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Abstract—High impedance faults (HIFs) in distribution grids
may cause wildfires and threaten human lives. Conventional
protection relays at substations fail to detect more than 10% HIFs
since over-currents are low and the signatures of HIFs are local.
With more µPMU being installed in the distribution system, high-
resolution µPMU datasets provide the opportunity of detecting
HIFs from multiple points. Still, the main obstacle in applying the
µPMU datasets is the lack of labels. To address this issue, we con-
struct a physics-informed convolutional auto-encoder (PICAE) to
detect HIFs without labeled HIFs for training. The significance
of our PICAE is a physical regularization, derived from the
elliptical trajectory of voltages-current characteristics, to distin-
guish HIFs from other abnormal events even in highly noisy
situations. We formulate a system-wide detection framework that
merges multiple nodes’ local detection results to improve the
detection accuracy and reliability. The proposed approaches are
validated in the IEEE 34-node test feeder simulated through
PSCAD/EMTDC. Our PICAE outperforms the existing works
in various scenarios and is robust to different observability and
noise.

Index Terms—High impedance faults Detection, Convolutional
neural networks, Auto-encoder, µPMU, Physics informed,

I. INTRODUCTION

Energized conductors hitting the high impedance ground
surfaces, usually accompanied by arc flashing, have led to
most HIFs [1]. People are concerned with HIFs, as they are
one of the main causes/initiators of destructive wildfires and
threaten public safety. Diversity of physical models have well
described the process of HIFs of randomness and nonlinearity
[2]. However, more than 10% detection failures of HIFs have
been reported [3] using voltages or currents measured by
devices at relays or breakers [4]. Conventional over-current
protection systems often neglect HIFs due to the low fault
current [1, 3]. This problem is acerbated in distribution grids
as measurements are not ubiquitous, and signatures of HIFs
are local and do not propagate much in the grid. In recent
years, there has been growing interest in detecting HIFs
in distribution grids accurately when more µPMUs being
installed.

The existing data-driven HIF detection methods usually
separate HIFs from others by supervised classification with

The authors acknowledge the support from the Department of Energy
through the Advanced Grid Modeling (AGM) Program, and the Center for
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various features, based on time-domain, frequency-domain,
and time-frequency domain measurements [1, 3, 5, 6]. How-
ever, these methods are either not robust to noise and low
harmonics rates or require a sufficient number of labeled
datasets1 to learn the features.

To address these issues, we propose a novel and practical
HIF neural-network-based detector for distribution grids with
limited measurement availability that uses only normal data
and no labeled faults for training. Neural networks have
achieved great success in computer vision, natural language
processing, and health care [7]. While applications with la-
beled data are many, success with partially labeled or even
completely unlabeled datasets has been demonstrated with
satisfactory accuracy and efficiency [8, 9]. One label-free
model is Auto-encoder (AE) [7], a neural network architecture
consisting of an encoder and a decoder to learn the features
and reconstruct the data. Various AE derivatives have been
proposed for specific applications [8, 9]. However, such pure
data-driven applications take the risk of violating the physical
rules that govern the cyber-physical systems such as power
grids. Hence, our method can overcome these issues by
judiciously using constraints related to the physics-informed
dynamics in regular operation during the detector training.

We are inspired by the recent attempts of embedding
physical laws in neural networks or statistical machine learning
for power flow calculation, state estimation, topology learning
[10, 11, 12], and power system monitoring [13, 14]. Outside
of power grids, [15] reveals promising progress in regulating
the learned parameters of neural networks with physical laws
as priors. These physics-based promotions improve both inter-
pretability as well as the model’s computational efficiency.

Contribution: We propose a physics-informed learning
framework to detect HIFs, on the conditions of a limited
number of measured nodes and scarce labeled faults for
training. Explicitly, relying on the fact that elliptical curves can
model the trajectory of normal voltage-current with time, we
construct a Convolutional Auto-Encoder (CAE) to represent
the voltage time-series data during normal operations (no
faults). Additionally, we constrain its output with the physics-
regulated (PR) elliptical characteristics of voltages and cur-

1Labeled datasets denote the types of the recorded datasets are tagged.

ar
X

iv
:2

00
8.

