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Power variations for fractional type infinitely divisible random fields
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Abstract

This paper presents new limit theorems for power variations of fractional type symmetric infinitely

divisible random fields. More specifically, the random field X = (X(t))t∈[0,1]d is defined as an integral of

a kernel function g with respect to a symmetric infinitely divisible random measure L and is observed on

a grid with mesh size n−1. As n → ∞, the first order limits are obtained for power variation statistics

constructed from rectangular increments of X . The present work is mostly related to [8, 9], who studied a

similar problem in the case d = 1. We will see, however, that the asymptotic theory in the random field

setting is much richer compared to [8, 9] as it contains new limits, which depend on the precise structure

of the kernel g. We will give some important examples including the Lévy moving average field, the well-

balanced symmetric linear fractional β-stable sheet, and the moving average fractional β-stable field, and

discuss potential consequences for statistical inference.

Keywords: fractional fields; infill asymptotics; limit theorems; moving averages; power variation; stable

convergence.
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1 Introduction

The last decades have witnessed an immense progress in limit theory for power variations of stochastic

processes. Power variation functionals and related statistics play a major role in the analysis of the fine

structure of the underlying model, in stochastic integration theory and statistical applications. Asymptotic

theory for power variations of various classes of stochastic processes has received a great deal of attention in

the probabilistic and statistical literature. We refer e.g. to [6, 23, 24, 35] for limit theory for power variations

of Itô semimartingales, to [4, 5, 14, 19, 30] for the asymptotic results in the framework of fractional Brownian

motion and related processes, and to [12, 13, 44] for investigations of power variation of the Rosenblatt

process.

More recently, there appeared numerous studies on limit theorems for statistics of non-Gaussian infinitely

divisible moving-average processes. Central limit theorems for low frequency statistics of infinite-variance

stable moving averages have been investigated in [33, 34]. During the past years high frequency statistics of

stationary increments Lévy driven moving averages have been discussed in [8, 9]. In [9] the authors showed a

variety of first and second order asymptotic results for power variation statistics, which heavily depend on the
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behaviour of the kernel near 0, the Blumenthal–Getoor index of the driving Lévy process and the considered

power p. Later on these findings have been extended to a more general class of statistics and processes in

[7, 8]. We remark that the aforementioned probabilistic results are of immense importance for statistical

applications. Indeed, they have been applied in [27, 28, 29] to obtain complete parametric estimation of the

linear fractional stable models and related processes in low and high frequency settings. Earlier studies on

similar estimation problems, which are mainly concerned with estimation of the self-similarity parameter, can

be found in [3, 17, 34, 40]. Studies of high frequency statistics for Lévy driven random fields are much more

scarce in the literature. Functional limit theorems for generalised variations of the fractional Brownian sheet

have been investigated in [32], while power variations for certain integrals with respect to Gaussian white

noise have been studied in [31]. We remark however that both classes of models are driven by a Gaussian

field and the considered techniques do not apply in the more general Lévy setting.

The aim of this paper is to study power variation statistics built from rectangular increments of certain

random fields driven by an infinitely divisible random measure without a Gaussian part. More precisely, we

consider an R-valued random field X = (X(t))t∈Rd defined as

(X(t))t∈Rd =
(

∫

Rd

g(t, s)L(ds)
)

t∈Rd
, (1.1)

where g : Rd × R
d → R is a deterministic kernel to be introduced in (2.2) and L is an infinitely divisible

random measure on R
d. We will focus on determining the first order asymptotic theory for power variation

statistics of the form

Vn(p) :=
∑

i∈{0,...,n−1}d

|∆1/nX(i/n)|p,

∆1/nX(i/n) :=
∑

ε∈{0,1}d

(−1)d+
∑d

j=1
εjX ((i1 + ε1)/n, . . . , (id + εd)/n) ,

where i = (i1, . . . , id), ∆1/nX(i/n) are rectangular increments of X, and p > 0. We will show that the type

of convergence and the limit of Vn(p) crucially depend on the Lévy measure of L, the considered power p > 0

and the behaviour of rectangular increments of g near 0 ∈ R
d. These results can be considered as a extension

of [9, Theorem 1.1] to the framework of random fields. However, the picture turns out to be more complex

than for processes studied in [9, Theorem 1.1]. Indeed, we will show that different forms of local homogeneity

of the kernel g, which are summarised in Assumptions (H1) and (H2), lead to different asymptotic results, a

phenomenon that does not appear in the case d = 1. In particular, the limit types stated in Theorems 3.2(i)

and (ii) do not have a one-dimensional counterpart. We will discuss how our theoretical results apply to most

popular Lévy driven random fields including the moving average field, the well-balanced symmetric linear

fractional β-stable sheet and the moving average fractional β-stable field among other models. Furthermore,

we will present a short discussion on potential application of our theory to parameter identification and

parameter estimation.

This paper is organised as follows. Section 2 presents the model setting and the necessary definitions. The

main theoretical results and their applications are demonstrated in Section 3. All major proofs are collected

in Section 4. Some technical statements can be found in the Appendix.
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2 The setting, notations and definitions

2.1 Notations

Throughout the paper we denote all multi-indexed quantities by bold letters. For x = (x1, . . . , xd) ∈ R
d and

y = (y1, . . . , yd) ∈ R
d, we write x < y if xi < yi, i = 1, . . . , d; the relation x ≤ y is defined similarly. We

denote the rectangle [x1, y1]× · · · × [xd, yd] by [x,y] for x ≤ y. For each real number x ∈ R let {x} = x−⌊x⌋

denote its fractional part, and write {x} = ({x1}, . . . , {xd}) for the fractional part of x ∈ R
d taken coordinate-

wise. We set ‖x‖ = (x21 + · · · + x2d)
1/2. We define the open ball of radius r > 0 centered at a point x0 ∈ R

d

as Br(x0) := {x ∈ R
d : ‖x − x0‖ < r}. We denote the complement of a set B in R

d by Bc := R
d \ B.

Furthermore, Bb(R
d) denotes a collection of all bounded Borel measurable subsets of Rd and λd denotes the

Lebesgue measure on R
d. Finally, ∂dg(s) denotes the partial derivative ∂d

∂s1...∂sd
g(s) of g at s ∈ R

d if it exists,

and otherwise we set ∂dg(s) equal to 0.

We write
P
→,

L1

→,
d
→ for convergence in probability, mean, distribution of a sequence of random variables.

The notation
d
= stands for equality in distribution of random variables and

fdd
= denotes the equality of finite-

dimensional distributions of stochastic processes. We write Yn
F-d
→ Y if a sequence (Yn)n∈N of random variables

defined on the probability space (Ω,F ,P) converges F-stably in law to Y . That is, Y is a random variable

defined on the extension of (Ω,F ,P) such that for all F-measurable random variables Z the joint convergence

in distribution (Yn, Z)
d
→ (Y,Z) holds. For a detailed treatment of stable convergence we refer to [21].

Finally, C stands for a generic positive finite constant whose precise value is unimportant and may change

from line to line. By convention, summation and product over an empty set is 0 and 1, respectively.

2.2 The model

We consider a random field X = (X(t))t∈Rd defined in (1.1) as an integral of a kernel g with respect to

an infinitely divisible random measure L. We recall that the collection L = (L(B))B∈Bb(Rd) is an infinitely

divisible random measure when

(i) for every sequence (Bi)i∈N of pairwise disjoint sets in Bb(R
d), (L(Bi))i∈N forms a sequence of independent

random variables and if ∪∞
i=1Bi ∈ Bb(R

d), then L(∪∞
i=1Bi) =

∑∞
i=1 L(Bi) almost surely,

(ii) for every B ∈ Bb(R
d), the distribution of L(B) is infinitely divisible.

We will make a number of assumptions about g and L in the following, which in particular guarantee the

existence of the stochastic integral in (1.1) in the sense of [37] (see Appendix).

We assume that for every B ∈ Bb(R
d), the characteristic function of L(B) has the form

E[exp(itL(B))] = exp
(

λd(B)

∫

R0

(exp(ity)− 1− ity1(|y| ≤ 1))ν(dy)
)

, t ∈ R, (2.1)

where ν is a symmetric measure on R0 := R \ {0} satisfying
∫

R0
min(1, y2)ν(dy) < ∞. Moreover, there exist

some 0 ≤ β < 2, 0 < θ ≤ 2 such that

(β) limy→0 y
βν({u ∈ R0 : |u| > y}) ∈ (0,∞) if β > 0, and ν(R0) <∞ if β = 0,

(θ) lim supy→∞ yθν({u ∈ R0 : |u| > y}) <∞ if θ < 2, and
∫

R0
y2ν(dy) <∞ if θ = 2,

(g) for every t ∈ R
d, g(t, ·)1(|g(t, ·)| ≤ 1) ∈ Lθ(Rd) and g(t, ·)1(|g(t, ·)| > 1) ∈ Lβ(Rd).
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Sometimes we choose L to be a symmetric β-stable random measure with 0 < β < 2 and control measure λd,

i.e. for every B ∈ Bb(R
d), L(B) is a symmetric β-stable random variable with characteristic function

E[exp(itL(B))] = exp(−λd(B)|t|β), t ∈ R.

In this case the stability index matches the parameter β in Assumption (β) and we can set θ = β in

Assumption (θ). In the general case the parameter β in (β) corresponds to the Blumenthal–Getoor index of

L(B):

β = inf
{

q ≥ 0 :

∫

0<|y|≤1
|y|qν(dy) <∞

}

.

On the other hand, Assumption (θ) implies that
∫

|y|>1 |y|
qν(dy) < ∞, and hence E[|L(B)|q] < ∞ for every

0 < q < θ if θ < 2 and 0 < q ≤ θ if θ = 2.

Last, we assume that the kernel g in (1.1) has the form

g(t, s) :=
∑

ε∈{0,1}d

(−1)d+
∑d

j=1
εjgε(ε1t1 − s1, . . . , εdtd − sd), t, s ∈ R

d, (2.2)

where gε : Rd → R is a measurable function for every ε ∈ {0, 1}d. This form of the kernel is directly motivated

by several popular random field models. Let us present some particular examples.

Example 2.1. In cases (ii) and (iv) below L is a symmetric β-stable random measure with β ∈ (0, 2) and

control measure λd.

(i) A random field X given in (1.1) is called a Lévy driven moving average field if

g(t, s) = g(1,...,1)(t− s),

i.e. gε ≡ 0 for every ε 6= (1, . . . , 1).

(ii) It is called a moving average fractional β-stable field (see [43]) if

g(t, s) = ‖t− s‖
H− d

β − ‖s‖
H− d

β , H ∈ (0, 1), H 6=
d

β
,

which corresponds to the choice g(1,...,1)(s) = ‖s‖
H− d

β , g(0,...,0)(s) = (−1)d+1‖s‖
H− d

β and gε ≡ 0 for every

ε 6= (1, . . . , 1), (0, . . . , 0).

(iii) In [10, 15] a fractional field X has been studied with θ = 2 and the kernel

g(t, s) = ‖t− s‖H− d
2 − ‖s‖H− d

2 , H ∈ (0, 1), H 6=
d

2
,

which similarly to the previous example admits the representation (2.2).

(iv) The well-balanced symmetric linear fractional β-stable sheet X has the kernel

g(t, s) =

d
∏

i=1

(|ti − si|
Hi−

1

β − |si|
Hi−

1

β ), Hi ∈ (0, 1), Hi 6=
1

β
,

which can be represented via (2.2) so that all gε are non-trivial. Note that X is an extension of both a

well-balanced symmetric linear fractional stable motion, which corresponds to d = 1, and of an ordinary

fractional Brownian sheet, which corresponds to β = 2.
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2.3 Power variations and main assumptions

We consider rectangular increments of the random field X (or any function from R
d to R) over [s, t] =

∏d
i=1[si, ti] ⊂ R

d for s < t, which are defined as

X([s, t]) :=
∑

ε∈{0,1}d

(−1)d+
∑d

j=1
εjX(s1 + ε1(t1 − s1), . . . , sd + εd(td − sd)). (2.3)

For instance, when d = 1 (2.3) reduces to X([s, t]) = X(t) −X(s), while X([s, t]) = X(t1, t2) −X(t1, s2) −

X(s1, t2)+X(s1, s2) when d = 2. The rectangular increment can also be recovered by differencing iteratively

with respect to each of the arguments of X, that is

X([s, t]) = ∆
(1)
t1−s1 . . .∆

(d)
td−sd

X(s),

where ∆
(i)
ti−si

X(s) = X(s+ (ti − si)ei)−X(s) is a directional increment, i = 1, . . . , d, and {e1, . . . ,ed} is the

standard basis of Rd. The random field X in (1.1) has stationary rectangular increments, i.e. for any fixed

s ∈ R
d,

(X([s, t]))s<t
fdd
= (X([0, t− s]))s<t.

Indeed, the rectangular increment of the function g(·,u) in (2.2) over [s, t] coincides with that of g(1,...,1) over

[s−u, t−u], while all of the other functions gε, ε 6= (1, . . . , 1), vanish after the computation of the rectangular

increments (but they are usually still needed for the stochastic integrals in (1.1) to exist). Since only the

function g(1,...,1) matters when taking rectangular increments, we write with a slight abuse of notation

g(s) = g(1,...,1)(s), s ∈ R
d. (2.4)

We also write ∆rX(s) for X([s, s+ r1]), where 1 = (1, . . . , 1) ∈ R
d and all edges of the rectangle have equal

length r > 0.

Our main focus are power variation statistics of X computed over the set [0, 1]d:

Vn(p) :=
∑

i∈{0,...,n−1}d

|∆1/nX(i/n)|p

for p > 0. The main goal of this paper is to study the asymptotic behaviour of the statistic Vn(p) as n→ ∞.

We will see that the type and mode of the limit crucially depend on the behaviour of the function g : Rd → R

introduced in (2.4). More specifically, we will assume that g is locally homogenous near 0. That is, we

consider g(s) ∼ h(s) as s → 0, where h is an absolutely homogeneous function of some degree δ 6= 0, i.e.

h(as) = |a|δh(s) for all a ∈ R and s ∈ R
d. However, this type of assumption still does not uniquely determine

the asymptotic theory in contrast to the theory of case d = 1 investigated in [9]. We will therefore distinguish

two classes of homogeneous functions h : Rd → R:

(H1) For all s ∈ R
d,

g(s) = f(s)h(s), where h(s) := ‖s‖dα for some α 6= 0,

and f has continuous partial derivatives up to the d-th order at every point in R
d and f(0) = 1.

