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Abstract— With the research into development of quadruped
robots picking up pace, learning based techniques are being
explored for developing locomotion controllers for such robots.
A key problem is to generate leg trajectories for continuously
varying target linear and angular velocities, in a stable manner.
In this paper, we propose a two pronged approach to address
this problem. First, multiple simpler policies are trained to
generate trajectories for a discrete set of target velocities and
turning radius. These policies are then augmented using a
higher level neural network for handling the transition between
the learned trajectories. Specifically, we develop a neural
network based filter that takes in target velocity, radius and
transforms them into new commands that enable smooth tran-
sitions to the new trajectory. This transformation is achieved by
learning from expert demonstrations. An application of this is
the transformation of a novice user’s input into an expert user’s
input, thereby ensuring stable manoeuvres regardless of the
user’s experience. Training our proposed architecture requires
much less expert demonstrations compared to standard neural
network architectures. Finally, we demonstrate experimentally
these results in the in-house quadruped Stoch 2.

Keywords: Quadrupedal walking, Reinforcement Learn-
ing, Random Search, Gait transitions

I. INTRODUCTION

The domain of quadrupedal research has reached industrial
markets today with quite a few research labs/companies
successfully commercializing their quadruped robots [1], [2],
[3]. Similar to driving a car, controlling a quadruped robot
has a steep learning curve that a novice user must struggle
through. Assuming you are given an interface to control the
velocity of the center of mass of a quadruped robot, rapid
changes in said velocity will cause the robot to topple. This
instability is not safe and could permanently damage the
robot. However an expert user will be capable of performing
the desired rapid velocity changes through experience that he
gained through practice. Is it possible then to augment the
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Fig. 1: Figure showing the custom built quadruped robot,
Stoch 2. Simulated version is shown on the left, and the
actual hardware is shown on the right.

novice user’s commands such that it represents the expert
user’s manoeuvres?

Quadruped Locomotion is a challenging research problem
that has been studied for decades starting from the GE
walking truck in 1960’s [4] . A slew of techniques have been
used—inverted pendulum model based controllers [5], zero-
moment point based controllers [6], hybrid zero dynamics
[7], model predictive controllers [8], deep reinforcement
learning [9]—to name a few. These techniques provide an
interface to control the center of mass velocity over a rough
terrain [8], [9]. Relatively little work has been done on
handling rapid changes in the desired center of mass velocity.
We propose to tackle this as a behaviour cloning problem.
In particular, we have access to expert input that is capable
of performing rapid changes in a stable and safe manner. We
also have access to a novice user’s input that is unsafe for
the robot. We aim to train a neural network so that it takes
a novice user’s input and transforms it to an expert user’s
input. We validate our neural network by demonstrating rapid
changes in linear (0.0 m/s to 0.6 m/s) and angular velocity
(−2π

3 rad/sec to 2π
3 rad/sec) in our in-house quadruped

robot Stoch 2.

A. Related Work

An omni-directional quadruped robot controller requires
two parts: stable leg trajectories for different motions such as
walking forward, turning etc., and techniques to transition be-
tween these trajectories when required. In the literature there
has been more focus on the first problem of generating stable
leg trajectories. [10] first used policy gradient algorithms
to learn optimal end-foot trajectories for the Sony AIBO-
Quadruped Robot. [11] used particle swarm optimisation
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to decide the parameters for a few different trajectories
including turning on the Oncilla Quadruped Robot. Our
current work borrows from the turning strategies described in
the above paper. [12] first demonstrated techniques to learn a
quadruped controller in simulation and deploy it on the actual
robot. [13] modified the reinforcement learning algorithm to
learn the parameterized leg trajectories quickly while [14]
constrained the network architecture to speed up learning. In
this paper we combine [13] with a sample efficient learning
algorithm, augmented random search [15], to learn a hundred
trajectories in simulation and deploy the learnt trajectories on
our robot.