02
36

4v
2 

 [
ee

ss
.S

P]
  1

5 
M

ar
 2

02
1



rents. Furthermore, as HIF’s signatures are local, we establish
a low-communication central scheme that merges the observed
nodes’ local decisions to augment the detection robustness
and reliability. We validate the proposed methods in the IEEE
34 node benchmark system [16] simulated by Power Systems
Computer-Aided Design (PSCAD) [17]. We demonstrate our
detector’s high performance even when systems are not fully
observed and interpret the physics-informed regularization’s
advantages to distinguish HIFs from others. Moreover, we
show that PICAE outperforms existing schemes on HIF de-
tection in multiple noisy scenarios.

The remaining part of this paper is organized as follows:
Section II introduces the physical rules of HIFs; based on these
rules, we construct a physics-informed convolutional autoen-
coder (PICAE) to detect HIFs in Section III; the detection
framework of local and central determination are presented
in Section IV; numerical experiments in Section V show
the detection performance of the proposed approaches, in
comparison with some existing works in different scenarios.
Section VI concludes the main results.

II. BACKGROUND OF THE PHYSICAL MODEL FOR HIF

HIF is a nonlinear, random event that is often unnoticeable
by over-current relays or fuses. In the last decades, various arc
models have been utilized to describe the stable or dynamic
HIF process [1, 2, 18]. Two-parallel diodes and a voltage
source model accurately represent the dynamic re-striking and
quenching process of arcs during HIF at the fault point. [1, 5].

A. Modeling of HIF Process

Let v(t) be the single phase voltage at the time t that
interacts with the two DC voltage sources Vp > 0, Vn < 0,
and variable resistances Rp 6= Rn in the down and up lines.

v(t) =


Vp + ip(t)Rp if v(t) > Vp

Vn − in(t)Rn if v(t) < Vn

v(t− 1) else
(1)

When v(t) > Vp, the diode Dp is switch on to allow fault
current ip to flow through, and when v(t) < Vn, the diode
Dn is switch on to let in flow in. These structures mimic
the re-striking process of arcs; otherwise, no currents flow
through the HIF circuit and the voltages of the fault point
keep the same with the previous phase voltage v(t−1), which
represents the quenching of arcs. Note that the re-striking and
quenching process will cycle and last for seconds or even
longer [19]. This process is random and nonlinear since the
impedance Rn, Rp are randomly varying.

B. Physical Laws of HIFs

On normal conditions, it is demonstrated that the trajectories
of voltages and currents are rotated ellipses for resistance-
inductive or resistance-capacitive linear circuits, and are circles
if resistance is zero [5]. Let phase voltages and currents be
v(t) = V0 cos(ωt), c(t) = C0 cos(ωt− φ) with a phase angle

φ, then we can fit them into the standard parametric format of
a rotated ellipse equation as follows:

(
v(t)

α1
+
c(t)

α2
)2 + (

v(t)

α3
− c(t)

α4
)2 = 1 (2)

where α1 = 2V0 cos(φ/2), α2 = 2C0 cos(φ/2), α3 =
2V0 sin(φ/2), α4 = 2C0 sin(φ/2), where αi are determined
by line impedance and system power flow.

Once HIF occurs, parameters α1, · · · , α4 are immediately
altered, but as the circuit is not open, the trajectory is still
approximate elliptical with different parameters as Rn, Rp
vary.
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Fig. 1: The trajectories of voltages and currents at node 1 and 2 in the
four node test feeder system [20], where the line section I is between
node 1 and 2 and section II is between node 2 and a transformer.
Red curves are the voltages-current trajectories on normal conditions
while the black ones are after HIF event

Four-node test feeder example: We illustrate the physical
property of HIFs in the four-node test feeder [20] simulated
by PSCAD/EMTDC [17]. When a HIF occurs near node 1,
the trajectories of voltages and currents at node 1 and 2 are
impacted.

Fig. 1 compares the trajectories before and after HIF event.
It is clear that the black trajectory deviates from the red one
to formulate another approximate ellipse, and the deviation is
more serious when the node is closer to the HIF.

As HIF’s unique feature is the approximate elliptical tra-
jectory of voltages and currents, varying from node to node,
we present in the next section our detector that regulates the
learning process in training by the elliptical trajectory without
relying on sparsely available and expensive labels.

