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Doubly Reflected Backward SDEs Driven by G-Brownian

Motions and Fully Nonlinear PDEs with Double Obstacles

Hanwu Li∗† Ning Ning‡

Abstract

In this paper, we introduce a new method to study the doubly reflected backward stochastic
differential equation driven by G-Brownian motion (G-BSDE). Our approach involves approx-
imating the solution through a family of penalized reflected G-BSDEs with a lower obstacle
that are monotone decreasing. By employing this approach, we establish the well-posedness of
the solution of the doubly reflected G-BSDE with the weakest known conditions, and uncover
its relationship with the fully nonlinear partial differential equation with double obstacles for
the first time.
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1 Introduction

We firstly give the background in Subsection 1.1 and then state our contributions in Subsection
1.2, followed with the organization of the paper in Subsection 1.3.

1.1 Background

In 1997, El Karoui et al. (1997a) first introduced the reflected backward stochastic differential
equation (RBSDE), where the first component of the solution is constrained to remain above a
specified continuous process, known as the obstacle. To enforce this constraint, an additional non-
decreasing process is introduced to push the solution upwards, while adhering to the Skorohod
condition in a minimal manner. This problem is intimately linked to various fields including
optimal stopping problems (see, e.g., Cheng and Riedel (2013)), pricing for American options (see,
e.g., El Karoui et al. (1997b)), and the obstacle problem for partial differential equations (PDEs)
(see, e.g., Bally et al. (2002)).

Subsequently, Cvitanic and Karatzas (1996) extended the above results to encompass scenar-
ios involving two obstacles. In this setting, the solution Y is constrained to remain between two
specified continuous processes, known as the lower and upper obstacles. Consequently, two non-
decreasing processes are introduced in the doubly RBSDE, with the aim of pushing the solution
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upwards and pulling it downwards, respectively, while ensuring adherence to the Skorohod condi-
tions. Additionally, they demonstrated that the solution Y coincides with the value function of
a Dynkin game. Given its significance in both theoretical analysis and practical applications, nu-
merous studies have been conducted. Interested readers may refer to Crépey and Matoussi (2008);
Dumitrescu et al. (2016); Grigorova et al. (2018); Hamadene and Hassani (2005); Hamadène et al.
(1997); Peng and Xu (2005) and the references therein for further exploration.

The classical theory is limited to solving financial problems under drift uncertainty and the
associated semi-linear PDEs. Motivated by the need to address financial problems under volatility
uncertainty and the associated fully nonlinear PDEs, Peng (2007, 2008, 2019) introduced a novel
nonlinear expectation theory known as the G-expectation theory. This theory involves the con-
struction of a nonlinear Brownian motion, termed G-Brownian motion, and the introduction of
corresponding G-Itô’s calculus. Building upon the G-expectation theory, Hu et al. (2014a) inves-
tigated BSDEs driven by G-Brownian motions (G-BSDEs). In comparison with classical results,
G-BSDEs include an additional non-increasingG-martingaleK in the equation due to nonlinearity.
In Hu et al. (2014a), the authors established the well-posedness of G-BSDEs, while the comparison
theorem, Feynman-Kac formula, and Girsanov transformation can be found in their companion
paper Hu et al. (2014b).

In recent years, Li et al. (2018b) introduced reflectedG-BSDEs with a lower obstacle. Given the
presence of a non-increasing G-martingale in G-BSDEs, the definition deviates from the classical
case. Specifically, they amalgamated the non-decreasing process, intended to elevate the solution,
with the non-increasing G-martingale into a general non-decreasing process that satisfies a martin-
gale condition. Existence was established through approximation via penalization, while unique-
ness was derived from a prior estimates. For further insights, readers may refer to Li and Peng
(2020). The study of reflected G-BSDEs with two obstacles is undertaken by Li and Song (2021).
They introduced a so-called approximate Skorohod condition and established the well-posedness
of doubly reflected G-BSDEs when the upper obstacle is a generalized G-Itô process.

1.2 Our contributions

Three natural questions arise concerning the doubly reflected G-BSDE of the following form:





Yt = ξ +
∫ T

t f(s, Ys, Zs)ds+
∫ T

t g(s, Ys, Zs)d〈B〉s −
∫ T

t ZsdBs + (AT −At),

Lt ≤ Yt ≤ Ut, 0 ≤ t ≤ T,

(Y,A) satisfies the approximate Skorohod condition with order α (ASCα),

whose detailed description and the ASCα are provided in Subsection 3.1. Firstly, what types of
fully nonlinear PDEs can be represented by reflected G-BSDEs with two obstacles? Secondly,
in addition to finding that connection, can we enhance the theory of doubly reflected G-BSDEs
further at the same time? Lastly, in order to achieve both of these goals, what new mathematical
strategies suffice and can be developed? The objective of this paper is to address these three
questions.

We discovered that to establish the connection between the solution of the doubly reflected
G-BSDE and the double obstacle fully nonlinear PDEs, it would be desirable if we can construct
a monotone sequence converging to that solution. However, achieving this is challenging. Say, we
consider the following penalized reflected G-BSDEs with a lower obstacle parameterized by n ∈ N,
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which has been a workhorse in existing literature:





Ȳ n
t = ξ +

∫ T

t f(s, Ȳ n
s , Z̄n

s )ds+
∫ T

t g(s, Ȳ n
s , Z̄n

s )d〈B〉s − n
∫ T

t (Ȳ n
s − Us)

+ds

−
∫ T

t Z̄n
s dBs + (Ān

T − Ān
t ),

Ȳ n
t ≥ Lt, 0 ≤ t ≤ T,
{
−
∫ t

0
(Ȳ n

s − Ls)dĀ
n
s

}
t∈[0,T ]

is a non-increasing G-martingale.

By the comparison theorem for reflected G-BSDEs, Ȳ n is non-increasing in n. The purpose of the
penalization term is to drive the solution Ȳ n downwards so that the limiting process Y (if it exists)
remains below U . Thus, the remaining challenge is to demonstrate that the sequence Ȳ n converges
to some process Y , which is the first component of solution to the desired doubly reflected G-
BSDE. However, unlike in Li and Peng (2020) and Li and Song (2021), the main problem is that
Ān is no longer a G-martingale. Consequently, we are unable to show that (Ȳ n − U)+ converges
to 0 with the explicit rate 1

n .
Then we found that for n,m ∈ N, we could consider the following family of G-BSDEs instead:

Y n,m
t =ξ +

∫ T

t

f(s, Y n,m
s , Zn,m

s )ds+

∫ T

t

g(s, Y n,m
s , Zn,m

s )d〈B〉s −

∫ T

t

Zn,m
s dBs

+

∫ T

t

m(Y n,m
s − Ls)

−ds−

∫ T

t

n(Y n,m
s − Us)

+ds− (Kn,m
T −Kn,m

t ),

and set An,m,+
t =

∫ t

0
m(Y n,m

s − Ls)
−ds and An,m,−

t =
∫ t

0
n(Y n,m

s − Us)
+ds. By letting m tend to

infinity, we can demonstrate that (Y n,m, Zn,m, An,m,+ −Kn,m) converges to (Ȳ n, Z̄n, Ān). Then,
as n tends to infinity, (Ȳ n, Z̄n, Ān) converges to (Y, Z,A), the solution of the doubly reflected
G-BSDE. Specifically, the penalized G-BSDEs with parameters n and m enable us to determine
the convergence rate of (Y n,m − U)+, with an explicit rate of 1

n , uniformly in m (refer to Lemma
3.4). Consequently, the convergence rate remains consistent for the limit process (Ȳ n − U)+.
However, achieving uniform boundedness of Y n,m requires a different approach than the one used
in Li and Song (2021). Therefore, we abandoned the application of G-Itô’s formula and instead
resorted to employing comparison results. Although this approach is not novel and dates back
decades to Peng and Xu (2005), its application in the context of reflected G-BSDEs is innova-
tive. Our first main result, establishing the well-posedness of doubly reflected G-BSDEs and their
approximating sequences, is presented in Theorem 3.2.

Indeed, the approach that can be used to answer those three natural questions is considerably
more intricate than the methods employed in Li and Song (2021). However, the existence of the
non-increasing G-martingale introduces a disparity between reflected G-BSDEs with upper and
lower obstacles. The inclusion of both the non-increasing G-martingale and the non-increasing
process for pulling down the solution results in a finite variation process, complicating the derivation
of a priori estimates. Consequently, we made every effort to recycle results from Li and Song (2021)
and extend certain preliminary results. For example, Proposition 3.7 extends Proposition 3.1 in
Li and Song (2021) in two aspects. Both propositions aim to assess the difference between the first
components of solutions to doubly reflected G-BSDEs. Notably, in Proposition 3.7, the obstacles
of the doubly reflected G-BSDEs are permitted to vary, while in Proposition 3.1 in Li and Song
(2021), equality is assumed for the obstacles, i.e., L1 ≡ L2 and U1 ≡ U2, making it a special
case of our condition. Moreover, our general conditions are even more relaxed. The advantage of
this construction is that Ȳ n is non-increasing in n and the solution Ȳ n provides a probabilistic

3



representation for the PDE with an obstacle in a Markovian setting, which enable us to establish
the connection between doubly reflected G-BSDEs and PDEs with two obstacles in the last section.
Generally speaking, in a Markovian framework, the solution Y of the doubly reflected G-BSDE is
the unique viscosity solution of the associated double obstacle PDE, which extends the result in
Hamadene and Hassani (2005) to the fully nonlinear case. Our second main result, the function
u defined in (4.3) being the solution to the fully nonlinear obstacle problem (4.4), is presented in
Theorem 4.6.

1.3 Organization of the paper

The remaining sections of the paper are structured as follows. In Section 2, we provide an overview
of fundamental concepts and findings pertaining to G-expectation, G-BSDEs, and reflected G-
BSDEs. In Section 3, we delve into the investigation of doubly reflected G-BSDEs and establish
their well-posedness. In Section 4, we establish the relationship between fully nonlinear PDEs
with double obstacles and doubly reflected G-BSDEs. Throughout the paper, the letter C, with
or without subscripts, will represent a positive constant whose value may vary from line to line.

2 Preliminaries

We provide a brief overview of fundamental concepts and findings concerning G-expectation, G-
BSDEs, and reflected G-BSDEs. To keep it concise, we focus solely on the one-dimensional case.
For further elaboration, interested readers are encouraged to consult Hu et al. (2014a,b); Li et al.
(2018b); Peng (2007, 2008, 2019).

