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Abstract

Undersampling the k-space during MR acquisitions saves
time, however results in an ill-posed inversion problem,
leading to an infinite set of images as possible solutions.
Traditionally, this is tackled as a reconstruction problem
by searching for a single ”best” image out of this solution
set according to some chosen regularization or prior. This
approach, however, misses the possibility of other solu-
tions and hence ignores the uncertainty in the inversion
process. In this paper, we propose a method that instead
returns multiple images which are possible under the ac-
quisition model and the chosen prior to capture the uncer-
tainty in the inversion process. To this end, we introduce a
low dimensional latent space and model the posterior dis-
tribution of the latent vectors given the acquisition data in
k-space, from which we can sample in the latent space and
obtain the corresponding images. We use a variational
autoencoder for the latent model and the Metropolis ad-
justed Langevin algorithm for the sampling. We evaluate
our method on two datasets; with images from the Hu-
man Connectome Project and in-house measured multi-
coil images. We compare to five alternative methods. Re-
sults indicate that the proposed method produces images
that match the measured k-space data better than the
alternatives, while showing realistic structural variability.
Furthermore, in contrast to the compared methods, the
proposed method yields higher uncertainty in the under-
sampled phase encoding direction, as expected.

Keywords: Magnetic Resonance image reconstruc-
tion, uncertainty estimation, inverse problems, sampling,
MCMC, deep learning, unsupervised learning.

1 Introduction

Undersampling the k-space in MR imaging reduces scan
time by speeding up acquisition, allowing a higher

∗Accepted to IEEE Transactions in Medical Imaging for pub-
lication. This work was supported by the Swiss National Sci-
ence Foundation under Grant 205321 173016. Emails are {tezcan,
nkarani, kender}@vision.ee.ethz.ch and christian.baumgartner@uni-
tuebingen.de

throughput as well as higher comfort for patients. How-
ever, contrary to a fully acquired k-space, where an inverse
Fourier transform is mostly enough to uniquely determine
the underlying image up to measurement noise, the under-
sampled acquisition leads to an underdetermined system
of equations. Mathematically, this means that there are
infinitely many images that match the acquired portion of
the k-space data and it is impossible to know which one
is the underlying image in a general setting.

Traditionally, this problem of infinitely many solutions
has been tackled as a deterministic reconstruction prob-
lem, where different methods were proposed to choose
a single ”best” image out of the set of possible images.
This was achieved by introducing prior information in ad-
dition to the data consistency term through defining a
regularization term that prefers a solution according to
properties such as smoothness [1], sparsity [2] or agree-
ment with calibration data [3]. This converts the problem
into a well-posed regularized inverse problem and allows
to obtain a single solution as the reconstructed image.
Another way of seeing this approach is from the Bayesian
framework, where the data consistency and regularization
terms correspond to the data likelihood and prior terms,
respectively. Here, again, a suitable prior along with the
data likelihood allows to write the corresponding posterior
probability which then can be maximized to obtain the
maximum-a-posteriori (MAP) image as the single “best”
reconstruction [4].

By providing a single reconstructed image as their out-
put, these approaches miss the uncertainty in the solution
that arises due to the missing portion of the k-space data.
The reconstructed image is formed using information from
the measured data and the prior, where the measured data
matches the underlying true image up to the measurement
noise while the prior compensates for the unmeasured in-
formation. However, the image that best satisfies the prior
need not be the same as the true image.

An alternative approach, which we will pursue in this
work, is producing multiple images as solutions to the ill-
posed inverse problem, where the images match the mea-
sured data while being highly likely according to the prior
at the same time. Such an approach is capable of captur-
ing the uncertainty in the inversion due to the missing
data.
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As the proposed approach provides multiple images,
clinical, research or further analysis tasks (e.g. segmenta-
tion for which we show some examples) can be applied sep-
arately on each image to propagate the uncertainty to any
given task’s output. Alternatively the uncertainty can be
quantified at the image level and passed on to the follow-
ing tasks, such as in the form of a mean image along with
a standard deviation map. Inspecting the images or the
quantified uncertainty for different regions can also be in-
dicative of which parts of the images might be more prone
to differ from the underlying true image. To the best of
our knowledge, this is the first time such an approach is
being proposed for undersampled MRI acquisition.

In recent years, though not directly related to the un-
certainty due to missing data in undersampled MRI, there
have been research efforts to quantify uncertainty in dif-
ferent aspects of the image reconstruction problem, es-
pecially with the deep learning based models [5]. One
such aspect is the epistemic or model uncertainty, i.e. the
uncertainty in the mapping learned by the neural net-
work used in the reconstruction, which can be obtained
using approaches such as drop-out [6]. However, these
approaches quantify the uncertainty due to the ambigu-
ity in the network parameters and do not capture the
uncertainty due to the missing k-space data. Epistemic
uncertainty tends to zero as the training set size goes to
infinity [7]. However, increasing training samples cannot
be expected to diminish the ambiguity due to missing k-
space data. Another aspect is the so-called aleatoric un-
certainty due to noise or other ambiguities in the images or
the labels, which is more relevant to reconstruction from
undersampled MRI. Quantifying aleatoric uncertainty can
be approached using, for instance, heteroscedastic mod-
els. These models predict a different variance value for
each output pixel and hence can in principle learn to pre-
dict high variance for pixels where the model expects to
have incorrect mean predictions [8]. There is one impor-
tant limitation to these models. They generate only sec-
ond order statistics of pixel-wise marginal distributions.
While such a model can predict where individual pixels
may be inaccurate, it cannot propose different possible
reconstructions. For this, it is crucial to capture the non-
Gaussian pixel-wise distributions and non-trivial statis-
tical dependencies across different pixels. Hence, these
models are limited in the information they can provide [8].
Being able to generate samples makes uncertainty propa-
gation trivial for any following task, while only generating
second order statistics makes this non-trivial. Further-
more, the g-factor [9] as a conventional error measure for
multi-coil reconstruction estimates the noise amplification
relying on the coil geometry and the undersampling pat-
tern and does not capture the uncertainty due to the used
prior.

One work that has similar aims as this paper is by
Adler et al. [10]. In this work, the authors train a mod-
ified conditional Wasserstein generative adversarial net-
work (cWGAN) that generates high dose counterparts of
CT images from low-dose measurements. However, this
approach lacks a data likelihood term and thus, does not
explicitly model the known physics or measurement noise

of the imaging procedure. As such, there are no guar-
antees that the samples will be from the true posterior.
Instead of using an explicit physics-based imaging model,
the cWGAN requires supervised training with pairs of
undersampled-fully sampled images. Hence, a separate
cWGAN has to be trained for all different undersampling
schemes and factors for best performance. Furthermore,
though the authors modify their discriminator to reduce
the mode collapse associated with the WGAN, they do not
completely avoid it, leading to a possibly poorer implicit
prior. Lastly, the model aims to minimize the Wasserstein
distance between the predicted posterior and the true pos-
terior. However, it is often impossible to have varying
samples from the true posterior, in reality only one fully
measured image is available for each low-dose measure-
ment image. Therefore, the available training samples
may not be able to support an accurate posterior approxi-
mation and minimizing the Wasserstein distance may con-
verge to a degenerate version of the true posterior.

In this paper, we identify two ideas that motivate us in
proposing a new method that overcomes the limitations
of the works mentioned above. The first one is regarding
the geometry of the space of MR images. We make the
assumption that the MR images live around a low dimen-
sional subspace in the high dimensional image space and
that we can learn a mapping from a low dimensional latent
space to this subspace. This assumption has been demon-
strated empirically in our prior work [4]. Then ”walk-
ing around” and sampling in the subspace of MR images
can be simply implemented as walking around and tak-
ing samples in the latent space. Secondly, deep learning
based data-driven priors have shown great value in inverse
problems in general in recent years, as well as specifically
in MR image reconstruction [4,11,12]. Such methodology
allows learning a powerful mapping between the latent
space and the image space, facilitating the sampling.