Transitioning between stable trajectories for quadrupeds
was first studied by [16], in which analytical equations were
used to stitch Hermite splines. [17] developed a similar
analytical framework to transition between a number of
different trajectories for slow static walking. These methods,
despite being effective, were limiting the number and speed
of allowable transitions. The MIT Cheetah [18] proposed
a PD controller to track varying center of mass velocities
combined with Raibert’s controller [5] to ensure stability
of the robot. In general such controllers require expensive
series elastic actuators or direct-drives with torque control.
[19] trained a reinforcement learning agent capable of track-
ing a specific desired velocity profile while [9] trained a
reinforcement learning controller capable of tracking any
combination of linear and angular velocities. Our work is
more adjacent to the above works, where we would like
to replace unstable commands given by a novice user with
stable commands given by an expert user. Our controller
can sit on top of the above proposed controllers and does
not have any specific actuator requirements. This controller
will be based on a neural network based filter, which has the
ability to generalize well. We will also show that the types
of transitions executed are nonlinear, and linear filters do not
yield the same result (see IV-B ahead).

B. Contributions

In this paper we extend the work on trajectory generation
by using the analytical equations in [11], [13], to constrain
the action space of our learning agent, thereby learning 100
trajectories in 2 hours on an Intel Core i7 processor. Our
learnt trajectories demonstrate omni-directional motion in
our robot Stoch 2. To transition between different trajectories,
we exploit the knowledge that a human expert has in tele-
operating the quadruped robot. We collect expert demon-
strations and train a neural network to convert novice user
input to expert user input. Our neural network has a novel
architecture that consists of two non-trainable layers. It also
consists of a classification network that takes in the user
input and outputs the probability of choosing a particular
filter at every time-step. This probability is used to calculate
a weighted average of the filters, which is the final output
of the network. By restricting our network to only output
weighted averages of different filters at every time-step, we
require much less training data to generalize, compared to
fully connected dense neural networks and convolutional

Fig. 2: A five-bar mechanism is used as the leg. This
mechanism is actuated by the motors located at the main
torso of the robot. The trajectory followed by the foot is
parameterized by a rational Beziér curve with control points
P0, ..., P5 as shown.

neural networks. This solves the bottleneck of collecting
expert data that is prohibitive on real robot systems. Our
final network is capable of generalizing with five expert
demonstrations. We validate our network by testing it on
our quadruped robot.

II. ROBOT MODEL AND CONTROL

In this section, we will discuss our custom built quadruped
robot Stoch 2. Specifically, we will provide details about the
hardware, the associated model, and the trajectory tracking
control framework used for the various gaits of the robot.

A. Kinematic Description

Stoch 2 is a quadruped robot designed and developed in-
house at the Indian Institute of Science (IISc), Bengaluru,
India. In this robot, each leg comprises of a parallel five-
bar linkage mechanism where two of the links are actuated
and the end effector (i.e., the foot) is capable of moving
safely (without encountering singular configurations) in a
trapezoidal work-space as shown in Fig. 2. The calculation of
the leg work-space and it’s inverse kinematic details can be
found in [2]. In this paper, we focus on realizing trajectories
of the feet in Cartesian coordinates on a fixed plane. The
plane is chosen such that it passes through the center of
the hip joint and is constrained by the three dimensional
trapezoidal prism work-space of each foot.

B. Control Framework

Our control framework takes in the turning radius and the
heading velocity as input (mapped to joystick analog values),
and then outputs the end-effector (end-foot) trajectory. This
end-foot trajectory is sent to our inverse kinematics engine,
that calculates the desired motor commands for each of the
12 servo motors in our robot. Stable end-foot trajectories
are found in simulation. We chose to parameterize the end-
foot trajectory of each foot by a rational-Beziér curve.
Rational Beziér Curves have attractive properties over other
alternatives like cubic splines as they do not have self-
intersecting curves, and are guaranteed to lie within the
convex hull of the control points. This ensures that the
trajectories are always in the work-space of the end-effector.



The control points of the rational Beziér in 3D space are
chosen analytically and lie on the boundaries of the robot
leg-workspace as shown in Fig. 2. The weights of each of
the control points are the parameters that we aim to find
through our learning framework in simulation. We chose
a 6th order Beziér curve for the swing phase of our leg,
and a 2nd order Beziér curve (straight line) for the stance
phase motion of our leg. This choice was made to represent
optimal half-boat shaped trajectories for mechanical walkers
as described in [20]. Given n+1 control points, denoted by
Pi, i = 0, 1, . . . , n, and the weights, denoted by wi, we have
the Beziér curve given by