2.1 G-expectation and G-Itô’s calculus

Let ΩT = C0([0, T ];R), the space of real-valued continuous functions starting from the origin, i.e.,
ω0 = 0 for any ω ∈ ΩT , be endowed with the supremum norm. Let B(ΩT ) be the Borel set and B
be the canonical process. Set

Lip(ΩT ) :=
{
ϕ(Bt1 , ..., Btn) : n ∈ N, t1, · · · , tn ∈ [0, T ], ϕ ∈ Cb,Lip(R

n)
}
,

where Cb,Lip(R
n) denotes the set of all bounded Lipschitz functions on R

n. We fix a sublinear and
monotone function G : R → R defined by

G(a) :=
1

2
(σ2a+ − σ2a−), (2.1)

where 0 < σ2 < σ2. The associated G-expectation on (ΩT , Lip(ΩT )) can be constructed in the
following way. Given that ξ ∈ Lip(ΩT ) can be represented as ξ = ϕ(Bt1 , Bt2 , · · · , Btn), set for
t ∈ [tk−1, tk) with k = 1, · · · , n,

Êt[ϕ(Bt1 , Bt2 , · · · , Btn)] := uk(t, Bt;Bt1 , · · · , Btk−1
),

where uk(t, x;x1, · · · , xk−1) is a function of (t, x) parameterized by (x1, · · · , xk−1) such that it
solves the following fully nonlinear PDE defined on [tk−1, tk)× R:

∂tuk +G(∂2
xuk) = 0,
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whose terminal conditions are given by
{
uk(tk, x;x1, · · · , xk−1) = uk+1(tk, x;x1, · · · , xk−1, x), k < n,

un(tn, x;x1, · · · , xn−1) = ϕ(x1, · · · , xn−1, x).

Hence, the G-expectation of ξ is Ê0[ξ], denoted as Ê[ξ] for simplicity. The triple (ΩT , Lip(ΩT ), Ê)
is called the G-expectation space and the process B is the G-Brownian motion.

For ξ ∈ Lip(ΩT ) and p ≥ 1, we define

‖ξ‖Lp

G
:= (Ê|ξ|p])1/p.

The completion of Lip(ΩT ) under this norm is denote by Lp
G(Ω). For all t ∈ [0, T ], Êt[·] is a

continuous mapping on Lip(ΩT ) w.r.t the norm ‖ · ‖L1
G
. Hence, the conditional G-expectation Êt[·]

can be extended continuously to the completion L1
G(ΩT ). Furthermore, Denis et al. (2011) proved

that the G-expectation has the following representation.

Theorem 2.1 (Denis et al. (2011)) There exists a weakly compact set P of probability measures
on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

EP [ξ], ∀ξ ∈ L1
G(ΩT ).

We call P a set that represents Ê.

For P being a weakly compact set that represents Ê, we define the capacity

c(A) := sup
P∈P

P (A), ∀A ∈ B(ΩT ).

A set A ∈ B(ΩT ) is called polar if c(A) = 0. A property holds “quasi-surely” (q.s.) if it holds
outside a polar set. In the sequel, we do not distinguish two random variables X and Y if X = Y ,
q.s..

Definition 2.2 Let M0
G(0, T ) be the collection of processes such that

ηt(ω) =
N−1∑

j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti) for a given partition {t0, · · ·, tN} of [0, T ]. For each p ≥ 1 and η ∈ M0
G(0, T ),

denote

‖η‖Hp

G
:=

{
Ê

(∫ T

0

|ηs|
2ds

)p/2
}1/p

and ‖η‖Mp

G
:=

{
Ê

(∫ T

0

|ηs|
pds

)}1/p

.

Let Hp
G(0, T ) and Mp

G(0, T ) be the completions of M0
G(0, T ) under the norms ‖ · ‖Hp

G
and ‖ · ‖Mp

G
,

respectively.

Denote by 〈B〉 the quadratic variation process of the G-Brownian motion B. For two processes

ξ ∈ M1
G(0, T ) and η ∈ M2

G(0, T ), the G-Itô integrals (
∫ t

0 ξsd〈B〉s)0≤t≤T and (
∫ t

0 ηsdBs)0≤t≤T are
well defined, see Li and Peng (2011) and Peng (2019). The following proposition can be regarded
as the Burkholder–Davis–Gundy inequality under the G-expectation framework.
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Proposition 2.3 (Hu et al. (2014b)) If η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], then we have

σpcÊt

(∫ T

t

|ηs|
2ds

)p/2

≤ Êt

[
sup

u∈[t,T ]

∣∣∣∣
∫ u

t

ηsdBs

∣∣∣∣
p]

≤ σ̄pCÊt

(∫ T

t

|ηs|
2ds

)p/2

,

where 0 < c < C < ∞ are constants depending on p, T .

Let
S0
G(0, T ) :=

{
h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(R

n+1)
}
.

For p ≥ 1 and η ∈ S0
G(0, T ), set

‖η‖Sp

G
:=

{
Ê sup

t∈[0,T ]

|ηt|
p

}1/p

.

Denote by Sp
G(0, T ) the completion of S0

G(0, T ) under the norm ‖ · ‖Sp
G
. We have the following

uniform continuity property for the processes in Sp
G(0, T ).

Proposition 2.4 (Li et al. (2018a)) For Y ∈ Sp
G(0, T ) with p ≥ 1, we have, by setting Ys := YT

for s > T ,

lim sup
ε→0

Ê

[
sup

t∈[0,T ]

sup
s∈[t,t+ε]

|Yt − Ys|
p

]
= 0.

For ξ ∈ Lip(ΩT ), let

E(ξ) := Ê

[
sup

t∈[0,T ]

Êt[ξ]

]
.

For p ≥ 1 and ξ ∈ Lip(ΩT ), define

‖ξ‖p,E := [E(|ξ|p)]1/p

and denote by Lp
E(ΩT ) the completion of Lip(ΩT ) under ‖ · ‖p,E . The following theorem can be

regarded as the Doob’s maximal inequality under the G-expectation.

Theorem 2.5 (Song (2011)) For any α ≥ 1 and δ > 0, Lα+δ
G (ΩT ) ⊂ Lα

E (ΩT ). More precisely,
for any 1 < γ < β := (α+ δ)/α and γ ≤ 2, we have

‖ξ‖αα,E ≤ γ∗
{
‖ξ‖α

Lα+δ
G

+ 141/γCβ/γ‖ξ‖
(α+δ)/γ

Lα+δ
G

}
, ∀ξ ∈ Lip(ΩT ),

where Cβ/γ =
∑∞

i=1 i
−β/γ and γ∗ = γ/(γ − 1).

We can see that unlike the classical case, the order of the right-hand side is strictly greater than
that of the left-hand side under the G-expectation.
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2.2 G-BSDEs

We review some fundamental results about G-BSDEs. The solution of G-BSDE with terminal value
ξ and generators f, g, is a triple of processes (Y, Z,A) evolve according to the following equation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −

∫ T

t

ZsdBs − (KT −Kt), (2.2)

where Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), and K is a non-increasing G-martingale such that K0 = 0 and
KT ∈ Lα

G(ΩT ). To establish the well-posedness of the G-BSDE (2.2), consider the generators

f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R× R → R

satisfy the following properties:

(H1) There exists some β > 1, such that for any y, z ∈ R, f(·, ·, y, z), g(·, ·, y, z) ∈ Mβ
G(0, T );

(H2) There exists some κ > 0, such that

|f(t, ω, y, z)− f(t, ω, y′, z′)|+ |g(t, ω, y, z)− g(t, ω, y′, z′)| ≤ κ(|y − y′|+ |z − z′|);

(H3) The terminal value ξ ∈ Lβ
G(ΩT ).

Theorem 2.6 (Hu et al. (2014a)) Assuming that f, g, ξ satisfy (H1)-(H3), for any 1 < α < β,
the G-BSDE (2.2) has a unique solution (Y, Z,K) satisfying that Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ),

and K is a non-increasing G-martingale such that K0 = 0 and KT ∈ Lα
G(ΩT ). Moreover,

|Yt|
α ≤ CÊt

[
|ξ|α +

∫ T

t

(
|f(s, 0, 0)|α + |g(s, 0, 0)|α

)
ds

]
,

where the constant C depends on α, T , σ and κ.

The following results will be needed in our proofs. Note that (Y, Z,K) in Theorem 2.7 is not
the solution to the G-BSDE (2.2).

Theorem 2.7 (Li and Song (2021)) Let f, g satisfy (H1) and (H2) for some β > 1. Assume

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −

∫ T

t

ZsdBs − (KT −Kt) + (AT −At),

where Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), and both K and A are non-increasing processes such that
A0 = K0 = 0 and AT ,KT ∈ Lα

G(ΩT ) for some 1 < α < β. Then there exists a constant C that
depends on α, T , σ and κ, such that

Ê

(∫ T

0

|Zs|
2ds

)α
2

≤ C

{
Ê|Y ∗

T |
α +

(
Ê|Y ∗

T |
α
) 1

2

[(
Ê

(∫ T

0

|f(s, 0, 0)|ds

)α) 1
2

+

(
Ê

(∫ T

0

|g(s, 0, 0)|ds

)α) 1
2

+
(
mA,K

α

)1/2
]}

,

where Y ∗
T = supt∈[0,T ] |Yt| and mA,K

α = min
{
Ê|AT |

α, Ê|KT |
α
}
.
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Similar to the classical case, the comparison theorem for G-BSDEs still holds.

Theorem 2.8 (Hu et al. (2014b)) For l = 1, 2, let (Y l
t , Z

l
t,K

l
t)t≤T be the solution of the fol-

lowing G-BSDE:

Y l
t = ξl +

∫ T

t

f l(s, Y l
s , Z

l
s)ds+

∫ T

t

gl(s, Y l
s , Z

l
s)d〈B〉s + V l

T − V l
t −

∫ T

t

Z l
sdBs − (K l

T −K l
t),

where processes {V l
t }0≤t≤T are assumed to be right-continuous with left limits q.s., such that

Ê[supt∈[0,T ] |V
l
t |

β] < ∞. Assuming that ξl, f l, gl satisfy (H1)-(H3) for l = 1, 2, if ξ1 ≥ ξ2,

f1 ≥ f2, g1 ≥ g2, and V 1 − V 2 is a non-decreasing process, then Y 1
t ≥ Y 2

t .

In contrast to classical BSDEs, the inclusion of the additional non-increasingG-martingaleK in
G-BSDEs introduces model uncertainty and complicates the analysis. Song (2019) demonstrated

that the non-increasing G-martingale cannot be expressed in the form
∫ t

0 ηsdt or
∫ t

0 γsd〈B〉s, where
η, γ ∈ M1

G(0, T ). Specifically, the author established the following result.

Theorem 2.9 (Song (2019)) Assume that for t ∈ [0, T ],

∫ t

0

ζsdBs +

∫ t

0

ηsds+Kt = Lt,

where ζ ∈ H1
G(0, T ), η ∈ M1

G(0, T ), and K,L are non-increasing G-martingales. Then we have

∫ t

0

ζsdBs = 0,

∫ t

0

ηsds = 0 and Kt = Lt.

We call the following process u a generalized G-Itô process:

ut = u0 +

∫ t

0

ηsds+

∫ t

0

ζsdBs +Kt,

where η ∈ M1
G(0, T ), ζ ∈ H1

G(0, T ), and K is a non-increasing G-martingale such that K0 = 0. By
Theorem 2.9, the decomposition of the generalized G-Itô process is unique.