Embodying the ideas mentioned above, we propose
a novel method based on a latent Bayesian model and
Markov chain Monte Carlo (MCMC) sampling that ad-
dresses the issue of uncertainty in the inversion pro-
cess. To this end, we use a variational autoencoder
(VAE) [13,14] trained on fully sampled MR images as our
prior and utilize its lower dimensional latent space to do
the sampling instead of sampling in the high dimensional
image space. We set the posterior of the latent vectors
given the measured k-space data as the target distribu-
tion of the MCMC to obtain the latent samples. We use
the Metropolis adjusted Langevin Algorithm (MALA) [15]
as the MCMC method due to its effectiveness in high di-
mensional spaces. The latent samples coming from MALA
are then guaranteed to be from the posterior and can be
transformed to images using the decoder of the VAE and
the measured k-space data. Although we use a VAE and
MALA in our implementation, the framework is generic
and can be used with other generative models as well as
sampling schemes. We evaluate our method with data
from the Human Connectome Project (HCP) [16] as well
as in-house measured images [4] for changing settings of
undersampling ratios and measurement noise levels and
compare it to other sampling and reconstruction meth-
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ods.

2 Methods

2.1 Main idea and notations

Let us denote the MR images by x ∈ CN and the ob-
served undersampled noisy k-space data y ∈ CMc with
c coils, (M≤N). We model the acquisition process as
y = Ex + η, where E ∈ CMc×N is an extended MR en-
coding operation and η is complex Gaussian noise in the
k-space with η ∼ N(0,Σns) and Σns as the noise covari-
ance matrix. Hence, the data likelihood term is given as
p(y|x) = N(y;Ex,Σns). In our implementation, we ap-
ply pre-whitening [17], but keep Σns in the equations for
clarity. The extended encoding operation is defined as

E = ẼBϕPs, (1)

based on the usual encoding matrix Ẽ = UFS, with U as
the undersampling and F as the Fourier operations and
S as the coil sensitivities. Further, the matrices B, ϕ and
P , are used to model the effect of the bias field, the MAP
phase and to implement padding/cropping, respectively.
Finally, s is a scalar that introduces an invariance to scal-
ing between the samples. We describe these in more detail
in the Appendix due to space restrictions.

The goal of our work is to sample from the posterior
distribution of images given the observed undersampled
noisy k-space data, p(x|y). Note that this approach is in
contrast to the more conventional image reconstruction,
where one aims to find a single image from this posterior
as the reconstructed image, whereas our objective here
is to characterize the whole posterior through multiple
samples.

One approach for obtaining such samples is to sample
from p(x|y) directly in the image space. However, the high
dimensionality of the image space renders simple sampling
methods (e.g. rejection sampling or vanilla MCMC [18])
very inefficient - they would need too many samples to
adequately explore the image space to generate a good
representation of the posterior, especially when assuming
that high probability regions in the image space are not
dense but rather form a lower dimensional subspace.

To overcome this difficulty, we consider a latent variable
model, where samples from a low-dimensional latent space
generate the high-dimensional images. We write this as

p(x|y) =

∫
p(x, z|y)dz =

∫
p(x|z, y)p(z|y)dz, (2)

with z as the latent variable which is far lower dimen-
sional than the image space. With this formulation we
can use ancestral sampling, i.e. i) first sample zts from
p(z|y) and ii) then sample xts from p(x|zt, y). Here the
intuition is that the samples zt are latent samples close to
the measured k-space data and hence xt are as well. The
main advantage of this two step process is that the latent
space has fewer dimensions and is more densely popu-
lated than the image space, hence the proposed sampling

is more efficient. Furthermore, as will become evident
later, both terms p(x|z, y) and p(z|y) require a generative
model, p(x|z) with a simple prior p(z) for which we use a
variational autoencoder (VAE).

The rest of this section is organized as follows. First,
we describe the key ideas of our method: i) procedure
of sampling from the posterior p(z|y) in the latent space
(Sec. 2.2), ii) how we form this posterior in Sec. 2.3 and
iii) the procedure for converting the latent space samples
to image samples (Sec. 2.4). Next, we give more detailed
descriptions to i) the modifications in our VAE with re-
spect to a vanilla VAE in Sec. 2.7, and finally, ii) how we
calculate the matrix inversions arising in the components.

Algorithm 1 l-MALA sampling

1: Undersampled k-space data y, encoding operation E,
trained VAE, MAP reconstruction xMAP

2: procedure l-MALA(y, E, VAE, xMAP )
3: # 0. Get the initial latent vector from the MAP
4: for t = 0 : T − 1 do
5: # 1. First create the target distr. in TensorFlow
6: γ∗ ← minγ ||(Σ−1

x + EHΣ−1
nsE)γ − Σ−1

x µx||22
7: log p(y|z) ← µHx Σ−1

x γ∗ + 2Re
{
yHΣ−1

nsEγ
∗} −

1
2µ

H
x Σ−1

x µx
8: # 2. Now take a step in the latent space
9: ζ ∼ N(0, 1)

10: ẑt+1 = zt + τ∇z log p(z|y)|z=zt +
√

2τζ
11: # 3. Accept or reject this

12: α← min
{

0, log
[
p(ẑt+1|y)q(zt|ẑt+1)
p(zt|y)q(ẑt+1|zt)

]}
13: u ∼ log(Unif(0, 1))
14: if α > u then
15: zt+1 ← ẑt+1

16: else
17: zt+1 ← zt

18: end if
19: # 4. Convert the latent sample to an image
20: γ∗ ← minγ ||(EFΣ−1

x EHF + UHΣ−1
nsU)γ −

(EFΣ−1
x EHF µx(zt+1) + UHΣ−1

ns y)||22
21: xt ← EHF γ

∗

22: end for
23: end procedure

2.2 Sampling in the latent space

Here we assume we can calculate the target posterior
p(z|y). This posterior provides latent samples that match
the measured k-space data and thus, the images associated
with these latent samples will match the k-space data too.
We also assume we can calculate its gradient∇z log p(z|y),
as well. In this section we only describe the sampling pro-
cedure and we will describe how to calculate these terms
in Sec. 2.3.

We use the Metropolis adjusted Langevin algorithm
(MALA) [15] to sample from p(z|y). MALA is a vari-
ant of Markov chain Monte Carlo. It consists of (a) a
random walk given by Langevin dynamics and (b) an ac-
ceptance scheme following the Metropolis-Hastings algo-
rithm. The random walk for MALA with the target dis-
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tribution p(z|y) is written as:

ẑt+1 = zt+τ∇z log p(z|y)|z=zt +
√

2τζ, ζ ∼ N(0, 1) (3)

where τ is the step size. As can be observed, the up-
date step for the random walk is composed of two terms:
(1) The first term, τ∇z log p(z|y), pulls the random walk
towards high probability regions of the posterior, pre-
venting it from moving far away from such regions. (2)
The second term models the randomness with a Gaus-
sian distributed variable ζ, and encourages the random
walk to explore the latent space rather than only converg-
ing to the maximum of the posterior. Further, the dis-
crete nature of the walk requires a Metropolis-Hastings
correction to be applied to ensure convergence. This
means that a sample is accepted as zt+1 = ẑt+1 with

log probability α = min
{

0, log
[
p(ẑt+1|y)q(zt|ẑt+1)
p(zt|y)q(ẑt+1|zt)

]}
, oth-

erwise zt+1 = zt. Here, q is the proposal distribution, and
is given as q(z′ | z) ∝ exp

(
− 1

4τ ‖z
′ − z − τ∇ log p(z|y)‖22

)
.

Finally, in order to avoid a long burn-in period, we can
initialize the chain close to the mode of the posterior in-
stead of starting with a randomly chosen z0. This can
be achieved by encoding the MAP image into the latent
space and using its mean as z0.

2.3 Obtaining the posterior in the latent
space, p(z|y)

So far, we have described the procedure of sampling in
the latent space (Sec. 2.2). In this section, we first briefly
describe the generative model used for the latent space,
i.e. the VAE, and then describe the method to construct
the posterior p(z|y) from which we sampled in Sec. 2.2.