III. PHYSICS-INFORMED CONVOLUTIONAL
AUTO-ENCODER (PICAE)

The configuration of our PICAE is shown in Fig. 2. Given
time series of voltages a matrices Vi ∈ RT×N , i = 1, · · · ,m
as inputs, where m,T,N are the number of measured nodes,
the length of the moving window, and the number of windows.
According to the physical laws, the elliptical regularization
structure in PICAE constrains the weights in the convolution
and deconvolution layer. In training, the normal voltages Vi
are reconstructed by the encoder, and then regulated by the
corresponding line currents to obey the elliptical trajectory.
Note that the elliptical regularization is only employed during
offline training. In testing, only the measured voltages are
needed to detect the occurrence of HIFs.



Fig. 2: Physics-Informed Convolutional Auto-encoder

A. The Encoder and Decoder of PICAE

The encoder is a convolutional neural network with decreas-
ing size of the latter layer than that of the previous layer. The
sth convolutional layer down-samples the input gs with filters
W s and bias matrices Bs to reduce the dimensions and then
goes through the nonlinear activation function of the Rectified
Linear Units (ReLU) to enter into the next layer.

gs+1 = max(0, gs ~W s +Bs), s = 1, · · · , S (3)

where ~ denotes the convolution operation, and g1 = vli ∈
RT , the lth column of Vi. The decoder has the symmetric
structure with the encoder, which improves the reconstruction
accuracy [21]. Here “symmetric” emphasizes the same sizes
of the outputs of the deconvolution layer with that of the
mirrored convolution layer. The hth deconvolution layer up-
samples the inputs fh with the filters W̄h and the bias B̄h

through deconvolutional and ReLU operations.

fh+1 = max(0, fh ∗ W̄h + B̄h), h = 1, · · · , S (4)

where ∗ denotes the deconvolution operation. The final output
fS+1 is the reconstructed voltages v̂li.

B. Physical Regularization of PICAE

The regularization item acts as prior knowledge that direct
the trained model to follow the latent physical rules mentioned
in Section II-B, to enhance the robustness against noise and
other abnormal events. Our regularization encodes the rotated
elliptical trajectory of the nodal voltages against currents. Let
time series vi be the voltage of the ith node in one window, and
cj ∈ RT be the current on line connecting i to a neighboring
node j ∈ N (i). Let Zi = [vi � vi, vi � cj , cj � cj , vi, cj ] ∈
RT×5, where � denotes the entry-wise product. Assuming
normal conditions during the T samples, the entries of voltages
and currents measurements vi, cj ideally follow an elliptical
trajectory with five parameters β = [a, b, c, d, e]T , expressed
as [22]:

Ziβ + f = 0 (5)

where f ,0 ∈ RT are an all one and all zero vectors, respec-
tively. The five unknown parameters in β can be estimated
by the following least square method, given sufficient number
of voltages and currents measurements (T ≥ 5):

β∗ = arg min
β

1

2
‖Ziβ + f‖22 = −(ZTi Zi)

−1ZTi f (6)

Remark: If no clean historical data-sets are present to com-
pute β∗ through (6), we can approximate β through power
flow analysis. Specifically, as the equations of (2) and (5) are
equivalent, β in (5) can be estimated by the corresponding
V0, C0, φ in (2) [22], obtained by power flow analysis on
steady states [23].
Training: Given N data samples vli, c

l
j , l = 1, · · · , N of

normal operation, the loss function of PICAE for node i is:

L(Θ) =
1

N
ΣNl=1[‖vli − v̂li(Θ)‖22 + λr‖Ẑiβ∗ + f‖22] (7)

Here the first term ‖vli − v̂li(Θ)‖22 denotes the mean square
errors between the original and reconstructed voltages v̂li(Θ)
with parameters Θ. The second item is the regularization,
which uses the estimated β∗ to ensure that v̂li follows the
elliptical trajectory via Ẑli = [v̂li � v̂li, v̂li � clj , clj � clj , v̂li, clj ].
Considering the impact of topological changes in realistic
power grids on β, λr is set to be a relatively small value to
allow some variations of the regularization term ‖Ẑiβ∗+ f‖22,
and the β needs to be updated if the trajectory of voltages
and currents changes significantly. The training also produces

the average reconstructed error εi =
1

N
ΣNl=1‖vli− v̂li‖22 during

normal conditions. The training steps are listed in Algorithm
1. In testing, we use the trained PICAE on online voltage vl

′

i

Algorithm 1 Training of local PICAE

1: Input: N training datasets vli, c
l
j , maximum iterations

kmax.
2: Compute β∗ by (6) with vli, c

l
j ; k ← 0.