2.3 Reflected G-BSDEs with a single obstacle

Now we review the reflected G-BSDE with a lower obstacle studied in Li et al. (2018b). Their
parameters consist of a terminal value ξ, generators f, g, and an obstacle L, where L satisfies the
following condition:

(H4) L ∈ Sβ
G(0, T ) is bounded from above by a generalized G-Itô process L′ of the following form:

L′
t = L′

0 +

∫ t

0

b′(s)ds+

∫ t

0

σ′(s)dBs +K ′
t,

where b′ ∈ Mβ
G(0, T ), σ

′ ∈ Hβ
G(0, T ), and K ′ ∈ Sβ

G(0, T ) is a non-increasing G-martingale
such that K ′

0 = 0 and β > 2. Additionally, ξ ≥ LT q.s.
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A triple of processes (Y, Z,A) for some 1 < α < β, is called a solution of the reflected G-BSDE
with a lower obstacle with parameters (ξ, f, g, L), if





Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs + (AT − At),

Yt ≥ Lt, 0 ≤ t ≤ T,
{
−
∫ t

0 (Ys − Ls)dAs

}
t∈[0,T ]

is a non-increasing G-martingale,

(2.3)

where Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), and A is a continuous non-decreasing process such that A0 = 0
and A ∈ Sα

G(0, T ). The following theorem provides the well-posedness of the reflected G-BSDE
(2.3).

Theorem 2.10 (Li et al. (2018b)) Suppose that ξ, f , g and L satisfy (H1)–(H4) with β > 2.
Then the reflected G-BSDE (2.3) has a unique solution (Y, Z,A). Moreover, for any 2 ≤ α < β
we have Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ) and A ∈ Sα

G(0, T ).

The following theorem provides the comparison theorem for the reflected G-BSDE (2.3).

Theorem 2.11 (Li et al. (2018b)) Suppose ξi, Li, f i and gi for i = 1, 2 satisfy (H1)–(H4)
with β > 2. Furthermore, assume the following:

(i) ξ1 ≤ ξ2, q.s.;

(ii) f1(t, y, z) ≤ f2(t, y, z) and g1(t, y, z) ≤ g2(t, y, z), ∀(y, z) ∈ R
2;

(iii) L1
t ≤ L2

t , 0 ≤ t ≤ T , q.s..

Let (Y i, Zi, Ai) be the solution of the reflected G-BSDE (2.3) with parameters (ξi, f i, gi, Li) for
i = 1, 2. Then Y 1

t ≤ Y 2
t for 0 ≤ t ≤ T q.s.

3 Well-posedness of doubly reflected G-BSDEs

In this section, we consider doubly reflected G-BSDEs and establish their well-posedness. Specifi-
cally, in Subsection 3.1, we first define their solutions and present our first main result in Theorem
3.2; in Subsection 3.2, we conduct preliminary analysis; Subsection 3.3 is dedicated to the Proof
of Theorem 3.2.

3.1 Doubly reflected G-BSDEs

A triple of processes (Y, Z,A), with Y,A ∈ Sα
G(0, T ) and Z ∈ Hα

G(0, T ) for some 2 ≤ α < β, is
called a solution to the doubly reflected G-BSDE with the parameters (ξ, f, g, L, U), if





Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs + (AT − At),

Lt ≤ Yt ≤ Ut, 0 ≤ t ≤ T,

(Y,A) satisfies the ASCα.

(3.1)

A pair of processes (Y,A) with Y,A ∈ Sα
G(0, T ) is said to satisfy the ASCα, if there exist non-

decreasing processes {An,+}n∈N, {An,−}n∈N, and non-increasing G-martingales {Kn}n∈N, such
that
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• Ê

[
|An,+

T |α + |An,−
T |α + |Kn

T |
α
]
≤ C, where C is independent of n;

• Ê sup
t∈[0,T ]

∣∣∣At − (An,+
t −An,−

t −Kn
t )
∣∣∣
α

→ 0, as n → ∞;

• lim
n→∞

Ê

∣∣∣
∫ T

0
(Ys − Ls)dA

n,+
s

∣∣∣
α/2

= 0;

• lim
n→∞

Ê

∣∣∣
∫ T

0
(Us − Ys)dA

n,−
s

∣∣∣
α/2

= 0.

We call {An,+}n∈N, {A
n,−}n∈N, and {Kn}n∈N the approximate sequences for (Y,A) with order α

w.r.t. the lower obstacle L and the upper obstacle U .
Consider the parameters of the doubly reflected G-BSDE (3.1), namely the terminal value ξ,

the generators f, g, and the obstacles L,U , satisfy (H2), (H3) and the following assumptions:

(A1) There exists some β > 2, such that for any y, z ∈ R, f(·, ·, y, z), g(·, ·, y, z) ∈ Sβ
G(0, T );

(A2) L, U ∈ Sβ
G(0, T ). There exists some I ∈ Sβ

G(0, T ) satisfying the following representation:

It = I0 +AI,−
t −AI,+

t +

∫ t

0

σI(s)dBs.

Here, AI,+, AI,− ∈ Sβ
G(0, T ) are two non-decreasing processes such that AI,+

0 = AI,−
0 = 0;

σI ∈ Sβ
G(0, T ) satisfies Lt ≤ It ≤ Ut; U+AI,+ is a generalizedG-Itô process evolves according

to

Ut +AI,+
t = U0 +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dBs +Ku
t , (3.2)

where b, σ ∈ Sβ
G(0, T ), andKu ∈ Sβ

G(0, T ) is a non-increasingG-martingale such thatKu
0 = 0.

Additionally, LT ≤ ξ ≤ UT , q.s..

Remark 3.1 In comparison to Li and Song (2021), their conditions are the same as ours ex-
cept Assumption (A3) therein which corresponds to our Assumption (A2), while ours is weaker.
Specifically, their (A3) says that the upper obstacle is a generalized G-Itô process of the following
form:

Ut = U0 +

∫ t

0

bU (s)ds+

∫ t

0

σU (s)dBs +KU
t ,

where bU , σU ∈ Sβ
G(0, T ), and KU ∈ Sβ

G(0, T ) is a non-increasing G-martingale. Setting

I = U, σI = σU , AI,−
t =

∫ t

0

(bU (s))+ds, and AI,+
t =

∫ t

0

(bU (s))−ds−KU
t ,

their (L,U) pair clearly satisfies (A2) of this paper.

Theorem 3.2 below is our first main result. It firstly estalishes the well-posedness of the doubly
reflected G-BSDE (3.1) using the weakest known regularity conditions. Secondly, it establishes
that the first component of the solution to (3.1) can be approximated by a monotone sequence
of processes, which are the solutions to a family of penalized single reflected G-BSDEs. This
construction will play a fundamental role to establishing the connection between doubly reflected
G-BSDEs and fully nonlinear PDEs with double obstacles. The proof of Theorem 3.2 is provided
in Subsection 3.3.
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Theorem 3.2 Assuming that ξ, f , g, L and U satisfy Assumptions (H2)-(H3) and (A1)-(A2),
the following properties hold for any 2 ≤ α < β:

(a) The doubly reflected G-BSDE (3.1) has a unique solution (Y, Z,A), such that Y ∈ Sα
G(0, T ),

Z ∈ Hα
G(0, T ) and A ∈ Sα

G(0, T ).

(b) This Y can be approximated by a monotone decreasing sequence of processes Ȳ n (i.e. Ȳ n1

t ≥
Ȳ n2

t for any n1 ≤ n2) in the sense that

lim
n→∞

Ê sup
t∈[0,T ]

|Yt − Ȳ n
t |α = 0,

where (Ȳ n, Z̄n, Ān) for each n ∈ N is the solution to the following reflected G-BSDE:





Ȳ n
t = ξ +

∫ T

t
f(s, Ȳ n

s , Z̄n
s )ds+

∫ T

t
g(s, Ȳ n

s , Z̄n
s )d〈B〉s − n

∫ T

t
(Ȳ n

s − Us)
+ds

−
∫ T

t
Z̄n
s dBs + (Ān

T − Ān
t ),

Ȳ n
t ≥ Lt, 0 ≤ t ≤ T,
{
−
∫ t

0 (Ȳ
n
s − Ls)dĀ

n
s

}
t∈[0,T ]

is a non-increasing G-martingale.

(3.3)

(c) The remaining terms (Z,A) can be constructed by the penalized reflected G-BSDEs (3.3), in
the way that

lim
n→∞

Ê

(∫ T

0

|Z̄n
s − Zs|

2ds

)α
2

= 0 and lim
n→∞

Ê sup
t∈[0,T ]

|Ãn
t −At|

α = 0,

where Ãn
t = Ān

t −
∫ t

0
n(Ȳ n

s − Us)
+ds.

3.2 Preliminary analysis

In this subsection, we conduct preliminary analysis in order to prove Theorem 3.2. Firstly, we
aim to establish the uniform boundedness of Ȳ n under the norm ‖ · ‖Sα

G
. Note that by Theorem

2.10, the reflected G-BSDE (3.3) admits a unique solution (Ȳ n, Z̄n, Ān) for any n ∈ N, satisfying
Y ∈ Sα

G(0, T ) and Z ∈ Hα
G(0, T ) for 1 < α < β, and K is a non-increasing G-martingale such

that K0 = 0 and KT ∈ Lα
G(ΩT ). Then, we demonstrate that (Ȳ n − U)+ converges to 0 with

an explicit rate of 1
n and subsequently derive uniform estimates for Z̄n and Ān under the norms

‖ · ‖Hα
G
and ‖ · ‖Lα

G
, respectively. However, given that Ān is not a G-martingale, we encounter some

difficulties. To address this challenge, for each fixed n ∈ N, we approximate the solution to (3.3)
by the solutions to the following family of G-BSDEs parameterized by m ∈ N:

Y n,m
t =ξ +

∫ T

t

f(s, Y n,m
s , Zn,m

s )ds+

∫ T

t

g(s, Y n,m
s , Zn,m

s )d〈B〉s −

∫ T

t

Zn,m
s dBs

+

∫ T

t

m(Y n,m
s − Ls)

−ds−

∫ T

t

n(Y n,m
s − Us)

+ds− (Kn,m
T −Kn,m

t ).

(3.4)

Set

An,m,+
t =

∫ t

0

m(Y n,m
s − Ls)

−ds and An,m,−
t =

∫ t

0

n(Y n,m
s − Us)

+ds. (3.5)
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Clearly, An,m,+ and An,m,− are non-decreasing processes and Equation (3.4) can be rewritten as:

Y n,m
t =ξ +

∫ T

t

f(s, Y n,m
s , Zn,m

s )ds+

∫ T

t

g(s, Y n,m
s , Zn,m

s )d〈B〉s −

∫ T

t

Zn,m
s dBs

+ (An,m,+
T −An,m,+

t )− (An,m,−
T −An,m,−

t )− (Kn,m
T −Kn,m

t ).

(3.6)

In the following, we show that under Assumptions (H2)-(H3) and (A1)-(A2), the sequence
(Y n,m, Zn,m, An,m,+ − Kn,m) converges to (Ȳ n, Z̄n, Ān) as m goes to infinity. The initial step
involves establishing the uniform boundedness of Y n,m under the norm ‖ · ‖Sα

G
. Note that since

the upper obstacle here is no longer a generalized G-Itô process, conventional approaches found in
existing literature on reflected G-BSDEs are inapplicable. Our technical proofs commence with the
following lemma, wherein we utilize a weak condition that is fulfilled by the conditions presented
in subsequent proofs.