2.3.1 Latent variable prior model

We use a VAE [13, 14] as the prior model of MR im-
ages and train it using fully sampled images. The VAE
consists of an encoder, q(z|x) = N(µz(x),Σz(x)), and
a decoder, p(x|z) = N(µx(z),Σx), both parameterized
with neural networks. z ∈ RD (D<<N) is the latent
representation, distributed according to a Gaussian prior
p(z) = N(µpr,Σpr). We use a diagonal non-isotropic co-
variance matrix for Σz, an isotropic diagonal matrix for
Σx with a fixed value and a block diagonal for the Σpr.
From now on, we drop the (x) and (z) notation, i.e. write
µx , µx(z) unless necessary. The VAE is trained to max-
imize the evidence lower bound (ELBO), which approx-
imates the log likelihood, log p(x). For the prior, p(z),
we empirically estimate the parameters µpr and Σpr from
training data [19]. This step is different from a vanilla
VAE, and explained in more detail in Sec. 2.7.

2.3.2 Computing the unnormalized posterior

Note that the derivative in random walk update step
(Eqn. 3) as well as the acceptance term described in
Sec. 2.2 can be computed using the unnormalized pos-
terior distribution of z: p(z)p(y|z) ∝ p(z|y), that is, the
normalization constant p(y) does not appear in the equa-
tions. The unnormalized posterior, p(z)p(y|z), is a prod-

uct of two terms: (1) For the first term, we use the em-
pirical prior, p(z) = N(µpr,Σpr). (2) We write the second
term as a marginalization over images x:

p(y|z) =

∫
p(y, x|z)dx =

∫
p(y|x)p(x|z)dx, (4)

where we use the VAE decoder as p(x|z) and the con-
ditional independence assumption p(y|x, z) = p(y|x). In
this formulation, the images function as intermediate vari-
ables - they connect the latent space representations with
the k-space data. This integral can be evaluated analyt-
ically to yield another Gaussian distribution [20]. After
isolating the terms that are constant with respect to z and
taking the logarithm, this distribution is given as:

log p(y|z) = µHx Σ−1
x (Σ−1

x + EHΣ−1
nsE)−1Σ−1

x µx

+ 2Re
{
yHΣ−1

nsE(Σ−1
x + EHΣ−1

nsE)−1Σ−1
x µx

}
(5)

− 1

2
µHx Σ−1

x µx + C.

where C is a constant with respect to z and H denotes the
complex conjugate transpose. Please refer to Appendix
for details of this derivation. Also, notice that we need to
calculate the inverse the matrix (Σ−1

x +EHΣ−1
nsE)−1. We

describe how to do this in Sec. 2.5.

2.3.3 Interpreting terms of the unnormalized
posterior

Considering the two terms in the unnormalized posterior,
p(y|z)p(z), reveals more insights regarding the method.
The first term p(z) tries to pull the chain towards the
middle of the empirical Gaussian in the latent space, dis-
couraging the chain to move away from the meaningful
regions of the latent space, where MR images reside. On
the other hand, the second term drives the chain to re-
gions where the zt values, when decoded as p(x|zt), lead
to images which satisfy the data likelihood term p(y|x)
for x’s coming form the p(x|zt). As such, a random walk
in the latent space with this target distribution explores
the areas which satisfy the data likelihood and the prior
terms simultaneously.

2.4 Converting latent space samples to
image samples

After obtaining the samples {zt} from the posterior p(z|y)
as described in Sec. 2.2, we now need to convert them into
image samples. To this end, we sample from the posterior
of images x, p(x|zt, y), given both the latent sample zt as
well as the measured k-space data y as motivated by the
ancestral sampling procedure introduced in Sec. 2.1. We
define this posterior as:

p(x|z, y) =
p(x, y|z)
p(y|z)

∝ p(x|z)p(y|x); (6)

Here, we again use the conditional independence assump-
tion p(y|x, z) = p(y|x). Notice that the terms p(x|z)
and p(y|x) correspond to the decoder of the VAE and
the data likelihood terms, respectively. As both terms

4



Figure 1: Left: illustration of sampling in the latent space,
which is equipped with a prior shown in green. The con-
tours show the regions where z’s lead to high data like-
lihood values for the measured k-space data. The ran-
dom walk (red line) samples from the product of these
two, i.e. the posterior zt ∼ p(z|y) ∝ (y|z)p(z). Right:
illustration of sampling in the image space. The orange-
yellow surface indicates the learned low-dimensional sub-
space around which MR images reside. Each sample zt in
the latent space corresponds to a distribution in the image
space, p(x|zt). We combine this with the measured data
to obtain image samples, xt ∼ p(x|y, zt) ∝ p(x|zt)p(y|x).

on the right hand side of Eq. 6 are Gaussian distri-
butions, the posterior is also a Gaussian distribution:
p(x|z, y) = N(µx|z,y,Σx|z,y). Further, we can derive a
closed form solution for its mean given as

µx|z,y = EHF
[
EFΣ−1

x EHF + UHΣ−1
nsU

]−1

·
[
EFΣ−1

x EHF µx + UHΣ−1
ns y

]
, (7)

where we defined EF as the encoding operation without
the undersampling, i.e. E = UEF . We present the deriva-
tion of the closed form solution in the Appendix for space
considerations. Notice that we need to calculate the ma-
trix inversion

[
EFΣ−1

x EHF + UHΣnsU
]−1

, similar to the
inversion in Eqn. 5. We describe how we do this in Sec. 2.5.
For simplicity, we directly use the mean of this distribu-
tion as the image sample, that is xt = µx|zt,y.

This concludes the sampling procedure, which we sum
up in the Algorithm 1. In the following we describe how
we define and calculate the building blocks used until now.

2.5 Computations details

In this section, we describe some computational details
in computing the unnormalized posterior and using it to
sample from the latent space (Sec. 2.2).

(i) Gradient of the target distribution: For the
random walk updates (Eqn. 3), we need the log-gradient
of the target distribution. We write this as∇z log p(z|y) =
∇z log p(y|z) +∇z log p(z). The ∇z log p(y|z) term can be
obtained by automatic differentiation, as outputs of the
decoder µx(z) and Σx(z) are modeled as neural networks
and thus, differentiable with respect to z. Similarly, the
prior ∇z log p(z) term is also straightforward and can be
derived analytically.

(ii) Matrix inversion: For the sampling procedure,
we need to evaluate the terms in Eq. 5 at each iteration.
This means the inverse of (Σ−1

x + EHΣ−1
nsE) has to be

recomputed at each iteration, if the Σx term depends on
the z value. Even though we assume Σx to be constant,

inverting the matrix once and storing it is not possible
due to memory issues (it is a Nc×Nc matrix). Further,
approximating it as a diagonal matrix is also not an option
as this would result in the loss of the aliasing information
kept in the off-diagonals of the EHΣ−1

nsE term. Similarly,
Eq. 7 used for sampling images from the latent samples
also requires a similar inversion. Though this needs to be
evaluated only once for fixed Σx, it is still too big for the
memory.

Instead we propose to use an iterative matrix inversion
for these two terms that can also be applied when Σx
changes with z. To this end we write the inversions in a
generic form as

γ∗ = min
γ
||Aγ − b||22, (8)

where A is the matrix to be inverted and b is the result
vector. That is, we set for Eqn. 5, A = Σ−1

x + EHΣ−1
nsE,

b = Σ−1
x µx and similarly, for Eqn. 7, A = EFΣ−1

x EHF +
UHΣ−1

nsU , b = EFΣ−1
x EHF µx + UHΣ−1

ns y.
We then solve this inversion as an optimization problem

using conjugate gradients (CG) and obtain γ∗, which we
plug-in to Eq. 5 to yield

log p(y|z) = µHx Σ−1
x γ∗ + 2Re

{
yHΣ−1

nsEγ
∗}− 1

2
µHx Σ−1

x µx,

(9)

where we dropped the constant C. Similarly, for Eqn. 7
we then use

µx|z,y = EHF γ
∗. (10)

Though we use CG here, other gradient based methods
can be used as well, since the gradients are well defined.
Furthermore fast Fourier transform (FFT) can be used in
the operations E and EH , revoking the need to write the
matrix explicitly and speeding up computations.