3: while k < kmax and early stop is not reached do
4: Optimize Θ of PICAE by minimizing L(Θ) in (7).
5: end while
6: Output: trained PICAE, εi =

1

N
ΣNl=1‖vli− v̂li‖2 on normal

conditions.

to reconstruct voltages, and determine the confidence score
γi = εi/εi, the relative error compared to testing, where
εi = ‖vl′i − v̂l

′

i ‖22 is the mean square reconstructed error of the
testing data vl

′

i . We compare γi with two predefined thresholds
ξ1, ξ2 to distinguish HIFs from other events. The threshold
ξ1 =

maxl‖vli−v̂
l
i‖

2
2

εi
to discern the normal and abnormal events

based on the results of training in Algorithm 1. Then if γi of
the testing data vl

′

i is lower than ξ1, the algorithm treats the
testing data as normal since the PICAE can well represent
normal voltages with a small reconstruction error; another
threshold ξ2 is defined with the maximum confidence score
computed by validation data samples of a few HIF events. As
HIFs follow the elliptical trajectory, explained in Section II, the



Table I: The variation range of parameters of HIF model

Rp(Ω) Rn(Ω) Vp(kV ) Vn(kV )
600 ∼ 1400 600 ∼ 1400 5 ∼ 6 7 ∼ 8

reconstruction errors of HIFs are smaller than those of events,
such as capacitor switching, disobeying the elliptical trajectory,
which is further explained in Section V-C in details. Thus
the primary function of ξ2 is to distinguish HIFs from other
abnormal events. The detailed steps are listed in Algorithm 2.

Algorithm 2 HIF detection through Local PICAE

1: Input: Online testing dataset in moving windows vl
′

i , l
′ =

1, · · · , N ′, averaged reconstruction error εi for normal
voltages of node i, two thresholds ξ1, ξ2.

2: Input vl
′

i into trained PICAE to reconstruct v̂l
′

i .
3: εi ← ‖vl

′

i − v̂l
′

i ‖22. Confidence score γi ← εi/εi
4: if γi < ξ1 then
5: Output: normal conditions
6: else if γi > ξ2 then
7: Output: Other abnormal events are detected
8: else
9: Output: HIF events are detected

10: end if

IV. CENTRALIZED HIF DETECTION FRAMEWORK FOR
PARTIALLY OBSERVED SYSTEMS

Fig. 3: The configuration of the proposed detection framework. γi is
the confidence score of the ith measured node for HIF detection

While Algorithm 2 is implemented for each observed node
independently, we design a system-wise detection framework
in Fig. 3 combining all the local detectors for the partially
observed systems. The computed γi at each observed node
can be communicated to a central detector (Distribution system
operator), which decides HIF occurrence using max γi. Note
that we avoid high communication overhead by not relying
on the entire voltage sequence to the central detector. The
high γi scores can also provide auxiliary information about the
possible location of the HIF since we observe that the nearby
node voltages reveal a relatively high confidence score.

V. NUMERICAL EXPERIMENTS

We validate our approaches in the IEEE 34-node in Fig. 4
with a voltage level of 24.9 kV test feeder [16] modeled by
PSCAD/EMTDC[17]. The parameters Rp, Rn, Vp, Vn of HIF
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Fig. 4: 34 node testing feeder [16]

models vary in the ranges of Table I randomly at every 1K
Hz [1, 6]. We record wave-forms of node voltages and line
currents with 512 samples per cycle, and the interval between
any two consecutive windows is around four million-second
(ms) or τ = 128 samples. Training datasets are composed
of N = 325 windows of node voltages and line currents.
Total 286 testing events in various situations include: 100 HIF
events occurring on different branches with varying resistance
and DC voltages; 42 different loads switching near the node
890 at various time instants, 54 capacitor switching near the
node 844 with the reactive powers in the range of 0.5 to 5
MVA; the remaining 90 normal events with varying initial
conditions. We also generate another 10% of testing HIFs
events with different random parameters as the validation data
for the model selection described in Section III-B. We apply
the range normalization to augment the data-sets [24]. The
designed PICAE has the symmetrical two convolution-layer
structure with the filter W s size of 5. The number of filters
of the two layers change from 32 to 1 to generate hidden
variables in a low-dimension subspace. We train the PICAE
using the Adam optimizer [25] with a learning rate of 0.0001
and batch of size 12. The maximum iteration kmax = 1500
and λr = 200 in (7). Note that we present our major results
here, but more extensive explanations and experimental results
are in the supplement materials [26].