Lemma 3.3 Assuming that ξ, f , g, L and U satisfy Assumptions (H1)-(H3) and the (A2’) below
(which is essentially (A2) but without the requirements on U +AI,+):

(A2’) L, U ∈ Sβ
G(0, T ). There exists some I ∈ Sβ

G(0, T ) satisfying the following representation

It = I0 +AI,−
t −AI,+

t +

∫ t

0

σI(s)dBs,

where AI,+, AI,− ∈ Sβ
G(0, T ) are two non-decreasing processes with AI,+

0 = AI,−
0 = 0 and

σI ∈ Sβ
G(0, T ) such that Lt ≤ It ≤ Ut. Additionally, LT ≤ ξ ≤ UT , q.s.

Then there exists a constant C independent of n,m, such that for 2 ≤ α < β,

Ê sup
t∈[0,T ]

|Y n,m
t |α ≤ C.

Proof. Set Y ∗
t = It and Z∗

t = σI
t . It is easy to check that

Y ∗
t =IT −

∫ T

t

Z∗
sdBs + (AI,+

T −AI,+
t )− (AI,−

T −AI,−
t )

=IT +

∫ T

t

f(s, Y ∗
s , Z

∗
s )ds+

∫ T

t

g(s, Y ∗
s , Z

∗
s )d〈B〉s

−

∫ T

t

Z∗
sdBs + (A∗,+

T −A∗,+
t )− (A∗,−

T −A∗,−
t ),

(3.7)

where

A∗,+
t = AI,+

t +

∫ t

0

f−(s, Y ∗
s , Z

∗
s )ds+

∫ t

0

g−(s, Y ∗
s , Z

∗
s )d〈B〉s, (3.8)

A∗,−
t = AI,−

t +

∫ t

0

f+(s, Y ∗
s , Z

∗
s )ds+

∫ t

0

g+(s, Y ∗
s , Z

∗
s )d〈B〉s. (3.9)

Clearly, A∗,+, A∗,− ∈ Sβ
G(0, T ) are non-decreasing processes. Consider the following two G-BSDEs:

Y +
t =UT +

∫ T

t

f(s, Y +
s , Z+

s )ds+

∫ T

t

g(s, Y +
s , Z+

s )d〈B〉s + (A∗,+
T −A∗,+

t )

−

∫ T

t

Z+
s dBs − (K+

T −K+
t ),

(3.10)
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Y −
t =LT +

∫ T

t

f(s, Y −
s , Z−

s )ds+

∫ T

t

g(s, Y −
s , Z−

s )d〈B〉s − (A∗,−
T −A∗,−

t )

−

∫ T

t

Z−
s dBs − (K−

T −K−
t ).

(3.11)

By Theorem 2.8, we have Y −
t ≤ Y ∗

t ≤ Y +
t for any t ∈ [0, T ], which implies that

Y +
t ≥ It ≥ Lt and Y −

t ≤ It ≤ Ut.

Therefore, we may add the terms +
∫ T

t
m(Y +

s − Ls)
−ds and −

∫ T

t
n(Y −

s − Us)
+ds to Equations

(3.10) and (3.11), respectively. By Theorem 2.8 again, we have Y −
t ≤ Y n,m

t ≤ Y +
t for any t ∈ [0, T ]

and n,m ∈ N. By the estimates for G-BSDEs (see Theorem 2.6), we have

Ê sup
t∈[0,T ]

|Y +
t +A∗,+

t |α

≤ CÊ

[
sup

t∈[0,T ]

Êt

[
|UT +A∗,+

T |α +

∫ T

t

(
|f(s, 0, 0)|α + |g(s, 0, 0)|α + |A∗,+

s |α
)
ds

]]
,

Ê sup
t∈[0,T ]

|Y −
t −A∗,−

t |α

≤ CÊ

[
sup

t∈[0,T ]

Êt

[
|LT −A∗,−

T |α +

∫ T

t

(
|f(s, 0, 0)|α + |g(s, 0, 0)|α + |A∗,−

s |α
)
ds

]]
.

By Theorem 2.5 and Hölder’s inequality, there exists a constant C independent of n,m such that

Ê sup
t∈[0,T ]

|Y +
t |α ≤ C and Ê sup

t∈[0,T ]

|Y −
t |α ≤ C.

Consequently, we have
Ê sup

t∈[0,T ]

|Y n,m
t |α ≤ C,

where C is a constant independent of n,m.
The following lemma provides the explicit convergence rate of (Y n,m − U)+, which will be

instrumental in deriving the convergence rate of (Ȳ n − U)+. The latter is challenging to obtain
solely by considering the penalization sequence (3.3), as Ān does not exhibit the properties of a
non-increasing G-martingale. To address this limitation, we introduce the penalization sequence
with two parameters n and m in (3.4). Although Equation (3.2) is not required in Lemma 3.3, it
becomes necessary starting from this point onward.

Lemma 3.4 Assuming that ξ, f , g, L and U satisfy Assumptions (H2)-(H3) and (A1)-(A2).
There exists a constant C independent of n,m, such that for 2 ≤ α < β,

Ê sup
t∈[0,T ]

∣∣(Y n,m
t − Ut)

+
∣∣α ≤

C

nα
.

Proof. Consider the following G-BSDE:

Ŷ n
t =UT +

∫ T

t

f(s, Ŷ n
s , Ẑn

s )ds+

∫ T

t

g(s, Ŷ n
s , Ẑn

s )d〈B〉s −

∫ T

t

Ẑn
s dBs

−

∫ T

t

n(Ŷ n
s − Us)

+ds+ (A∗,+
T −A∗,+

t )− (K̂n
T − K̂n

t ),

(3.12)
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where A∗,+ is defined in (3.8). By Equation (3.10) and Theorem 2.8, we have Ŷ n
t ≤ Y +

t for n ∈ N.

Noting that Y ∗
t = It ≤ Ut, we may add −

∫ T

t n(Y ∗
s − Us)

+ds to Equation (3.7). By Theorem

2.8, we have Ŷ n
t ≥ Y ∗

t and hence Ŷ n
t ≥ Lt for any n ∈ N and t ∈ [0, T ]. Therefore, we may

add +
∫ T

t m(Ŷ n
s − Ls)

−ds to Equation (3.12). Applying Theorem 2.8 again yields Ŷ n
t ≥ Y n,m

t . It
suffices to prove that there exists a constant C independent of n,m, such that for any 2 ≤ α < β,

Ê sup
t∈[0,T ]

∣∣(Ŷ n
t − Ut)

+
∣∣α ≤

C

nα
.

Set
Ỹ n
t = Ŷ n

t +A∗,+
t , ξ̃ = UT +A∗,+

T and Ũt = Ut +A∗,+
t .

Equation (3.12) can be rewritten as

Ỹ n
t = ξ̃ +

∫ T

t

f̃(s, Ỹ n
s , Ẑn

s )ds+

∫ T

t

g̃(s, Ỹ n
s , Ẑn

s )d〈B〉s−

∫ T

t

n(Ỹ n − Ũs)
+ds−

∫ T

t

Ẑn
s dBs

− (K̂n
T − K̂n

t ),

where
f̃(s, y, z) = f(s, y −A∗,+

s , z) and g̃(s, y, z) = g(s, y −A∗,+
s , z).

Given that Y ∗
t ≤ Ŷ n

t ≤ Y +
t for any n ∈ N, there exists a constant C independent of n, such that

Ê sup
t∈[0,T ]

|Ŷ n
t |α ≤ C.

Consequently,
Ê sup

t∈[0,T ]

|Ỹ n
t |α ≤ C,

where C is independent of n. By Lemma 4.5 in Li and Peng (2020), we have

Ê sup
t∈[0,T ]

∣∣(Ỹ n
t − Ũt)

+
∣∣α ≤

C

nα
,

which yields the desired result.
Next, we show that the sequences An,m,+, An,m,−, Kn,m and Zn,m are uniformly bounded.

Lemma 3.5 Assuming that ξ, f , g, L, and U satisfy Assumptions (H2)-(H3) and (A1)-(A2).
There exists a constant C independent of n,m, such that for 2 ≤ α < β,

Ê|An,m,+
T |α ≤ C, Ê|An,m,−

T |α ≤ C, Ê|Kn,m
T |α ≤ C and Ê

(∫ T

0

|Zn,m
s |2ds

)α/2

≤ C.

Proof. By Lemma 3.4 and the definition of An,m,− given in Equation (3.5), it is easy to check

that Ê|An,m,−
T |α ≤ C. We have by Theorem 2.7 that

Ê

(∫ T

0

|Zn,m
s |2ds

)α/2
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≤ C

{
Ê sup

t∈[0,T ]

|Y n,m
t |α +

(
Ê sup

t∈[0,T ]

|Y n,m
t |α

)1/2

×

((
Ê

∫ T

0

|f(s, 0, 0)|αds

)1/2

+

(
Ê

∫ T

0

|g(s, 0, 0)|αds

)1/2

+
(
Ê|An,m,−

T |α
)1/2

)}
.

Noting that (H1) is weaker than (A1) with β > 2, we obtain by Lemma 3.3 that

Ê

(∫ T

0

|Zn,m
s |2ds

)α/2

≤ C.

Further note that

An,m,+
T −Kn,m

T =Y n,m
0 − ξ +

∫ T

0

Zn,m
s dBs +An,m,−

T

−

∫ T

0

f(s, Y n,m
s , Zn,m

s )ds−

∫ T

0

g(s, Y n,m
s , Zn,m

s )d〈B〉s.

By simple calculation, we obtain that

Ê|An,m,+
T −Kn,m

T |α ≤C

{
Ê sup

t∈[0,T ]

|Y n,m
t |α + Ê

(∫ T

0

|Zn,m
s |2ds

)α/2

+ Ê|An,m,−
T |α

+ Ê

∫ T

0

|f(s, 0, 0)|αds+ Ê

∫ T

0

|g(s, 0, 0)|αds

}
.

Since An,m,+
T and −Kn,m

T are non-negative, we obtain the desired result.
By a similar analysis as the proof of Lemma 4.3, Lemma 4.4 and Theorem 5.1 in Li et al.

(2018b), we have for any fixed n and 2 ≤ α < β,

lim
m→∞

Ê

[
sup

t∈[0,T ]

|(Y n,m
t − Lt)

−|α

]
= 0, (3.13)

and letting m go to infinity, (Y n,m, Zn,m, An,m,+ −Kn,m) converges to (Ȳ n, Z̄n, Ān), which is the
solution of Equation (3.3). Specifically, we have

lim
m→∞

Ê

[
sup

t∈[0,T ]

|Ȳ n
t − Y n,m

t |α

]
= 0, lim

m→∞
Ê



(∫ T

0

|Z̄n
t − Zn,m

t |2dt

)α/2

 = 0,

and lim
m→∞

Ê

[
sup

t∈[0,T ]

|Ān
t − (An,m,+

t −Kn,m
t )|α

]
= 0.

(3.14)

By Lemma 3.3, Lemma 3.4, and Lemma 3.5, together with Equation (3.14), we have the following
result.

Lemma 3.6 Assuming that ξ, f , g, L, and U satisfy Assumptions (H2)-(H3) and (A1)-(A2).
There exists a constant C independent of n, such that for any 2 ≤ α < β,

Ê sup
t∈[0,T ]

|Ȳ n
t |α ≤ C, Ê

(∫ T

0

|Z̄n
t |

2dt

)α/2

≤ C,
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Ê sup
t∈[0,T ]

|Ān
t |

α ≤ C, and Ê sup
t∈[0,T ]

|(Ȳ n
t − Ut)

+|α ≤
C

nα
.

