
1

Description of the UPPAAL Models for SRP and
CSRP and Verification of their Termination and

Consistency Properties
Daniel Bujosa∗, Inés Álvarez†, Julián Proenza†
∗Mälardalen University, Västerås, Sweden

† University of the Balearic Islands, Palma, Spain
daniel.bujosa.mateu@mdh.se, {ines.alvarez, julian.proenza}@uib.es

Abstract—The IEEE Audio Video Bridging (AVB) Task Group
(TG) was created to provide Ethernet with soft real-time guaran-
tees. Later on, the TG was renamed to Time-Sensitive Networking
(TSN) and its scope broadened to support hard real-time and
critical applications. The Stream Reservation Protocol (SRP) is a
key work of the TGs as it allows reserving resources in the
network, guaranteeing the required quality of service (QoS).
AVB’s SRP is based on a distributed architecture, while TSN’s
is based on centralized ones. The distributed version of SRP is
supported and used in TSN. Nevertheless, it was not designed to
provide properties that are important for critical applications.
Therefore, we propose a new version of Stream Reservation
Protocol (SRP) with enhanced services called Consistent Stream
Reservation Protocol (CSRP). In this document we describe the
SRP and CSRP UPPAAL models we developed and the queries
we used to verify their termination and consistency properties.

I. INTRODUCTION

In this document we describe the SRP and CSRP UPPAAL
models we developed and the queries we used to verify
their termination and consistency properties. In Section II we
describe the operation of SRP. In Section III we explain the
most relevant characteristics of UPPAAL. In Sections IV, V
and VI we describe the SRP model and the verification of the
termination and consistency properties respectively. In Section
VII we describe the operation of CSRP and in Sections VIII,
IX and X we describe the CSRP model and the verification
of the termination and consistency properties respectively.

II. SRP OVERVIEW

SRP follows the publisher-subscriber paradigm, where the
publisher is called talker and the subscribers, listeners. The
real-time data communications are made through streams. A
stream is a logical communication channel that carries traffic
defined by a set of parameters, such as the period or frame
size.

When a talker wants to transmit a set of frames with
certain parameters, it must first create the stream to convey
such frames. To create a stream the talker has to declare its
intention to communicate by transmitting in broadcast mode
a special message called Talker Advertise (TA) message. This
message conveys stream identification information, as well as
the resources needed to convey the traffic. This information

is then used in the rest of devices of the network to know
whether there are enough resources for the stream so that it can
be created. Notice that SRP relies on other mechanisms that
eliminate the loops in the network to prevent the TA message
from circulating the network indefinitely.

The TA message transmitted by the talker is received by the
bridge connected to it. When a bridge receives a TA message,
every forwarding port (all ports through which the TA message
was not received) checks if it has enough resources for the
stream or not. If the port has enough resources, the TA
message is forwarded to the next device, i.e., the next bridge or
a node. On the other hand, if the port does not have enough
resources, it sends a so called Talker Failed (TF) message
instead. A TF message conveys the same information as the
TA message plus the reason for the failure in the reservation.
Bridges that receive a TA message transmitted by another
bridge through one of their ports behave as we have just
described. On the contrary, if the message received is a TF
message, bridges transmit a TF message through all their
forwarding ports.

Regarding nodes, we have to note that not all nodes are
listeners for all streams. Therefore, if a node that does not
want to become a listener of the stream receives a TA or
TF message, it does not carry any further actions. In fact,
it does not even inform the talker about its lack of interest
in the stream. On the other hand, if a node receives a TA or
TF message and is willing to listen to the stream there are
three possible scenarios to consider: (i) the listener receives
a TF message and cannot therefore receive, so it sends a
message called Listener Asking Failed (LAF) to the bridge;
(ii) the listener receives a TA message but, while checking its
resources it realises that it does not have enough resources
to receive the stream, so it sends an LAF message to the
bridge; and, (iii) the listener receives a TA message and, while
checking its resources it realises that it has enough resources
to receive the stream, so it sends a message called Listener
Ready (LR) message to the bridge.

The port of the bridge connected to the listener can receive
an LR or LAF message. If the port receives an LAF message it
does nothing else. If the port receives an LR message the port
checks its resources again. If it does not have enough resources
the port changes the LR received to an LAF; otherwise, if it has

ar
X

iv
:2

00
7.

15
71

2v
2

 [
cs

.N
I]

 9
 A

ug
 2

02
0

2

enough resources, the port reserves the resources. Whenever a
bridge has several listener responses to forward, it combines
the responses into a single one and transmits it to the talker.
The result of combining the responses is the following: (i)
if the bridge receives an LR in all the ports, it transmits to
the talker an LR message; if the bridge receives an LAF in
all the ports, it transmits to the talker another LAF message;
and, if the bridge receives LR messages in some ports and
LAF messages in other ports, it will transmits to the talker
a new message called Listener Ready Failed (LRF) message.
Whenever a bridge receives an LRF message it forwards an
LRF message to the talker, regardless of the other listener
attributes it receives.

Finally, waits until it receives an LR or LRF message to
start the data transmission. Once the stream has been created,
the talker can delete it at any time by means of the unadvertise
stream mechanism. The talker transmits a message to eliminate
the stream from all devices. This message is also transmitted in
broadcast mode to ensure that all bridges and listeners receive
the indication to eliminate the stream.

III. UPPAAL OVERVIEW

The UPPAAL model checker is a tool for modelling real-
time systems and formally verify their properties [1]. In
UPPAAL the systems are modelled by means of interconnected
timed automata (finite-state machines extended with clock that
progress at the same pace). In addition, UPPAAL provides a
formal query language that allows defining properties that the
system should have. Using the model and the queries as inputs,
the model performs a exhaustive check of the properties i.e. it
explores all the possible execution paths of the model to check
whether the properties hold. After this, UPPAAL informs the
user about the result and, if a property does not hold, it shows
an execution path in which the property is violated. We next
describe the modelling tool and the query language in more
detail.

A. Modelling Tool

As said before, in UPPAAL the systems are modelled as
a network of timed automata. Each automaton is specified
by a template that can be instantiated several times. At the
same time, templates are constructed using locations, edges,
local variables and local clocks, and can synchronise through
different types of channels. The combination of the activated
locations, the value of the variables and the time of the system
defines the states which are exhaustively analysed by using
queries as we will see in the next sub-section.

Each automaton progresses through a set of locations. There
are three different kind of locations: normal, urgent and
committed. The difference lies in the time that an automaton
can remain in it. An automaton can remain indefinitely in a
normal location, unless the residence time is limited using
invariants. On the other hand, an automaton must immediately
leave any urgent or committed location, that is, the time
that an automaton can remain in such a location is 0 and,
therefore, the time does not pass in this type of locations. In
this sense, the difference between committed and urgent is that

the committed locations are atomic, while the urgent locations
are not. Atomic means that they are not affected by the actions
carried out by other automata with locations of the same type.
On the other hand, a location of each automata should also be
an initial location, which is the location where the automaton
will start operating.