A. Performance Metrics

We evaluate the detection performance with three criteria:
Precision, Recall and F1 score [27]. A high “precision”
demonstrates that the detector has a low mistake rate of
identifying non-HIF as HIF events. A large “recall” value
means that the detector has a strong capability to recognize
HIF events from others. “F1 score” is a weighted average
of precision and recall, and comprehensively evaluates the
capability of the detector.

B. Detection Performance with Partial Measurements

To investigate the detection performance for the distribution
system without full observability, we show the detection
performance when only 24% to 6% (or 8 to 2) nodes are
measured. We compare the detection performance when the
placement of the measured nodes are “random” (the averaged
performance after 100 times of uniformly random selection)



and “selected” (determined by the algorithm in [26] ). The
“recall” degrades for the low measured ratio, because some
abnormal events, such as capacitor switching, are far away
from the measured nodes that their signatures are not fully
captured, but the proper placement of µPMU improves the
performance by 1%∼15%. Table II reveals that the detection
performance can be more than 95% when more than 24%
nodes are measured.

Table II: Detection Performance with different µPMU placement
algorithms when system is partial observed with ξ1 = 2, ξ2 = 350

Measured Ratio Precision Recall F1 score
24% (Selected) 100.0% 100.0% 100.0%
24% (Random) 100.0% 98.1% 99.0%
12% (Selected) 100.0% 98.0% 99.0%
12% (Random) 100.0% 87.7% 93.1%
6% (Selected) 100.0% 92.0% 95.8%
6% (Random) 100.0% 68.5% 80.3%

C. The Effectiveness of the Regularization
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Fig. 5: The characteristics curves of voltages currents in one cycle at
the node 890 when a capacitor bank switch or a load switch occurs
respectively

Fig. 6: Probability of γ for different noisy abnormal events when
SNR is 50dB detected by PICAE with (left) and without (right)
regularization item

Fig. 5 displays the trajectories of voltages and currents
in one cycle after capacitor switching and load switching
occur respectively. It is evident that these trajectories deviate
from the original ellipse dramatically. On the contrary, Fig. 1
indicates that the trajectories for HIFs still follow certain
ellipses. As a result, the reconstruction errors of PICAE for
the capacitor switching and loads switching are significant
compared with that of HIFs. Hence, the reconstruction errors
themselves distinguish HIFs from other abnormal events due
to the elliptical regularization item.

We discover this separability of PICAE becomes even more
evident in noisy situations. According to the practical noise

level of PMUs [28], we corrupt the training and testing datasets
by Gaussian noise of signal-noise-ratio (SNR) ranging from 30
dB to 90 dB and train the PICAEs with (λr 6= 0) and without
(λr = 0) the regularization item. Fig. 6 statistically depicts
the probabilistic distribution of γ’s, which generally reflect the
variations of reconstruction errors, of various testing events in
noisy situations. The γ’s of the HIFs become separable from
those of the other abnormal events when using the PICAE
with the elliptical regularization. On the contrary, the HIFs and
non-HIFs are not separable if the PICAE is trained without the
regularization.

D. Comparison with Existing Works

Table III: Detection F1 score of the PICAE for node 832 when SNRs
are from 30dB to 90dB

SNR (dB) PICAE AE PCA ER
30dB 92.9% 81.5% 43.2% 39.5%
50dB 97.1% 81.3% 72.2% 62.9%
70dB 97.6% 83.0% 76.1% 64.7%
90dB 100.0% 83.3% 76.6% 64.7%

We compare the detection performance of the local PICAE
with three existing unsupervised methods: auto-encoder (AE),
principle component analysis (PCA), and Ellipse regression
(ER) [21, 27, 29]. The structure of AE is similar to PICAE
but without the physical regularization. We implement the
PCA by the truncated singular value decomposition (SVD),
and the number of principle components is selected by

r∗ = arg minr
Σrn=1σn
ΣTn=1σn

≥ τ , where σn’s are the decreasing

singular values of voltages Vi, and τ = 0.99. ER represents
the training data using the elliptical equation (5), through a
linear regression method [29]. The performance of these three
methods for normal and abnormal events are employed in the
same way of Algorithm 2 to detect HIFs.