Moreover, there exists ρ > 0 such that |∂dg| is in Lθ(Bc
ρ(0)) and is radially non-increasing, i.e. |∂dg(s)| ≥

|∂dg(t)| if ρ ≤ ‖s‖ ≤ ‖t‖, s, t ∈ R
d.
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(H2) For all s ∈ R
d, g(s) =

∏d
i=1 gi(si). For all s ∈ R,

gi(s) = fi(s)hi(s), where hi(s) := |s|αi for some αi 6= 0,

and fi ∈ C1(R) satisfies fi(0) = 1, i = 1, . . . , d. Moreover, there exists ρ > 0 such that g′i ∈ Lq((−ρ, ρ)c)

with q := min(θ,max(β, p)) and |g′i(s)| ≥ |g′i(t)| if ρ ≤ |s| ≤ |t|, s, t ∈ R, i = 1, . . . , d. We set

f(s) :=
d
∏

i=1

fi(si), h(s) :=
d
∏

i=1

hi(si), s ∈ R
d.

We will see in the next section that under (H1), where the homogeneous function h does not depend on the

direction, the limit theory for the power variation Vn(p) in some sense resembles the case d = 1 studied in [9].

On the other hand, the asymptotic results for kernel satisfying (H2) are more complex because they allow

for mixtures in terms of conditions and limits obtained before.

Remark 2.2. The assumption f(0) = 1 in (H1) is not essential (the same applies to the corresponding

assumption in (H2)). As long as f(0) 6= 0 we may deduce the setting of (H1) by adjusting the Lévy measure

ν accordingly. In (H2) the multiplicative form of the homogeneous function h is essential, while the analogous

assumption on the function f is not necessary and it is considered for simplicity of exposition.

3 Main results

In this section we consider the random field X = (X(t))t∈Rd defined in (1.1) with L and g given by (2.1) and

(2.2), respectively, and satisfying Assumptions (g), (θ) and (β) for some 0 < θ ≤ 2 and 0 ≤ β < 2. The two

following theorems state the limit theory for power variation statistics Vn(p) of X under (H1) and (H2). Its

mode of convergence and limit depend on the interplay between the power p, the Blumenthal–Getoor index

β and the form of the kernel g at the origin. In each case we use the most convenient representation of X or

L. In Theorem 3.1(i) we will use a Poisson random measure Λ† on [0, 1]d ×R0 with intensity measure λd ⊗ ν,

which is constructed by adding to the jump sizes of L restricted to [0, 1]d, the marks that are i.i.d. random

vectors with a common uniform distribution on [0, 1]d, defined on the extension of the underlying probability

space (Ω,F ,P) and independent of the σ-algebra F . Similarly, in Theorem 3.2(i) a Poisson random measure

Λ‡ with intensity measure λk ⊗ λd−k ⊗ ν on [0, 1]k × R
d−k × R0 is constructed from the jumps of L on

[0, 1]k × R
d−k for some k = 1, . . . , d. First we state the limit theory for the statistic Vn(p) under (H1).

Theorem 3.1. Let Assumption (H1) hold for some α ∈ R0.

(i) Let p > β and α+ 1/p ∈ (0, 1). Then

ndαpVn(p)
F-d
→

∫

[0,1]d×R0

(

|y|p
∑

j∈Zd

|∆1h(j − u)|p
)

Λ†(du,dy)

where Λ† is the Poisson random measure on [0, 1]d × R0 having intensity measure λd ⊗ ν defined in

Definition 4.1.

(ii) Let L be a symmetric β-stable random measure on R
d with β ∈ (0, 2) and control measure λd. Let

p < β = θ and H := α+ 1/β ∈ (0, 1). Then

nd(Hp−1)Vn(p)
L1

→ E[|L([0, 1]d)|p]
(

∫

Rd

|∆1h(s)|
βds

)
p
β
.
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(iii) Let p ≥ 1 and α+ 1/max(β, p) > 1. Then

nd(p−1)Vn(p)
a.s.
→

∫

[0,1]d
|Y (t)|pdt,

where (Y (t))t∈[0,1]d is a measurable random field satisfying

Y (t) =

∫

Rd

∂dg(t − s)L(ds) a.s. for all t ∈ [0, 1]d,

and
∫

[0,1]d
|Y (t)|pdt <∞ a.s.

We note that Theorem 3.1 covers all α ∈ R0 satisfying α > −1/max(β, p) except for the three boundary

cases p = β and α = 1 − 1/max(β, p) with the additional assumption that L is β-stable if both p < β and

α < 1 − 1/β, and with the additional assumption that p ≥ 1 if α > 1 − 1/max(β, p). Remark that we

obtain very different convergence rates and types/modes of limits in Theorem 3.1. While Theorem 3.1(ii) is

of ergodic type, Theorem 3.1(i) and (iii) are quite non-standard. A similar phenomenon has been observed

for processes in [9]. Indeed, the results of Theorem 3.1 look like a direct extension of [9, Theorem 1.1] from

d = 1 to a general dimension d ≥ 1. In contrast to the imposed assumptions in [9, Theorem 1.1], (H1) allows

for negative values of α. The next result presents the asymptotic theory for the statistic Vn(p) under (H2).

Theorem 3.2. Let Assumption (H2) hold for some α1, . . . , αd ∈ R0, and p 6= θ if θ < 2.

(i) Let p > β. For some k = 1, . . . , d let αi + 1/p ∈ (0, 1) for i = 1, . . . , k, and αi + 1/p > 1 for

i = k + 1, . . . , d. Then

n(d−k)(p−1)+
∑k

i=1
αipVn(p)

F-d
→

∫

[0,1]k×Rd−k×R0

(

|y|p
(

k
∏

i=1

∑

j∈Z

|∆1hi(j − ui)|
p
)

d
∏

i=k+1

∫ 1

0
|g′i(t− xi)|

pdt
)

Λ‡(du,dx,dy),

where Λ‡ is the Poisson random measure on [0, 1]k ×R
d−k ×R0 having intensity measure λk ⊗λd−k ⊗ ν

defined in Definition 4.2, and u = (u1, . . . , uk) ∈ [0, 1]k, x = (xk+1, . . . , xd) ∈ R
d−k.

(ii) Let L be a symmetric β-stable random measure on R
d with β ∈ (0, 2) and control measure λd. Let

p < β = θ. For some k = 1, . . . , d let Hi := αi + 1/β ∈ (0, 1) for i = 1, . . . , k, and αi + 1/β > 1 for

i = k + 1, . . . , d. Then

n(d−k)(p−1)+
∑k

i=1
(Hip−1)Vn(p)

L1

→ E[|L([0, 1]d)|p]
k
∏

i=1

(

∫

R

|∆1hi(s)|
βds
)

p
β

d
∏

i=k+1

(

∫

R

|g′i(s)|
βds
)

p
β
.

(iii) Let p ≥ 1 and αi + 1/max(β, p) > 1, i = 1, . . . , d. Then

nd(p−1)Vn(p)
a.s.
→

∫

[0,1]d
|Y (t)|pdt,

where (Y (t))t∈[0,1]d is a measurable random field satisfying

Y (t) =

∫

Rd

d
∏

i=1

g′i(ti − si)L(ds) a.s. for all t ∈ [0, 1]d, (3.1)
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and
∫

[0,1]d
|Y (t)|pdt <∞ a.s.

Under Assumption (H2) there is no loss of generality by assuming that α1 ≤ α2 ≤ · · · ≤ αd, and therefore

Theorem 3.2 covers all α1, . . . , αd ∈ R0 with α1 > −1/max(β, p) except for the boundary cases where p = β

or αk = 1 − 1/max(β, p) for some k = 1, . . . , d with the two additional assumptions that L is β-stable if

both p < β and αk + 1/β < 1 for some k = 1, . . . , d, and moreover that p ≥ 1 if αi + 1/max(β, p) > 1

for all i = 1, . . . , d. The results of Theorem 3.2 are more complex compared to the isotropic type setting of

Theorem 3.1. Since we have more degrees of freedom for the powers αi under Assumption (H2) than under

Assumption (H1), certain mixtures of Theorem 3.1(i)–(iii) appear in Theorem 3.2. Indeed, when p > β and

the first k indices αi satisfy the assumption of Theorem 3.1(i) while the last ones satisfy the assumption of

Theorem 3.1(iii), we obtain their mixture in Theorem 3.2(i). Similarly, Theorem 3.2(ii) can be interpreted

as a mixture of Theorem 3.1(ii) and (iii).

Remark 3.3. (i) Theorems 3.1(ii) and 3.2(ii) remain valid for β = 2, where L is a Gaussian random measure

on R
d with zero mean and variance λd. In this case the result holds true for all p > 0.

(ii) Assume that the function h satisfies (H2) with α1 = · · · = αd. Then we have k = d in Theorem 3.2(i)

and (ii). Furthermore, rates of convergence and limits of Vn(p) coincide with those in Theorem 3.1, which

implies that we cannot distinguish between the classes (H1) and (H2) based upon the statistic Vn(p).

Next, we examine how the results of Theorems 3.1 and 3.2 apply to models discussed in Example 2.1.

Example 3.4. (Continuation of Example 2.1) In cases (ii), (iv) and (v) below let L be a symmetric β-stable

random measure with β ∈ (0, 2) and control measure λd. In all cases let p > 0.

(i): We consider a special case of a Lévy driven moving average field X having

g(t, s) = g(1,...,1)(t− s) with g(1,...,1)(s) =
2

Γ(d4 −
γ
2 )

∥

∥

∥

2s

σ

∥

∥

∥

γ
2
− d

4

K γ
2
− d

4

(σ‖s‖),

where γ ∈ (0, d/2), σ > 0 and Kγ/2−d/4 denotes the modified Bessel function of the second kind. It holds

that

K γ
2
− d

4

(s) ∼
1

2
Γ
(d

4
−
γ

2

)(s

2

)−(d
4
− γ

2
)

as s ↓ 0,

see [1, Eq. (9.6.9), p. 375]. This implies g(1,...,1)(s) ∼ ‖s‖γ−
d
2 as s → 0. It has been shown in [20, 22] that

such a choice of g induces a covariance function

Cov(X(0),X(t)) = Var(X(0))
21−γ

Γ(γ)
(σ‖t‖)γKγ(σ‖t‖), t ∈ R

d,

belonging to theMatérn family when E[X(0)2] <∞ (see [18] for more details). Then Theorem 3.1(i) applies if

p > β and (1/2−1/p)d < γ < (3/2−1/p)d, Theorem 3.1(ii) applies if p < β, (1/2−1/β)d < γ < (3/2−1/β)d

and L is β-stable. Theorem 3.1(iii) never applies to this example.

(ii): The kernel

g(t, s) = ‖t− s‖H− d
β − ‖s‖H− d

β , H ∈ (0, 1), H 6=
d

β
,

satisfies (H1). Therefore, Theorem 3.1(i) applies if p > β and H > (1/β − 1/p)d, Theorem 3.1(ii) applies if

p < β. Again Theorem 3.1(iii) never applies for this example.
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(iii): The kernel

g(t, s) = ‖t− s‖H− d
2 − ‖s‖H− d

2 , H ∈ (0, 1), H 6=
d

2
,

obviously satisfying (H1), induces the covariance function

Cov(X(t),X(s)) = Var(X(e1))
1

2
(‖s‖2H + ‖t‖2H − ‖t − s‖2H), t, s ∈ R

d,

when E[X(e1)
2] < ∞. Hence Theorem 3.1(i) applies if p > β and (1/2 − 1/p)d < H < (3/2 − 1/p)d,

Theorem 3.1(ii) applies if p < β, H < (3/2 − 1/β)d and L is β-stable. Theorem 3.1(iii) never applies to this

example.

(iv): The kernel

g(t, s) =
d
∏

i=1

(|ti − si|
Hi−

1

β − |si|
Hi−

1

β ), Hi ∈ (0, 1), Hi 6=
1

β
,

satisfies assumption (H2) with αi = Hi − 1/β, i = 1, . . . , d, and q = β. We may and do assume that

H1 ≤ H2 ≤ · · · ≤ Hd. Therefore, Theorem 3.2(i) applies if H1 > 1/β − 1/p and p > β, Theorem 3.2(ii)

applies if p < β, whereas Theorem 3.2(iii) never applies to this example.

(v): Recalling the notation of rectangular increments we introduce a new kernel

g(t, s) = h([−s, t− s]) with h(s) = ‖s‖
d(H− 1

β
)
, H ∈ (0, 1), H 6=

1

β
.

In particular, when d = 2 it holds that g(t, s) = h(t1−s1, t2−s2)−h(t1−s1,−s2)−h(−s1, t2−s2)+h(−s1,−s2).

In this case (H1) is satisfied and Theorem 3.1(i) applies if H > 1/β − 1/p and p > β, Theorem 3.1(ii) applies

if p < β. Theorem 3.1(iii) never applies to this example.

Theorems 3.1 and 3.2 have important consequences for parameter identification and parameter estimation.

To illustrate the potential of Theorem 3.1 let us consider the moving average fractional β-stable field defined

in Example 2.1(ii). A standard strategy to estimate the Hurst parameter H ∈ (0, 1) is to use a ratio statistic

based on a change of frequency. More specifically, the ergodic result of Theorem 3.1(ii) immediately implies

the convergence

Rn :=

∑

i∈{0,...,n−2}d |∆2/nX(i/n)|p
∑

i∈{0,...,n−1}d |∆1/nX(i/n)|p
P
→ 2dHp

if p < β. Hence,

Hn :=
logRn

dp log 2

P
→ H, if p < β. (3.2)

Obviously, the proposed estimation procedure assumes prior knowledge of the parameter β, since we need

to choose p ∈ (0, β). In the case d = 1 the papers [17, 27, 28, 29] have suggested to use negative powers

p ∈ (−1, 0) to estimate the parameter H for unknown β. A similar idea should apply in the random field

setting, although negative power variations are beyond the scope of our paper. A construction of confidence

regions for parameters of the moving average fractional β-stable field requires proving the weak limit theory

associated with Theorem 3.1(ii). However, this is a rather complex problem since the martingale type

techniques, which have been applied for processes in [8, 9], do not easily extend to our setting.