The key advantage here is that all steps in the CG are
differentiable with respect to z, so we can use automatic
differentiation to differentiate γ∗ with respect to z, when
the number of iterations (Nγ) for the CG is fixed. This
allows us to take the gradients of log p(y|z) according to
z. Notice this is very similar to the idea of ”unrolled opti-
mization”, where an iterative process is written explicitly.
Methods such as [21,22] use this idea to calculate the gra-
dients according to the network parameters, whereas here
it is used to calculate the gradient according to the input
vector. Hence, before starting the Markov chain we select
the parameter Nγ for which we obtain a small L2 error
in Eq. 8 and keep this throughout the sampling. We ob-
serve that the error stays small throughout the sampling
process for the chosen parameters for different µx values.

2.6 Alternative ideas/shortcuts

2.6.1 Sampling from the decoder: xt ∼ p(x|zt)

The most straight-forward way to sample images from a
latent sample zt would be to sample directly from the
decoder, i.e. x ∼ p(x|zt), that is, to pass the zts through
the VAE decoder and sample from p(x|z). Similarly, for
simplicity one could also take directly the mean of the
decoder distribution as xt = µx. This, however, results
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in blurry images - a common problem in VAE generated
samples. Furthermore, this takes the k-space data only
implicitly into account while sampling zt but not while
sampling xt.

2.6.2 Sampling from the encoder: zt ∼ p(z|xMAP )

An alternative to the proposed method is to use the ap-
proximation posterior, q(z|x), modeled in VAE to do the
sampling around a MAP estimate, xMAP or alternatively
around the zero-filled image. This would entail (a) tak-
ing latent samples around the conditional distribution
zt ∼ q(z|xMAP ) or zt ∼ q(z|xZF ) and then (b) decod-
ing these to the image space, similar to [23]. This ap-
proach is fundamentally different to the proposed method
in that it takes the MAP image as the ”true reconstruc-
tion” and samples only locally around it. Though these
locally sampled images will still be in the subspace of MR
images and show some structural variations, they are un-
likely to explore the image space sufficiently to provide
globally distinct images that are still coherent with the
measured k-space data. Hence, such ”local” sampling
methods are inherently limited and cannot identify re-
gions where the reconstruction has failed. In contrast, the
proposed method can ”globally” explore the latent space
as long as the data likelihood is satisfied. Furthermore,
q(z|x) is only an approximate posterior distribution for a
given p(x|z) and p(z), while we extract samples from the
exact posterior. Finally, such a sampling scheme does not
take the level of noise in the k-space into account, i.e. can-
not guarantee that the sample diversity will increase with
increasing k-space noise level. We also compare the two
methods experimentally (refer to Sec. 4 for the results).

2.7 Modifications in the VAE model: The
2D latent space with an empirical
prior

The vanilla VAE model [13] is described in the Appendix.
In this subsection, we describe our modifications to the
VAE, which allow us to model the distribution of full-
sized MR images.

2.7.1 Fully-convolutional

Firstly, we make the VAE fully convolutional and use a
2D latent space of size L1 x L2 x D, which allows us to
model full-sized images in the low dimensional subspace.
Such a latent representation can be thought of as a latent
image with D channels. Now, each spatial location in
the latent image has a receptive field with respect to the
input image. In order to minimize the overlap between the
receptive fields of different pixels in the latent image, we
employ high stride values in the convolutional layers. This
allows us to adhere to the independence assumption of the
latent pixels, and justify the use of a diagonal covariance
matrix for q(z|x).

2.7.2 Empirical prior in the latent space

In reality, contents in receptive fields corresponding to dif-
ferent spatial locations in a latent image are not entirely
independent from each other, as there are global correla-
tions in the image. To be able to model such correlations,
we introduce an empirical prior as p(z) = N(µpr,Σpr),
similar to [19]. This is the second modification with re-
spect to vanilla VAEs. We compute the parameters of
N(µpr,Σpr) empirically using T samples zi ∼ q(z|xi) from
T different training images xi, after the VAE has been
trained using a unit Gaussian prior. The mean, µpr, is
calculated as the mean of the samples, zi.

2.7.3 Estimating the covariance of the empirical
prior

The estimation of a full covariance matrix, Σpr, is chal-
lenging due to i) its size and ii) large number of samples
required for the estimation. To tackle this issue, we first
rank the latent channels in terms of their informative-
ness. To achieve this, we apply a Kolmogorov-Smirnov
test [24] against the unit Gaussian separately for each la-
tent channel to identify channels that are the least unit
Gaussian in terms of the p-values, i.e. approximately the
most informative. Then, we form a combined block diago-
nal covariance matrix, where we calculate a full covariance
matrix for the K most informative (least Gaussian-like)
channels of size KL1L2 x KL1L2. We assume that the re-
maining latent channels are independent from each other
and calculate only the spatial covariance matrix (of size
L1L2 x L1L2) for each of them separately. The proper
combination of these block matrices yields the Σpr. This
strategy allows us to reduce the number of samples, T ,
required for the estimation of Σpr. In practice, we do not
form this matrix, but instead implement the operations
as sparse matrix-vector multiplications. We set K = 10,
as our preliminary experiments showed that this covers
the informative channels sufficiently. We also set T high
enough to ensure full rank of the estimated covariance
matrix, finding T = 20000 to be sufficient.

3 Experimental Setup

3.1 Data, training details and compared
methods

We used T1 weighted slices from the full 3D volumes of
780 subjects from the HCP dataset [16] for training of the
VAE. There were in total 202800 slices of size 252x308,
with an isotropic resolution of 0.7 mm. We ran the N4
bias field correction on the images and used the corrected
images for training. The training ran for 2250000 itera-
tions (about 10 hours). We also trained another VAE after
downsampling the images to 1mm isotropic resolution to
work with lower resolution images for 1750000 iterations.
For both, we augmented the images by translating them
randomly (-4 to +4 pixels) in both directions and trained
till convergence.

For testing we used 9 axial slices from subjects in the
HCP dataset, different than those used in training, with-
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out bias field correction. We additionally tested with 6
axial slices from in-house measured T1 weighted brain
images of different subjects [4]. These images have simi-
lar acquisition parameters as HCP and have an isotropic
resolution of 1 mm. Furthermore these images are ac-
quired with 13 coils and have non-zero phase. We used
ESPIRiT [25] to obtain the coil sensitivity maps, which
we used in the MAP estimation and sampling.

For the experiments, we retrospectively apply Cartesian
undersampling to the test images with different patterns
for each image. We obtain these patterns by generat-
ing 100 different patterns and choosing the one with the
highest peak-to-side ratio of the associated point spread
functions. In all patterns the 15 central profiles are always
sampled.

For comparison purposes, we also modified the code by
Adler et al. [10] to work with magnitude of MR images
and evaluated in our experimental setting (the authors
provided private access to their repository for the code).
This method requires supervised training, i.e. pairs of
zero-filled and fully sampled images. We generated such
a training set with zero-filled images by undersampling
the training images, which were also used for the VAE.
We used the images with their bias field. We generated
an undersampling pattern as described above, seperately
for each of the images. We trained multiple cWGANs fro
different undersamplng ratios, for which we provide the
details in the Appendix.

We also trained a feed-forward heteroscedastic network
as a baseline. This network has the same architecture as
the VAE, without the KLD in the loss and outputs a pix-
elwise standard deviation alongside the mean prediction.
It is trained for 4000000 iterations using the supervised
training setup described for the cWGAN method.

Furthermore, we implement the local sampling method
we described in Section 2.3 for comparison purposes. For
these we use the same VAE that is used in the proposed
method. We take the samples around the MAP recon-
struction.

Finally, we trained variational networks (Varnet) [21]
(https://github.com/visva89/VarNetRecon) for com-
parison purposes as a reconstruction baseline for different
undersampling factors. The details of the network and
its training are presented in the Appendix due to space
restrictions.