We summarize the F1 score of these four methods when
SNR changes from 30 dB to 90 dB in Table III. PICAE
is more robust to noise than others, achieving up to 17%
higher F1 scores above all. The improvement profits from
two attributes of PICAE. First, the convolutional autoencoder
reconstructs normal events with high accuracy. Second, the
physical regularization term enables a more considerable dis-
tinction between HIFs and other non-HIFs even in noisy
situations. Note that when the SNR as low as 30 dB, we
increase λr = 440 to improve the detection performance.

VI. CONCLUSIONS

HIF, potentially causing wildfires in the western U.S., is a
significant concern in the industry. Existing data-driven algo-
rithms can detect HIFs with high accuracy when a sufficient
number of labeled datasets are provided. Rather than relying
on the expensive labeled datasets, our PICAE exploits the
unique voltage-current characteristic curves of HIFs as regular-
ization in training. The regularization improves the capability
of PICAE to separate HIFs from other events, even in highly
noisy situations. Furthermore, a low-communication system-
wide detection framework is proposed to improve detection



accuracy and reliability, especially when systems have low
observability. PICAE demonstrates superior performances in
different noisy scenarios than existing works. An interesting
avenue for future work is to unify the location and detection
algorithms to enable follow-up control actions.
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APPENDIX

In the realistic setting where µPMUs and the corresponding
PICAEs are sparsely placed in the distribution grid, the cen-
tralized HIF detector’s performance depends on the placement
of the µPMUs. We now discuss a µPMU placement algorithm
to maximize the detection performance using a limited number
of K observed nodes.

A. µPMU Placement Algorithm

The placement of µPMU is crucial because the signatures
of HIFs are local and only revealed by nearby µPMUs.
Conventional PMU or µPMU placement algorithms determine
PMU placement by solving a set cover problem [30],[31], that
ensures that each bus is within one-hop of a PMU, or at least
one terminal bus of a line has a PMU. In settings where the
number of PMUs is too small to ensure complete observability,
we present an alternate placement approach that maximizes the
recorded PMU data diversity to improve detection.

The intuition comes from the empirical observation that
grid segments/edges have distinctive voltages-curves at dif-
ferent parts of the network. By collecting measurements from
nodes with different voltage dynamics, we are able to model
the diversity of features. We measure the distinction of the
voltages vi and vj by the subspace angle δi,j [32],

δi,j =

{
arccos(

cos(vi,vj)
‖vi‖2‖vj‖2 ) if (i, j) ∈ E

0 else
(8)

where we only compare the dissimilarity of nodes i and j if
(i, j) ∈ E . With the measured distinction δi,j , we determine a
set S of at most K non-adjacent µPMU locations that maxi-
mizes the total dissimilarity Σi∈S,j∈N (i)δi,j . Algorithm 3 pro-
vides a greedy approach to determine locations to maximize
the total dissimilarity. The performance improvements due
to our placement strategy is described with other numerical
experiments in the next section.

Algorithm 3 µPMU Placement

1: Input: K, δi,j , i, j = 1, · · · ,m
2: S ← ∅, ∆i = Σj∈N (i)δi,j .
3: while |S| < K and ∆i is not a all-zero vector do
4: S ← S ∪ i∗,∆j ← 0,∀j ∈ N (i∗), where i∗ =

arg maxi ∆i

5: end while
6: Output: S

Table IV: Detection Performance of local PICAE at node 832 for
Different Low Sampling Rate

f (kHz) 15.36 7.68 3.84 1.92 0.96
T 256 128 64 32 16

Precision (%) 100.0% 100.0% 100.0% 95.2% 94.3%
Recall (%) 100.0% 100.0% 100.0% 100.0% 100.0%

F1 Score (%) 100.0% 100.0% 100.0% 97.6% 97.1%

B. Robustness to Low Sampling rates

We downsample the datasets and demonstrate the robustness
of PICAE to low sampling rates in Table IV, which is one of
the concerns in the industry. When T , the number of samples
per cycle, changes from 256 to 16, F1 score of the PICAE
is higher than 90%, indicating the same PICAE tolerates
lower sampling rates without obvious reduction of accuracy.
Moreover, the structure of PICAE adapts to inputs of various
sampling rate and does not require redesigning of the filters
and bias matrices.
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