A straightforward consequence of Theorems 3.1 and 3.2 is the identification of some involved parameters

via the corresponding convergence rates. Indeed, we observe that the statistic Sn(p) := log Vn(p)/ log n

converges in probability to the exponent of the convergence rates given in Theorems 3.1 and 3.2. Considering
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again the moving average fractional β-stable field as an example, the three convergence rates described in

Theorem 3.1 and the points of phase transition uniquely determine the parameter (H,β). In other words, the

limit of the process (Sn(p))p>0 identifies (H,β). The same logic applies to the well-balanced symmetric linear

fractional β-stable sheet discussed in Example 2.1(iv), where the limit of (Sn(p))p>0 uniquely determines the

parameter (
∑d

i=1Hi, β); however, Theorem 3.2 does not suffice to identify/estimate the parameters (Hi)1≤i≤d

separately. To provide such an inference we can identify/estimate H := Hi from increments of a line process

(X(1 + tei))t∈R. Indeed, it is a well-balanced symmetric linear β-stable motion, to which Theorem 3.1(ii)

applies with d = 1. Hence, we may obtain a consistent estimator of Hi via (3.2).

4 Proofs

We first present some preliminary facts that will be used in the proofs. We will use a stable convergence of

fractional parts of random variables: if W ∼ U([0, 1]d), then as n→ ∞,

{nW }
F-d
→ U , (4.1)

where U is U([0, 1]d)-distributed random vector, defined on the extension of the underlying probability space

(Ω,F ,P) and independent of the σ-algebra F ; see e.g. [9, Lemma 4.1]. We will repeatedly use the following

inequalities. Let m ∈ N, p > 0. For a ∈ R
m, set ‖a‖p = (

∑m
i=1 |ai|

p)1/p. For a, b ∈ R
m, it holds that

|‖a‖pp − ‖b‖pp| ≤ ‖a− b‖pp if 0 < p ≤ 1, (4.2)

|‖a‖p − ‖b‖p| ≤ ‖a− b‖p if p > 1. (4.3)

For an n ∈ N we set n := (n, . . . , n) ∈ N
d.

4.1 Some Poisson random measures related to L

By extending our probability space (Ω,F ,P) if necessary we may and do assume that it is rich enough to

support a U([0, 1])-distributed random variable independent of L. To the infinitely divisible random measure

L given in (2.1), we associate a random field (L(t))t∈Rd by L(t) = L([0, t]) (for t > 0, and similarly otherwise).

We note that (L(t))t∈Rd is a Lévy process in the sense of [2, page 5] and in particular for all n ∈ N and all

disjoint rectangles [a1, b1], . . . , [an, bn] in R
d, L([a1, b1]), . . . , L([an, bn]) are independent. As càdlàg functions

of several variables are less standard than the univariable case, we will define the appropriate sample path

space for (L(t))t∈Rd in the following. For d = 1, 2, . . . we say that a function x : Rd → R is lamp (limits along

monotone paths) if for all t ∈ R
d we have

1. the limit x(t,R) := limu→t,uRt x(u) exists in R for each of the 2d order relations R = (R1, . . . , Rd),

where Ri is either ≥ or < for i = 1, . . . , d,

2. x(t) = x(t,R) when R = (≥, . . . ,≥).

For each lamp function x : R
d → R we define the point mass jump Jt(x) of x at t ∈ R

d as Jt(x) =

limu→t,uRt x([u, t]), where R = (<, . . . , <). For instance, when d = 1, we have Jt(x) = x(t)− x(t−), where

x(t−) = x(t,<) denotes the left-hand limit, while Jt(x) = x(t1, t2)−x(t1, t2−)−x(t1−, t2)+x(t1−, t2−) when

d = 2. The above notation and terminology are due to Straf [41]. By Proposition 4.1 of [2] and homogeneity
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of L, (L(t))t∈Rd has a lamp modification, which also will be denoted (L(t))t∈Rd . For every Borel set A of

R
d × R0, set

Λ(A) = #{v ∈ R
d : (v, Jv(L)) ∈ A}, (4.4)

where #S denotes the number of elements in a set S. From Proposition 4.4 of [2] we deduce that Λ is a

Poisson random measure on R
d ×R0 with intensity measure λd ⊗ ν, and by Theorem 4.6 of [2] we have that

for all t ∈ R
d,

L(t) =

∫

(0,t]×{|y|>1}
yΛ(dv,dy) + lim

ǫ↓0

∫

(0,t]×{ǫ<|y|≤1}
y
(

Λ(dv,dy)− (λd ⊗ ν)(dv,dy)
)

= lim
ǫ↓0

∫

(0,t]×{|y|>ǫ}
yΛ(dv,dy) =:

∫

(0,t]×R0

yΛ(dv,dy)

where the second equality follows by symmetry of ν, and the convergence to the two limits is uniform in t on

compact subsets of Rd almost surely.

In the following we will construct a proper point process representation of Λ restricted to [0, 1]d×R0, which

we are going to use in Theorem 3.1(i). Since ν is a σ-finite measure we may choose a probability measure ν̃

such that ν is absolute continuous with respect to ν̃ with density ρ > 0. Let (Wk)k∈N be an i.i.d. sequence

of real-valued random variables with the common distribution ν̃, (Ṽ k)k∈N be an i.i.d. sequence of U([0, 1]d)-

distributed random vectors, and (Γk)k∈N be a sequence of partial sums of i.i.d. standard exponential random

variables. Assume that the three sequences (Ṽ k)k∈N, (Wk)k∈N and (Γk)k∈N are independent, and set

J̃k =Wk1(ρ(Wk) ≥ Γk), k ∈ N, and Λ̃ =

∞
∑

k=1

δ(Ṽ k,J̃k)
.

Then Λ̃ is a Poisson random measure on [0, 1]d × R0 with intensity measure λd ⊗ ν, and since our proba-

bility space supports an U([0, 1])-random variable independent of L by assumption, there exists a sequence

(V k, Jk)k∈N which equals (Ṽ k, J̃k)k∈N in distribution, and satisfies

Λ =
∞
∑

k=1

δ(V k ,Jk) (4.5)

on [0, 1]d×R0 almost surely, cf. Proposition 2.1 in [38]. In the following we will describe some Poisson random

measures appearing in the limit of Theorem 3.1(i).

Definition 4.1. Let (U k)k∈N be an i.i.d. sequence of U([0, 1]d)-distributed random vectors, defined on an

extension of (Ω,F ,P) and independent of F , and set

Λ† =
∞
∑

k=1

δ(Uk,Jk). (4.6)

For Theorem 3.2(i) we need a proper point process representation of Λ restricted to [0, 1]k×R
d−k×R0, where

k = 1, . . . , d. To this aim, let us introduce a probability measure κ on R
d−k by κ(dx) = h1(x)λ

d−k(dx), where

h1 : R
d−k → R is given by h1(x1, . . . , xd−k) = 2−(d−k) exp(−

∑d−k
j=1 |xj|). Choose a probability measure ν̃ and

a strictly positive measurable function h2 : R → R such that ν̃(dy) = h2(y)ν(dy). Note that κ⊗ ν̃(dx,dy) =

h(x, y)λd−k(dx)ν(dy), where h(x, y) = h1(x)h2(y). On some probability space (Ω̃, F̃ , P̃) let (Ṽ
1
j )j∈N be an

i.i.d. sequence of U([0, 1]k)-distributed random vectors, (Ṽ
2
j)j∈N be an i.i.d. sequence of random vectors with
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the common distribution κ, (Wj)j∈N be an i.i.d. sequence of real-valued random variables with the common

distribution ν̃, and let (Γj)j∈N be a sequence of partial sums of i.i.d. standard exponential random variables.

Assume that the four sequences (Ṽ
1
j )j∈N, (Ṽ

2
j)j∈N, (Wj)j∈N and (Γj)j∈N are independent, and set

J̃j =Wj1(h(Ṽ
2
j ,Wj) ≤ Γ−1

j ), j ∈ N, and Λ̃ =

∞
∑

j=1

δ
(Ṽ

1

j ,Ṽ
2

j ,J̃j)
.

Then Λ̃ is a Poisson random measure on [0, 1]k×R
d−k×R0 with intensity measure λk⊗λd−k⊗ν. Using again

that our probability space is rich enough to support a U([0, 1])-distributed random variable independent of L,

we deduce by Proposition 2.1 in [38] that there exists a sequence (V 1
j ,V

2
j , Jj)j∈N defined on (Ω,F ,P) which

equals (Ṽ
1
j , Ṽ

2
j , J̃j)j∈N in distribution, and satisfies

Λ =
∞
∑

j=1

δ(V 1

j ,V
2

j ,Jj)
(4.7)

on [0, 1]k×R
d−k×R0 almost surely. In the following definition we will introduce the Poisson random measure

appearing in the limit of Theorem 3.2(i).

Definition 4.2. Let (U j)j∈N be an i.i.d. sequence of U([0, 1]k)-distributed random vectors, defined on an

extension of (Ω,F ,P) and independent of F , and set

Λ‡ =

∞
∑

j=1

δ(U j ,V
2

j ,Jj)
.

We note that Λ‡ appearing in Definition 4.2 is a Poisson random measure on [0, 1]k×R
d−k×R0 with intensity

measure λk ⊗ λd−k ⊗ ν. Moreover, the Poisson random measures Λ† and Λ‡ appearing in Definitions 4.1 and

4.2 are neither measurable with respect to L nor independent of L.

4.2 Proof of Theorem 3.1(i)

We denote the limiting variable in Theorem 3.1(i) by Z. We have that |Z| <∞ almost surely if

∫

R0×(0,1)d
min(1, |y|pH(u))ν(dy)du ≤

∫

R0

min
(

1, |y|p
∫

(0,1)d
H(u)du

)

ν(dy) <∞,

where H(u) :=
∑

j∈Zd |∆1h(j − u)|p, u ∈ (0, 1)d. Indeed,
∫

R0
min(1, |y|p)ν(dy) < ∞ since p > β. Therefore,

we only need to show
∫

(0,1)d H(u)du < ∞. For large ‖y‖, by rewriting ∆1h(y) =
∫

(0,1)d ∂
dh(y + v)dv and

using |∂dh(y)| ≤ C‖y‖d(α−1) we see that |∆1h(y)| ≤ C‖y‖d(α−1). By changing to spherical coordinates we

know that
∫

Bc
1
(0) ‖y‖

d(α−1)pdy <∞ if and only if α+ 1
p < 1. So the integral test implies that for large ρ > 0

there exists C > 0 such that
∑

j∈Bc
ρ(0)

|∆1h(j − u)|p ≤ C for all u ∈ (0, 1)d. Finally, for ‖j‖ < ρ, we have
∫

(0,1)d |∆1h(j −u)|pdu ≤ C
∫

B2ρ(0)
‖y‖dαpdy <∞ since α+ 1

p > 0. Hence, we conclude that |Z| <∞ almost

surely.

Now, we start with the proof of the stable convergence, which is divided into two steps. In Step 1

we prove Theorem 3.1(i) for ν(R0) < ∞, which corresponds to treatment of “big jumps of L”. In Step 2 we

show that “small jumps of L” are asymptotically negligible and complete the proof of Theorem 3.1(i) for

ν(R0) = ∞.
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Step 1. In the following we will prove Theorem 3.1(i) in case where ν(R0) < ∞. Choose a small ǫ ∈ (0, 1).

For every 0 ≤ i < n, decompose ∆1/nX(i/n) =Mn,ǫ(i) +R′
n,ǫ(i) +Rn,ǫ(i) so that

Mn,ǫ(i) =

∫

Bǫ(i/n)∩[0,1]d
∆1/ng (i/n− s)L(ds),

R′
n,ǫ(i) =

∫

Bǫ(i/n)\[0,1]d
∆1/ng (i/n − s)L(ds), (4.8)

Rn,ǫ(i) =

∫

Bc
ǫ (i/n)

∆1/ng (i/n− s)L(ds). (4.9)

First, we will prove the stable convergence for the power variation statistics built from Mn,ǫ(i) instead of

the original increments ∆1/nX(i/n); later we will show that contribution of the terms R′
n,ǫ(i) and Rn,ǫ(i) is

asymptotically negligible. Let Λ be given by (4.4) with the representation Λ =
∑∞

k=1 δ(V k,Jk) on [0, 1]d × R0

given by (4.5). We have

Mn,ǫ(i) =

∫

[0,1]d×R0

y∆1/ng (i/n− x)1 (‖i/n − x‖ < ǫ)Λ(dx,dy)

=

∞
∑

k=1

Jk∆1/ng (i/n− V k) 1 (‖i/n− V k‖ < ǫ) , (4.10)

where there are at most finitely many terms in the sum in (4.10) which are different from zero, due to the

fact ν(R0) <∞ and hence Λ([0, 1]d ×R0) <∞ almost surely. Let us now prove that as n→ ∞ on the event

Ωǫ := {ω ∈ Ω : ‖V k1(ω)− V k2(ω)‖ > 2ǫ for all k1 6= k2 with |Jk1(ω)|, |Jk2(ω)| 6= 0,

and V k(ω) ∈ [ǫ, 1− ǫ]d for all k with |Jk(ω)| 6= 0}

it holds

ndαp
∑

0≤i<n

|Mn,ǫ(i)|
p F-d
→

∞
∑

k=1

|Jk|
p
∑

j∈Zd

|∆1h(j −Uk)|
p = Z. (4.11)

Here (Uk)k∈N is a sequence of independent U([0, 1]d)-distributed random vectors, defined on the extension

of the underlying probability space (Ω,F ,P) and independent of the σ-algebra F . We first note that on Ωǫ

every Mn,ǫ(i) satisfies either |Mn,ǫ(i)| = 0 or |Mn,ǫ(i)| = |Jk∆1/ng(i/n − V k)| for some k. Hence, it holds

that on Ωǫ,

∑

0≤i<n

|Mn,ǫ(i)|
p = Vn,ǫ, where Vn,ǫ :=

∞
∑

k=1

|Jk|
p

∑

j∈Bnǫ({nV k})

∣

∣∆1/ng ((j − {nV k})/n)
∣

∣

p
.