3.2 Implementation Details

We initialize the chain with the maximum-a-posteriori
(MAP) images obtained by the deep density prior (DDP)
reconstruction [4] to avoid a long burn-in period and take
10000 samples in total, which takes around 2 hours for
a slice with single coil data with our unoptimized im-
plementation. We empirically determine the step size
τ = 4×10−4 to obtain an acceptance ratio around 0.3-0.5
and use the same for both the HCP images the in-house
measured images. We take a lower number of samples
(1000) for the cWGAN and local sampling methods as the
effective sample size is also lower for the MCMC chain due
to correlated samples.

We used Tensorflow [26] for the implementation of VAE
related parts of the proposed method. The VAE is fully
convolutional with all padded convolutions and has a 2
dimensional latent space with D=60 channels. We refer
to the Appendix for the details of the architecture. For
Σx we use a diagonal matrix with equal diagonal values
set at 0.02. The same value was used for training of the
VAE and sampling. Σns was estimated by taking the vari-
ance of a small region at the upper 150 pixels of the fully
sampled k-space center in the undersampled data for all
coils. In the implementation we pre-whitened the data
and the sensitivity maps as described in [17]. The num-
ber of iterations for the matrix inversion were determined
empirically as Nγ = 25, which was enough to reduce the
L2 error of the approximate inversion below 0.01%.

For padding we use simple zero padding and cropping.
For bias field estimation we used the N4 method [27] on
the magnitude of the MAP estimation with default pa-
rameters. For the phase of the samples we took the MAP
phase estimate.

We trained a standard U-Net based segmentation net-
work using the ground truth segmentations from the HCP
dataset for the results shown in Figure 2. We omit the
details of the segmentation networks here as irrelevant,
expect emphasize that it is a deterministic network and
hence any difference in the segmentation output is entirely
coming from the variations in the input images.

4 Results

We show most of the visual results at high undersampling
factors on purpose to make sure that the uncertainty in
the inversion is high and demonstrate that the model is
able to capture it. We present the results with the bias
field put back in for convention although the method pro-
vides the samples bias free. We also multiply the images
with their corresponding scale values to bring them to the
same scale as the observed k-space data. The scale values
stay mostly in the 0.95-1.1 range throughout the sampling
procedure. We note that it is quite difficult to see the vari-
ations in the samples presented in this paper in print and
highly encourage the reader to view the provided GIFs at
https://github.com/kctezcan/sampling.

We start by showing sample images from the latent
MALA model in Fig. 2 for an image undersampled with
factor R=5 alongside the phase and biasfield estimations.
The structures in the samples as well as in the mean im-
age, obtained as the mean of the drawn samples, overlap
well with the fully sampled image. On the other hand,
structural variations between the samples are present,
which can also be seen in the std map. Most pixels cor-
responding to tissue edges have a high std value. This is
expected since the missing data in the k-space is mostly in
the high-frequency regions, whose contributions are more
important for edge pixels. However, it is important to
note that the std values on the edges are not homoge-
neous, indicating some parts of the edges have higher
variability. Furthermore, the variations are not limited
to edges but also structures in the white matter (WM) as
well. In the zoomed region one can see a GM structure
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Factor
Absolute k-space error (x103) pairwise RMSE
l-MALA cWGAN Local VarNet DDP l-MALA cWGAN Local VarNet DDP

R=2 7.28 (1.47) 22.70 (2.97) 39.45 (4.49) 17.73 (0.31) 0.00 1.35 (0.52) 6.9 (0.77) 9.08 (0.73) n.a. n.a.
R=3 11.85 (1.49) 33.64 (6.21) 41.37 (4.86) 18.14 (0.34) 0.00 1.50 (0.13) 10.5 (1.49) 8.53 (0.69) n.a. n.a.
R=4 15.50 (2.87) 39.19 (5.02) 42.83 (4.77) 38.17 (5.11) 0.00 2.27 (0.53) 11.5 (1.29) 8.08 (0.56) n.a. n.a.
R=5 17.03 (2.43) 40.46 (4.73) 45.22 (5.12) 29.23 (2.96) 0.00 2.16 (0.22) 12.0 (1.43) 8.03 (0.61) n.a. n.a.

Table 1: Error metrics for the HCP test subjects at different undersampling factors. Absolute error is the summed
absolute differences in the measured part of the k-space between the samples/reconstruction and the measured k-space
data. Pairwise RMSE is the mean RMSE between sample image pairs and used here as a metric measuring sample
diversity. Values shown in format: mean (std) for the sampling methods and the single value for the VarNet and
DDP reconstruction methods. Presented values for abs. error are multiplied with 103.

Factor
NMSE (x103) pSNR RMSE (%)
l-MALA cWGAN Local VarNet DDP l-MALA cWGAN Local VarNet DDP l-MALA cWGAN Local VarNet DDP

R=2 1.65 (0.79) 4.55 (1.32) 11.16 (3.10) 1.49 (0.63) 0.75 (0.42) 40.49 (0.95) 35.9 (0.92) 10.48 (1.33) 40.81 (0.76) 44.03 (1.04) 3.96 (0.87) 6.7 (0.93) 10.48 (1.33) 3.80 (0.71) 2.66 (0.68)
R=3 3.31 (1.38) 9.71 (5.63) 10.94 (3.03) 1.98 (0.96) 1.82 (0.89) 37.36 (0.70) 32.8 (1.50) 10.37 (1.31) 39.66 (0.92) 40.05 (0.88) 5.65 (1.05) 9.6 (2.16) 10.37 (1.31) 4.35 (0.93) 4.17 (0.91)
R=4 4.96 (1.95) 12.89 (4.29) 11.56 (3.29) 12.12 (2.49) 3.41 (1.43) 35.59 (0.94) 31.4 (1.17) 10.66 (1.40) 31.54 (1.56) 37.25 (1.07) 6.93 (1.26) 11.2 (1.74) 10.66 (1.40) 10.94 (1.16) 5.73 (1.11)
R=5 7.08 (2.36) 14.69 (4.47) 13.38 (3.44) 7.57 (2.13) 6.17 (2.05) 34.00 (1.15) 30.8 (1.14) 11.47 (1.42) 33.67 (1.29) 34.63 (1.43) 8.30 (1.35) 12.0 (1.75) 11.47 (1.42) 8.61 (1.24) 7.74 (1.32)

Table 2: Image space error metrics for the HCP test subjects at different undersampling factors. NMSE values are
multipled with 103.

inside the WM changing its visibility in the samples (see
arrow). This is also captured by the GM segmentations,
for which we show the contours. Each contour is from a
different segmentation, which itself is from another image
sample, from in total 10 samples. The contours show how
the network in some cases segments the inlet region as GM
and in some cases as WM. The pixel-wise std maps are
marginal maps, i.e. they present the variations in the pix-
els as if they were independent. In reality the variations
are not pixel-wise, rather the structures as collections of
multiple pixels move between different samples, which can
be observed better in the GIFs. Finally, the MAP image
captures a local maximizer of the highly non-convex and
multi-modal probability distribution whereas the mean of
the samples takes the mean of multiple images from such
a distribution, which explains the differences between the
two. As such, an artifact arising in the MAP image, for
instance, might be averaged out in the mean image.