As we have said, the time an automaton can remain in a
normal location can be bounded by means of invariants. An
invariant is an expression placed in the locations that impose
a condition to remain in it. For example, if one location has
the invariant t <= 5, the automaton has to leave the location
as soon as the variable t, which can be a clock or any other
kind of variable, becomes greater than 5.

An automaton can move through their locations using the
edges. The edges can be enable or disabled by using guards.
The guards are expressions defined by variables and clocks
which disable the automaton to take the corresponding edge,
if the expression is not true. In addition, edges can assign
values to the variables when they are taken.

Finally, automata can synchronise each other by taking
certain edges at the same time. This can be done by using
the already mentioned channels. The channels are variables
which can be labelled in the edges. There are different kind
of channels but in this work we only used two of them so
these will be the ones we explain. The first type of channel
we will explain is the binary channel. In this kind of channels
there are only two edges labelled for each channel variable.
These two edges can only be taken at a time, so they will
wait for each other to be taken. The other type of channel we
will explain is the broadcast channel. In this kind of channels
one edge is labelled as sender while one or more edges are
labelled as receivers. Receivers have to wait for the sender to
be taken while sender edges can be taken at any time, even if
not all or none of the receivers are waiting.

B. Query Language

Queries are expressions used to analyse the model and
they are formed by two parts: the state formula and the path
formula. The state formulae (represented by ϕ) are expression
that can be true or false depending on the state of the model.
For example, the state formula i == 7 is only true in the
states in which the value of the variable i is equal to 7. On the
other hand, the path formulae are expressions that can be true
or false depending on the distribution of the states in which
the state formula is met.

There are 5 types of path formula depending on the already
mentioned distribution of the states which can be classified
into 3 kind of properties. Fig.1 shows a graphic representation
of these queries. In this figure, circles represent states of the
model whereas yellow ones represent states in which the state
formula is satisfied (Fig.1e also ads a symbol into the yellow
bubbles to identify which state formula is satisfied in which
state). Additionally, the bold arrow shows the path analysed by
the path formula. The first property is the reachability property.
It checks if exist any state in which the state formula is met
and its corresponding state formula is E<>ϕ. The second one
is the safety property. It checks if in all the states (by means

3

(a) Representation of the reachability
property.

(b) Representation of the first safety
property.

(c) Representation of the second
safety property.

(d) Representation of the first live-
ness property.

(e) Representation of the second live-
ness property.

Fig. 1: Properties that can be evaluated in UPPAAL based on a
figure from [1]. Each figure shows the paths for which the state
formula holds; whereas the filled states are the ones where the
state formulae is satisfied.

of the path formula A[]ϕ) or in, at least, a path of the state
space (by means of the path formula E[]ϕ) the state formula
is met. Finally, the third property is the liveness property. It
checks if the state formula is eventually met by using the path
formula A<>ϕ while with the path formula Ψ-->ϕ it checks
if the state formula ϕ is eventually met after a state in which
the state formula Ψ was met.

IV. SRP UPPAAL MODEL

This section introduces the SRP model developed in this
work. Fig.2 (a) represents the network we modelled with
UPPAAL while Fig.2 (b) represents the resulting UPPAAL
model. As we can see, our SRP model is made of 5 dif-
ferent templates: Talker template, Stream template, Listener
template, BridgeInput template and BridgeOutput template
(represented as T, S, L, BI, BO respectively in Fig.2(b)). These
templates model the different relevant actions of the protocol
carried out by the talkers, bridges and listeners. Specifically,
as we can see in Fig.2, our model has one instantiation of the
Talker and Stream templates to model the actions carried out

(a) Modelled network con-
sisting of one talker,
three listeners and three
bridges.

(b) Abstraction of the net-
work model made with
UPPAAL.

Fig. 2: Representation of the modelled network and its model
by means of templates where T represents the Talker template,
S the Stream template, BI the BridgeInput template, BO the
BridgeOutput template and L the Listener template.

by one talker. It also has three instantiations of the Listener
template to model the actions carried out by three listeners.
And, finally, it has 3 instantiations of the BridgeInput template
and five instantiations of the BridgeOutput template to model
the actions carried out by three Audio Video Bridging (AVB)
bridges. Other network elements, such as links, are represented
in the model by variables, clocks and channels.

As can be seen in Fig.2(a), and as we have already said,
our model is made up of one talker, three bridges and three
listeners, each listener connected to one bridge. We decided
to use three listeners for many reasons. The first reason is
that, in many systems is usual to use active replication, using
three replicas which perform majority vote on each result, in
order to tolerate the failure of nodes. Moreover, three listeners
are enough to have all relevant combinations of responses of
the listeners. On the other hand, we connected one listener to
each bridge to have paths with different lengths and end-to-
end delays, factors that increase the likelihood of encountering
consistency issues. Finally, we used a line topology because
SRP relies on other protocols to eliminate the loops of the
network, such as the Rapid Spanning Tree Protocol [2] or the
Shortest Path Bridging Protocol [3].

Like any model of a system, our SRP model has a series
of abstractions that we describe next. First, we only model

4

the transmission of one stream because allowing the model to
transmit several streams would lead to the explosion of the
state space without providing any benefit, on the contrary, it
would make the model more difficult to analyse. We neither
model the transmission of data frames because it is not part
of SRP and it would increase the complexity of the model
unnecessarily, as it would distort the model without giving
greater precision to the analysis of the protocol. Finally, we
did not take into account the presence of errors for several
reasons. First, the property issues we detected appear in the
absence of faults in the network. Secondly, there are some
works like the one presented in [4] that allow tolerating faults
in the channel by using proactive replication of frames.

In this work we present a detailed, yet analysable and
general model. Specifically, our model divides the Bridge
template into two, one for the reception port of the talker
attributes and transmission of the listener attributes and another
for the reception of the listener attributes and transmission of
the talker attributes. These templates can be instantiated as
many times as necessary for each bridge, so the generality of
the model is maintained. Next the templates are described in
detail.

A. Talker Templates

The templates of the talker are shown in Figures 3 and 4.
The first and most complex is the one that performs the main
actions of SRP in the talker while the second represents the
transmission of data frames.

Since SRP begins with the talker’s declaration of its in-
tention to transmit, the talker’s template begins at a location
that, apart from being initial, it is also committed to prevent
a deadlock from occurring right at the beginning of the
execution. After transmitting the TA message, the talker goes
to a location where it receives the listeners’ responses and, if
possible, triggers the stream transmission. The first action is
performed in the loop on the right of the automaton, while
the second action is performed on the left edge. This last
edge does not form a loop since it can only be taken once
because the stream must only be triggered once. Taking the
edge on the left causes the Stream template to transition to
the Stream-transmission location, which represents the stream
transmission. After this, the talker can continue receiving
listener responses.