Since Ωǫ ∈ F , on Ωǫ the relation (4.11) follows if we prove that

ndαpVn,ǫ
F-d
→ Z as n→ ∞. (4.12)

Next, we will prove for each k:

ndαp
∑

j∈Bnǫ({nV k})

∣

∣∆1/ng ((j − {nV k})/n)
∣

∣

p F-d
→

∑

j∈Zd

|∆1h(j −U k)|
p = H(Uk). (4.13)

Under Assumption (H1) we have the identity

ndαg ((j − {nV k})/n) = h(j − {nV k})f ((j − {nV k})/n)
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with limx→0 f(x) = 1 and by (4.1)

{nV k}
F-d
→ Uk.

By the continuous mapping theorem for stable convergence, we get that

ndαp
∑

j∈Br(0)

∣

∣∆1/ng ((j − {nV k})/n)
∣

∣

p F-d
→

∑

j∈Br(0)

|∆1h(j −U k)|
p =: Hr(Uk)

for some large r > 0. Since limr→∞Hr(u) = H(u) for u ∈ (0, 1)d, it suffices to show that

lim
r→∞

lim sup
n→∞

sup
u∈(0,1)d

ndαp
∑

j∈Bnǫ(u)\Br(0)

|∆1/ng((j − u)/n)|p = 0. (4.14)

Indeed, for j ∈ Bnǫ(u) \ Br(0), rewriting n
dα∆1/ng((j − u)/n) = nd(α−1)

∫

(0,1)d ∂
dg((j − u + v)/n)dv with

nd(α−1)|∂dg((j − u+ v)/n)| ≤ C‖j − u+ v‖d(α−1), we get

ndα
∣

∣∆1/ng((j − u)/n)
∣

∣ ≤ C‖j‖d(α−1).

Finally, we have limr→∞
∑

j∈Bc
r(0)

‖j‖d(α−1)p = 0 since α+1/p < 1, which implies (4.14) and thus completes

the proof of (4.13). By independence and the continuous mapping theorem we get for all K = 1, 2, . . .

K
∑

k=1

|Jk|
p

∑

j∈Bnǫ({nV k})

∣

∣∆1/ng ((j − {nV k})/n)
∣

∣

p F-d
→

K
∑

k=1

|Jk|
pH(U k). (4.15)

Since the event AK := {ω ∈ Ω : Jk(ω) = 0 for all k > K} is F-measurable, it follows by (4.15) that (4.12)

holds on AK for all K = 1, 2, . . . , and since AK ↑ Ω as K → ∞ we deduce that (4.12) holds.

Next, let us prove that the terms R′
n,ǫ(i) in (4.8) satisfy

lim
ǫ↓0

lim sup
n→∞

P

(

ndαp
∑

0≤i<n

|R′
n,ǫ(i)|

p > δ
)

= 0 (4.16)

for all δ > 0. For this purpose, choose a large rectangle B′ in R
d. Recall Λ associated to L by (4.4) and use

its representation Λ =
∑∞

k=1 δ(V ′
k,J

′
k
) on B

′ \ [0, 1]d ×R0, analogous to that in (4.5). Then, for p̄ = max(p, 1),

it holds that

(

ndαp
∑

0≤i<n

|R′
n,ǫ(i)|

p
)1/p̄

≤

∞
∑

k=1

(

Gn,ǫ(V
′
k)|J

′
k|

p
)1/p̄

with

Gn,ǫ(V
′
k) := ndαp

∑

0≤i<n

∣

∣∆1/ng(i/n− V ′
k)
∣

∣

p
1
(

‖i/n− V ′
k‖ < ǫ

)

.

Note that a U(B′ \ [0, 1]d)-distributed random vector V ′
k does not belong to Bǫ(i/n) if i ∈ [nǫ, n(1 − ǫ)]d.

Therefore, E[|Gn,ǫ(V
′
k)|] ≤ Cǫ(I0n,ǫ + I1n,ǫ) with

I0n,ǫ := npdα+d

∫

‖x‖< d
n

|∆ 1

n
g(x)|pdx, I1n,ǫ := npdα+d

∫

d
n
≤‖x‖<ǫ

|∆ 1

n
g(x)|pdx, (4.17)

where

I0n,ǫ ≤ Cnpdα+d

∫

‖x‖< 2d
n

|g(x)|pdx ≤ Cnpdα+d

∫

‖x‖< 2d
n

‖x‖pdαdx ≤ C

∫

‖x‖<2d
‖x‖pdαdx <∞
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since pdα + d − 1 > −1, whereas |nd∆ 1

n
g(x)| ≤

∫

(0,1)d |∂
dg(x + u

n )|du ≤ C‖x‖d(α−1) for d
n ≤ ‖x‖ < ǫ. This

implies

I1n,ǫ ≤ Cnpdα+d−pd

∫

d
n
≤‖x‖<ǫ

‖x‖pd(α−1)dx ≤ C

∫

d≤‖x‖
‖x‖pd(α−1)dx <∞

since pdα− pd+ d− 1 < −1. From E[|Gn,ǫ(V
′
k)|] ≤ Cǫ it follows

lim
ǫ↓0

lim sup
n→∞

P
(

Gn,ǫ(V
′
k)|J

′
k|

p > δ
)

= 0,

hence

lim
ǫ↓0

lim sup
n→∞

P

(

∞
∑

k=1

(

Gn,ǫ(V
′
k)|J

′
k|

p
)1/p̄

> δ1/p̄
)

= 0,

which in turn implies (4.16).

Finally, we consider the terms Rn,ǫ(i) having representation (4.9). We prove that

npdα
∑

0≤i<n

|Rn,ǫ(i)|
p P
→ 0 as n→ ∞. (4.18)

For this purpose, we will first determine a bounded function ψ ∈ Lθ(Rd), which satisfies

nd|∆1/ng(i/n − x)|1(x ∈ Bc
ǫ(i/n)) ≤ ψ(x) (4.19)

for all x ∈ R
d, 0 ≤ i < n and large enough n ∈ N. Let ρ > 0 be large. Consider the identity

nd∆1/ng(i/n− x) =

∫

(0,1)d
∂dg((u+ i)/n− x)du,

where |∂dg((u + i)/n − x)| ≤ C(ǫ/2)d(α−1) if x ∈ B2ρ(0) ∩ Bc
ǫ (i/n), since |∂dg(v)| ≤ C‖v‖d(α−1), v ∈

B3ρ(0). Furthermore, |∂dg((u + i)/n − x)| ≤ |∂dg(x/2)| if x ∈ Bc
2ρ(0), by monotonicity of |∂dg| on Bc

ρ(0).

Consequently, for x ∈ R
d, we define

ψ(x) := C1(x ∈ B2ρ(0)) + |∂dg(x/2)|1(x ∈ Bc
2ρ(0)),

where C depends on ǫ. In what follows, w.l.o.g. assume |ψ(x)| ≤ 1, x ∈ R
d.

With Λ given by (4.4) we set Λ1(·) = Λ(· ∩ {(x, y) ∈ R
d ×R0 : |ψ(x)y| > 1}) and for all B ∈ Bb(R

d) set

L1(B) =

∫

B×R0

yΛ1(dx,dy) and L0(B) = L(B)− L1(B).

The L0 and L1 are independent infinitely divisible random measures such that for every B ∈ Bb(R
d),

E

[

eitL
0(B)

]

= exp
(

∫

B×R0

(eity − 1− ity1(|y| ≤ 1))1(|ψ(x)y| ≤ 1)dxν(dy)
)

,

E

[

eitL
1(B)

]

= exp
(

∫

B×R0

(eity − 1− ity1(|y| ≤ 1))1(|ψ(x)y| > 1)dxν(dy)
)

, t ∈ R.

Then, for every i, we decompose ndRn,ǫ(i) = Q0
n,ǫ(i) +Q1

n,ǫ(i), where

Qj
n,ǫ(i) := :=

∫

Bc
ǫ (i/n)

nd∆1/ng(i/n− s)Lj(ds), j = 0, 1.
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We claim that for j = 0, 1,

npd(α−1)
∑

0≤i<n

|Qj
n,ǫ(i)|

p P
→ 0

follows from

sup
n∈N,0≤i<n

E[|Q0
n,ǫ(i)|

p] <∞ and sup
n∈N, 0≤i<n

|Q1
n,ǫ(i)| <∞ a.s., (4.20)

since pdα− pd+ d < 0.

For the first relation in (4.20), it suffices to show that
∫

Bc(i/n)
Φp

(

|nd∆1/ng(i/n − x)|,x
)

dx ≤ C,

where

Φp(v,x) =

∫

R0

(

|vy|p1(|vy| > 1) + |vy|21(|vy| ≤ 1)
)

1(|ψ(x)y| ≤ 1)ν(dy),

cf. Theorem 3.3 in [37]. In view of (4.19) we have that
∫

Bc(i/n)
Φp

(

|nd∆1/ng(i/n− x)|,x
)

dx ≤

∫

Rd×R0

|ψ(x)y|21(|ψ(x)y| ≤ 1)ν(dy),

where the estimate (5.2) implies
∫

R0

|xy|21(|xy| ≤ 1)ν(dy) ≤ C|x|θ for |x| ≤ 1,

and ψ ∈ Lθ(Rd) is bounded. We conclude that the first relation in (4.20) holds. Finally, the second relation

in (4.20) follows in view of (4.19) from

|Q1
n,ǫ(i)| ≤

∫

Bc
ǫ (i/n)×R0

|nd∆1/ng(i/n− x)y|Λ1(dx,dy) ≤

∫

Rd×R0

|ψ(x)y|Λ1(dx,dy) <∞,

where the last stochastic integral is well-defined because we have that ψ ∈ Lθ(Rd) is bounded and
∫

R0

min(|xy|, 1)1(|xy| > 1)ν(dy) = 2

∫ ∞

0
1(|xy| > 1)ν(dy) ≤ C|x|θ for |x| ≤ 1

by (5.2). This completes the proof of (4.18).

Let us now complete the proof of Theorem 3.1(i) in case ν(R0) <∞. For some small ǫ ∈ (0, 1) we have the

decomposition ∆ 1

n
X( i

n) =Mn,ǫ(i) +R′
n,ǫ(i) +Rn,ǫ(i). Correspondingly, with p̄ := max(p, 1) we decompose

(Vn(p))
1

p̄ = (Vn(p))
1

p̄ −
(

∑

0≤i<n

|Mn,ǫ(i)|
p
)

1

p̄
+
(

∑

0≤i<n

|Mn,ǫ(i)|
p
)

1

p̄
.

Concerning the last term, the limiting result (4.11) holds on the event Ωǫ with the limit satisfying Z
1

p̄1(Ωǫ) →

Z
1

p̄ , since P(Ωǫ) ↑ 1 as ǫ ↓ 0. Applying (4.2) and (4.3), we see that

∣

∣

∣
(Vn(p))

1

p̄ −
(

∑

0≤i<n

|Mn,ǫ(i)|
p
)

1

p̄
∣

∣

∣
≤
(

∑

0≤i<n

|R′
n,ǫ(i)|

p
)

1

p̄
+
(

∑

0≤i<n

|Rn,ǫ(i)|
p
)

1

p̄
.

where the r.h.s. terms satisfy (4.16), (4.18), proving that

lim
ǫ↓0

lim sup
n→∞

P

(∣

∣

∣
(ndαpVn(p))

1

p̄ −
(

ndαp
∑

0≤i<n

|Mn,ǫ(i)|
p
)

1

p̄
∣

∣

∣
> δ
)

= 0
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for all δ > 0. We conclude that (ndαpVn(p))
1

p̄
F-d
→ Z

1

p̄ as n→ ∞.

Step 2. Let ν(R0) = ∞. We choose a some small ǫ > 0, and use Λ given by (4.4) to define Λ>ǫ(·) =

Λ(· ∩ (Rd × [−ǫ, ǫ]c)) and for all B ∈ Bb(R
d) set

L>ǫ(B) =

∫

B×R0

yΛ>ǫ(dx,dy) and L≤ǫ(B) = L(B)− L>ǫ(B).

Then L≤ǫ and L>ǫ are independent infinitely divisible random measures such that for every B ∈ Bb(R
d),

E

[

eitL
≤ǫ(B)

]

= exp
(

λd(B)

∫

0<|y|≤ǫ
(eity − 1− ity1(|y| ≤ 1))ν(dy)

)

,

E

[

eitL
>ǫ(B)

]

= exp
(

λd(B)

∫

|y|>ǫ
(eity − 1− ity1(|y| ≤ 1))ν(dy)

)

, t ∈ R.

Then we decompose ∆1/nX(i/n) = ∆1/nX
≤ǫ(i/n) + ∆1/nX

>ǫ(i/n) with

∆1/nX
≤ǫ(i/n) =

∫

Rd

∆1/ng(i/n− s)L≤ǫ(ds) and ∆1/nX
>ǫ(i/n) =

∫

Rd

∆1/ng(i/n− s)L>ǫ(ds).

Let Λ† be the Poisson random measure given by (4.6). Since ν([−ǫ, ǫ]c) <∞, we obtain by Step 1 that

ndαp
∑

0≤i<n

|∆1/nX
>ǫ(i/n)|p

F-d
→

∫

[0,1]d×[−ǫ,ǫ]c
|y|p

∑

j∈Zd

|∆1h(j − u)|pΛ†(du,dy) =: Z>ǫ as n→ ∞.

On the other hand, as ǫ ↓ 0

Z>ǫ P
→

∫

[0,1]d×R0

|y|p
∑

j∈Zd

|∆1h(j − u)|pΛ†(du,dy) = Z.