Finally, we investigate the difference of two solutions to the doubly reflected G-BSDE (3.1).

Proposition 3.7 Let (Y i, Zi, Ai) for i = 1, 2 be the solutions to the doubly reflected G-BSDE
(3.1) with parameters (ξi, f i, gi, Li, U i), which satisfy Assumptions (H2)-(H3) and (A1)-(A2). Let
{Ai,n,+}n∈N, {A

i,n,−}n∈N and {Ki,n}n∈N be the approximate sequences for (Y i, Ai) with order α
w.r.t. Li and U i, for 2 ≤ α < β. Set

Ŷt = Y 1
t − Y 2

t , ξ̂ = ξ1 − ξ2, L̂t = L1
t − L2

t and Ût = U1
t − U2

t .

Then there exists a constant C := C(α, T, κ,G) > 0 such that

|Ŷt|
α ≤C

(
2∑

i=1

Êt sup
s∈[t,T ]

|Y i
s |

α

)α−2

2

× lim inf
n→∞

(
2∑

i=1

(
Êt|A

i,n,+
T |α + Êt|A

i,n,−
T |α

)) 1
α

×

(
Êt sup

s∈[t,T ]

|L̂s|
α + Êt sup

s∈[t,T ]

|Ûs|
α

) 1
α

+ CÊt

[
|ξ̂|α +

∫ T

t

|f̂s|
αds+

∫ T

t

|ĝs|
αds

]
,

where f̂s =
∣∣∣f1(s, Y 2

s , Z
2
s )− f2(s, Y 2

s , Z
2
s )
∣∣∣ and ĝs =

∣∣∣g1(s, Y 2
s , Z

2
s )− g2(s, Y 2

s , Z
2
s )
∣∣∣.

Proof. Set
Ẑt = Z1

t − Z2
t , Ât = A1

t −A2
t , and Ht = |Ŷt|

2.

For any r > 0, applying G-Itô’s formula to H
α/2
t ert = |Ŷt|

αert, we have

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s Ẑ2
sd〈B〉s

= |ξ̂|αerT + α
(
1−

α

2

)∫ T

t

ersHα/2−2
s Ŷ 2

s Ẑ
2
sd〈B〉s −

∫ T

t

αersHα/2−1
s ŶsẐsdBs

+

∫ T

t

αersHα/2−1
s Ŷs

(
f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )
)
ds+

∫ T

t

αersHα/2−1
s ŶsdÂs (3.15)

+

∫ T

t

αersHα/2−1
s Ŷs

(
g1(s, Y 1

s , Z
1
s )− g2(s, Y 2

s , Z
2
s )
)
d〈B〉s.

By the Lipschitz assumption on f1 and g1, together with Hölder’s inequality and the fact that
σ2ds ≤ d〈B〉s ≤ σ̄2ds, we have

∫ T

t

αersHα/2−1
s Ŷs

(
f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )
)
ds

+

∫ T

t

αersHα/2−1
s Ŷs

(
g1(s, Y 1

s , Z
1
s )− g2(s, Y 2

s , Z
2
s )
)
d〈B〉s

≤

∫ T

t

αersH
α−1

2
s

{∣∣∣f1(s, Y 1
s , Z

1
s )− f1(s, Y 2

s , Z
2
s )
∣∣∣+ f̂s

}
ds

+

∫ T

t

αersH
α−1

2
s

{∣∣∣g1(s, Y 1
s , Z

1
s )− g1(s, Y 2

s , Z
2
s )
∣∣∣ + ĝs

}
d〈B〉s
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≤

∫ T

t

αersH
α−1

2
s

{
κ
(
|Ŷs|+ |Ẑs|

)
+ f̂s

}
ds+

∫ T

t

αersH
α−1

2
s

{
κ
(
|Ŷs|+ |Ẑs|

)
+ ĝs

}
d〈B〉s

≤

∫ T

t

αersHα/2−1/2
s

(
|f̂s|+ σ̄2|ĝs|

)
ds+

α(α − 1)

4

∫ T

t

ersHα/2−1
s Ẑ2

sd〈B〉s

+

(
(1 + σ̄2)ακ+ (1 + σ̄4)

2ακ2

σ2(α− 1)

)∫ T

t

ersHα/2
s ds.

By Young’s inequality, we obtain

∫ T

t

αersHα/2−1/2
s

(
|f̂s|+ σ̄2|ĝs|

)
ds ≤2(α− 1)

∫ T

t

ersHα/2
s ds

+

∫ T

t

ers|f̂s|
αds+ σ̄2α

∫ T

t

ers|ĝs|
αds.

Set
Ai,n = Ai,n,+ −Ai,n,− −Ki,n, i = 1, 2,

Ŷ L
t = (Y 1

t − L1
t )− (Y 2

t − L2
t ) and Ŷ U

t = (U1
t − Y 1

t )− (U2
t − Y 2

t ).

Noting that

Ŷt = Ŷ L
t + L̂t ≤ Y 1

t − L1
t + |L̂t|, −Ŷt = Ŷ U

t − Ût ≤ U1
t − Y 1

t + |Ût|,

and A1,n,+, A1,n,− are non-decreasing processes, it is easy to check that

∫ T

t

αersHα/2−1
s ŶsdA

1
s =

∫ T

t

αersHα/2−1
s Ŷsd(A

1
s −A1,n

s ) +

∫ T

t

αersHα/2−1
s ŶsdA

1,n
s

≤

∫ T

t

αersHα/2−1
s (Y 1

s − L1
s)dA

1,n,+
s +

∫ T

t

αersHα/2−1
s |L̂s|dA

1,n,+
s

+

∫ T

t

αersHα/2−1
s (U1

s − Y 1
s )dA

1,n,−
s +

∫ T

t

αersHα/2−1
s |Ûs|dA

1,n,−
s

+

∣∣∣∣∣

∫ T

t

αersHα/2−1
s Ŷsd(A

1
s −A1,n

s )

∣∣∣∣∣−
∫ T

t

αersHα/2−1
s (Ŷs)

+dK1,n
s .

Similarly, we have

∫ T

t

αersHα/2−1
s (−Ŷs)dA

2
s ≤

∫ T

t

αersHα/2−1
s (Y 2

s − L2
s)dA

2,n,+
s +

∫ T

t

αersHα/2−1
s |L̂s|dA

2,n,+
s

+

∫ T

t

αersHα/2−1
s (U2

s − Y 2
s )dA

2,n,−
s +

∫ T

t

αersHα/2−1
s |Ûs|dA

2,n,−
s

+

∣∣∣∣∣

∫ T

t

αersHα/2−1
s Ŷsd(A

2
s −A2,n

s )

∣∣∣∣∣−
∫ T

t

αersHα/2−1
s (Ŷs)

−dK2,n
s .

Since |H
α/2−1
s Ŷs| ≤ |Ŷs|

α−1 for s ∈ [0, T ], it is easy to check that Hα/2−1Ŷ ∈ S
α

α−1

G . This fact,
Lemma 3.1 in Li and Song (2021) and

lim
n→∞

Ê sup
t∈[0,T ]

|Ai
t −Ai,n

t |α = 0,
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imply that

lim
n→∞

Ê

∣∣∣∣∣

∫ T

t

αersHα/2−1
s Ŷsd(A

1
s −A1,n

s )

∣∣∣∣∣ = 0.

Note that U1
t ≥ Y 1

t and A1,n,− is non-decreasing. By the definition of H and Hölder’s inequality,
it is easy to check that

Ê

[∫ T

t

αersHα/2−1
s (U1

s − Y 1
s )dA

1,n,−
s

]

≤CÊ

[
sup

t∈[0,T ]

(|Y 1
t |+ |Y 2

t |)
α−2

∫ T

t

(U1
s − Y 1

s )dA
1,n,−
s

]

≤C

(
Ê sup

t∈[0,T ]

(
|Y 1

t |
α + |Y 2

t |
α
))α−2

α


Ê

∣∣∣∣∣

∫ T

t

(U1
s − Y 1

s )dA
1,n,−
s

∣∣∣∣∣

α
2




2
α

.

It follows from the ASCα that

lim
n→∞

Ê

∣∣∣∣∣

∫ T

t

αersHα/2−1
s (U1

s − Y 1
s )dA

1,n,−
s

∣∣∣∣∣ = 0.

Similar analyses yield that

lim
n→∞

Ê

∣∣∣∣∣

∫ T

t

αersHα/2−1
s (Y 1

s − L1
s)dA

1,n,+
s

∣∣∣∣∣ = 0,

lim
n→∞

Ê

∣∣∣∣∣

∫ T

t

αersHα/2−1
s (Y 2

s − L2
s)dA

2,n,+
s

∣∣∣∣∣ = 0,

lim
n→∞

Ê

∣∣∣∣∣

∫ T

t

αersHα/2−1
s (U2

s − Y 2
s )dA

2,n,−
s

∣∣∣∣∣ = 0.

By the non-decreasing property of A1,n,+, the definition of H , and Hölder’s inequality, we obtain
that

Êt

[∫ T

t

αersHα/2−1
s |L̂s|dA

1,n,+
s

]
≤CÊt

[
sup

s∈[t,T ]

(|Y 1
s |+ |Y 2

s |)
α−2 sup

s∈[t,T ]

|L̂s||A
1,n,+
T |

]

≤CIαt (Y )

(
Êt sup

s∈[t,T ]

|L̂s|
α

) 1
α
(
Êt|A

1,n,+
T |α]

) 1
α

,

where

Iαt (Y ) =

(
2∑

i=1

Êt sup
s∈[t,T ]

|Y i
s |

α

)α−2

α

.

Similarly, we have

Êt

[∫ T

t

αersHα/2−1
s |Ûs|dA

1,n,−
s

]
≤ CIαt (Y )

(
Êt sup

s∈[t,T ]

|Ûs|
α

) 1
α
(
Êt|A

1,n,−
T |α

) 1
α

,
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Êt

[∫ T

t

αersHα/2−1
s |L̂s|dA

2,n,+
s

]
≤ CIαt (Y )

(
Êt sup

s∈[t,T ]

|L̂s|
α

) 1
α
(
Êt|A

2,n,+
T |α

) 1
α

,

Êt

[∫ T

t

αersHα/2−1
s |Ûs|dA

2,n,−
s

]
≤ CIαt (Y )

(
Êt sup

s∈[t,T ]

|Ûs|
α

) 1
α
(
Êt|A

2,n,−
T |α

) 1
α

.

Set

Mn
t =

∫ t

0

αersHα/2−1
s

(
ŶsẐsdBs + (Ŷs)

+dK1,n
s + (Ŷs)

−dK2,n
s

)
.

By Lemma 3.4 in Hu et al. (2014a), Mn is a G-martingale. Let

r = 2(α− 1) + (1 + σ̄2)ακ+ (1 + σ̄4)
2ακ2

σ2(α− 1)
+ 1.