B. Listener Template

The template of the listener is shown in Figure 5. It performs
the main actions of SRP in the listener.

The Listener template starts waiting the reception of a talker
attribute (TA or TF). After receiving it, the listener can perform
3 different actions. If the listener is not interested in the stream
the template will take the left edge to the end location and it
will not perform any other action. If the listener has received
a TA message and has enough resources, it will take the
central edge and will prepare an LR message to be transmitted.
Otherwise, it will take the right edge and will prepare an LAF
message to be transmitted. The template will remain in the
Process time location an undefined time between 10 and 200

ms. The first value is the minimum process time we measured
in a real experimental setup, while the second value is the
maximum time that a message can take to be transmitted
according to the AVB standard [3]. After this processing time,
the template will take the edge to the End location while
transmitting listener response (LR or LAF message).

C. Bridge Templates

Figures 6 and 7 depict the templates of the bridges. The
first template performs the actions carried out by a port of
the bridge when it receives a talker attribute and when it
transmits the listener response. The second template performs
the actions carried out by a port of the bridge when it forwards
the talker attribute and when it receives a listener response.
In this sense, each bridge will be composed of as many
BridgeInput templates as ports through which talker attributes
can be received and as many BridgeOutput templates as ports
through which talker attributes should be forwarded.

In the bridges everything starts with the BridgeInput tem-
plate receiving a talker attribute and forwarding it to all Brid-
geOutput templates of the bridge. After that the BridgeInput
template will get stuck in the Waiting P answer location
until it receives an answer from any BridgeOutput while the
BridgeOutput templates takes the first edge. After that, the
BridgesOutput templates will check their resources and, after
the process time bounded between 10 and 200 ms already
explained in previous section, each BridgeOutput template will
transmit a TA or TF message through its corresponding port
and will get stuck in the Waiting L answer location until they
receive an answer from the device connected to the port, which
can be a listener or another bridge.

When an answer is received, the BridgeOutput template of
the corresponding port moves to the Check resources location
while the BridgeInput location moves to the Process time
location. During the process time the BridgeOutput template
check the resources and determine the listener attribute to
be transmitted. Finally, the BridgeOutput template return to
the Waiting L answer location and the BridgeInput template
transmit the answer through the port from which the bridge re-
ceives the talker attribute and return to the Waiting P answer
location too.

Note that, if any other listener response arrives during the
process time, it will be taken into account in the result because
it is processed in 0 time units, so its contribution will not be
lost; while, if the listener response arrives after the process
time, another listener forwarding will be done in the bridge.
This behaviour is the one expected from AVB switches.

V. EVALUATION OF THE TERMINATION OF SRP

In this work we differentiate two levels of termination:
termination for the application and for the infrastructure. The
first one affects the nodes and, therefore, the application.
The lack of termination at the application level can cause
malfunction of some applications. This is due to the fact that
many applications require to know the result of the reservation
to make important decisions.

5

Fig. 3: Talker template.

Fig. 4: Stream template.

Fig. 5: Listener template.

The infrastructure level refers to the bridges of the network.
Even if in an ideal system these devices do not require
termination, it is important to provide it to prevent unforeseen
and undesirable effects in future reservations. For example, if a
bridge receives many requests without resolution, it would be
possible to cause an overflow of the buffer that could prevent
the bridge from accepting new reservation requests or force it
to eliminate some already accepted ones.

We next present the problems detected but it is important
to note that the issues are mainly due to the fact that in SRP
listeners do not inform the bridges nor the talkers when they
are not interested in binding to a stream.

A. Termination at the Application Level

Using the UPPAAL model, we find a series of scenarios
where the talker does not receive any response from the
listeners and, thus, it waits indefinitely. This can happen, even
in the absence of faults, when there are no listeners interested
in the stream. As said before, many critical applications require
to know the result of the reservations to make important deci-
sions. Thus, the lack of termination can cause a malfunction
of those applications, such as blocking the decision process or
leading to incorrect decisions due to the lack of knowledge.

To check the termination for the application level we used
the following queries:

E[] T.LAs_received == NU_LA (1)

L0[].End && L1.End && L2.End &&

(L0.LA_transmitted != NU_LA ||

L1.LA_transmitted != NU_LA ||

L2.LA_transmitted != NU_LA)

--> T.LAs_received != NU_LA

(2)

L0.End && L1.End && L2.End &&

L0.LA_transmitted == NU_LA &&

L1.LA_transmitted == NU_LA &&

L2.LA_transmitted == NU_LA

--> T.LAs_received == NU_LA

(3)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

Query 1 checks if there is a path of states in the system
(E[]) in which the talker does not receive any listener
response (T.LAs_received == NU_LA). The query is
satisfied so, it is possible that a talker does not receive
any listener response. Then we checked if it is possible
this to happen if at least one listener is interested in
the stream. To do that we used the query 2. This query
checks if, at the end of the listeners actions (L0.End
&& L1.End && L2.End), at least one listener has
replied something to the talker (L0.LA_transmitted
!= NU_LA || L1.LA_transmitted != NU_LA
|| L2.LA_transmitted != NU_LA), so at least
one listener is interested in the stream, the talker

6

Fig. 6: BridgeInput template.

Fig. 7: BridgeOutput template.

receives at least one response (T.LAs_received !=
NU_LA). Finally, we checked that the non-reception of
response by the talker was due to the non-transmission
of response by the listeners. This was checked with
the query 3. This query checks if, at the end of the
listeners actions (L0.End && L1.End && L2.End),
no listeners has responded (L0.LA_transmitted
== NU_LA && L1.LA_transmitted == NU_LA
&& L2.LA_transmitted), so there are no interested
listeners in the stream, the talker receives no response
(T.LAs_received = NU_LA).

B. Termination at the Infrastructure Level

A bridge that forwards the request of a talker waits for the
responses of the listeners indefinitely. Also, bridges register
talkers attributes in all their ports, and they do so for all
the talkers willing to transmit. Similarly to what happens for
termination at the application level, we find some scenarios

where some bridges do not receive any response from the
listeners, even in the absence of faults and even if the first
level of termination is actually achieved by the protocol. Thus,
bridges can wait indefinitely, e.g., if there are no listeners
interested in the stream connected directly or indirectly to
the bridge. This can cause an unnecessary use of memory
in bridges and can later prevent the creation of streams with
listeners willing to bind due to a lack of memory.