By (4.2) and (4.3), it only remains to show that for all δ > 0,

lim
ǫ↓0

lim sup
n→∞

P

(

ndαp
∑

0≤i<n

|∆1/nX
≤ǫ(i/n)|p > δ

)

= 0. (4.21)

Indeed, by Markov’s inequality (4.21) follows if we show that

lim
ǫ↓0

lim sup
n→∞

ndαp+d
E[|∆ 1

n
X≤ǫ(0)|p] = 0,

for which it suffices to show that

lim
ǫ↓0

lim sup
n→∞

∫

Rd

∫

0<|y|≤ǫ
φp(n

d(α+ 1

p
)
∆ 1

n
g(x)y)ν(dy)dx = 0, (4.22)

where φp(y) := |y|p1(|y| > 1) + |y|21(|y| ≤ 1) for y ∈ R, cf. Theorem 3.3 in [37]. Using (4.19) with bounded

ψ ∈ Lθ(Rd), we obtain

∫

Bc
1
(0)

∫

0<|y|≤ǫ
φp(n

d(α+ 1

p
)
∆ 1

n
g(x)y)ν(dy)dx

≤

∫

Bc
1
(0)

∫

0<|y|≤ǫ

(

|nd(α+
1

p
−1)ψ(x)y|p1(|ψ(x)| > 1) + |nd(α+

1

p
−1)ψ(x)y|2

)

ν(dy)dx = o(1)
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as n→ ∞, since α+ 1
p < 1. Using φp(y) ≤ |y|p + |y|21(p > 2) for y ∈ R, we get

∫

B1(0)

∫

0<|y|≤ǫ
φp(n

d(α+ 1

p
)∆ 1

n
g(x)y)ν(dy)dx ≤ In(p)

∫

0<|y|≤ǫ
|y|pν(dy) + In(2)

∫

0<|y|≤ǫ
|y|2ν(dy)1(p > 2)

with the second term present on the r.h.s. only if p > 2 and with

In(q) :=

∫

B1(0)
|n

d(α+ 1

p
)
∆ 1

n
g(x)|qdx, q > 0.

Note that by Jensen’s inequality In(2) ≤ C(In(p))
2

p if p > 2, whereas In(p) ≤ C follows from analysis of

the integrals in (4.17). Similarly to (5.3), we have
∫ ǫ
0 y

pν(dy) ≤ Cǫp−β = o(1) as ǫ ↓ 0, since p > β. This

completes the proof of (4.22) and (4.21), and hence the proof of Theorem 3.1(i).

4.3 Proof of Theorem 3.1(ii)

Let us verify that the limiting constant in Theorem 3.1(ii) is finite. This follows from
∫

Rd

|∆1h(s)|
βds <∞. (4.23)

Choose ρ > 0 to be large. Then it holds
∫

B2ρ(0)
|∆1h(s)|

β ≤ C

∫

B3ρ(0)
|h(s)|βds = C

∫

B3ρ(0)
‖s‖dαβds <∞

if and only if α > −1/β. For s ∈ Bc
2ρ(0), rewrite

∆1h(s) =

∫

[0,1)d
∂dh(s+ u)du,

where ∂dh(s) = ‖s‖d(α−1)ℓ(s) with ℓ(s) :=
∏d

i=1(dα− 2(i− 1))(si/‖s‖) satisfies

|∆1h(s)| ≤

∫

[0,1)d
|∂dh(s+ u)|du ≤ C

∫

[0,1)d
‖s+ u‖d(α−1)du ≤ C‖s‖d(α−1).

Then
∫

Bc
2ρ(0)

‖s‖d(α−1)βds <∞

if and only if α+ 1/β < 1. Hence, (4.23) holds.

Now, we show the convergence in probability in Theorem 3.1(ii). Using the scaling property of the β-stable

random measure L, we have that {ndH∆1/nX(i/n)}i∈Zd
fdd
= {Yn(i)}i∈Zd with

Yn(i) :=

∫

Rd

ndα∆1/ng((i − s)/n)L(ds).

Thus, we deduce the distributional identity

ndHpVn(p)
d
=

∑

0≤i<n

|Yn(i)|
p.

Next, we approximate (Yn(i))i∈Zd by (Y∞(i))i∈Zd , where

Y∞(i) :=

∫

Rd

∆1h(i − s)L(ds)

18



is well defined due to (4.23). More specifically, we will prove that

E[|Yn(0)− Y∞(0)|p] = C
(

∫

Rd

|ndα∆1/ng(s/n)−∆1h(s)|
βds

)p/β
= o(1). (4.24)

Observe that for almost every s ∈ R
d, the pointwise convergence ndα∆1/ng(s/n) → ∆1h(s) follows from the

definition of g and homogeneity of h. Let us verify the dominated convergence argument. By the definition

of g and homogeneity of h, we have ndα|g(s/n)| ≤ Cmax(1, ‖s‖dα) for ‖s‖ < 3ρ. For 2ρ ≤ ‖s‖ < 2ρn, we

have

ndα|∆1/ng(s/n)| ≤ nd(α−1)

∫

[0,1)d
|∂dg((s + u)/n)|du ≤ C‖s‖d(α−1)

using ‖s+ u‖ ≥ ‖s‖/2 and |∂dg(v)| ≤ C‖v‖d(α−1), ‖v‖ < 3ρ. Hence the dominated convergence theorem in

Lβ(Rd) implies
∫

B2ρn(0)
|ndα∆1/ng(s/n)−∆1h(s)|

βds = o(1).

We next consider

In := ndαβ
∫

Bc
2ρn(0)

|∆1/ng(s/n)|
βds,

where

nd|∆1/ng(s/n)| ≤

∫

[0,1)d
|∂dg((s + u)/n)|du ≤ |∂dg(s/(2n))|

using ‖(s + u)/n‖ ≥ ‖s/(2n)‖ ≥ ρ and the monotonicity of |∂dg| on Bc
ρ(0). Hence

In ≤ Cnd(α−1)β

∫

Rd

|∂dg(s/(2n))|β1(‖s‖ ≥ 2ρn)ds

= Cnd(H−1)β

∫

Bc
ρ(0)

|∂dg(s)|βds = o(1),

since H < 1. From this estimate and (4.23) it follows that

∫

Bc
2ρn(0)

|ndα∆1/ng(s/n)−∆1h(s)|
βds = o(1).

This completes the proof of (4.24), which implies convergence in probability

n−d
∑

0≤i<n

|Yn(i)− Y∞(i)|p
P
→ 0. (4.25)

By combining Theorem 4.1 and Remark 4.3 of [45] it follows that the stationary process (Y∞(i))i∈Zd is

ergodic since it is a stable moving average. Therefore, we obtain from a multiparameter Birkhoff theorem

[45, Theorem 2.8] the convergence

n−d
∑

0≤i<n

|Y∞(i)|p
P
→ E[|Y∞(0)|p]. (4.26)

By (4.2), (4.3), (4.25) and (4.26) it follows that

nd(Hp−1)Vn(p)
d
= n−d

∑

0≤i<n

|Yn(i)|
p P
→ E[|Y∞(0)|p].
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Due to the scaling properties of stable random variables it follows that E[|Y∞(0)|p] coincides with the limiting

constant in the statement of Theorem 3.1(ii), and hence the proof of convergence in probability is complete.

Finally, we recall that convergence in L1 follows from convergence in probability and uniform integrability.

In turn, a sequence of random variables is uniformly integrable if it is bounded in Lq for some q > 1. Let us

choose a q > 1 such that qp < β. By Minkowski’s inequality we conclude that

E[|nd(Hp−1)Vn(p)|
q] ≤

(

n−d
∑

0≤i<n

(

E[|ndH∆1/nX(i/n)|qp]
)

1

q

)q

= E[|ndH∆1/nX(0)|qp]

= E[|L([0, 1]d)|qp]
(

∫

Rd

|ndα∆1/ng(s/n)|
βds

)qp/β
= O(1),

where the last relation follows from (4.24). Hence, the statistic in Theorem 3.1(ii) is uniformly integrable,

and the proof is complete.

4.4 Proof of Theorem 3.1(iii)

We start noticing that under (H1), g has continuous partial derivatives up to d-order in all s = (s1, . . . , sd) ∈

R
d with si 6= 0 for all i = 1, . . . , d. Furthermore,

(a) :

∫

Bρ(0)
|∂dg(s)|βds <∞ and (b) :

∫

Bρ(0)
|∂dg(s)|pds <∞, (4.27)

which follows from the estimate |∂dg(s)| ≤ C‖s‖d(α−1) for all s ∈ Bρ(0), and the fact that
∫

Bρ(0)
‖s‖dr(α−1)ds <∞ if and only if dr(α− 1) + d− 1 > −1. The latter condition is satisfied for r = p and

r = β since 1 < α + 1/max(β, p). From (4.27)(b) and p ≥ 1, we deduce that
∫

Bρ(0)
|∂dg(s)|ds < ∞ from

which we conclude that

g([s, t]) =

∫

[s,t]
∂dg(u)du, for all s ≤ t, (4.28)

where the left-hand side of (4.28) denotes the increments of g over [s, t] defined in (2.3). We now define a

process Y = (Y (t))t∈[0,1]d by

Y (t) =

∫

Rd

∂dg(t − s)L(ds).

It follows from [37, Theorem 2.7], that Y (t) is well-defined if and only if

∫

Rd

V
(

∂dg(s)
)

ds <∞, where V (x) :=

∫ ∞

0
min

(

|xy|2, 1
)

ν(dy) for x ∈ R. (4.29)

Recall the estimate (5.2), where we have V (x) ≤ C|x|θ for |x| < 1, whereas V (x) ≤ C|x|β for |x| ≥ 1.

By assumption (H1), there exists a ρ > 0 such that ∂dg is bounded on Bc
ρ(0) and is in Lθ(Bc

ρ(0)), and

∂dg ∈ Lβ(Bρ(0)), cf. (4.27)(a), which shows (4.29).

Next we will show existence of a measurable and separable modification of Y with values in the extended

reals [−∞,∞], and to this aim we let LΦ denote the Musielak–Orlicz space of all h : Rd → R with

Φ(h) :=

∫

Rd

(

∫ ∞

0

(

|yh(s)|2 ∧ 1
)

ν(dy)
)

ds <∞

equipped with the F -norm

‖h‖Φ = inf{c > 0 : Φ(h/c) ≤ 1}.

20



Then, LΦ is a separable linear metric space, and hence the mapping t 7→ ft := ∂dg(t− ·) from [0, 1]d into LΦ

is measurable if t 7→ ‖g − ft‖Φ is measurable for all g ∈ LΦ. However, the latter follows directly from the

joint measurability of (s, t) 7→ ∂dg(t − s). Since the mapping h ∈ LΦ into
∫

Rd h(s)L(ds) ∈ L0 is continuous,

cf. Theorem 3.3 of [37], it follows that the mapping t ∈ [0, 1]d into Y (t) ∈ L0 is measurable, from which we

conclude that there exists a measurable and separable modification of (Y (t))t∈[0,1]d , cf. Theorem 3 of [16]. In

the following (Y (t))t∈[0,1]d will always denote such measurable and separable modification.

Step 1. We now consider the integrability of Y = (Y (t))t∈[0,1]d with respect to t. It follows from [11,

Theorem 3.1(i)] that Y has sample paths in Lp([0, 1]d, λd) almost surely if the following conditions hold:

‖∂dg(· − s)‖p :=
(

∫

[0,1]d
|∂dg(t − s)|pdt

)1/p
<∞ for λd-almost every s ∈ R

d; (4.30)

for some c > 0 and δ′ > 0,
∫

Rd

ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds <∞ and

∫

[0,1]d
σp(t)dt <∞, (4.31)

where

σ(t) := inf{θ > 0 : Φ(∂dg(t − ·)/θ) ≤ δ′},

and
∫

[0,1]d

(

∫

Rd

(

∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t − s)|pν(dy)

)

ds
)

dt <∞, (4.32)

where the inner integral in the last formula is set to be zero, if its lower limit of integration exceeds the upper

limit.

The condition (4.30) holds because ∂dg is bounded on Bc
ρ(0) and |∂dg(t)| ≤ C‖t‖d(α−1) for all t ∈ Bρ(0),

where
∫

Bρ(0)
‖t‖pd(α−1)ds <∞ if and only if pd(α− 1) + d− 1 > −1. Next, let us verify the first condition in

(4.31). Let ρ > 0 be large enough. For s ∈ B2ρ(0), use ‖∂dg(· − s)‖p ≤ C, furthermore, ν((1/C,∞)) < ∞.

For s ∈ Bc
2ρ(0), t ∈ [0, 1]d, note that |∂dg(t − s)| ≤ |∂dg(s/2)|, which leads to ‖∂dg(· − s)‖p ≤ |∂dg(s/2)|.

Finally, use that ∂dg ∈ Lθ(Bc
ρ(0)) is bounded and ν((y,∞)) ≤ Cy−θ for y ≥ 1 to see that

∫

Bc
2ρ(0)

ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds ≤ C

∫

Bc
2ρ(0)

|∂dg(s/2)|θds <∞.

Note that Φ(∂dg(t− ·)), and hence σ(t), both do not depend on t ∈ [0, 1]d. With V (x) as given in (4.29), we

have that

Φ(∂dg(t − ·)) =

∫

Rd

V (∂dg(s))ds <∞

since α+ 1/β > 1. Hence, we conclude that the second condition in (4.31) holds.

Finally, we show (4.32). Recall that ρ is large enough so that we have |∂dg(t − s)| ≤ |∂dg(s/2)| ≤ C for

s ∈ Bc
2ρ(0), t ∈ [0, 1]d. We obtain

∫

[0,1]d

(

∫

Bc
2ρ(0)

(

∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t − s)|pν(dy)

)

ds
)

dt

≤

∫

Bc
2ρ(0)

( cp

‖∂dg(· − s)‖pp

∫

[0,1]d
|∂dg(t − s)|pdt

)(

∫ ∞

C/|∂dg(s/2)|
ν(dy)

)

ds

≤ C

∫

Bc
2ρ(0)

|∂dg(s/2)|θds <∞.
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We next deal with

I :=

∫

[0,1]d

(

∫

B2ρ(0)

(

∫ c/‖∂dg(·−s)‖p

cσ(t)/|∂dg(t−s)|
|y∂dg(t − s)|pν(dy)

)

ds
)

dt.