Fig. 3 shows results for the different sampling methods
for comparison purposes, namely the latent MALA, the
cWGAN, the local VAE sampling and the reconstruction
methods, namely Varnet and the heterosdecastic network.
We use the same undersampling pattern for all the meth-
ods for comparability. Both the l-MALA and cWGAN
methods capture the underlying image fairly well in the
mean of the samples and the Varnet in the reconstructed
image, which is reflected in the difference images. The
mean of the local VAE sampling is very blurry and fails
to capture the structures in the underlying image as well
as the other methods. The heteroscedastic model per-
forms worse in the mean prediction as expected due to
the lack of a data consistency term. The pixelwise stan-
dard deviation maps for the VAE and cWGAN models are
similar at first glance, in that both reflect the high uncer-
tainty regions at the tissue edges. However, the cWGAN
maps are quite noisier and blurrier in comparison. La-
tent MALA provides a much finer level distinction. This
is expected since the proposed method generates samples
based on examination of the given data instead of rely-
ing on a trained model to generalize and does not make
assumptions about data availability from the joint distri-

bution of fully and undersampled images as in cWGAN.
The std maps from the heteroscedastic model yields even
more blurry results. All methods except the local sam-
pling are capable of indicating some of the regions where
their mean maps differ from the ground truth image, by
showing high diversity in the samples or high std values
in those regions, as exemplified by the arrows on the re-
spective image. The local sampling method also captures
variability on the edges. Furthermore, it can also indi-
cate possible differences in its mean and the ground truth
images, though only coincidentally. For example, in the
region shown with the green arrow, it also assigns high
std values, however this is rather due to the fact that
there are two edges intersecting heavily in that region. In
the region indicated by the red arrow, on the other hand,
although the mean map differs from the ground truth,
the local samples do not indicate a high variability in
this region. Finally, comparing the decoder outputs with
the proposed sampling method demonstrates the value of
taking the sample from p(x|y, zt) as x = µx|y,zt instead
of from p(x|zt) as x = µx. Incorporating the measured
k-space data increases the sample quality drastically, in-
creasing data fidelity and showing much more texture than
in the decoder output counterpart.

A critical aspect is the connection between the uncer-
tainty and the direction of the undersampling. As the
undersampling is in the posterior-anterior (A-P) direction
in contrast to the fully sampled left-right (L-R) readout
direction, we expect the uncertainty to be higher in the
A-P direction as well. This means, for instance, that the
reconstruction should be less certain of the positions of
edges lying in the L-R direction and more certain of posi-
tions of edges lying in the A-P direction. Looking at the
std maps in Figure 3 reveals that the proposed l-MALA is
the only method that has this directionality. The l-MALA
std maps show, for instance, higher values for the poste-
rior and anterior cortical regions and lower values for the
left and right parts of the cortex, adhering to the expected
directionality. In contrast, the compared methods simply
yield similar std values in all directions, not following the
directionality of the undersampling.
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Factor
Absolute k-space error (x103) RMSE (%) NMSE (x103) pSNR
l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet

R=2 64.18 (5.49) 30.32 (1.82) 54.64 (1.79) 10.09 (0.85) 7.04 (0.61) 6.70 (0.61) 10.26 (1.76) 4.97 (0.87) 4.52 (0.82) 35.25 (0.41) 38.39 (0.46) 38.82 (0.45)
R=3 76.66 (7.56) 32.54 (2.24) 64.84 (2.71) 12.48 (1.38) 9.60 (1.07) 9.75 (1.42) 15.75 (3.46) 9.33 (2.12) 9.70 (2.82) 33.43 (0.45) 35.70 (0.41) 35.61 (0.69)
R=4 85.42 (9.27) 33.58 (2.43) 71.74 (3.50) 13.80 (1.69) 11.54 (1.79) 13.89 (1.84) 19.34 (4.79) 13.67 (4.28) 19.63 (5.22) 32.56 (0.72) 34.15 (0.97) 32.52 (1.04)
R=5 93.75 (11.43) 34.53 (3.25) 78.31 (4.64) 15.62 (1.96) 13.78 (1.86) 15.38 (2.02) 24.80 (6.32) 19.40 (5.47) 24.11 (6.26) 31.49 (0.56) 32.57 (0.81) 31.63 (0.98)

Table 3: Mean (std) values for the different metrics for the in-house measured subjects at R=2 to 5. Presented values
for abs. error and NMSE are multipled with 103.

Added noise
level

pairwise RMSE (%)
l-MALA cWGAN local

x 0 2.32 13.28 8.02
x 1 2.42 (0.00) 13.26 (0.13) 8.02 (0.53)
x 4 2.43 (0.57) 13.53 (0.0) 8.04 (0.30)
x 8 2.51 (0.01) 14.62 (0.0) 8.00 (0.13)

Table 4: Pairwise RMSE for a test subjects from the HCP
dataset for changing k-space noise levels at R=5. Number
in parenthesis is the p-value of statistical significance of
the change in the pairwise RMSE values compared to the
previous noise level (using the Wilcoxon signed rank test).

Table 1 presents the values for quantitative comparison
with HCP images. The l-MALA method yields the lowest
absolute error in the k-space among sampling methods,
i.e. the sum of all absolute differences between the mea-
sured k-space and the k-space of the sample, for the mea-
sured part of the k-space (see Appendix for the definition).
The l-MALA also yields the best results for the other met-
rics, however cannot reach the performance of the DDP
method, which has a data projection as its final step,
achieving zero k-space error and the best NMSE/pSNR
values. For completeness we also show image space error
metrics in Table 2, where l-MALA again performs well.

In the lack of ground truth posterior, assessing the qual-
ity of samples and uncertainty is a difficult task. To this
end, along with the error metrics, we also look at the
sample diversity using pairwise RMSE values between the
samples in Table 1. Furthermore, we present pairwise
RMSE results with increasing k-space noise level in Ta-
ble 4. As expected, l-MALA produces more diverse sam-
ples when the undersampling ratio and noise levels in-
crease. cWGAN also fulfils this expectation. Local sam-
pling method does not fulfil the expectation for both cases.
In the Appendix we also show how the pixel distributions
and standard deviation maps as well as the segmentations
of the samples change change with changing undersam-
pling ratios and k-space noise levels. These results are also
in accordance with the pairwise RMSE experiments and
std values of the image samples as well as the diversity of
segmentations increase in both cases.

Next, we present results for images from the multicoil
in-house measured dataset in Fig. 4 for R=3 and 5. We
mask out the background in the std map for visual clar-
ity. The method yields similar results for these images as
well. The mean map can capture the underlying struc-
tures, and most variation is concentrated on the edges,
again respecting the directionality of the uncertainty in
the phase encoding direction. The smoothly varying er-
ror is due to mistakes in the bias field estimation. The
VarNet shows remaining artifacts, especially in the first

image. We attribute this to the domain shift between the
training HCP images and the in-house test images. We
also show quantitative results with the in-house images in
Table 3. The increased error compared to the HCP data is
due to multiple factors, such as the domain shift between
training and test images, imperfect coil map estimations,
and phase estimations... Furthermore, we present more
visual results at different undersampling ratios for this
data as well in the Appendix.

5 Discussion

The results show that the proposed method is able to
capture the underlying ambiguity in undersampled MRI
acquisitions in that it generates samples, such as those
in Fig. 2, that show realistic structural diversity while
retaining high fidelity to the fully sampled image and
low k-space error. The variability also indicates poten-
tial discrepancies between the mean prediction and the
FS image. Further, the proposed method passes the san-
ity checks with changing noise levels and undersampling
ratios. Again, we emphasize that the aim of the proposed
method is not to obtain state-of-the-art reconstruction
quality in terms of error metrics, but rather to present
a new sampling approach in tackling the inverse problem
of MR image reconstruction.

One observation is that the texture in the fully sampled
image is not captured in the samples directly from the de-
coder (x = µx) as seen in the upper rows of Fig. 3. This is
firstly because we do not add the aleatoric noise on to the
samples, of which the texture is partly composed of. Sec-
ondly, the lack of texture can be attributed to the VAE,
which is known for preferring blurry images and ignore
very high-frequency changes. We see that sampling from
p(x|y, zt) instead, improves the sample quality drastically,
increasing the texture as well as the structural fidelity,
especially at lower undersampling ratios. This improve-
ment is less observable at higher undersampling ratios,
as data becomes more sparse at high frequencies in this
case. Regardless of data, however, we expect this aspect
to improve with a better prior model.

