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Bor-
relli, “Linear model predictive control for lane keeping and obstacle
avoidance on low curvature roads,” in International Conference on
Intelligent Transportation Systems, 2013.

[11] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle
control: A nonconvex approach for obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, 2016.

[12] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, 2020.

[13] R. Grandia, A. J. Taylor, A. Singletary, M. Hutter, and A. D. Ames,
“Nonlinear Model Predictive Control of Robotic Systems with Control
Lyapunov Functions,” in Robotics: Science and Systems, 2020.

[14] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference, 2019.

[15] G. Wu and K. Sreenath, “Safety-critical and constrained geometric
control synthesis using control lyapunov and control barrier functions
for systems evolving on manifolds,” in American Control Conference,
2015.

[16] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,”
in IEEE International Conference on Decision and Control, 2016.

[17] A. G. Wills and W. P. Heath, “Barrier function based model predictive
control,” Automatica, vol. 40, no. 8, pp. 1415–1422, 2004.

[18] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[19] F. Allgöwer and A. Zheng, Nonlinear model predictive control.
Birkhäuser, 2012, vol. 26.

[20] G. Lars and P. Jürgen, “Nonlinear model predictive control theory and
algorithms,” 2011.

[21] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[22] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[23] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using ipopt: An integrating framework for enterprise-wide dynamic
optimization,” Computers & Chemical Engineering, 2009.

[24] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[25] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch, and M. Diehl,
“Towards time-optimal race car driving using nonlinear mpc in real-
time,” in 53rd IEEE conference on decision and control. IEEE, 2014.

[26] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[27] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:
a predictive control approach,” IEEE Transactions on Control Systems
Technology, 2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7040372
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7040372
http://roboticsproceedings.org/rss13/p73.pdf
http://roboticsproceedings.org/rss13/p73.pdf
http://roboticsproceedings.org/rss13/p73.pdf
https://journals.sagepub.com/doi/abs/10.1177/0278364920913938
https://journals.sagepub.com/doi/abs/10.1177/0278364920913938
https://ieeexplore.ieee.org/abstract/document/8955951
https://ieeexplore.ieee.org/abstract/document/8955951
https://ieeexplore.ieee.org/document/9029446
https://ieeexplore.ieee.org/document/9029446
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669836
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669836
https://ieeexplore.ieee.org/document/6728261
https://ieeexplore.ieee.org/document/6728261
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7489011
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7489011
https://ieeexplore.ieee.org/document/9062306
https://ieeexplore.ieee.org/document/9062306
http://www.roboticsproceedings.org/rss16/p098.pdf
http://www.roboticsproceedings.org/rss16/p098.pdf
https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/document/7171033
https://ieeexplore.ieee.org/abstract/document/7798370
https://ieeexplore.ieee.org/abstract/document/7798370
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.8512&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.8512&rep=rep1&type=pdf
https://www.cambridge.org/core/books/predictive-control-for-linear-and-hybrid-systems/EF618BD7AFAF4D04B2044A0FD03D885A
https://www.cambridge.org/core/books/predictive-control-for-linear-and-hybrid-systems/EF618BD7AFAF4D04B2044A0FD03D885A
https://www.springer.com/gp/book/9783764362973
https://link.springer.com/book/10.1007/978-1-4614-1433-9
https://arxiv.org/pdf/1901.08184.pdf
https://arxiv.org/pdf/1901.08184.pdf

APPENDIX

A. Car Racing Implementation
As mentioned in Sec. IV, the vehicle dynamics is de-

scribed by the kinematic model using the curvilinear coordi-
nates under the Frenet reference frame. The vehicle discrete-
time model is Euler discretized at time step t, shown as
follow

vxt+1
= vxt

+ dt

(
at −

1

m
Fyft sin(δt) + φtvyt

)
,

vyt+1
= vxt

+ dt

(
1

m
(Fyft cos(δt) + Fyrt)− φtvxt

)
,

φt+1 = φt + dt

(
1

Iz
(lfFyft cos(δt))− lrFyrt

)
,

eψt+1
= eψt

+ dt

(
φt −

vxt
cos(eψt

)− vyt sin(eψt
)

1− κ(st)eyt
κ(st)

)
,

st+1 = st + dt

(
vxt

cos(eψt
)− vyt sin(eψt

)

1− κ(st)eyt

)
,

eyt+1 = eyt + dt (vxt sin(eψt) + vyt cos(eψt)) ,

where κ(st) represents the curvature and Fyft , Fyrt describe
the lateral force at front and rear tire at time step t

Fyft = 2Df sin(Cf arctan(Bfαft)),

Fyrt = 2Dr sin(Cr sin(Cr arctan(Brαrt))),

and αft and αrt are the tire angles, holding the relation with
respect to the system states and inputs as follows

αft = δt − arctan(
vyt + lfφt

vxt

),

αrt = − arctan(
vyt − lfφt

vxt

).

In the equations above, lf , lr, Bf , Br, Cf , Cr, Df , Dr, m,
Iz represent the vehicle parameters.

We note that this kinematic model is highly nonlinear and
this model cannot be applied to formulate system dynamics
constraints in (10b). Instead, we follow the data-driven
approach proposed in [27]. We firstly simulate the vehicle
system to track the centerline by using a PID controller

δt = −k1eyt − k2eψt
,

at = k3(vd − vxt
),

where vd could be any positive user-defined target speed.
This PID controller allows the vehicle to track the centerline
of the track with a target speed.

Then, the linearized time-invariant dynamics is shown as
below

xt+1 = Axt +But, (22)

where A and B are calculated with a regression-based
approach [27] over the trajectory we simulated using a PID
controller. This process allows us to approximate the highly
nonlinear dynamics with the time-invariant linearized one
in (22). The whole process is purely data-driven without a
prior knowledge of the system parameters. This linearized
dynamics (22) is used in CBF constraints (10b), which
reduces the burden of the computational complexity for the
numerical simulation.

	I Introduction
	I-A Motivation
	I-B Related Work
	I-B.1 Model Predictive Control
	I-B.2 Control Barrier Functions
	I-B.3 Model Predictive Control with Control Barrier Functions

	I-C Contribution
	I-D Paper Structure

	II Background
	II-A Model Predictive Control
	II-B Control Barrier Functions

	III Control Design
	III-A Formulation
	III-B Stability
	III-C Feasibility
	III-D Relation with DCLF-DCBF
	III-E Relation with MPC-DC

	IV Examples
	IV-A 2D Double Integrator for Obstacle Avoidance
	IV-A.1 Comparison with DCLF-DCBF
	IV-A.2 Comparison with MPC-DC

	IV-B Competitive Car Racing
	IV-B.1 Vehicle Model
	IV-B.2 Control Design
	IV-B.3 Simulation & Results

	V Conclusion
	References
	Appendix
	A Car Racing Implementation