To check the termination at the infrastructure level we used
three different queries for each of the ports. These queries are
similar to the ones used in the verification of the termination
at the application level. Queries 4, 7, 10, 13 and 16 check
if exist a path of states in the system (E[]) in which the
port of the bridge does not receive any listener response
(BQXY.LA_received == NU_LA, where X is the bridge
and Y is the identifier of the port as can be seen in Figure
8). As the query is satisfied, it is possible that the port of
the bridge does not receive any listener response. Then we

7

Fig. 8: BridgeOutput ports identification.

checked if it is possible this to happen if at least one listener
connected directly or indirectly to the bridge is interested in
the stream. To do that we used queries 5, 8, 11, 14 and 17.
These queries check if, at the end of the listeners actions
(LX.End && LY.End && ... && LN.End, where the
letters X, Y, N are the identifiers of the listeners connected
directly or indirectly to the port of the bridge), at least one
listener has replied something (LX.LA_transmitted !=
NU_LA || LY.LA_transmitted != NU_LA || ...
|| LN.LA_transmitted != NU_LA), so at least one
listener is interested in the stream, the port of the bridge
receives at least one response (BQXY.LA_received !=
NU_LA). Finally, we checked that the non-reception of
response by the port of a bridge was due to the non-
transmission of response by the listeners connected di-
rectly or indirectly to the port of the bridge. This
was checked with the third queries 6, 9, 12, 15 and
18. These queries check if, at the end of the listen-
ers actions (LX.End && LY.End && ... && LN.End),
no listener has responded (LX.LA_transmitted ==
NU_LA && LY.LA_transmitted == NU_LA && ...
&& LN.LA_transmitted), so there are no interested lis-
teners in the stream, the port of the bridge receives no response
(BQXY.LA_received == NU_LA).

Queries of port 00:

E[] BQ00.LA_received == NU_LA (4)

L0.End && L0.LA_transmitted != NU_LA

--> BQ00.LA_received != NU_LA
(5)

L0.End && L0.LA_transmitted == NU_LA

--> BQ00.LA_received == NU_LA
(6)

Queries of port 01:

E[] BQ01.LA_received == NU_LA (7)

L1.End && L2.End &&

(L1.LA_transmitted != NU_LA ||

L2.LA_transmitted != NU_LA)

--> BQ01.LA_received != NU_LA

(8)

L1.End && L2.End &&

L1.LA_transmitted == NU_LA &&

L2.LA_transmitted == NU_LA

--> BQ01.LA_received == NU_LA

(9)

Queries of port 10:

E[] BQ10.LA_received == NU_LA (10)

L1.End && L1.LA_transmitted != NU_LA

--> BQ10.LA_received != NU_LA
(11)

L1.End && L1.LA_transmitted == NU_LA

--> BQ10.LA_received == NU_LA
(12)

Queries of port 11:

E[] BQ11.LA_received == NU_LA (13)

L2.End && L2.LA_transmitted != NU_LA

--> BQ11.LA_received != NU_LA
(14)

L2.End && L2.LA_transmitted == NU_LA

--> BQ11.LA_received == NU_LA
(15)

Queries of port 20:

E[] BQ20.LA_received == NU_LA (16)

L2.End && L2.LA_transmitted != NU_LA

--> BQ20.LA_received != NU_LA
(17)

L2.End && L2.LA_transmitted == NU_LA

--> BQ20.LA_received == NU_LA
(18)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

8

VI. EVALUATION OF THE CONSISTENCY OF SRP

As in the previous section, we differentiate two levels of
consistency: consistency for the application level and for the
infrastructure level. Again, the first one affects the nodes
and, therefore, the application. The lack of consistency at the
application level can cause malfunction of some applications.
Some applications require the different nodes to carry out
coordinated actions because, e.g., they may rely on active
replication of the nodes. In these applications, consistency in
the communications is key to guarantee the correct operation
of the overall system. The first step towards achieving consis-
tent communications is to reserve the network resources con-
sistently. Thus, at this level, SRP should guarantee that enough
listeners have resources reserved for the communication before
starting to transmit.

As before, the infrastructure level refers to the bridges of the
network. As we will see later, inconsistencies when reserving
resources in bridges can cause waste of resources. This, in
the long term, causes that streams, for which there would be
sufficient resources, cannot be declared due to the resources
reserved and wasted in some bridges.

As in the evaluation of the termination, despite the impor-
tance of consistency, we found some issues in both levels even
in the absence of faults. We next present the problems detected
but it is important to note that the issues are mainly due to the
fact that information related to the reservations is propagated
in a single direction. That is, the talker attribute transmitted
by a talker is forwarded always towards the listeners; while,
when listeners and bridges reply to a stream declaration, the
information is only forwarded towards the talker. Thus, not all
devices involved in the reservation of a stream receive the same
information. We next describe the consistency issues detected
and their effects.

A. Consistency at the Application Level

In SRP, resources can be reserved for a subset of listeners,
even when there are listeners willing to communicate that
do not have resources to do it. In this case, the talker only
communicates to a subset of listeners, generating an unnoticed
inconsistency in the exchange of data. This means that actually
starting a stream (with some listeners) has priority over doing
it consistently (with either all or none of them). In addition,
talkers cannot know which listeners have enough resources
and which ones do not. A talker only knows if all interested
listeners have enough resources when it receives LR messages;
if all interested listeners have not enough resources when it
receives LAF messages; if no listener is interested when it does
not receive any answer; or, if at least one interested listener
has enough resources when it receives LRF messages. This
limited information does not allow the talker to take intelligent
decisions. Furthermore, we have to take into account that
this information can change during the execution of the SRP
mechanism e.g. it is possible for a talker to receive an LR
message and then receive an LRF message. Something similar
can happen in listeners. They may be interested in the stream
and have sufficient resources, but they do not receive anything

because during the transmission of the response, the route to
the talker did not have enough resources.

Furthermore, even when all listeners willing to bind have
enough resources to do so, there are scenarios where con-
sistency for the application is not guaranteed all the time.
This can happen for two reasons, first the paths between a
talker and different listeners may differ in length and end-to-
end delay and, second, the talker starts transmitting as soon
as it receives the response of one listener ready to receive.
Therefore, some listeners willing to bind to the stream, with
enough resources throughout the whole path towards the talker,
may miss the first frames transmitted by the talker. This can
cause, for example, two replicated nodes to be in two different
states so that, although from that moment they receive the
same data, they will not provide the same result.