P (t) =

∑n
i=0

(
n
i

)
ti(1− t)n−iPiwi∑n

i=0

(
n
i

)
ti(1− t)n−iwi

,

where t ∈ [0, 1], and wi > 0 ∀i. In practise, computing(
n
i

)
is computationally expensive, so we use a recursive

implementation of the De-Casteljau Algorithm. The ana-
lytical equations that determine the control points of our
Beziér curve is based upon a simplified model for our robot
locomotion that we formulated through experimentation. Our
experimentation showed that turning is more effective if
abduction and step-size for each leg are dynamically varied.
This result corroborates well with the analysis in [11]. In
particular, each end-foot trajectory is restricted to a plane
tilted by an angle φ about the z axis in such a way that

φi = tan−1

(
L
2

|r|+ δi ∗ sign(r) ∗ W2
)

)
,

where r, the radius of curvature, is related to the desired
linear velocity v and angular velocity ω as r = v

ω . W
(0.12m) stands for the width of the chassis of the robot and
L (0.24m) stands the length of the chassis of the robot. sign
stands for signum function, φi is the angle made by the ith

leg with the vertical axis and δi is a constant that takes the
following values for the four legs:

δfl = 1, δfr = −1, δbl = 1, δbr = −1,

where fl, fr, bl and br stand for the front-left, front-right,
back-left and back-right legs respectively. Similarly, each leg
must also have a step length (sl) equal to

slleg = v ∗
(
abs(r) + δleg ∗

W

2

)
/abs(r),

where v stands for the desired average speed of the robot
for 1 second. Note that r can be both positive and negative
(for left-right turn commands). Given the step-lengths and
the plane angles of each leg, we can determine the control
points of the Beziér curve that each leg follows. As shown
in Fig. 2 above we place six control points such that they
lie on the boundaries of our trapezoidal work-space, and
lie on the plane that makes an angle φleg about the z-axis.
The first and last control points are chosen such that they
are symmetric about the center of the work-space and the
distance in-between them is equal to the step-length of the
respective leg.

C. Trajectory Generation Framework

The weights of the Beziér curve decide the overall shape
while the control points limit the search space of all possible
shapes. We formulate this trajectory generation as an opti-
mization problem where we aim to find the weights wi such
that a certain cost function J is minimized. For a particular
linear and angular velocity our weights wi are held constant.
We chose to define our cost function J as

J =

T∑
t=0

(E + pφ + pψ),

where E is the energy consumed per step, pφ, pψ are the
penalties related to rolling and pitching of the robot, and T
is the number of control time-steps for a single simulation.
E is given by

E =

n∑
i=0

ωiτiOt.

Here ωi is angular velocity of ith motor, τi is torque of ith

motor and n is the total number of motors. These values
are calculated by the simulation software during the training
process. Here pφ = 0.1 ∗ |φ|, pψ = 0.05 ∗ |ψ|, where
φ and ψ are roll and pitch angles about the x-z axes of
the center of mass respectively. To optimize for wi, many
different algorithms can be used. We chose to use Augmented
Random Search [15], a well-known training algorithm for
linear policies.

III. TRAJECTORY TRANSITION FRAMEWORK

Having defined the model and the control methodology,
we are now ready to discuss the trajectory transitioning
framework of our robot. This part is divided into two sections
where we describe the problem formulation, the neural
network architecture and the training process.

A. Problem Formulation

We are interested in aggressive manoeuvres where a naive
approach will cause the robot to lose balance and fall. The
user can input linear and angular velocity (v, ω) through
joystick commands. In our experimentation, it was easier to
control the linear velocity and radius of curvature r = v

ω . We
normalized the joystick values to the range (−1, 1). Positive
r indicates moving rightwards, negative r indicates moving
leftwards, while positive v indicates moving forward and
negative v indicates moving backward.