Combining the above inequalities, we obtain

H
α/2
t ert + (Mn

T −Mn
t )

≤|ξ̂|αerT +

∫ T

t

ers|f̂s|
αds+ σ̄2α

∫ T

t

ers|ĝs|
αds+

2∑

i=1

∣∣∣∣∣

∫ T

t

αersHα/2−1
s Ŷsd(A

i
s −Ai,n

s )

∣∣∣∣∣

+

∫ T

t

αersHα/2−1
s |L̂s|d(A

1,n,+
s +A2,n,+

s ) +

∫ T

t

αersHα/2−1
s |Ûs|d(A

1,n,−
s +A2,n,−

s )

+

2∑

i=1

∫ T

t

αersHα/2−1
s (U i

s − Y i
s )dA

i,n,−
s +

2∑

i=1

∫ T

t

αersHα/2−1
s (Y i

s − Li
s)dA

i,n,+
s .

Taking conditional expectations on both sides and letting n → ∞, the proof is complete.

3.3 Proof of Theorem 3.2

(a). We first prove the uniqueness of the solution to the doubly reflected G-BSDE (3.1). Let
(Y i, Zi, Ai) for i = 1, 2 be the solutions to the doubly reflected G-BSDE (3.1). By Proposition 3.7,
we conclude that Y 1 ≡ Y 2. Applying G-Itô’s formula to (Y 1

t − Y 2
t )

2, we obtain that

∫ T

t

|Z1
s − Z2

s |
2d〈B〉s =− (Y 1

t − Y 2
t )

2 +

∫ T

t

(Y 1
s − Y 2

s )
(
f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s )
)
ds

+

∫ T

t

(Y 1
s − Y 2

s )
(
g(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s )
)
d〈B〉s

−

∫ T

t

2(Y 1
s − Y 2

s )(Z
1
s − Z2

s )dBs +

∫ T

t

2(Y 1
s − Y 2

s )d(A
1
s −A2

s).

Using the fact that Y 1 ≡ Y 2, taking t = 0 in the above equation, it is easy to check that

Ê

(∫ T

0

|Z1
s − Z2

s |
2d〈B〉s

)α/2

= 0.
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Since σ2 > 0, it follows that Z1 ≡ Z2. Note that for i = 1, 2,

Ai
t = Y i

0 − Y i
t −

∫ t

0

f(s, Y i
s , Z

i
s)ds−

∫ t

0

g(s, Y i
s , Z

i
s)d〈B〉s +

∫ t

0

Zi
sdBs.

Applying the Lipschitz assumption on f, g, Hölder’s inequality and Proposition 2.3, we have

Ê sup
t∈[0,T ]

|A1
t −A2

t |
α ≤ CÊ sup

t∈[0,T ]

|Y 1
t − Y 2

t |
α + CÊ

(∫ T

0

|Z1
s − Z2

s |
2ds

)α/2

= 0,

which implies that A1 ≡ A2.
Then, we prove the existence of the solution to the doubly reflected G-BSDE (3.1). Letting

m = n in Equation (3.4), we define

Y n = Y n,n, Zn = Zn,n, Kn = Kn,n, An,− = An,n,− and An,+ = An,n,+. (3.16)

Set
An = An,− −Kn −An,+.

By a similar analysis as the proof of Lemma 4.4 and Lemma 4.7 in Li and Song (2021), we have
for any 2 ≤ α < β,

lim
n→∞

Ê

[
sup

t∈[0,T ]

|(Y n
t − Lt)

−|α

]
= 0 (3.17)

and

lim
n,n′→∞

Ê

[
sup

t∈[0,T ]

|Y n
t − Y n′

t |α

]
= 0, lim

n,n′→∞
Ê



(∫ T

0

|Zn
s − Zn′

s |2ds

)α
2


 = 0,

and lim
n,n′→∞

Ê

[
sup

t∈[0,T ]

|An
t −An′

t |α

]
= 0.

Denote by (Y, Z,A) the limit of (Y n, Zn, An) as n goes to infinity. Recalling the definitions of

An,+ and An,− given in Equation (3.16), and the fact that Ê|An,+|α] ≤ C and Ê|An,−|α] ≤ C from
Lemma 3.5, we have Lt ≤ Yt ≤ Ut for t ∈ [0, T ]. Letting n → ∞ in Equation (3.4) (recalling here
we consider the case that m = n) yields

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −

∫ T

t

ZsdBs + (AT −At).

It remains to prove that (Y,A) satisfies the ASCα. We claim that {An,+}n∈N, {A
n,−}n∈N and

{Kn}n∈N are the approximate sequences for (Y,A) with order α. It suffices to show that

lim
n→∞

Ê

∣∣∣∣∣

∫ T

0

(Ys − Ls)dA
n,+
s

∣∣∣∣∣

α/2

= 0 and lim
n→∞

Ê

∣∣∣∣∣

∫ T

0

(Us − Ys)dA
n,−
s

∣∣∣∣∣

α/2

= 0.
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We only prove the first equation since the second one can be proved similarly. By the definition of
An,+ given in Equation (3.16), we obtain that

∫ T

0

(Ys − Ls)dA
n,+
s =

∫ T

0

(Ys − Y n
s )dAn,+

s +

∫ T

0

(Y n
s − Ls)n(Y

n
s − Ls)

−ds

≤ sup
t∈[0,T ]

|Yt − Y n
t ||An,+

T |.

Then, it is easy to check that

lim
n→∞

Ê

∣∣∣∣∣

∫ T

0

(Ys − Ls)dA
n,+
s

∣∣∣∣∣

α/2

≤ lim
n→∞

(
Ê sup

t∈[0,T ]

|Yt − Y n
t |α

) 1
2 (

Ê|An,+
T |

) 1
2

= 0.

Therefore, (Y, Z,A) is the solution to the doubly reflected G-BSDE (3.1).

(b). Next, we demonstrate the decreasing convergence of Ȳ n to Y . By Theorem 2.11, we have
Ȳ n1

t ≥ Ȳ n2

t for any n1 ≤ n2 and t ∈ [0, T ]. It suffices to show that for any 2 ≤ α < β,

lim
n→∞

Ê sup
t∈[0,T ]

|Y n
t − Ȳ n

t |α = 0. (3.18)

Noting that Ȳ n
t ≥ Lt for any n ∈ N and any t ∈ [0, T ], (Ȳ n, Z̄n, Ān) satisfies the following equation

Ȳ n
t =ξ +

∫ T

t

f(s, Ȳ n
s , Z̄n

s )ds+

∫ T

t

g(s, Ȳ n
s , Z̄n

s )d〈B〉s −

∫ T

t

Z̄n
s dBs

+ (Ān
T − Ān

t )−

∫ T

t

n(Ȳ n
s − Us)

+ds+

∫ T

t

n(Ȳ n
s − Ls)

−ds.

Additionally, since Lt ≤ Ȳ n
t ≤ Ȳ 1

t for any n ∈ N and t ∈ [0, T ], there exists a constant C
independent of n, such that for any 2 ≤ α < β,

Ê sup
t∈[0,T ]

|Ȳ n
t |α ≤ C. (3.19)

By Theorem 2.8,
Ŷ n
t = Ȳ n

t − Y n
t ≥ 0

for any n ∈ N and t ∈ [0, T ]. For any constant r, applying G-Itô’s formula to ert(Hn
t )

α
2 , where

Hn
t = |Ŷ n

t |2, we have

|Hn
t |

α/2ert +

∫ T

t

rers|Hn
s |

α/2ds+

∫ T

t

α

2
ers|Hn

s |
α/2−1(Ẑn

s )
2d〈B〉s

=α(1−
α

2
)

∫ T

t

ers|Hn
s |

α/2−2(Ŷ n
s )2(Ẑn

s )
2d〈B〉s −

∫ T

t

αers|Hn
s |

α/2−1Ŷsn(Y
n
s − Ls)

−ds

+

∫ T

t

αers|Hn
s |

α/2−1Ŷsf̂
n
s ds+

∫ T

t

αers|Hn
s |

α/2−1Ŷsĝ
n
s d〈B〉s

−

∫ T

t

αers|Hn
s |

α/2−1
(
Ŷ n
s Ẑn

s dBs − Ŷ n
s dKn

s − Ŷ n
s dĀn

s

)

−

∫ T

t

αers|Hn
s |

α/2−1Ŷsn
[
(Ȳ n

s − Us)
+ − (Y n

s − Us)
+
]
ds,

(3.20)
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where

Ẑn
t = Z̄n

t − Zn
t , f̂n

t = f(t, Ȳ n
t , Z̄n

t )− f(t, Y n
t , Zn

t ) and ĝnt = g(t, Ȳ n
t , Z̄n

t )− g(t, Y n
t , Zn

t ).

Applying Hölder’s inequality, we have

∫ T

t

αers|Hn
s |

α/2−1Ŷ n
s f̂n

s ds+

∫ T

t

αers|Hn
s |

α/2−1Ŷ n
s ĝns d〈B〉s

≤

(
(1 + σ̄2)ακ+ (1 + σ̄4)

2ακ2

σ2(α − 1)

)∫ T

t

ers|Hn
s |

α/2ds

+
α(α − 1)

4

∫ T

t

ers|Hn
s |

α/2−1(Ẑn
s )

2d〈B〉s.

Noting that Ŷ n
t ≥ 0 and Ān is non-decreasing, it is easy to check that

• +

∫ T

t

αers|Hn
s |

α/2−1Ŷ n
s dĀn

s ≤

∫ T

t

αers|Hn
s |

α/2−1
[
(Ȳ n

s − Ls) + (Y n
s − Ls)

−
]
dĀn

s ,

• −

∫ T

t

αers|Hn
s |

α/2−1Ŷsn
[
(Ȳ n

s − Us)
+ − (Y n − Us)

+
]
ds ≤ 0,

• −

∫ T

t

αers|Hn
s |

α/2−1Ŷsn(Y
n
s − Ls)

−ds ≤ 0,

• +

∫ T

t

αers|Hn
s |

α/2−1Ŷ n
s dKn

s ≤ 0.

(3.21)

Set

Mn
t =

∫ t

0

αers|Hn
s |

α/2−1
(
Ŷ n
s Ẑn

s dBs − (Ȳ n
s − Ls)dĀ

n
s

)
,

which is a G-martingale. Letting

r = 1 +

(
(1 + σ̄2)ακ+ (1 + σ̄4)

2ακ2

σ2(α− 1)

)
,

all the above analyses indicate that

ert|Ŷ n
t |α + (Mn

T −Mn
t ) ≤

∫ T

t

αers|Hn
s |

α/2−1(Y n
s − Ls)

−dĀn
s .

Taking conditional expectations on both sides, we have

|Ŷ n
t |α ≤ CÊt

[∫ T

t

|Hn
s |

α/2−1(Y n
s − Ls)

−dĀn
s

]
.

Thanks to Theorem 2.5, to obtain Equation (3.18), it suffices to show that there exists some γ > 1,
such that

lim
n→∞

Ê

(∫ T

0

|Hn
s |

α/2−1(Y n
s − Ls)

−dĀn
s

)γ

= 0.
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Indeed, for any 1 < γ < β/α, we have

Ê

(∫ T

0

|Hn
s |

α/2−1(Y n
s − Ls)

−dĀn
s

)γ

≤Ê

[
sup

s∈[0,T ]

|Ŷ n
s |(α−2)γ sup

s∈[0,T ]

(
(Y n

s − Ls)
−
)γ(

Ān
T

)γ
]

≤

(
Ê sup

s∈[0,T ]

|Ŷ n
s |αγ

) α
α−2
(
Ê sup

s∈[0,T ]

(
(Y n

s − Ls)
−
)αγ
) 1

α

Ê

[(
Ān

T

)αγ] 1
α

,

which converges to zero as n goes to infinity, by Lemmas 3.3 and 3.6, and Equations (3.17) and
(3.19).