To check the consistency for the application level we used
the following queries:

E<> S.Stream_transmission &&

L0.LA_transmitted == LR &&

BQ00.Re_reserved == No

(19)

E<> S.Stream_transmission &&

L1.LA_transmitted == LR &&

(BQ01.Re_reserved == No ||

BQ10.Re_reserved == No)

(20)

E<> S.Stream_transmission &&

L2.LA_transmitted == LR &&

(BQ01.Re_reserved == No ||

BQ11.Re_reserved == No ||

BQ20.Re_reserved == No)

(21)

S.Stream_transmission &&

L2.LA_transmitted == LR &&

(BQ01.Re_reserved == NU_Re ||

BQ11.Re_reserved == NU_Re ||

BQ20.Re_reserved == NU_Re)

--> !(BQ01.Re_reserved == Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes) &&

(BQ01.Re_reserved != NU_Re &&

BQ11.Re_reserved != NU_Re &&

BQ20.Re_reserved != NU_Re)

(22)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

Queries 19, 20 and 21 check if there is at least
one state in which the talker is already transmitting
(S.Stream_transmission), a listener is interested in the
stream and, from his point of view, has sufficient resources
(LX.LA_transmitted == LR where X is the identifier

9

of the listener) but the route from the talker to the listener
has not reserved the necessary resources for that stream (e.g.
BQ01.Re_reserved == No || BQ11.Re_reserved
== No || BQ20.Re_reserved == No for listener L2).
These tests show that the talker can start transmitting even
when there are interested listeners that will not be able to
receive the stream. Moreover, it also shows that there are
listeners that believe they will receive the stream but never
will.

Query 22 was used to verify that even when all interested
listeners can bind to the stream some of them may miss the
first messages because the talker starts transmitting before
finishing the resource reservation. Specifically, it checks
if a talker transmitting (S.Stream_transmission), a
listener waiting for the stream (L2.LA_transmitted ==
LR) and the route not yet reserved (BQ01.Re_reserved
== NU_Re || BQ11.Re_reserved == NU_Re ||
BQ20.Re_reserved == NU_Re) implies that the
route will never be reserved (!(BQ01.Re_reserved
== Yes && BQ11.Re_reserved ==
Yes && BQ20.Re_reserved == Yes)
&& (BQ01.Re_reserved != NU_Re
&& BQ11.Re_reserved != NU_Re &&
BQ20.Re_reserved != NU_Re)). As the query is
not satisfied we proved the inconsistency in the data received
at the beginning of the stream.

B. Consistency at the Infrastructure Level

In this work we also find out that bridges can make
inconsistent decisions regarding the reservation of resources of
a stream. Specifically, in SRP it is possible that some bridges
reserve resources for a stream but other bridges in the same
route to the listener do not. This implies a waste of resources
in the bridges that reserved the resources because the listeners
for which they reserved the resources are not going to receive
the stream because of the bridges in the same route that did not
reserve the resources. This may not be problematic at first, but,
with an utilisation close to 100%, this may cause streams, for
which there would be sufficient resources, unable be declared
due to the resources wasted in these bridges.

To check the consistency for the infrastructure level we used
the following queries:

E<> deadlock &&

S.Stream_transmission &&

BQ01.Re_reserved == No &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes

(23)

E<> deadlock &&

S.Stream_transmission &&

(BQ01.Re_reserved == No ||

BQ11.Re_reserved == No) &&

BQ20.Re_reserved == Yes

(24)

S.Stream_transmission

--> (BQ00.Re_reserved == Yes &&

BQ01.Re_reserved != Yes &&

BQ10.Re_reserved != Yes &&

BQ11.Re_reserved != Yes &&

BQ20.Re_reserved != Yes &&

L0.LA_transmitted == LR &&

L1.LA_transmitted != LR &&

L2.LA_transmitted != LR) ||

(BQ00.Re_reserved != Yes &&

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved != Yes &&

BQ20.Re_reserved != Yes &&

L0.LA_transmitted != LR &&

L1.LA_transmitted == LR &&

L2.LA_transmitted != LR) ||

(BQ00.Re_reserved != Yes &&

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved != Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes &&

L0.LA_transmitted != LR &&

L1.LA_transmitted != LR &&

L2.LA_transmitted == LR) ||

(BQ00.Re_reserved == Yes &&

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved != Yes &&

BQ20.Re_reserved != Yes &&

L0.LA_transmitted == LR &&

L1.LA_transmitted == LR &&

L2.LA_transmitted != LR)

(25)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

Query 23 checks if there is at least one state (E<>) after
the mechanism has been executed (deadlock) in which the
stream is being transmitted (S.Stream_transmission)
while the link that supplies the bridges 1 and 2 is not reserved
but the links of the bridges 1 and 2 are. This reservation
distribution implies a waste of resources in all the links
reserved by the bridges 1 and 2 because, as the link that
supplies them is not reserved, they are not going to receive data
messages from this stream. Query 24 is almost the same but it
checks the scenario where only the bridge 2 is being affected
by the inconsistency issue. Finally, query 25 checks if the
transmission of the stream (S.Stream_transmission)

10

always implies one of all correct distributions of resource
reservations. As it is not satisfied, we can determine that
incorrect distributions of resource reservations (with waste of
resources) can be achieved by the protocol.

VII. CSRP DESCRIPTION

CSRP, as SRP, follows the publisher-subscriber paradigm,
where the publisher is called talker and the subscribers,
listeners. The real-time data communications are made through
streams, a logical communication channel that carries traffic
defined by a set of parameters, such as the period or frame
size.

To create a stream the talker must declare its intention to
communicate by transmitting a TA message, which is still
in broadcast mode. The TA message contains information to
identify the stream and the resources it needs. The bridges
process the message and check if there are enough resources
in the forwarding ports to create the stream. If there are enough
resources in a port, the bridge forwards the TA message
through it; otherwise, if the port does not have sufficient
resources, the bridge transmits a TF message through it. A TF
message is also transmitted in broadcast mode and contains
the same information as a TA message but adding the reason
why the resource reservation has failed. At this point, as in
the standardised version of SRP, the bridges record the talker’s
request but do not yet make the reservation of resources.

When a listener receives a talker attribute, it decides if he
wants to join the stream or not. If the listener is not interested
in the stream, it will not take any action or inform anyone
about its decision. In contrast, if the listener is interested in
the stream, 3 different scenarios can happen: (i) if the listener
receives a TA message, the listener checks its resources and, if
it has enough to receive the stream, transmits an LR message;
(ii) if when checking their resources these are not enough, the
listener will transmit an LAF message and (iii) if the listener
receives a TA message it will also transmit an LAF message.

The first modification of the protocol is found in the
transmission of listener attributes by the bridges. Bridges
receive the listener attributes and combine them to send them
to the talker. In order to accomplish this, bridges analyse
the responses received by each port and then generate the
new response that they transmit towards the talker. Whenever
a bridge receives an LR message through a port, it checks
whether the port has enough resources. If there are enough
resources, the LR remains unchanged and the port reserves
the necessary resources provisionally, instead of definitely like
in SRP; otherwise, the LR becomes an LAF message. On the
other hand, if the bridge receives an LAF message the value
is left unchanged and the port does not reserve the resources.
In case of concurrent requests, and this is another change with
respect to SRP, the provisional reservation is made for the first
LR or LRF message received, while the rest are transferred
to a first-in, first-out (FIFO) list. The items in this list are
only deleted when their reservation processes are completed
or when the reservation of resources is confirmed.