If p > β, then for t ∈ [0, 1]d, s ∈ B2ρ(0),
∫ ∞

0
1
( cσ(t)

|∂dg(t − s)|
< y <

c

‖∂dg(· − s)‖p

)

ypν(dy)

≤

∫ 1

0
ypν(dy) +

cp

‖∂dg(· − s)‖pp

∫ ∞

1
ν(dy) ≤ C

(

1 +
1

‖∂dg(· − s)‖pp

)

and so

I ≤ C

∫

[0,1]d

(

∫

B2ρ(0)

(

1 +
1

‖∂dg(· − s)‖pp

)

|∂dg(t − s)|pds
)

dt

= C

∫

B2ρ(0)
(‖∂dg(· − s)‖pp + 1)ds <∞.

If p ≤ β < β′ with α+ 1/β′ > 1, then for t ∈ [0, 1]d, s ∈ B2ρ(0),
∫ ∞

0
1
( cσ(t)

|∂dg(t − s)|
< y <

c

‖∂dg(· − s)‖p

)

ypν(dy)

≤

∫ 1

0
1
( cσ(t)

|∂dg(t − s)|
< y <

c

‖∂dg(· − s)‖p

)

y(p−β′)+β′
ν(dy) +

cp

‖∂dg(· − s)‖pp

∫ ∞

1
ν(dy)

≤
( cσ(t)

|∂dg(t − s)|

)p−β′ ∫ 1

0
yβ

′
ν(dy) +

cp

‖∂dg(· − s)‖pp

∫ ∞

1
ν(dy)

≤ C
(

|∂dg(t − s)|β
′−p +

1

‖∂dg(· − s)‖pp

)

and so

I ≤ C

∫

[0,1]d

(

∫

B2ρ(0)

(

|∂dg(t − s)|β
′−p +

1

‖∂dg(· − s)‖pp

)

|∂dg(t − s)|pds
)

dt

= C

∫

B2ρ(0)

(

∫

[0,1]d
|∂dg(t − s)|β

′
dt+ 1

)

ds <∞.

We conclude that (4.32) holds.

Step 2. In the following we will show that for all t ∈ [0, 1]d we have almost surely

X([0, t]) =

∫

[0,t]
Y (u)du. (4.33)

Note that the right-hand side of (4.33) is well-defined since Y has sample paths in Lp([0, 1]d, λd) ⊆

L1([0, 1]d, λd). Choose a probability measure κ on R
d×R equivalent to λd⊗ ν and let η denote the density of

κ with respect to λd⊗ν. According to Theorem 5.1 and Remark 5.2(a) of [39] we may choose three sequences

(ǫj)j∈N, (Γj)j∈N and (ξj)j∈N, where ξj = (ξ1j , ξ
2
j ) ∈ R

d ×R, such that

Y (t) =

∞
∑

j=1

ǫj∂
dg(t − ξ1j)ξ

2
j1(η(ξj) ≤ Γ−1

j ), (4.34)

X(t) =
∞
∑

j=1

ǫjg(t, ξ
1
j )ξ

2
j1(η(ξj) ≤ Γ−1

j )
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almost surely for all t ∈ [0, 1]d. Moreover, (ξj)j∈N is an i.i.d. sequence of Rd × R-valued random vectors

with the common distribution κ, (Γj)j∈N is a sequence of partial sums of i.i.d. standard exponential random

variables, and (ǫj)j∈N denotes an i.i.d. sequence of symmetric Bernoulli random variables, that is, P(ǫj =

1) = P(ǫj = −1) = 1/2 for all j ∈ N. In addition, the three sequences (ξj)j∈N, (Γj)j∈N and (ǫj)j∈N are

independent. Since conditionally on (ξj ,Γj)j∈N, the summands in (4.34) are independent and symmetric

random elements with values in L1([0, 1]d, λd) and furthermore Y has paths in L1([0, 1]d, λd), it follows by the

Itô–Nisio theorem, see [26, Theorem 2.1.1], that the series (4.34) convergence in L1([0, 1]d, λd) with probability

one. In particular, for all t ∈ [0, 1]d we have with probability one

∫

[0,t]
Y (u)du =

∞
∑

j=1

ǫj

(

∫

[0,t]
∂dg(u− ξ1j)du

)

ξ2j1(η(ξj) ≤ Γ−1
j )

=

∞
∑

j=1

ǫjg([−ξ1j , t− ξ1j ])ξ
2
j1(η(ξj) ≤ Γ−1

j ) = X([0, t]),

where the second equality follows by (4.28). Hence the proof of (4.33) is complete.

Step 3. For a given p ≥ 1, we denote by ACp([0, 1]d) the space of functions ξ : [0, 1]d → R such that there is

a function ∂dξ ∈ Lp([0, 1]d, λd) with

ξ([0, t]) =

∫

[0,t]
∂dξ(u)du, for all t ∈ [0, 1]d.

For ξ ∈ ACp([0, 1]d) let us prove that as n→ ∞,

nd(p−1)V ξ
n (p) := nd(p−1)

∑

0≤i<n

|∆1/nξ(i/n)|
p →

∫

[0,1]d
|∂dξ(t)|pdt. (4.35)

Firstly, assume that ξ : Rd → R has continuous partial derivatives up to the (2d)-th order at every point

t ∈ R
d. We have that nd∆1/nξ(i/n) = ∂dξ(i/n)+rn(i/n), where |rn(i/n)| ≤ C/n uniformly for all 0 ≤ i < n.

By Minkowski’s inequality,

∣

∣

∣

(

nd(p−1)V ξ
n (p)

)1/p
−
(

n−d
∑

0≤i<n

|∂dξ(i/n)|p
)1/p∣

∣

∣
≤
(

n−d
∑

0≤i<n

|rn(i/n)|
p
)1/p

= o(1)

as n→ ∞. By continuity of ∂dξ, we have that

n−d
∑

0≤i<n

|∂dξ(i/n)|p →

∫

[0,1]d
|∂dξ(t)|pdt as n→ ∞.

This proves (4.35). Then, for general ξ ∈ ACp([0, 1]d), p ≥ 1, we approximate V ξ
n (p) by V

ξm
n (p), where (ξm)

is a sequence of functions having continuous partial derivatives up to the (2d)-th order at every point in R
d.

Indeed, the existence of such a sequence follows since continuous functions are dense in Lp([0, 1]d, λd). A

combination of (4.33) and (4.35) finishes the proof Theorem 3.1(iii).

4.5 Proof of Theorem 3.2(i)

We denote by Z the limiting variable

∫

[0,1]k×Rd−k×R0

k
∏

j=1

Hj(uj)

d
∏

j=k+1

‖g′j(· − xj)‖
p
p|y|

pΛ‡(du,dx,dy)
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with Hj(u) :=
∑

l∈Z |∆1hj(l − u)|p, u ∈ (0, 1), j = 1, . . . , k, and ‖g′j(· − x)‖p := (
∫ 1
0 |g′j(t − x)|pdt)1/p,

x ∈ R, j = k + 1, . . . , d, where Λ† is a Poisson random measure with intensity measure λk ⊗ λd−k ⊗ ν on

[0, 1]k × R
d−k × R0 introduced in Definition 4.2. Then |Z| <∞ almost surely if

∫

[0,1]k×Rd−k×R0

min
(

1,

k
∏

j=1

Hj(u)

d
∏

j=k+1

‖g′j(· − xj)‖
p
p|y|

p
)

dudxν(dy) <∞.

As in Theorem 3.1(i) for d = 1, we have
∫ 1
0 Hj(u)du < ∞ since αj + 1/p ∈ (0, 1), j = 1, . . . , k. Hence, we

only need to show that

∫

Rd−k×(0,∞)
min

(

1,

d
∏

j=k+1

‖g′j(· − xj)‖
p
p|y|

p
)

dxν(dy) <∞. (4.36)

If p 6= θ < 2, then for |x| ≤ 1,
∫ ∞

0
min(1, |xy|p)ν(dy) ≤ |x|p

∫ 1

0
ypν(dy) + C

(

|x|p
∫ 1/|x|

1
yp−θ−1dy +

∫ ∞

1/|x|
y−θ−1dy

)

≤ C|x|min(p,θ),

since p > β. On the other hand, if θ = 2 then for x ∈ R,
∫ ∞

0
min(1, |xy|p)ν(dy) ≤

∫ ∞

0
min(1, |xy|min(p,2))ν(dy) ≤ C|x|min(p,2),

since min(p, 2) > β and
∫∞
0 y2ν(dy) < ∞. This proves (4.36), because for αj + 1/p > 1 and |g′j(s)| ≥ |g′j(t)|

if ρ ≤ |s| ≤ |t|, it holds that

‖g′j(· − x)‖p ≤ C1(|x| < 2ρ) + |g′j(x/2)|1(|x| ≥ 2ρ), x ∈ R,

as in the proof of Theorem 3.1(iii) with d = 1 (see also the verification of (4.30) in the proof of Theorem

3.2(iii)), moreover, g′j ∈ Lq((−ρ, ρ)c), q = min(p, θ), j = k + 1, . . . , d.

Step 1. Let ν(R0) < ∞. We choose a small ǫ ∈ (0, 1) and a large m ∈ N. The way how m depends on ǫ will

be specified later. Now we decompose every ∆1/nX(i/n) = M̃n,ǫ(i) + R̃′
n,ǫ(i) + R̃n,ǫ(i) so that

M̃n,ǫ(i) =

∫

[0,1]k×Rd−k

k
∏

j=1

1(|ij/n− sj| < ǫ)
d
∏

j=k+1

1(|sj | ≤ m)∆1/ng(i/n− s)L(ds),

R̃′
n,ǫ(i) =

∫

Rk\[0,1]k×Rd−k

k
∏

j=1

1(|ij/n− sj| < ǫ)

d
∏

j=k+1

1(|sj | ≤ m)∆1/ng(i/n− s)L(ds), (4.37)

R̃n,ǫ(i) =

∫

Rd

(

1−

k
∏

j=1

1(|ij/n− sj| < ǫ)

d
∏

j=k+1

1(|sj | ≤ m)
)

∆1/ng(i/n − s)L(ds). (4.38)

First, we will prove the stable convergence for the power variation statistics built from M̃n,ǫ(i) instead of

the original increments ∆1/nX(i/n). For this purpose, we use Λ associated to L by (4.4) and on [0, 1]k ×

R
d−k × R0 having the representation Λ =

∑∞
l=1 δ(V 1

l ,V
2

l ,Jl)
with (V 1

l ,V
2
l ) = V l = (Vl,1, . . . , Vl,d) given in

(4.7). Particularly, we express the terms M̃n,ǫ(i) as integrals with respect to Λ on [0, 1]k × R
d−k × R0:

M̃n,ǫ(i) =

∫

[0,1]k×Rd−k×R0

k
∏

j=1

1(|ij/n− xj | < ǫ)

d
∏

j=k+1

1(|xj | ≤ m)∆1/ng(i/n− x)yΛ(dx,dy)

=

∞
∑

l=1

k
∏

j=1

1(|ij/n− Vl,j| < ǫ)

d
∏

j=k+1

1(|Vl,j | ≤ m)∆1/ng(i/n− V l)Jl.

24



We will prove that as n→ ∞ on the event

Ωǫ :=
{

ω ∈ Ω : ‖V 1
l1(ω)− V 1

l2(ω)‖∞ > 2ǫ and V 1
l1 ,V

1
l2(ω) ∈ [ǫ, 1− ǫ]k

with Jl1(ω), Jl2(ω) 6= 0 for all l1, l2 = 1, 2, . . .
}

it holds

nα1p+p−1
∑

0≤i<n

|M̃n,ǫ(i)|
p F-d
→

∞
∑

l=1

|Jl|
p

k
∏

j=1

Hj(Ul,j)

d
∏

j=k+1

‖g′j(· − Vl,j)‖
p
p 1(|Vl,j | ≤ m) = Z̃, (4.39)

where (U l)l∈N with U l = (Ul,1, . . . , Ul,k) is a sequence of independent U([0, 1]k)-distributed random variables,

defined on the extension of the underlying probability space (Ω,F ,P) and independent of the σ-algebra F . To

prove (4.39), we observe that on Ωǫ every M̃n,ǫ(i) satisfies either |M̃n,ǫ(i)| = 0 or |M̃n,ǫ(i)| = |Jl∆1/ng(i/n−

V l)|
∏d

j=k+1 1(|Vl,j | ≤ m) for some l = 1, 2, . . . Hence, it holds that on Ωǫ,

∑

0≤i<n

|M̃n,ǫ(i)|
p = Ṽn,ǫ,

where

Ṽn,ǫ :=
∞
∑

l=1

|Jl|
p

k
∏

j=1

∑

i∈Bnǫ({nVl,j})

|∆1/ngj((i− {nVl,j})/n)|
p

d
∏

j=k+1

∑

0≤i<n

|∆1/ngj(i/n − Vl,j)|
p1(|Vl,j | ≤ m).

Since Ωǫ ∈ F then (4.39) on Ωǫ follows if we prove that

n
∑k

j=1
αjp+(d−k)(p−1)Ṽn,ǫ

F-d
→ Z̃ as n→ ∞. (4.40)

To prove (4.40) we use the following arguments. On the left hand side of (4.40) each summand indexed by l

is a product of independent factors. As for these factors, we have

n−1
∑

0≤i<n

|n∆1/ngj(i/n − Vl,j)|
p1(|Vl,j | ≤ m)

P
→

∫ 1

0
|g′j(t− Vl,j)|

pdt1(|Vl,j | ≤ m) = ‖g′j(· − Vl,j)‖
p
p 1(|Vl,j | ≤ m) as n→ ∞,

using Lemma 4.4 of [9] and αj + 1/p > 1 for j = k + 1, . . . , d, and

nαjp
∑

i∈Bnǫ({nVl,j})

|∆1/ngj((i− {nVl,j})/n)|
p F-d
→
∑

i∈Z

|∆1hj(i− Ul,j)|
p = Hj(Ul,j),

using the proof of Theorem 3.1(i) and αj + 1/p < 1 for j = 1, . . . , k. At last we note that as ǫ ↓ 0 together

with m→ ∞,

Z̃1(Ωǫ)
P
→

∞
∑

l=1

|Jl|
p

k
∏

j=1

Hj(Ul,j)

d
∏

j=k+1

‖g′j(· − Vl,j)‖
p
p

=

∫

[0,1]k×Rd−k×R0

|y|p
k
∏

j=1

Hj(uj)

d
∏

j=k+1

‖g′j(· − xj)‖
p
pΛ

‡(du,dx,dy) = Z.
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In the sequel let m→ ∞ so that ǫmd−k ↓ 0 as ǫ ↓ 0. Let us prove that the terms R̃′
n,ǫ(i) in (4.37) satisfy

lim
ǫ↓0

lim sup
n→∞

P

(

n
∑k

j=1
αjp+(d−k)(p−1)

∑

0≤i<n

|R̃′
n,ǫ(i)|

p > δ
)

= 0 (4.41)

for all δ > 0. The proof runs similarly to that of (4.16). Recall that Λ is associated to L by (4.4) and use its

representation Λ =
∑∞

l=1 δ(V ′1
l,j ,V

′2
l,j ,J

′
l
) on [−ǫ, 1 + ǫ]k \ [0, 1]k × [−m,m]d−k × R0, analogous to that in (4.7).