To demonstrate our trajectory transition framework, we
consider three complex manoeuvres that can potentially dam-
age the robot. These manoeuvres are: 1 - rapidly reaching
maximum linear velocity and curvature radius, 2 - abruptly
coming to a halt from maximum linear velocity and curvature
radius, 3 - rapidly changing radius of curvature direction.
Then for each of the above manoeuvres we collected novice
and expert joystick data as shown in Fig. 3. We observed that
there exists a complex relationship between the radius and
velocity inputs that one dimensional filters cannot reproduce.
In particular, manoeuvre 3 requires v to drop whenever r
sharply changes, which cannot be replicated with a simple



filter. A simple filter would cause r to gradually reduce from
1 to -1 and not affect v. In manoeuvre 1 and 2 both v
and r change at different rates. In manoeuvre 1, r changes
instantly while v moves gradually, while in 2, r reduces
gradually while v reduces exponentially. Without knowledge
of the expert trajectories, choosing an appropriate filter for
each manoeuvre is not straightforward. In an analytical
approach, as the number of manoeuvres increase, more effort
is required to design filters, while some manoeuvres like
3 cannot be recreated with linear filters. A neural network
bypasses these difficulties and can scale to as many expert
demonstrations as required with no additional effort. Hence,
our goal now is to train a neural network that is capable
of taking the novice joystick-data, as shown in Fig. 3, and
converting it to the expert joystick-data.

B. Neural Network Architecture and Training

The input to our neural network is the past 250 joystick
values from each analog stick and thus x ∈ R250×2. These
values are from a duration of 1.25 seconds. The output of our
neural network is the linear velocity v and radius of curvature
r for the current time-step. The first two layers of our neural
network consist of non trainable layers that we call “filter-
banks”. The weights of these layers are such that they act as
simple filters for the joystick inputs. In particular the output
of our non-trainable layers is a set of 64 values that is a com-
bination of low pass filtered versions of the input and scaled
versions of the input. The low pass filters are moving average
filters of window size 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, . . . , 240
and scaling filters multiply the input by a constant k which
varies from 0.9, 0.92, . . . , 0.933.

In parallel, we have a 1D convolutional neural network
(CNN) that takes x ∈ R250×2 as input and outputs a value
y ∈ R128. Our CNN is 10 layers deep with 6 convolutional
layers and 4 max pooling layers with Re-Lu activation.
The output of CNN is sent to two sets of fully connected
dense layers with softmax activation function that outputs
64 values that correspond to the probability of choosing a
particular filter from the filter bank. The output of these dense
layers is used to compute the weighted average of the filter
banks which leads to the final output of the network. This
is similar to the attention mechanism of neural networks.
The visualization of this network is shown in Fig. 4 and
we have released the code of this network implemented in
tensorflow (provided in V). We collect a single demonstration
of novice and expert input for each desired manoeuvre (three
shown in Fig. 3), and train the neural network upon these
demonstrations. The learnt network is capable of generalising
unseen data of similar shape but of different amplitudes
and frequency unlike a fully connected neural network. The
hyper-parameters used in our training process are shown in
Table 1. The training was stopped once validation loss fell
below 10−2.

IV. EXPERIMENTAL RESULTS

In this section we provide results to show: improvement of
our trajectory generation framework to existing techniques,

Learning Rate
Learning Rate 0.0002
L2-Regularization 0.000001
Dropouts % 50
Activation Function ReLu + Softmax(last layer)
Batch-size 64
Optimizer Adam

TABLE I: Hyperparameters of neural network

comparison with standard non-neural network based filters
and the improvements of our proposed neural network ar-
chitecture to standard neural network architectures.

A. Trajectory Generation Framework Experiment

The main goal of our trajectory generation framework is
to find stable trajectories for our robot quickly. Stability of
the trajectory is measured using the pitch and roll angles
of our robot’s body in simulation. A more stable trajectory
will have lesser amplitude of oscillation. Compared with a
default elliptic trajectory our learnt agent had approximately
50% and 66% lower amplitude of oscillation of roll and
pitch angles respectively as seen in Fig. 5. This was expected
as the pitch and roll penalties were explicitly added in our
cost function during the training process. Generating a single
trajectory takes a few minutes on an Intel i7 core PC, and
generating the entire set of trajectories for all velocities and
radius of curvature took about 2 hours.

B. Comparison with Standard Filters

Standard convolutional 2D filters suffer from a number
of problems that make them unsuitable to the current ap-
plication. They are unable to copy complex transitions like
transition 3 as shown in Fig. 6. Often the output of such a
filter is a crude approximation of the actual expert output.
Further, these filters have linear properties such as output
superposition and scaling, which our expert output does not
follow. To illustrate, consider the change of radius from
−1 to 1 and 1 to −1 as shown in Fig. 6. Both of these
transitions require the same dip in velocity as the transitions
are symmetric (left turn right turn). However a linear filter
trained on transition 3 will cause a peak in velocity for the
opposite direction, which actively destabilizes the system.
Similarly at lower velocities, a linear filter will output a
scaled version of the strategy used at higher velocities
while in reality an expert user will often pursue a very
different strategy. Thus nonlinear alternatives, specifically
neural network based alternatives are pursued.