After processing the listener attributes, each bridge must
join them to forward an updated one to the talker. Whenever

a bridge has several listener responses to forward, it combines
the responses into a single one and transmits it to the talker.
The result of combining the responses is the following: (i)
if the bridge receives an LR in all the ports, it transmits to
the talker an LR message; if the bridge receives an LAF in
all the ports, it transmits to the talker another LAF message;
and, if the bridge receives LR messages in some ports and
LAF messages in other ports, it will transmits to the talker
a new message called LRF message. It is important to note
that the bridges do not wait for the reception of all the listener
attributes, but they are continuously joining and retransmitting
them as they receive new answers. In this way a bridge can
transmit an LR or LAF message and then transmit an LRF
message, just like in SRP. Nevertheless, in CSRP bridges must
specify in the listener attribute which listeners can receive
and which listeners cannot. To do so, CSRP relies on two
lists, one for successful reservations and one for unsuccessful
ones. Specifically, edge bridges introduce the identifier of the
node that sends the LR or LAF message in the corresponding
list and sends them embedded in the response to the talker.
Whenever a bridge receives a response from another bridge,
it checks the lists and updates them accordingly when joining
the responses.

The talker waits for the answers for a bounded period of
time, determined by a local timer that the talker activates
when transmitting the TA. After that time, the talker uses
the lists with the node identifiers to know which listeners can
receive and which listeners cannot and it decides whether to
transmit the stream to all the listeners that can receive, to a
subgroup or to none of them. This decision is communicated
by transmitting in broadcast mode a message called Final
Decision (FD), which contains a list of listeners that will
receive the stream and listeners that will not receive the stream.

When a bridge receives the FD message it knows which
listeners are going to receive the stream and which are not.
In this way, bridges can lock the resources or eliminate
unnecessary reservations. Listeners, on the other hand, can
know whether they are subscribed to the stream or not so they
do not wait indefinitely for the data transmission.

Once the FD message has been transmitted and the resource
reservation mechanism has finished, the talker starts transmit-
ting the data stream. Finally, as in standard SRP, once the
stream has been created, the talker can delete it at any time
by means of the unadvertised stream mechanism.

VIII. CSRP UPPAAL MODEL

The UPPAAL model of CSRP has the same topology, same
templates, same instantiations of the templates and same
abstractions as the model of the standardised SRP explained in
Section IV. To formally verify the correction of the improved
mechanism (CSRP’s resource reservation mechanism), we
modified as little as possible the model shown above to include
the changes proposed in our solution.

In the Talker template we basically eliminated the instanta-
neous transmission of data that occurred as soon as the speaker
received an LR or LRF message. On the other hand, we added
a timer to define the waiting time for listener responses and
implemented the transmission of the FD message.

11

In the bridge templates we implemented the reception and
forwarding of the FD message and the mechanisms to change
the resource reservations based on it.

Finally, in the Listener template we implemented the recep-
tion of the FD message and the mechanism so that listeners
know if they can receive or not. It is important to remember
that these modifications in listeners are not essential. However,
not implementing them would imply that listeners remain
unsure of whether they will receive or not until they receive
any data message of the stream.

A. Talker Template

Figures 9 and 4 show the talker templates. The first and most
complex is the one that performs the main actions of SRP
in the talker whose differences with respect to the standard
talker template we will discuss next. The other template, which
represents the transmission of data frames, is the same as the
previous model.

The main difference between the talker template shown in
Figure 9 and the previous talker template shown in Figure 3 is
that in the proposed solution the left edge has been replaced
by a path that end in the End SRP location. The left edge
of the previous model activate the data transmission as soon
as the talker receives an LR or LRF message. However, the
model with the proposed solution has a path, which is activated
by a timer, that transmits the FD message and, if the talker
has received an LR or LRF message during the waiting time,
the talker will also activate the data transmission. This is a
simple condition to start the transmission. However, the new
information present in the talker would allow it to make much
more complex decisions.

B. Listener Template

Figure 10 shows the listener template with the proposed
solution implemented. The first main difference between this
template and the previous one (Figure 5) is that this one
has some variables called List of Nodes Resources (LNR)
which are used to convey the ID of the listener in the listener
response. In addition, after the location prev End (location
End in the previous listener template) in this template there is
another edge and location. These receive the FD message and
store the final configuration of the resource reservation.

C. Bridge Templates

Figures 11 and 12 show the bridge templates with the
proposed solution implemented. The main difference between
these templates and the previous ones are: (i) these templates
uses LNR variables to share the status of resource reservation
and (ii) the presence of a path after the Waiting X answer
locations which end at the End SRP location. This path
receives and forwards the FD message while update the status
of resource reservation in the bridge.

IX. EVALUATION OF THE TERMINATION OF CSRP

We next describe the validation of CSRP from the termi-
nation point of view. Again, we address the issues at the

application and infrastructure level. To do that, we used the
same queries that proved the non-termination in SRP plus
some additional queries.

Just like in SRP, if in CSRP no nodes want to bind to
a stream, the talker and bridges do not receive any listener
response. Thus, we provide termination with the timer in the
talker and the FD message in the bridges, so now both, talkers
and bridges, know when to stop waiting for listener responses.

A. Termination at the Application Level
In CSRP it is still possible that the talker does not re-

ceive any response from the listeners (see Sub-section V-A).
However, using the timer, the talker always stops waiting for
an answer, makes a decision based on the information it has
received and informs about it, by means of the FD message,
the network. We used the UPPAAL model of CSRP to validate
the behaviour of the protocol. Specifically, we check that all
the nodes finish the resource reservation process within a
bounded time determined by the timer in the talker and the
distance between the talker and the listeners.

To check the termination for the application level we used
the following queries:

E[] T.LAs_received == NU_LA (26)

L0.prev_End &&

L1.prev_End &&

L2.prev_End &&

(L0.LA_transmitted != NU_LA ||

L1.LA_transmitted != NU_LA ||

L2.LA_transmitted != NU_LA)

--> T.LAs_received != NU_LA

(27)

L0.prev_End &&

L1.prev_End &&

L2.prev_End &&

L0.LA_transmitted != NU_LA &&

L1.LA_transmitted != NU_LA &&

L2.LA_transmitted != NU_LA

--> T.LAs_received != NU_LA

(28)

A<> T.End_SRP (29)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

As we can see in queries 26, 27 and 28, also used in the
previous model, in CSRP it is still possible that the talker
does not receive any response from the listeners. However,
as we can see in query 29, thanks to the timer, the talker
always (A<>) stops waiting for an answer, makes a decision
based on the received information and informs about it by
means of the FD message to the other devices of the network
(T.End_SRP).

12

Fig. 9: Talker template with the proposed solution applied.