More importantly, the variation in the samples summa-
rized in the std maps are capable of highlighting the po-
tential mistakes in their mean predictions as seen in Fig. 3
for the latent MALA, cWGAN and heteroscedastic feed-
forward network approaches. This is valuable information
for further decision making, as such regions where uncer-
tainty is high should be approached with doubt. This
information, when taken directly in the form of the sam-
ples or estimated standard deviations can be used for any
decision making process for clinical or research purposes.
The latent MALA and cWGAN are advantageous com-
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Figure 2: Results for the proposed latent MALA algo-
rithm for R=5. FS, ZF and MAP denote the fully sam-
pled, zero-filled and MAP estimation images. Phase im-
age is scaled between ±π. Third row presents three ran-
domly chosen samples. (h-i) show the mean and pixel-
wise standard deviation (std) maps for all samples. (j)
shows the absolute error map between the mean and
the fully sampled image (clipped to 0-0.3). (k) shows
three zoomed-in regions indicated in (g) for three dif-
ferent samples as well as the pixelwise std maps and
contours of the gray matter segmentations from 10 dif-
ferent samples overlayed on the image. The grid lines
are to aid visual inspection. As the variations are ex-
tremely difficult to see in this format, we strongly en-
courage the reader to look at the supplementary GIFs
(https://github.com/kctezcan/sampling).

Figure 3: Sampling results for different methods and re-
construction result for the Varnet at R=5. The left most
column shows the fully sampled (FS), the MAP estimate,
the zero-filled (ZF) images and the undersampling pat-
tern (US patt.). In the rightmost three columns, the sam-
ple mean, pixelwise standard deviations and the absolute
error maps between the mean and fully sampled images
from the respective method are given. Final row shows
the Varnet reconstruction and its error. The error maps
are clipped to (0, 0.3), the std maps are clipped to (0,
0.04) and (0, 0.18) for the l-MALA and the other three
sampling methods, respectively.
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Figure 4: Results for multicoil in-house measured im-
ages at R=5 and 3, in the upper and lower blocks, re-
spectively. Shown are the fully sampled (FS), zero-filled
(ZF), MAP/Varnet images, the mean and std maps for
the latent-MALA samples as well as the difference image
between the mean map and the FS (clipped to 0,0.3)).

pared to heteroscedastic models in this respect as they can
produce samples allowing quantification of uncertainty of
down-stream tasks. The heteroscedastic models are lim-
ited in that they make a pixel-wise independent Gaussian
assumption and cannot generate realistic samples. The
std maps from the local VAE sampling do not highlight
the regions where its mean differs from the ground truth.
This is expected, since it takes the MAP estimate as the
underlying image and samples only around its latent rep-
resentation, without exploring other areas of the latent
space. Hence it can generate variations only on the tissue
edges of the MAP image, but cannot explore possibility
of different tissue structures.

cWGAN We note that the cWGAN method was de-
veloped for CT and our modified implementation for MR
is very straightforward and limited. By feeding only the
magnitude images, we set the phase to zero, which is the
correct phase for the HCP dataset, giving the method an
advantage. However this is not a generic situation and
the cWGAN method needs to be extended from CT to
work in a realistic MR setting, by incorporating a data
consistency term as well as the phase of the image.

Uncertainty and changing noise/undersampling
As the undersampling ratio R increases the inversion prob-
lem becomes harder, hence the mean maps start diverging
more from the ground truth. Proposed model successfully
captures the higher ambiguity for higher undersampling
ratios as can be seen in the higher values in the std maps
or in the pairwise RMSE values in Table 1. This increase
is also visible in the increasing spread of the histograms

in the Appendix. Results presented in Table 4 along with
the figures in the Appendix from the experiments with
increasing k-space noise Σns, show that the latent MALA
model can incorporate the changing k-space noise. When
the k-space noise increases ambiguity in the observations
increase. Mathematically, the Σns term in the Gaussian
data likelihood increases, which in turn allows accepting
samples farther away from the measured k-space data y.
This results in higher sample diversity, which is reflected
in the increase in the standard deviation maps, whereas
the mean of the samples is not affected much by this (see
also Appendix).

Alternatives to the VAE Though we use here the
VAE as the latent space model, the outlined method is
generic. The integral in Eq. 4, which relates the latent
space and the k-space is a generic formulation and can
be used with other probabilistic models that provide an
explicit likelihood term and a deterministic or probabilis-
tic decoder structure. One necessary property, however, is
that the decoder structure needs to be differentiable w.r.t.
the latent variables for the Langevin walk. Utilizing an-
other decoder structure here can also increase the quality
of the final image samples, for instance models that suffer
less from blurriness, such as multi-resolution hierarchical
VAE structures [28]. Furthermore, in case the high di-
mensions of the image space does not pose problems for
sampling, flow based models [29] can also be used. How-
ever, notice that implicit models (e.g. GANs) do not pro-
vide an explicit likelihood term, and hence cannot be used
in the proposed scheme directly.

Aggregate posterior of the VAE Another factor to
consider regarding the VAE is that the aggregate posterior
of the VAE, given as q(z) =

∫
q(z|x)pdata(x)dx does not

necessarily overlap with the prior distribution p(z). This
can then cause the random walk to move towards regions
of the latent space which are not in the aggregate posterior
or similarly miss parts of the aggregate posterior which are
zero in the prior. We corrected this discrepancy partially
by introducing the empirical prior for p(z) and have not
observed problems regarding this issue.

Alternatives to MALA Similarly, MALA is not the
only way of doing the sampling. We choose it due to
several factors, such as its efficiency in high dimensional
spaces, theoretical guarantees on asymptotic convergence
to the true posterior, not requiring normalized target dis-
tributions etc. The target distribution p(z|y) in our for-
mulation is given by a Gaussian, however its covariance
matrix is not given in a closed form, rendering direct sam-
pling difficult. Furthermore, the Gaussian posterior is not
a generic situation. In cases of more complicated distribu-
tions, approaches such as Hamiltonian Monte Carlo [15]
can be utilized so that the typical set can be traversed
more quickly. Similarly, in cases of multimodal distribu-
tions, approaches tailored to such distributions, such as
Stein variational gradient descent [30] can be considered.
Furthermore natural gradient based methods, where the
geometry of the target distribution is taken into account
by introducing an associated Riemannian metric can be
considered to speed up the MALA [15]. One such work is
by Pedemento et al. [31], where the authors use Rieman-
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nian Hamiltonian Monte Carlo (HMC) to sample from the
posterior of emission rates given the photon counts for
positron emission tomography. However, they use a uni-
form, i.e. a non-informative prior for the emission rates,
reducing the strength of the model heavily in contrast to
using more informative, data-driven priors. Furthermore,
the Riemannian metric takes the geometry of the space of
probability distributions into account, but not the geom-
etry of the space of the emission rates, as in our case.

MALA and theoretical guarantees It is important
to emphasize the theoretical guarantees from the choice of
MALA for sampling. In contrast to methods such as varia-
tional inference, where uncertainty can be underestimated
due to the approximate nature of the method [32], MCMC
samples are guaranteed to converge to the true distribu-
tion, hence to yield the correct statistics. This comes, of
course, at the cost of longer inference times. Especially
compared to reconstruction methods which can operate
orders of magnitude faster. As such, this accuracy/time
trade-off has to be evaluated depending on the applica-
tion. Similarly, the sampling method requires around an
hour for MAP estimation and around a second per sample
(effectively higher if one considers the auto-correlation of
the samples) with our implementation, where only recon-
struction can yield an image in sub-second range. Hence,
the necessity of sampling at this cost should be evaluated
depending on the application.

Modularity As discussed above, the proposed method
has the advantage of having a modular structure as the
prior is decoupled from the data acquisition model and
the target posterior is decoupled from the sampling pro-
cedure. This, we believe, is quite advantageous in terms
of future research and improvement opportunities. This is
in contrast to the cWGAN approach, where the loss func-
tion and the architecture, by design, determine an implicit
target distribution without explicitly modeling the prior
or the acquisition. Lastly, the decoupling of the prior
from the data acquisition model allows the latent MALA
model to be used for different undersampling factors with
the same prior without retraining and also incorporate ad-
ditional details of the acquisition in a very straightforward
way, such as the bias field without needing to retrain the
prior.

True posterior vs. predictive approaches Lastly,
the proposed model is sampling from the true posterior for
a given p(x) and y. Predictive approaches for uncertainty
quantification, such as cWGAN, relies on a trained net-
work to generalize for a given sample while having serious
training data deficiency. They require training samples
that show different fully sampled images for a given un-
dersampled image, which is not readily available.

Different anatomies/contrasts Another interesting
question is how the proposed method would behave for
different anatomies and contrasts and other types of im-
ages, which we leave for future work.