C. Neural Network Architecture

A standard issue with techniques that imitate experts is
that the collection of expert data tends to be time consuming
and costly. Thus we designed a network that requires as
little expert demonstrations as possible. Here we aim to
measure the generalizability of our neural network compared
to standard neural network architectures. Generalizability is
a broad term and since we are doing only supervised learning
we cannot expect our network to truly imitate an expert in
completely unforeseen situations. Instead by generalizability
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Fig. 3: Green dotted line stands for the radius of curvature while the red solid line is the heading velocity. Both values are
normalized between −1 and 1. Joystick data for novice is at the top, and expert data is at the middle for the three described
manoeuvres. Neural network output after training is at the bottom.

Fig. 4: Visualization of the neural network. It splits into two
parts, the top layer being non trainable that acts like the low
pass filters and the bottom layer being trainable. The bottom
layer is a combination of a deep convolutional net (10 layers)
followed by 2 fully connected layers for each column of the
input. The final output of the bottom layer is multiplied by
the final output of the top layer (filter bank) to give the output
of the neural network. The product operator is a dot product
between two vectors of size R64.

we mean two major properties of our expert data: first, our
data is a time invariant system. By this we mean that if a
novice input is delayed by t seconds then our expert output
should also be delayed by t seconds. No other changes to the
output is necessary. The second is our data is approximately
scale invariant. This means that if we multiply the novice
input by a constant factor k, then our expert output is also
approximately multiplied by a constant factor k. This need
not be strictly followed as experts tend to follow different
strategies at different speeds, but broadly our network should
be capable of handling scale invariance within a limit.
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Fig. 5: Variation of roll (left) and pitch (right) angles versus
time in the robot. Green is the learnt trajectory while red is
the default elliptical trajectory.

To measure the capabilities of our network, we measure
the validation loss of our network compared to standard
neural network architectures. We do so by first collecting a
number of expert trajectories. Then we augment the data by
temporally delaying it, and scaling it to about 100 different
trajectories. We compare our proposed architecture with two
common architectures: a) A neural network with 10 fully
connected dense layers, and b) a neural network with 10
fully connected convolutional layers. We use 5, 10, and
20 demonstrations respectively as our training data-set and
measure the loss over the entire training and validation data-
set of 100 demonstrations. The results are shown in the Fig.
7. As we can see from the above results, the validation
loss of a fully connected or a CNN barely decreases with
increase in size of the data-set. This shows that these
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Fig. 6: Comparison between actual expert data and a standard
2D convolutional filter. As we can see a standard 2D filter
struggles to copy the expert and exhibits properties of
linearity that are undesirable

architectures cannot generalize well. However our proposed
neural network architecture has 2 × 10−4 validation loss
with 10 demonstrations, making it more sample efficient than
standard neural networks.
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Fig. 7: Variation of validation-loss with training data. All
networks reach very low training error however our network
generalizes better to the validation data. Dataset A has 5
demonstrations for training, while B, C have 10 and 20
demonstrations respectively. Note that losses for B, C with
the proposed network are very small to be noticed.

V. CONCLUSION AND FUTURE WORKS

We have presented a trajectory generation and transition
framework that is easy to use and applicable for omni-
directional motion of quadrupedal robots. Trajectory transi-
tions are learnt from demonstrations of an expert user. Trajec-
tory transitions are achieved by a neural network that uses a
unique architecture, which is much more suited to mimicking
filters than fully connected or convolutional neural networks.
As an application, we show how a novice user’s joystick
command is converted to safe commands. In future, we
would like to generate trajectories for more complex terrains
such as stair climbing and uphill slopes. Automating the gen-
eration of trajectories given a robot model to quickly generate
controllers for different quadruped robots is also an excit-
ing research direction. The video submission accompanying

this paper is shown here: https://youtu.be/LRbHetp0dcg,
and the code is released here: https://github.com/sashank-
tirumala/stoch robot test2.
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