Fig. 10: Listener template with the proposed solution applied.

B. Termination at the Infrastructure Level

With this evaluation we see how bridges’ ports may not
receive any listener response. However, thanks to the FD
message sent by the talker, bridges always stop waiting for
an answer and change their reserved resources based on the
talker decision. We used the UPPAAL model of SRP to verify
that all bridges finish the resource reservation process within
a bounded time.

To check the termination for the infrastructure level we used
the following queries:

Queries of port 00:

E[] BQ00.LA_received == NU_LA (30)

L0.prev_End &&

L0.LA_transmitted != NU_LA

--> BQ00.LA_received != NU_LA

(31)

L0.prev_End &&

L0.LA_transmitted == NU_LA

--> BQ00.LA_received == NU_LA

(32)

A<> BQ00.End_SRP (33)

Queries of port 01:

E[] BQ01.LA_received == NU_LA (34)

L1.prev_End && L2.prev_End &&

(L1.LA_transmitted != NU_LA ||

L2.LA_transmitted != NU_LA)

--> BQ01.LA_received != NU_LA

(35)

L1.prev_End && L2.prev_End &&

L1.LA_transmitted == NU_LA &&

L2.LA_transmitted == NU_LA

--> BQ01.LA_received == NU_LA

(36)

A<> BQ01.End_SRP (37)

Queries of port 10:

E[] BQ10.LA_received == NU_LA (38)

13

Fig. 11: BridgeInput template with the proposed solution applied.

Fig. 12: BridgeOutput template with the proposed solution applied.

L1.prev_End &&

L1.LA_transmitted != NU_LA

--> BQ10.LA_received != NU_LA

(39)

L1.prev_End &&

L1.LA_transmitted == NU_LA

--> BQ10.LA_received == NU_LA

(40)

A<> BQ10.End_SRP (41)

Queries of port 11:

E[] BQ11.LA_received == NU_LA (42)

L2.prev_End &&

L2.LA_transmitted != NU_LA

--> BQ11.LA_received != NU_LA

(43)

L2.prev_End &&

L2.LA_transmitted == NU_LA

--> BQ11.LA_received == NU_LA

(44)

14

A<> BQ11.End_SRP (45)

Queries of port 20:

E[] BQ20.LA_received == NU_LA (46)

L2.prev_End &&

L2.LA_transmitted != NU_LA

--> BQ20.LA_received != NU_LA

(47)

L2.prev_End &&

L2.LA_transmitted == NU_LA

--> BQ20.LA_received == NU_LA

(48)

A<> BQ20.End_SRP (49)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

Here, as in the previous sub-section, we can see how
bridges’ ports may not receive any listener response in the first
three queries of each port (30, 31, 32, 34, 35, 36, 38, 39, 40,
42, 43, 44, 46, 47 and 48), the ones used in the previous model.
However, as we can see in the last query of each port (33, 37,
41, 45, 49), thanks to the FD message, the bridges always
(A<>) stop waiting for answers and change their reserved
resources based on the talker decision (BQXY.End_SRP
where X indicates the bridge and Y the forwarding port of
the bridge).

X. EVALUATION OF THE CONSISTENCY OF CSRP

In this section we describe the validation of CSRP from the
consistency point of view, at the application and infrastructure
level. To do so, we use the same queries that proved the
inconsistency in SRP plus some additional queries. This so-
lution solves all the detected consistency issues. We achieved
this by centralising the decisions in the talker and ensuring
the homogeneous propagation of information related to the
reservation of resources.

A. Consistency at the Application Level

First, note that this solution does not aim at providing
resources for all the listeners that want to bind. Instead, it
aims at ensuring that all listeners know what is the status of
the reservation regardless of whether they can receive or not.
This was not guaranteed in the standard SRP but it is achieved
in CSRP thanks to the FD message. We verify the consistent
view of the network. Specifically, we prove that when CSRP
finishes the reservation process, all devices know which nodes
are subscribed to the stream and which are not, including the
nodes.

To check the consistency for the application level we used
the following queries:

E<> S.Stream_transmission &&

L0.LA_transmitted == LR &&

BQ00.Re_reserved == No

(50)

E<> S.Stream_transmission &&

L0.L0.Can_I_receive == Yes &&

BQ00.Re_reserved == No

(51)

A[] L0.Can_I_receive == Yes imply

BQ00.Re_reserved == Yes
(52)

E<> S.Stream_transmission &&

L1.LA_transmitted == LR &&

(BQ01.Re_reserved == No ||

BQ10.Re_reserved == No)

(53)

E<> S.Stream_transmission &&

L1.Can_I_receive == Yes &&

(BQ01.Re_reserved == No ||

BQ10.Re_reserved == No)

(54)

A[] L1.Can_I_receive == Yes imply

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved == Yes

(55)

E<> S.Stream_transmission &&

L2.LA_transmitted == LR &&

(BQ01.Re_reserved == No ||

BQ11.Re_reserved == No ||

BQ20.Re_reserved == No)

(56)

E<> S.Stream_transmission &&

L2.Can_I_receive == Yes &&

(BQ01.Re_reserved == No ||

BQ11.Re_reserved == No ||

BQ20.Re_reserved == No)

(57)

A[] L2.Can_I_receive == Yes imply

BQ01.Re_reserved == Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes

(58)

A[] deadlock imply

T.End_SRP && L0.End_SRP &&

L1.End_SRP && L2.End_SRP &&

BI0.End_SRP && BI1.End_SRP &&

BI2.End_SRP && BQ00.End_SRP &&

BQ01.End_SRP && BQ10.End_SRP &&

BQ11.End_SRP && BQ20.End_SRP

(59)

15

A[] deadlock imply

T.LNR == LNR_bridge[0] &&

T.LNR == LNR_bridge[1] &&

T.LNR == LNR_bridge[2] &&

T.LNR == L0.LNR_received &&

T.LNR == L1.LNR_received &&

T.LNR == L2.LNR_received

(60)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

Queries 50, 53, 56 show that there are states (E<>)
where a listener wants to bind to the stream and it thinks
it can (L2.LA_transmitted == LR) but the resources
have not been reserved (BQ01.Re_reserved == No ||
BQ11.Re_reserved == No || BQ20.Re_reserved
== No). However, thanks to the FD message, as we can see
in queries 51, 52, 54, 55, 57, 58, now listeners know when
they can and when they cannot receive the stream.

Finally, queries 59 and 60 verify the consistent
view of the network. Query 59 verifies that
always (A[]) a deadlock implies the end of the
reservation process (T.End_SRP && L0.End_SRP &&
L1.End_SRP && L2.End_SRP && BI0.End_SRP &&
BI1.End_SRP && BI2.End_SRP && BQ00.End_SRP
&& BQ01.End_SRP && BQ10.End_SRP &&
BQ11.End_SRP && BQ20.End_SRP) while query
60 checks that always (A[]) at the end of the
reservation process (deadlock) all the LNR
are consistent (T.LNR == LNR_bridge[0] &&
T.LNR == LNR_bridge[1] && T.LNR ==
LNR_bridge[2] && T.LNR == L0.LNR_received
&& T.LNR == L1.LNR_received && T.LNR ==
L2.LNR_received).