(c). In order to prove the last assertion in Theorem 3.2, it suffices to show that for any 2 ≤ α < β,
we have

lim
n→∞

Ê

(∫ T

0

|Z̄n
s − Zn

s |
2ds

)α
2

= 0 and lim
n→∞

Ê sup
t∈[0,T ]

|Ãn
t −An

t |
α = 0,

where Ãn
t = Ān

t −
∫ t

0 n(Ȳ
n
s − Us)

+ds.
Letting r = 0 and α = 2 in Equation (3.20), applying Equation (3.21), we have

∫ T

0

(Ẑn
s )

2d〈B〉s ≤

∫ T

0

2Ŷ n
s f̂n

s ds+

∫ T

0

2Ŷ n
s ĝns d〈B〉s −

∫ T

0

2Ŷ n
s Ẑn

s dBs +

∫ T

0

2Ŷ n
s dĀn

s

≤κε

∫ T

0

(Ŷ n
s )2ds+ 2ε

∫ T

0

(Ẑn
s )

2ds+ 2 sup
t∈[0,T ]

|Ŷ n
s ||Ān

T | −

∫ T

0

2Ŷ n
s Ẑn

s dBs,

where ε > 0 and κε = 2(1 + σ̄2)κ+ (1+σ̄4)κ2

ε . By Proposition 2.3, for any ε′ > 0, we obtain

Ê

(∫ T

0

Ŷ n
s Ẑn

s dBs

)α
2

≤CÊ

(∫ T

0

(Ŷ n
s )2(Ẑn

s )
2ds

)α
4

≤C

(
Ê sup

t∈[0,T ]

|Ŷ n
t |α

)1/2

Ê

(∫ T

0

|Ẑn
s |

2ds

)α
2




1/2

≤
C

4ε′
Ê sup

t∈[0,T ]

|Ŷ n
t |α + Cε′Ê

(∫ T

0

|Ẑn
s |

2ds

)α
2

.

Choosing ε and ε′ small enough, it is easy to check that

Ê

(∫ T

0

(Ẑn
s )

2ds

)α
2

≤ C

{
Ê sup

t∈[0,T ]

|Ŷ n
t |α +

(
Ê sup

t∈[0,T ]

|Ŷ n
t |α

)1/2 (
Ê|Ān

T |
α
)1/2

}
.

It follows from Lemma 3.6 and Equation (3.18) that

lim
n→∞

Ê

(∫ T

0

|Z̄n
s − Zn

s |
2ds

)α
2

= 0.

23



Finally, we have

Ê sup
t∈[0,T ]

|Ãn
t −An

t |
α

≤ CÊ

[
sup

t∈[0,T ]

|Ŷ n
t |α +

(∫ T

0

|f̂n
s |ds

)α

+

(∫ T

0

|ĝns |ds

)α

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0

Ẑn
s dBs

∣∣∣∣
α
]

≤ C



Ê sup

t∈[0,T ]

|Ŷ n
t |α + Ê

(∫ T

0

|Ẑn
s |

2ds

)α/2




→ 0, as n → ∞.

The proof is complete.

4 Probabilistic representation of fully nonlinear PDEs with

double obstacles

In this section, we establish the connection between fully nonlinear PDEs with double obstacles and
doubly reflected G-BSDEs. To this end, we consider the doubly reflected G-BSDEs in a Markovian
framework. For simplicity, we focus solely on doubly reflected BSDEs driven by one-dimensional
G-Brownian motion. However, similar results apply to the multi-dimensional case.

For each 0 ≤ t ≤ T and ξ ∈ Lp
G(Ωt) where p ≥ 2, let {Xt,ξ

s , t ≤ s ≤ T } be the solution of the
following G-SDE:

Xt,ξ
s = x+

∫ s

t

b(r,Xt,ξ
r )dr +

∫ s

t

l(r,Xt,ξ
r )d〈B〉r +

∫ s

t

σ(r,Xt,ξ
r )dBr. (4.1)

Consider the doubly reflected G-BSDE





Y t,x
s = ξt,x +

∫ T

s f t,x(s, Y t,x
s , Zt,x

s )ds+
∫ T

s gt,x(s, Y t,x
s , Zt,x

s )d〈B〉s

−
∫ T

s Zt,x
s dBs + (At,x

s −At,x
s ), t ≤ s ≤ T,

Lt,x
s ≤ Y t,x

s ≤ U t,x
s , t ≤ s ≤ T,

(Y t,x, At,x) satisfies the ASCα,

(4.2)

which is the doubly reflected G-BSDE (3.1) with parameters (ξt,x, f t,x, gt,x, Lt,x, U t,x) taking the
following form:

ξt,x = φ(Xt,x
T ), Lt,x

s = h(s,Xt,x
s ), U t,x

s = h′(s,Xt,x
s ),

f t,x(s, y, z) = f(s,Xt,x
s , y, z), and gt,x(s, y, z) = g(s,Xt,x

s , y, z).

The functions b, l, σ, h, h′ : [0, T ]×R → R, φ : R → R and f, g : [0, T ]×R
3 → R are assumed to be

deterministic and satisfy the following conditions:

(Ai) b, l, σ, f , g, h, h′ are continuous in t ∈ [0, T ];

(Aii) There exist a positive integer k and a constant κ such that

|φ(x) − φ(x′)| ≤ κ(1 + |x|k + |x′|k)|x − x′|,
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|f(t, x, y, z)− f(t, x′, y′, z′)| ≤ κ
[
(1 + |x|k + |x′|k)|x− x′|+ |y − y′|+ |z − z′|

]
,

|g(t, x, y, z)− g(t, x′, y′, z′)| ≤ κ
[
(1 + |x|k + |x′|k)|x− x′|+ |y − y′|+ |z − z′|

]
,

|b(t, x)− b(t, x′)|+ |l(t, x)− l(t, x′)|+ |σ(t, x)− σ(t, x′)|+ |h(t, x)− h(t, x′)| ≤ κ|x− x′|;

(Aiii) h′ belongs to the space C1,2
Lip([0, T ] × R), h(t, x) ≤ h′(t, x) and h(T, x) ≤ φ(x) ≤ h′(T, x)

for any x ∈ R and t ∈ [0, T ]. The space C1,2
Lip([0, T ]×R) refers to the space of functions that

are continuously differentiable in their first variable and twice continuously differentiable in
their second variable, and both derivatives are uniformly Lipschitz continuous.

Under the above conditions, the solutions of the G-SDE (4.1) have the following properties; see
Chapter V of Peng (2019).

Proposition 4.1 (Peng (2019)) Let ξ, ξ′ ∈ Lp
G(Ωt) where p ≥ 2. Then we have, for each δ ∈

[0, T − t],

Êt sup
s∈[t,t+δ]

|Xt,ξ
s −Xt,ξ′

s |p ≤ C|ξ − ξ′|p, Êt|X
t,ξ
t+δ|

p ≤ C(1 + |ξ|p),

and Êt sup
s∈[t,t+δ]

|Xt,ξ
s − ξ|p ≤ C(1 + |ξ|p)δp/2,

where the constant C depends on κ,G, p and T .

Now define
u(t, x) := Y t,x

t , (t, x) ∈ [0, T ]× R, (4.3)

where Y t,x is the first component of the solution to the doubly reflected G-BSDE (4.2). Our first
observation is that u is a deterministic and continuous function.

Lemma 4.2 For any fixed t ∈ [0, T ], u is a continuous function in x.

Proof. By Proposition 3.7 and Proposition 4.1, there exists a constant C depending on T, k, κ,G, x, x′,
such that for any t ∈ [0, T ] and x, x′ ∈ R,

|u(t, x)− u(t, x′)|2 ≤ C(|x − x′|2 + |x− x′|).

This completes the proof.

Lemma 4.3 For any fixed x ∈ R, u is continuous in t.

Proof. For any fixed t ∈ [0, T ], we define, for 0 ≤ s ≤ t,

Xt,x
s := x, Y t,x

s := Y t,x
t , Zt,x

s := 0, At,x
s := 0,

U t,x
s := h′(t, x) and Lt,x

s := h(t, x).

Obviously, (Y t,x
s , Zt,x

s , At,x
s )s∈[0,T ] is the solution to the doubly reflected G-BSDE with parameters

(φ(Xt,x
T ), f̃ t,x, g̃t,x, Lt,x, U t,x), where

f̃ t,x(s, y, z) = f(s,Xt,x
s , y, z)1[t,T ](s) and g̃t,x(s, y, z) = g(s,Xt,x

s , y, z)1[t,T ](s).
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For each fixed x ∈ R, suppose that 0 ≤ t1 ≤ t2 ≤ T , by Proposition 3.7, there exists a constant C
depending on T, k, κ,G, x, such that

|u(t1, x)− u(t2, x)|
2 = |Y t1,x

0 − Y t2,x
0 |2

≤C

(
E sup

t∈[0,T ]

|Lt1,x
t − Lt2,x

t |2 + E sup
t∈[0,T ]

|U t1,x
t − U t2,x

t |2
) 1

2

+ CE|φ(Xt1,x
T )− φ(Xt2,x

T )|2

+ CE

[∫ T

0

∣∣∣f̃ t1,x(s,Xt1,x
s , Y t2,x

s , Zt2,x
s )− f̃ t2,x(s,Xt2,x

s , Y t2,x
s , Zt2,x

s )
∣∣∣
2

ds

]

+ CE

[∫ T

0

∣∣∣g̃t1,x(s,Xt1,x
s , Y t2,x

s , Zt2,x
s )− g̃t2,x(s,Xt2,x

s , Y t2,x
s , Zt2,x

s )
∣∣∣
2

ds

]
.

Note that

sup
t∈[0,T ]

|Lt1,x
t − Lt2,x

t |

≤|h(t1, x)− h(t2, x)|+ sup
t∈[t1,t2]

|h(t,Xt1,x
t )− h(t2, x)|+ sup

t∈[t2,T ]

|h(t,Xt1,x
t )− h(t,Xt2,x

t )|

≤2 sup
t∈[t1,t2]

|h(t, x)− h(t2, x)|+ sup
t∈[t1,t2]

|h(t,Xt1,x
t )− h(t, x)|+ sup

t∈[t2,T ]

κ|Xt1,x
t −Xt2,x

t |

≤2 sup
t∈[t1,t2]

|h(t, x)− h(t2, x)|+ sup
t∈[t1,t2]

κ|Xt1,x
t − x|+ sup

t∈[t2,T ]

κ|X
t2,X

t1,x

t2

t −Xt2,x
t |.

Letting δ = t2 − t1, by Proposition 4.1, we have

lim
δ→0

E sup
t∈[0,T ]

|Lt1,x
t − Lt2,x

t |2 = 0.