Let (V ′1
l,j,V

′2
l,j) = V l,j = (Vl,1, . . . , Vl,d). Then, for p̄ = max(p, 1), it holds that

(

n
∑k

j=1
αjp+(d−k)(p−1)

∑

0≤i<n

|R̃′
n,ǫ(i)|

p
)1/p̄

≤

∞
∑

l=1

(Gn,ǫ(V
′
l,j)|J

′
l |
p)1/p̄, (4.42)

furthermore, on the right hand side of (4.42) every summand satisfies

Gn,ǫ(V
′
l,j) := n

∑k
j=1

αjp+(d−k)(p−1)
∑

0≤i<n

|∆1/ng(i/n− V ′
l)|

p
k
∏

j=1

1(|ij/n− V ′
l,j| < ǫ) = OP(1)

as n→ ∞. The last property follows from

nαjp+1

∫

|x|<1
|∆1/ngj(x)|

pdx = O(1) (4.43)

for αj + 1/p ∈ (0, 1), j = 1, . . . , k, see the proof of Theorem 3.1(i), and

np
∫

|x|<2/n
|∆1/ngj(x)|

pdx ≤ Cnp
∫

|x|<3/n
|gj(x)|

pdx ≤ Cnp
∫

|x|<3/n
|x|αjpdx = Cnp−(αjp+1) = o(1)(4.44)

combined with

np
∫

|x|≥2/n
|∆1/ngj(x)|

pdx ≤ C

∫

|x|<ρ
|x|(αj−1)pdx+

∫

|x|>ρ
|g′j(x)|

pdx <∞ (4.45)

for αj + 1/p > 1, j = k + 1, . . . , d. From this we conclude (4.41) since the number of summands on the right

hand side of (4.42) has mean λk([−ǫ, 1 + ǫ]k \ [0, 1]k)λd−k([−m,m]d−k)ν(R0) = O(ǫmd−k) = o(1).

Finally, consider the terms R̃n,ǫ(i) in (4.38). Let us prove that

lim
ǫ↓0

lim sup
n→∞

P

(

n
∑k

j=1
αjp+(d−k)(p−1)

∑

0≤i<n

|R̃n,ǫ(i)|
p > δ

)

= 0 (4.46)

for all δ > 0. Without loss of generality we discuss the case, where

R̃n,ǫ(i) =

∫

Rd

∏

0<j≤J

1(|ij/n− sj| < ǫ)
∏

J<j≤k

1(|ij/n− sj| ≥ ǫ)

×
∏

k<j≤K

1(|sj | > m)
∏

K<j≤d

1(|sj | ≤ m)∆1/ng(i/n − s)L(ds)

for 0 ≤ J < k < K ≤ d. We note that if k = d then the index set k < j ≤ d is empty, but there is at least

one j in J < j ≤ k, whereas if k < d then J < j ≤ k can be empty but in that case there is at least one index

j in the set k < j ≤ K. Now we define a bounded function ψj ∈ Lmin(p,θ)(R) so that

n|∆1/ngj(i/n − x)|1(|i/n − x| ≥ ǫ) ≤ ψj(x) (4.47)
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for all x ∈ R, 0 ≤ i < n, J < j ≤ k, and then we define πJ,K(x) =
∏

J<j≤k ψj(xj)
∏

k<j≤K |g′j(xj/2)|. We use

Λ associated to L by (4.4) and set Λ1(·) = Λ(·∩{(x, y) ∈ R
d×R0 : πJ,K(x)|y| > 1}) and for every B ∈ Bb(R

d)

set

L1(B) =

∫

B×R0

yΛ1(dx,dy) and L0(B) = L(B)− L1(B).

Then L0 and L1 are independent infinitely divisible random measures such that for every B ∈ Bb(R
2),

E

[

eitL
0(B)

]

= exp
(

∫

B×R0

(eity − 1− ity1(|y| ≤ 1))1(πJ,K(x)|y| ≤ 1)dxν(dy)
)

,

E

[

eitL
1(B)

]

= exp
(

∫

B×R0

(eity − 1− ity1(|y| ≤ 1))1(πJ,K(x)|y| > 1)dxν(dy)
)

, t ∈ R.

We decompose R̃n,ǫ(i) = nK−J(Q̃0
n,ǫ(i) + Q̃1

n,ǫ(i)) with

Q̃l
n,ǫ(i) :=

∫

Rd

∏

0<j≤J

1(|ij/n− sj| < ǫ)
∏

J<j≤k

1(|ij/n− sj| ≥ ǫ)

×
∏

k<j≤K

1(|sj | > m)
∏

K<j≤d

1(|sj | ≤ m)nK−J∆1/ng(i/n− s)Ll(ds), l = 0, 1.

We claim that for all δ > 0,

lim sup
n→∞

P

(

n
∑

0<j≤k αjp+(d−k)(p−1)−(K−J)p
∑

0≤i<n

|Q̃l
n,ǫ(i)|

p > δ
)

, l = 0, 1, (4.48)

are 0 if J < k, and tend to zero as m→ ∞ if J = k. For l = 0 it follows once we show that

sup
n∈N,0≤i<n

n
∑

0<j≤J αjp+J+(d−K)p
E[|Q̃0

n,ǫ(i)|
p] (4.49)

is bounded since αj + 1/p − 1 < 0, J < j ≤ k, in case J < k, and (4.49) tends to zero as m → ∞ in case

J = k. For this purpose, by Theorem 3.3 in [37], we need to show that

∫

Rd

∫

R0

∣

∣

∣
n
∑

0<j≤J αj+J/p+d−K
∏

0<j≤J

1(|ij/n− xj| < ǫ)
∏

J<j≤k

1(|ij/n − xj | ≥ ǫ)

×
∏

k<j≤K

1(|xj | > m)
∏

K<j≤d

1(|xj | ≤ m)nK−J∆1/ng(i/n− x)y
∣

∣

∣

q
1(πJ,K(x)|y| ≤ 1)ν(dy)dx,

is finite for q = p and in addition q = 2 if p > 2. Here we rewrite ∆1/ng(i/n−x) =
∏

0<j≤d∆1/ngj(ij/n−xj).

For q = p and in addition q = 2 if p > 2,

∫

|x|<1
|nαj+1/p∆1/ngj(x)|

qdx = O(1), n→ ∞,

since αj + 1/p ∈ (0, 1), 0 < j ≤ J , whereas

∫

R

|n∆1/ngj(x)|
qdx = O(1), n→ ∞,

since K < j ≤ d, as shown in (4.43), (4.44), (4.45). Next we use the dominating function ψj in (4.47) for the

remaining factors indexed by J < j ≤ k and n|∆1/ngj(i/n−x)| ≤ |g′j(x/2)| for |x| > m, 0 ≤ i < n, k < j ≤ K.

Note that the resulting function
∏

J<j≤k ψj(xj)
∏

k<j≤K |g′j(xj/2)| = πJ,K(x) on R
k−J × ([−m,m]c)K−k is
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bounded and min(p, θ)-th power integrable, which proves our statement about (4.49) and hence (4.48) because
∫

R0
|xy|p1(|xy| ≤ 1)ν(dy) ≤ C|x|min(p,θ) for |x| ≤ 1, where p 6= θ if θ < 2.

Next, we show (4.48) for l = 1. We use (4.47), where J < j ≤ k, and n|∆1/ngj(i/n − x)| ≤ |g′j(x/2)| for

|x| > m, 0 ≤ i < n, k < j ≤ K to see that

Q̃1
n,ǫ(i) ≤

∫

Rd×R0

∣

∣

∣
y
∏

0<j≤J

∆1/ngj(ij/n− xj)1(|ij/n− xj | < ǫ)
∏

J<j≤k

ψj(xj)

×
∏

k<j≤K

g′j(xj/2)1(|xj | > m)
∏

K<j≤d

∆1/ngj(ij/n− xj)1(|xj | ≤ m)
∣

∣

∣
Λ1(dx,dy).

We denote the term above on the right hand side by Q̃1
n,ǫ(i), but note that it does not depend on ij , J < j ≤ K.

Furthermore, for p̄ = max(p, 1),

(

n
∑

0<j≤k αjp+(d−k)(p−1)−(K−J)p
∑

0≤i<n

|Q̃1
n,ǫ(i)|

p
)1/p̄

≤

∫

Rd×R0

(

|y|p
∏

0<j≤J

nαjp
∑

0≤ij<n

|∆1/ngj(ij/n− xj)|
p1(|ij/n− xj| < ǫ)

×
∏

J<j≤k

nαjp+1−p|ψj(xj)|
p
∏

k<j≤K

|g′j(xj/2)|
p1(|xj | > m)

×
∏

K<j≤d

np−1
∑

0≤ij<n

|∆1/ngj(ij/n − xj)|
p1(|xj | ≤ m)

)1/p̄
Λ1(dx,dy) =: Z̃1

n,ǫ,

where Z̃1
n,ǫ is well defined as integral with respect to Poisson random measure Λ1 having intensity

measure 1(πJ,K(x)|y| > 1)dxν(dy) since
∫

R0
1(|xy| > 1)ν(dy) ≤ C|x|θ for |x| ≤ 1 and πJ,K(x) on

R
k−J × ([−m,m]c)K−k is bounded and θ-th power integrable. Finally, following Step 1 we can show that

Z̃1
n,ǫ = oP(1) as n → ∞ if J < k, since αjp + 1 − p < 0, J < j ≤ k, whereas if J = k, then Z̃1

n,ǫ converges

weakly to the integral
∫

[0,1]k×Rd−k×R0

(

|y|p
∏

0<j≤k

Hj(uj)
∏

k<j≤K

|g′j(xj/2)|
p1(|xj | > m)

×
∏

K<j≤d

‖g′j(· − xj)‖
p
p1(|xj | ≤ m)

)1/p̄
Λ1,‡(du,dx,dy) = Z̃1

with respect to the Poisson random measure Λ1,‡(·) = Λ‡(·∩{(u,x, y) ∈ [0, 1]k×R
d−k×R0 : πk,K(x)|y| > 1})

with intensity measure 1(πk,K(x)|y| > 1)dudxν(dy) on [0, 1]k×R
d−k×R0 as n→ ∞, which further converges

in probability to 0 as m→ ∞. This finishes the proof of (4.48), hence of (4.46). Theorem 3.2(i) is proved in

case ν(R0) <∞.

Step 2. Let ν(R0) = ∞. We aim to show that as n→ ∞,

n
∑k

j=1
αjp+(d−k)(p−1)V X

n (p)

F-d
→

∫

[0,1]k×Rd−k×R0

|y|p
k
∏

j=1

Hi(uj)

d
∏

j=k+1

‖g′j(· − xj)‖
p
pΛ

‡(du,dx,dy) =: Z, (4.50)

where the notation V X
n (p) is used to stress that Vn(p) is calculated for process X. For some small ǫ > 0, we

decompose ∆1/nX(i/n) = ∆1/nX
≤ǫ(i/n) + ∆1/nX

>ǫ(i/n) following Step 2 of the proof of Theorem 3.1(i).
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Since ν([−ǫ, ǫ]c) <∞, we have that as n→ ∞,

n
∑k

j=1
αjp+(d−k)(p−1)V X>ǫ

n (p)

F-d
→

∫

[0,1]k×Rd−k×[−ǫ,ǫ]c
|y|p

k
∏

j=1

Hi(uj)

d
∏

j=k+1

‖g′j(· − xj)‖
p
pΛ

‡(du,dx,dy) =: Z>ǫ, (4.51)

as shown in Step 1. Since Z>ǫ P
→ Z as ǫ ↓ 0, (4.50) follows from (4.51) if we show that for all δ > 0,

lim
ǫ↓0

lim sup
n→∞

P

(

n
∑k

j=1
αjp+(d−k)(p−1)V X≤ǫ

n (p) > δ
)

= 0 (4.52)

using (4.2) and (4.3). Furthermore, (4.52) follows by Markov’s inequality, if we prove that

lim
ǫ↓0

lim sup
n→∞

n
∑k

j=1
αjp+(d−k)(p−1)+d

E[|∆1/nX
≤ǫ(0)|p] = 0.

For the latter it suffices to show the convergence

lim
ǫ↓0

lim sup
n→∞

∫

Rd

∫

0<|y|≤ǫ
φp(n

∑k
j=1

αj+(d−k)(1−1/p)+d/p∆1/ng(x)y)ν(dy)dx = 0, (4.53)

where φp(y) := |y|p1(|y| > 1) + |y|21(|y| ≤ 1) satisfies φp(y) ≤ |y|p + |y|21(p > 2) for y ∈ R, cf. Theorem 3.3

in [37]. For q = p and in addition q = 2 if p > 2, we have

∫

R

|nαj+1/p∆1/ngj(x)|
qdx

≤

∫

|x|<1
|nαj+1/p∆1/ngj(x)|

qdx+

∫

|x|>1
|nαj+1/p−1ψj(x)|

qdx = O(1), j = 1, . . . , k,

and

In,j(q) :=

∫

R

|n∆1/ngj(x)|
qdx = O(1), j = k + 1, . . . , d,

as shown in Step 1. Finally, similarly to (5.3), we get
∫ ǫ
0 y

pν(dy) = O(ǫp−β) = o(1) as ǫ ↓ 0, since p > β. This

completes the proof of (4.53) and (4.52), and therefore the proof of Theorem 3.2(i).