B. Consistency at the Infrastructure Level

Finally, at the infrastructure level, we verify that CSRP
avoids wasting resources with unnecessary reservations thanks
to the FD message that informs the bridges about which
listeners can bind to the stream and which listeners cannot. In
this way, the bridges can free the resources they reserved for
the listeners that cannot receive. We carry out this verification
using the CSRP UPPAAL model.

To check the consistency for the infrastructure level we used
queries 61, 62 and 63. At the infrastructure level, we not
only avoid wasting resources with unnecessary reservations,
as can be seen in queries 61 and 62, which were satisfied
for the previous model, but we also made sure that only the
appropriate reservation distributions could be generated 63.

E<> deadlock &&

S.Stream_transmission &&

BQ01.Re_reserved == No &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes

(61)

E<> deadlock &&

S.Stream_transmission &&

(BQ01.Re_reserved == No ||

BQ11.Re_reserved == No) &&

BQ20.Re_reserved == Yes

(62)

S.Stream_transmission

--> (BQ00.Re_reserved == Yes &&

BQ01.Re_reserved != Yes &&

BQ10.Re_reserved != Yes &&

BQ11.Re_reserved != Yes &&

BQ20.Re_reserved != Yes &&

L0.Can_I_receive == Yes &&

L1.Can_I_receive != Yes &&

L2.Can_I_receive != Yes) ||

(BQ00.Re_reserved != Yes &&

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved != Yes &&

BQ20.Re_reserved != Yes &&

L0.Can_I_receive != Yes &&

L1.Can_I_receive == Yes &&

L2.Can_I_receive != Yes) ||
...

(BQ00.Re_reserved == Yes &&

BQ01.Re_reserved == Yes &&

BQ10.Re_reserved == Yes &&

BQ11.Re_reserved == Yes &&

BQ20.Re_reserved == Yes &&

L0.Can_I_receive == Yes &&

L1.Can_I_receive == Yes &&

L2.Can_I_receive == Yes)

(63)

In the table included in the annex at the end of this document
it is possible to see which queries are actually satisfied and
which ones are not.

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE).

16

REFERENCES

[1] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on Uppaal, M. Bernardo and F. Corradini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

[2] “IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges,” IEEE Std 802.1D-2004 (Revision of IEEE Std
802.1D-1998), pp. 1–281, June 2004.

[3] “IEEE Standard for Local and Metropolitan Area Networks–Media Access Control (MAC) Bridges and Virtual Bridges,” IEEE Std 802.1Q, 2012 Edition,
(Incorporating IEEE Std 802.1Q-2011, IEEE Std 802.1Qbe-2011, IEEE Std 802.1Qbc-2011,IEEE Std 802.1Qbb-2011, IEEE Std 802.1Qaz-2011, IEEE
Std 802.1Qbf-2011,IEEE Std 802.1Qbg-2012, IEEE Std 802.1aq-2012, IEEE Std 802.1Q-2012, pp. 1–1782, Dec 2012.

[4] I. Alvarez, J. Proenza, and M. Barranco, “Towards a Time Redundancy Mechanism for Critical Frames in Time-Sensitive Networking,” in Proceedings
of the IEEE 22nd International Conference on Emerging Technologies and Factory Automation (ETFA 2017), January 2018.

17

ANNEX

The following table summarises the results obtained when executing the presented queries in the corresponding model. It
is important to note that the fact that a query is satisfied does not necessarily imply that termination and consistency are
provided, just like the fact that a query is not satisfied does not imply the contrary. For more details on the queries please
check Sections V, VI, IX and X.

TABLE I: Queries results.

Equation Protocol Result Equation Protocol Result

1 SRP Satisfied 33 CSRP Satisfied
2 SRP Satisfied 34 CSRP Satisfied
3 SRP Satisfied 35 CSRP Satisfied
4 SRP Satisfied 36 CSRP Satisfied
5 SRP Satisfied 37 CSRP Satisfied
6 SRP Satisfied 38 CSRP Satisfied
7 SRP Satisfied 39 CSRP Satisfied
8 SRP Satisfied 40 CSRP Satisfied
9 SRP Satisfied 41 CSRP Satisfied

10 SRP Satisfied 42 CSRP Satisfied
11 SRP Satisfied 43 CSRP Satisfied
12 SRP Satisfied 44 CSRP Satisfied
13 SRP Satisfied 45 CSRP Satisfied
14 SRP Satisfied 46 CSRP Satisfied
15 SRP Satisfied 47 CSRP Satisfied
16 SRP Satisfied 48 CSRP Satisfied
17 SRP Satisfied 49 CSRP Satisfied
18 SRP Satisfied 50 CSRP Satisfied
19 SRP Satisfied 51 CSRP Not satisfied
20 SRP Satisfied 52 CSRP Satisfied
21 SRP Satisfied 53 CSRP Satisfied
22 SRP Not satisfied 54 CSRP Not satisfied
23 SRP Satisfied 55 CSRP Satisfied
24 SRP Satisfied 56 CSRP Satisfied
25 SRP Not satisfied 57 CSRP Not satisfied
26 CSRP Satisfied 58 CSRP Satisfied
27 CSRP Satisfied 59 CSRP Satisfied
28 CSRP Satisfied 60 CSRP Satisfied
29 CSRP Satisfied 61 CSRP Not satisfied
30 CSRP Satisfied 62 CSRP Not satisfied
31 CSRP Satisfied 63 CSRP Satisfied
32 CSRP Satisfied - - -

	I Introduction
	II SRP Overview
	III Uppaal Overview
	III-A Modelling Tool
	III-B Query Language

	IV SRP Uppaal Model
	IV-A Talker Templates
	IV-B Listener Template
	IV-C Bridge Templates

	V Evaluation of the Termination of SRP
	V-A Termination at the Application Level
	V-B Termination at the Infrastructure Level

	VI Evaluation of the Consistency of SRP
	VI-A Consistency at the Application Level
	VI-B Consistency at the Infrastructure Level

	VII CSRP Description
	VIII CSRP Uppaal Model
	VIII-A Talker Template
	VIII-B Listener Template
	VIII-C Bridge Templates

	IX Evaluation of the Termination of CSRP
	IX-A Termination at the Application Level
	IX-B Termination at the Infrastructure Level

	X Evaluation of the Consistency of CSRP
	X-A Consistency at the Application Level
	X-B Consistency at the Infrastructure Level

	References