A similar analysis yields that

lim
δ→0

E sup
t∈[0,T ]

|U t1,x
t − U t2,x

t |2 = 0 and lim
δ→0

E|φ(Xt1,x
T )− φ(Xt2,x

T )|2 = 0.

By simple calculation, we obtain that

∫ T

0

∣∣∣f̃ t1,x(s,Xt1,x
s , Y t2,x

s , Zt2,x
s )− f̃ t2,x(s,Xt2,x

s , Y t2,x
s , Zt2,x

s )
∣∣∣
2

ds

≤C

∫ t2

t1

(
|f(s, 0, 0, 0)|2 + |Xt1,x

s |2k+2 + |Xt1,x
s |2 + |Y t2,x

s |2 + |Zt2,x
s |2

)
ds

+ C

∫ T

t2

(
1 + |Xt1,x

s |k + |Xt2,x
s |k

)2
|Xt1,x

s −Xt2,x
s |2ds.

Noting that the process {
∫ t

0
|Zt2,x

s |2ds}t∈[0,T ] ∈ S1
G(0, T ), applying Propositions 2.4 and 4.1, we

have

lim
δ→0

E

[∫ T

0

∣∣∣f̃ t1,x(s,Xt1,x
s , Y t2,x

s , Zt2,x
s )− f̃ t2,x(s,Xt2,x

s , Y t2,x
s , Zt2,x

s )
∣∣∣
2

ds

]
= 0.
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Similarly, we have

lim
δ→0

E

[∫ T

0

∣∣∣g̃t1,x(s,Xt1,x
s , Y t2,x

s , Zt2,x
s )− g̃t2,x(s,Xt2,x

s , Y t2,x
s , Zt2,x

s )
∣∣∣
2

ds

]
= 0.

All the above analyses imply that u is continuous in t. The proof is complete.
Our main result in this section is that the function u defined in (4.3) is the solution to the

following fully nonlinear obstacle problem:

{
max

(
u− h′, min

(
− ∂tu(t, x)− F (D2

xu,Dxu, u, x, t), u− h
))

= 0,

u(T, x) = φ(x),
(4.4)

where

F (D2
xu,Dxu, u, x, t) =G(H(D2

xu,Dxu, u, x, t)) + b(t, x)Dxu+ f(t, x, u, σ(t, x)Dxu),

H(D2
xu,Dxu, u, x, t) =σ2(t, x)D2

xu+ 2l(t, x)Dxu+ 2g(t, x, u, σ(t, x)Dxu).

Note that by Lemma 4.2 and Lemma 4.3, one only obtains that u is a continuous function but
it may be not differentiable. The notion of viscosity solutions was introduced by P.-L. Lions and
M. Crandall independently in the 1980s, primarily to address issues arising in nonlinear PDEs,
such as the lack of classical solutions due to singularities or non-smoothness. Viscosity solutions
have since become a fundamental tool in the analysis of various types of nonlinear PDEs, including
Hamilton-Jacobi equations, obstacle problems, and certain types of evolution equations. We begin
by providing the definition of a viscosity solution to (4.4), which relies on the concepts of sub-jets
and super-jets. Further elaboration can be found in the paper Crandall et al. (1992).

Definition 4.4 Let u ∈ C((0, T ) × R) and (t, x) ∈ (0, T ) × R. We denote P2,+u(t, x) as the
“parabolic superjet” of u at (t, x), which comprises triples (p, q,X) ∈ R

3 such that

u(s, y) ≤ u(t, x) + p(s− t) + q(y − x) +
1

2
X(y − x)2 + o(|s− t|+ |y − x|2).

Similarly, we define P2,−u(t, x) as the “parabolic subjet” of u at (t, x) by

P2,−u(t, x) := −P2,+(−u)(t, x).

Definition 4.5 Let u be a continuous function defined on [0, T ]× R.

(i) It is called a viscosity subsolution of (4.4) if u(T, x) ≤ φ(x) for x ∈ R, and at any point
(t, x) ∈ (0, T )× R, for any (p, q,X) ∈ P2,+u(t, x),

max
(
u(t, x)− h′(t, x), min

(
u(t, x)− h(t, x),−p− F (X, q, u(t, x), x, t)

))
≤ 0;

(ii) It is called a viscosity supersolution of (4.4) if u(T, x) ≥ φ(x) for x ∈ R, and at any point
(t, x) ∈ (0, T )× R, for any (p, q,X) ∈ P2,−u(t, x),

max
(
u(t, x)− h′(t, x), min

(
u(t, x)− h(t, x),−p− F (X, q, u(t, x), x, t)

))
≥ 0;

(iii) It is called a viscosity solution of (4.4) if it is both a viscosity subsolution and supersolution.
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Denote by {(Y n,t,x
s , Zn,t,x

s , An,t,x
s )}s∈[t,T ] the solution of the following penalized reflected G-

BSDEs:




Y n,t,x
s = φ(Xt,x

T ) +
∫ T

s f(r,Xt,x
r , Y n,t,x

r , Zn,t,x
r )dr +

∫ T

s g(r,Xt,x
r , Y n,t,x

r , Zn,t,x
r )d〈B〉r

−n
∫ T

s (Y n,t,x
r − h′(r,Xt,x

r ))+dr −
∫ T

s Zn,t,x
r dBr + (An,t,x

T −An,t,x
s ), t ≤ s ≤ T,

Y n,t,x,
s ≥ h(s,Xt,x

s ), t ≤ s ≤ T,

{
∫ s

t
(h(r,Xt,x

r )− Y n,t,x
r )dAn,t,x

r }s∈[t,T ] is a non-increasing G-martingale.

By Theorem 3.2, Y t,x is the limit of Y n,t,x as n goes to infinity. We define

un(t, x) := Y n,t,x
t , (t, x) ∈ [0, T ]× R.

By Theorem 6.7 in Li et al. (2018b), un is the viscosity solution of the following parabolic PDE:




min

(
un(t, x)− h(t, x), −∂tun − Fn(D

2
xun, Dxun, un, x, t)

)
= 0, (t, x) ∈ [0, T ]× R

un(T, x) = φ(x), x ∈ R,
(4.5)

where
Fn(D

2
xu,Dxu, u, x, t) = F (D2

xu,Dxu, u, x, t)− n(u(t, x)− h′(t, x))+.

Theorem 4.6 Under Conditions (Ai)-(Aiii), the function u defined in (4.3) is the unique viscosity
solution of the double obstacle problem (4.4).

Proof. By Theorem 3.2, for each (t, x) ∈ [0, T ]× R, we have

un(t, x) ↓ u(t, x), as n ↑ ∞.

Note that un is continuous by Lemmas 6.4-6.6 in Li et al. (2018b). Since u is also continuous,
applying Dini’s theorem yields that the sequence un uniformly converges to u on compact sets.
The proof will proceed in the following two steps.

Step 1: Viscosity subsolution. For each fixed (t, x) ∈ (0, T ) × R, let (p, q,X) ∈ P2,+u(t, x).
Suppose that u(t, x) = h(t, x). Noting that u(t, x) ≤ h′(t, x), it is easy to check that

max
(
u(t, x)− h′(t, x), min

(
u(t, x)− h(t, x),−p− F (X, q, u(t, x), x, t)

))
≤ 0.

Assume that u(t, x) > h(t, x). It remains to prove that

−p− F (X, q, u(t, x), x, t) ≤ 0.

By Lemma 6.1 in Crandall et al. (1992), there exist sequences

nj → ∞, (tj , xj) → (t, x), (pj , qj , Xj) ∈ P2,+unj
(tj , xj),

such that (pj , qj , Xj) → (p, q,X). Recalling that un is the viscosity solution to Equation (4.5),
hence a subsolution, we have, for any j,

−pj − F (Xj , qj , unj
(tj , xj), xj , tj) + nj(unj

(tj , xj)− h′(tj , xj))
+ ≤ 0.
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Thus,
−pj − F (Xj , qj , unj

(tj , xj), xj , tj) ≤ 0.

Letting j go to infinity in the above inequality yields the desired result. Therefore, u is a subsolu-
tion of the fully nonlinear obstacle problem (4.4).

Step 2: Viscosity supersolution. For each fixed (t, x) ∈ (0, T )×R, and (p, q,X) ∈ P2,−u(t, x).
It is sufficient to show that when u(t, x) < h′(t, x),

−p− F (X, q, u(t, x), x, t) ≥ 0.

Applying Lemma 6.1 in Crandall et al. (1992) again, there exist sequences

nj → ∞, (tj , xj) → (t, x), (pj , qj , Xj) ∈ P2,−unj
(tj , xj),

such that (pj , qj , Xj) → (p, q,X). Since un is the viscosity solution to Equation (4.5), hence a
supersolution, we derive that for any j,

−pj − F (Xj , qj , unj
(tj , xj), xj , tj) + nj(unj

(tj , xj)− h′(tj , xj))
+ ≥ 0.

Given that un converges uniformly on compact sets, for j sufficiently large, unj
(tj , xj) < h′(tj , xj)

under the assumption that u(t, x) < h′(t, x). Therefore, as j tends to infinity, the above inequality
implies that

−p− F (X, q, u(t, x), x, t) ≥ 0,

which is the desired result. Consequently, u is a viscosity solution of (4.4).
Following a similar analysis as the proof of Theorem 6.3 in Hamadene and Hassani (2005), we

can establish the uniqueness of the viscosity solution to the fully nonlinear obstacle problem (4.4).
This concludes the proof.
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El Karoui, N., Pardoux, É., and Quenez, M. C. (1997b). Reflected backward SDEs and American
options. Numerical methods in finance, 13:215–231.

Grigorova, M., Imkeller, P., Ouknine, Y., and Quenez, M.-C. (2018). Doubly reflected BSDEs and
Ef -Dynkin games: beyond the right-continuous case. Electronic Journal of Probability, 23:1–38.

Hamadene, S. and Hassani, M. (2005). BSDEs with two reflecting barriers: the general result.
Probability Theory and Related Fields, 132:237–264.

Hamadène, S., Lepeltier, J. P., and Matoussi, A. (1997). Double barrier backward SDEs with
continuous coefficient. Pitman Research Notes in Mathematics Series, pages 161–176.

Hu, M., Ji, S., Peng, S., and Song, Y. (2014a). Backward stochastic differential equations driven
by G-Brownian motion. Stochastic Processes and their Applications, 124(1):759–784.

Hu, M., Ji, S., Peng, S., and Song, Y. (2014b). Comparison theorem, Feynman–Kac formula and
Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Processes and
their Applications, 124(2):1170–1195.

Li, H. and Peng, S. (2020). Reflected backward stochastic differential equation driven by
G-Brownian motion with an upper obstacle. Stochastic Processes and their Applications,
130(11):6556–6579.

Li, H., Peng, S., and Song, Y. (2018a). Supermartingale decomposition theorem under G-
expectation. Electronic Journal of Probability, 23(50):1–20.

Li, H., Peng, S., and Soumana Hima, A. (2018b). Reflected solutions of backward stochastic
differential equations driven by G-Brownian motion. Science China Mathematics, 61:1–26.

Li, H. and Song, Y. (2021). Backward stochastic differential equations driven by G-Brownian
motion with double reflections. Journal of Theoretical Probability, 34:2285–2314.

Li, X. and Peng, S. (2011). Stopping times and related itô’s calculus with G-Brownian motion.
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