4.6 Proof of Theorem 3.2(ii)

Let us first verify that the limiting constant m(p) := E[|L([0, 1]d)|p](
∏k

j=1 Ij
∏d

j=k+1 I
′
j)

p/β is finite. Indeed,

for j = 1, . . . , k, we have Ij :=
∫

R
|∆1hi(s)|

βds < ∞ since αj + 1/β ∈ (0, 1) as in Theorem 3.1(ii) in case

d = 1, whereas I ′j =
∫

R
|g′j(s)|

βds < ∞ follows from |g′j(s)| ≤ C|s|αj−1, |s| < ρ, and g′j ∈ Lβ((−ρ, ρ)c) for

1 < αj + 1/β, j = k + 1, . . . , d.

Let us now prove that the convergence stated in Theorem 3.2(ii) holds in probability. Note that working

on the assumption (H2) increments of X can be approximated coordinate-wise since those of its kernel

g(s) =
∏d

j=1 gj(sj) can be factorized g([s, t]) =
∏d

j=1(gj(tj)− gj(sj)) for all s < t in R
d. We define the first

approximation (Zn(i))i∈Zd by

Zn(i) :=

∫

Rd

k
∏

j=1

nHj∆1/ngj(ij/n− sj)

d
∏

j=k+1

g′j(ij/n− sj)L(ds).
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Then the above-stated convergence in probability follows using (4.2), (4.3) if we prove

n−d
∑

0≤i<n

|nd−k+
∑k

j=1
Hj∆1/nX(i/n)− Zn(i)|

p P
→ 0 and n−d

∑

0≤i<n

|Zn(i)|
p P
→ m(p). (4.54)

By Markov’s inequality we deal with the first sequence with mean

E[|nd−k+
∑k

j=1
Hj∆1/nX(0)− Zn(0)|

p] = C(
k
∏

j=1

In,jR
′
n)

p/β,

where

In,j =

∫

R

|nHj∆1/ngj(s)|
βds =

∫

R

|nαj∆1/ngj(s/n)|
βds = O(1), j = 1, . . . , k,

follows from (4.24) for d = 1 and it remains to show

R′
n =

∫

Rd−k

|

d
∏

j=k+1

n∆1/ngj(sj)−

d
∏

j=k+1

g′j(sj)|
βdsk+1 . . . dsd = o(1). (4.55)

We rewrite the above integrand using the identity
∏d

j=k+1 aj −
∏d

j=k+1 bj =
∑

#J≥1

∏

j∈J(aj − bj)
∏

j∈Jc bj ,

a, b ∈ R
d−k, where the sum

∑

#J≥1 is taken over all subsets J ⊆ {k + 1, . . . , d} of cardinality #J ≥ 1. We

thus reduce our task in (4.55) to proving
∫

R

|n∆1/ngj(s)− g′j(s)|
βds = o(1), j = k + 1, . . . , d.

We note that n∆1/ngj(s) → g′j(s) for almost every s. Moreover, |n∆1/ngj(s)| = |
∫ 1
0 g

′
j(s+u/n)du| ≤ |g′j(s/2)|

for |s| ≥ 2ρ and |n∆1/ngj(s)| ≤ C|s|αj−1 for 2/n ≤ |s| < 2ρ. Hence,
∫

|s|≥2/n |n∆1/ngj(s) − g′j(s)|
βds = o(1)

by the dominated convergence theorem, whereas
∫

|s|<2/n |n∆1/ngj(s)|
βds ≤ Cnβ

∫ 3/n
0 sαjβds = o(1) since

1 < αj + 1/β, j = k + 1, . . . , d.

Now, we prove that the second convergence in (4.54) holds in L1. Since for every (ik+1, . . . , id) ∈ Z
d−k,

(Zn(i))(i1,...,ik)∈Zk
fdd
= (Zn(i1, . . . , ik, 0, . . . , 0))(i1 ,...,ik)∈Zk ,

it follows from

n−k
∑

0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|
p L1

→ m(p). (4.56)

To show that the convergence (4.56) holds in probability, we use the same arguments as in the

proof of Theorem 3.1(ii). Using the scaling property of the β-stable random measure, we have that

(Zn(i1, . . . , ik, 0, . . . , 0))(i1,...,ik)∈Zk
fdd
= (Yn(i1, . . . , ik))(i1,...,ik)∈Zk , and so

∑

0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|
p d
=

∑

0≤i1,...,ik<n

|Yn(i1, . . . , ik)|
p,

where

Yn(i1, . . . , ik) :=

∫

Rk

k
∏

j=1

nαj∆1/ngj((ij − sj)/n)
d
∏

j=k+1

g′j(sj)L(ds1, . . . ,dsd).

Next, we approximate (Yn(i1, . . . , ik))(i1,...,ik)∈Zk by Y∞ = (Y∞(i1, . . . , ik))(i1,...,ik)∈Zk , where

Y∞(i1, . . . , ik) :=

∫

Rd

k
∏

j=1

∆1hj(ij − sj)

d
∏

j=k+1

g′j(sj)L(ds1, . . . ,dsd),
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more specifically, we have that

E[|Yn(0, . . . , 0)− Y∞(0, . . . , 0)|p]

= C
(

∫

R

|
k
∏

j=1

nαj∆1/ngj(sj/n)−
k
∏

j=1

∆1hj(sj)|
βds1 . . . dsk

d
∏

j=k+1

∫

R

|g′j(s)|
βds
)p/β

= o(1)

using similar arguments to those in the proof of (4.55) and (4.24) for d = 1. Hence, it follows that

n−k
∑

0≤i1,...,ik<n

|Yn(i1, . . . , ik)− Y∞(i1, . . . , ik)|
p P
→ 0.

Since the process Y∞ is a symmetric β-stable mixed moving average, by [42, Theorem 3], it is mixing, and

hence ergodic. According to Birkhoff’s theorem (see [25, Theorem 10.6]),

n−k
∑

0≤i1,...,ik<n

|Y∞(i1, . . . , ik)|
p P
→ E[|Y∞(0, . . . , 0)|p],

where E[|Y∞(0, . . . , 0)|p] = m(p). By (4.2), (4.3) the sequence in (4.56) converges in probability. The sequence

converges in mean if and only if it converges in probability and is uniformly integrable. The latter follows,

because for some q > 1 such that qp < β, by Minkowski’s inequality,

E

[
∣

∣

∣
n−k

∑

0≤i1,...,ik<n

|Zn(i1, . . . , ik, 0, . . . , 0)|
p
∣

∣

∣

q]

≤
(

n−k
∑

0≤i1,...,ik<n

(E|Zn(i1, . . . , ik, 0, . . . , 0)|
qp)1/q

)q
= E[|Zn(0)|]

qp = O(1).

Similarly, E[|nd−k+
∑k

j=1
Hj∆1/nX(0)|qp] = O(1), which completes the proof of Theorem 3.2(ii).

4.7 Proof of Theorem 3.2(iii)

The proof is analogous to that of Theorem 3.1(iii). It follows from [37, Theorem 2.7], that the random field

Y := (Y (t))t∈[0,1]d given in (3.1) is well-defined if and only if

∫

Rd

V (∂dg(s))ds <∞, ∂dg(s) :=

d
∏

i=1

g′i(si), s ∈ R
d, (4.57)

where

V (x) :=

∫ ∞

0
min(|xy|2, 1)ν(dy) ≤ C(|x|θ1(|x| < 1) + |x|max(β,p)1(|x| ≥ 1)), x ∈ R,

as shown in (5.2). So (4.57) follows from g′i ∈ Lθ(R) ∩ Lmax(β,p)(R), i = 1, . . . , d, in case θ < max(β, p)

and from g′i ∈ Lmax(β,p)(R), i = 1, . . . , d, in case θ ≥ max(β, p). Note that (H2) implies that every g′i ∈

Lq′((−ρ, ρ)c) with q′ ≥ min(θ,max(β, p)) and |g′i(s)| ≤ C|s|αi−1 for |s| < ρ with αi − 1 > −1/max(β, p) ≥

−1/min(θ,max(β, p)), i = 1, . . . , d. By the same arguments as in the proof of Theorem 3.1(iii) we may choose

a measurable and separable modification of Y , which also will be denoted Y .

According to [11, Theorem 3.1(i)], Y has sample paths in Lp([0, 1]d, λd) almost surely if the conditions

(4.30), (4.31), (4.32) hold. For all s ∈ R
d, we have that ‖∂dg(· − s)‖p =

∏d
i=1 ‖g

′
i(· − si)‖p, where for s ∈ R,

‖g′i(· − s)‖p :=
(

∫

[0,1]
|g′i(t− s)|pdt

)1/p
≤ C1(|s| < 2ρ) + |g′i(s/2)|1(|s| ≥ 2ρ) ≤ C,
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because |g′i(t)| ≤ C|t|αi−1 for |s| < 3ρ with αi−1 > −1/p and |g′i(s)| ≥ |g′(t)| for 1 < ρ ≤ |s| ≤ |t|, i = 1, . . . , d.

We conclude that condition (4.30) holds.

Next, let us verify the first condition in (4.31). From above it follows that
∫

Rd

ν
(( c

‖∂dg(· − s)‖p
,∞
))

ds ≤ C

∫

Rd

‖∂dg(· − s)‖θpds

≤ C

∫

Rd

d
∏

i=1

(1(|si| < 2ρ) + |g′i(si/2)|
θ1(|si| ≥ 2ρ))ds <∞

since g′i ∈ Lθ((−ρ, ρ)c), i = 1, . . . , d. Note that

Φ(∂dg(t − ·)) =

∫

Rd

V (∂dg(s))ds <∞,

see (4.57), hence both Φ(∂dg(t − ·)) and σ(t) do not depend on t ∈ [0, 1]d. We conclude that the second

condition in (4.31) holds.

For 0 < c0 < c1, decompose
∫ c1
c0
ypν(dy) = I0 + I1, where

I1 :=

∫ ∞

1
1(c0 < y < c1)y

pν(dy) ≤

∫ ∞

1
1(c0 < y < c1)y

p−θ−1dy

≤ C(cp−q
0 1(p < q) + cp−q

1 1(p > q) + 1(p = q))

with q = min(θ,max(β, p)) in case p 6= θ, θ < 2 and I1 ≤ C in case p = θ = 2 and

I0 :=

∫ 1

0
1(c0 < y < c1)y

pν(dy) ≤ C

∫ 1

0
(1(β < p) + 1(p ≤ β)1(c0 < y)) ypν(dy)

≤ C(1(β < p) + 1(p ≤ β)cp−β′

0 )

with β′ > β chosen so that min(α1, . . . , αd) + 1/β′ > 1. Therefore, the last condition (4.32) follows from
∫

Rd

(‖∂dg(· − s)‖β
′

β′1(p ≤ β) + ‖∂dg(· − s)‖pp1(β < p)

+ ‖∂dg(· − s)‖qq1(p < q) + ‖∂dg(· − s)‖qp1(p > q) + ‖∂dg(· − s)‖pp1(p = q))ds <∞.

To end the proof recall that g′i ∈ Lq′((−ρ, ρ)c) with q′ ≥ q and |g′i(s)| ≤ C|s|αi−1 for |s| < ρ with αi − 1 >

−1/max(β, p) ≥ −1/q , i = 1, . . . , d.

5 Appendix

Let us verify that imposed Assumptions (g), (θ) and (β) for some 0 < θ ≤ 2, 0 ≤ β < 2 ensure the existence

of the random field X. From [37, Theorem 2.7] it follows that the stochastic integral for t ∈ R
d on the r.h.s.

of (1.1) exists if and only if

∫

Rd

V (g(t,u))du <∞ with V (x) :=

∫ ∞

0
min(|xy|2, 1)ν(dy) for x ∈ R, (5.1)

when ν is a symmetric Lévy measure on R. Let us first show that Assumptions (β) and (θ) imply the following

important estimate: there is a constant C > 0 such that

V (x) ≤ C(|x|θ1(|x| ≤ 1) + |x|β1(|x| > 1)). (5.2)

32



Set ν̄(y) := ν({u ∈ R0 : u ≥ y}) for y > 0. If θ < 2, then yθν̄(y) ≤ C for y ≥ 1, that is
∫∞
1 f(u)ν(du) ≤

C
∫∞
1 f(u)u−θ−1du with f(u) = 1(u ≥ y), u ∈ R, for y ≥ 1, and the inequality remains valid by monotone

approximation for f : [1,∞) → [0,∞) non-decreasing. Hence,

V (x) ≤ C
(

x2 +

∫ ∞

1
min(|xy|2, 1)y−θ−1dy

)

≤ C
(

x2 + x2
∫ 1

|x|

1
y1−θdy +

∫ ∞

1

|x|

y−θ−1dy
)

≤ C|x|θ

for |x| ≤ 1 if θ < 2, whereas V (x) ≤ C|x|2 for x ∈ R if θ = 2.

Furthermore, if β > 0, then yβ ν̄(y) ≤ C for 0 < y < 1. For 0 < ǫ0 < ǫ1 < 1,

∫ ǫ1

ǫ0

y2ν(dy) = −

∫ ǫ1

ǫ0

u2ν̄(du) = ǫ20ν̄(ǫ0)− ǫ21ν̄(ǫ1) + 2

∫ ǫ1

ǫ0

u1−βuβ ν̄(u)du,

and so as ǫ0 → 0,
∫ ǫ1

0
y2ν(dy) ≤ Cǫ2−β

1 . (5.3)

Hence,

V (x) ≤ C
(

|x|2
∫ 1

|x|

0
|y|2ν(dy) +

∫ ∞

1

|x|

ν(dy)
)

≤ C|x|β

for |x| > 1 if β > 0, whereas V (x) ≤ C for x ∈ R if β = 0. This completes the proof of (5.2), and if moreover

Assumption (g) holds, that of (5.1). We conclude that X is well-defined.
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