6 Conclusion

In this paper we proposed and evaluated a method that
can provide multiple possible images for the given un-

dersampled k-space data. In contrast to reconstruction
approaches, where a single image is output, the sampling
approach can capture the uncertainty in the inversion pro-
cess due to the missing data. The variation in the sam-
ples is indicative of the uncertainty, opens up new avenues
for uncertainty quantification for following image analysis
tasks and can point to potential mistakes in the mean pre-
diction. The method we propose has a modular structure
and can be improved by separately improving its compo-
nents, such as the prior term or the sampling scheme.
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[10] J. Adler and O. Öktem, “Deep bayesian inversion,”
arXiv:1811.05910, 2018.

[11] D. Narnhofer, K. Hammernik, F. Knoll, and T. Pock,
“Inverse GANs for accelerated MRI reconstruction,”
in Wavelets and Sparsity XVIII, D. V. D. Ville,
M. Papadakis, and Y. M. Lu, Eds., vol. 11138, In-
ternational Society for Optics and Photonics. SPIE,
2019, pp. 381 – 392.

[12] J. Schlemper, J. Caballero, J. V. Hajnal, A. N.
Price, and D. Rueckert, “A deep cascade of convolu-
tional neural networks for dynamic mr image recon-
struction,” IEEE Transactions on Medical Imaging,
vol. 37, no. 2, pp. 491–503, 2018.

[13] D. P. Kingma and M. Welling, “Auto-encoding vari-
ational bayes.” CoRR, vol. abs/1312.6114, 2013.

[14] D. J. Rezende, S. Mohamed, and D. Wierstra,
“Stochastic backpropagation and approximate infer-
ence in deep generative models,” in Proceedings of
the 31st International Conference on Machine Learn-
ing, ser. Proceedings of Machine Learning Research,
vol. 32, no. 2. Bejing, China: PMLR, 22–24 Jun
2014, pp. 1278–1286.

[15] M. Girolami and B. Calderhead, “Riemann mani-
fold langevin and hamiltonian monte carlo methods,”
Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 73, no. 2, 2011.

[16] D. V. Essen, K. Ugurbil, E. Auerbach, D. Barch,
T. Behrens, R. Bucholz, A. Chang, L. Chen,
M. Corbetta, S. Curtiss, S. D. Penna, D. Feinberg,
M. Glasser, N. Harel, A. Heath, L. Larson-Prior,
D. Marcus, G. Michalareas, S. Moeller, R. Oosten-
veld, S. Petersen, F. Prior, B. Schlaggar, S. Smith,
A. Snyder, J. Xu, and E. Yacoub, “The human con-
nectome project: A data acquisition perspective,”
NeuroImage, vol. 62, no. 4, pp. 2222 – 2231, 2012,
connectivity.

[17] K. P. Pruessmann, M. Weiger, P. Börnert, and
P. Boesiger, “Advances in sensitivity encoding with
arbitrary k-space trajectories,” Magnetic Resonance
in Medicine, vol. 46, no. 4, pp. 638–651, 2001.

[18] C. M. Bishop, Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Berlin, Heidelberg: Springer-Verlag, 2006.

[19] A. Volokitin, E. Erdil, N. Karani, K. C. Tezcan,
X. Chen, L. V. Gool, and E. Konukoglu, “Modelling
the distribution of 3d brain mri using a 2d slice vae,”
MICCAI, 2020.
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A Derivation of the closed form of p(y|z)
As mentioned in the main text the form that is easiest to interpret is given by the marginalization, however this
integral difficult to evaluate directly. Instead, we do this by using conjugacy relations for Normal distributions. We
begin by writing

p(y|x, z)p(x|z) = p(y|z)p(x|y, z). (11)

Since p(y|x, z) and p(x|z) are Normal distributions, due to the conjugacy, the posterior p(x|y, z) is also a Normal
distribution given as N(µpost,Σpost). Then

p(y|z) =
p(y|x, z)p(x|z)
N(µpost,Σpost)

, or p(y|z)N(µpost,Σpost) = p(y|x, z)p(x|z). (12)

Hence the posterior p(y|z) acts as a normalizer to the product distribution to yield a Gaussian. We derive p(y|z)
using this relation in Eqn. 12. In the following we also use the conditional independence p(y|x, z) = p(y|x) meaning
that when the image is given, this posterior distribution in the k-space is determined without the need for the latent
variable. For the derivation we use this strategy: i) we first write the product of the two distributions p(y|x)p(x|z), ii)
then recognize the mean and covariance of the Normal posterior distribution N(µpost,Σpost) in this, iii) and separate
a Gaussian with these parameters from the whole expression. What is left gives us the target distribution.

The product can be written as

p(y|x)p(x|z) = (13)

det(2πΣns)
−1/2 det(2πΣx)−1/2 exp

{
−1

2

[
(y − Ex)HΣ−1

ns (y − Ex)
]}

(14)

· exp

{
−1

2

[
(x− µx)HΣ−1

x (x− µx)
]}

(15)

= det(2πΣns)
−1/2 det(2πΣx)−1/2 exp

{
− 1

2
xH (Σ−1

x + EHΣ−1
nsE)︸ ︷︷ ︸

Σ−1
post

x (16)

+Re{xH (EHΣ−1
ns y + Σ−1

x µx)︸ ︷︷ ︸
Σ−1

postµpost

} − 1

2
yHΣ−1

ns y −
1

2
µHx Σ−1

x µx

}
, (17)

where we have recognized the parameters of the posterior. With these we have enough information to complete the
posterior Gaussian. We can replace the terms with posterior parameters and add the missing term ± 1

2µ
H
postΣ

−1
postµpost
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to complete the quadratic form as well as the normalizing determinant det(2πΣpost)
±1/2, which yields

= det(2πΣns)
−1/2 det(2πΣx)−1/2 det(2πΣpost)

+1/2 det(2πΣpost)
−1/2 (18)

· exp

{
−1

2
xHΣ−1

postx+Re{xHΣ−1
postµpost} −

1

2
µHpostΣ

−1
postµpost︸ ︷︷ ︸

− 1
2 (x− µpost)

HΣ−1
post(x− µpost)

(19)

+
1

2
µHpostΣ

−1
postµpost −

1

2
yHΣ−1

ns y −
1

2
µHx Σ−1

x µx

}
. (20)

We can combine the quadratic term in the exponent with the determinant term and obtain the complete posterior
Gaussian. In this case the expression becomes

p(y|x)p(x|z) = N(µpost,Σpost) det(2πΣns)
−1/2 det(2πΣx)−1/2 det(2πΣpost)

+1/2 (21)

· exp

{
+

1

2
µHpostΣ

−1
postµpost −

1

2
yHΣ−1

ns y −
1

2
µHx Σ−1

x µx

}
. (22)

Remembering Eqn. 12, we obtain

p(y|z) =
det(2πΣpost)

+1/2

det(2πΣns)1/2 det(2πΣx)1/2
· exp

{
− 1

2
yHΣ−1

ns y +
1

2
µHpostΣ

−1
postµpost −

1

2
µHx Σ−1

x µx

}
. (23)

Now taking the logarithm and leaving out the terms that are independent of z we can arrive at the expression we
use as

log p(y|z) = +
1

2
µHpostΣ

−1
postµpost −

1

2
µHx Σ−1

x µx + C, (24)

where C denotes some constant with z. Notice that we could leave out the determinant term in the nominator due
to our model choice of constant Σx.

Now we need the closed form expression for the first term in the above equation. Also we need to arrive at this
using the terms we have access to from the above equations 16 and 17, namely Σ−1

postµpost and Σ−1
post. First we write

µpost = (Σ−1
post)

−1Σ−1
postµpost and rewrite the target term as µHpostΣ

−1
postµpost = (Σ−1

postµpost)
Hµpost. Combining the

expressions and isoliting the terms constant with z as C then yields

µHpostΣ
−1
postµpost = µHx Σ−1

x (Σ−1
x + EHΣ−1

nsE)−1Σ−1
x µx (25)

+ 2Re
{
yHΣ−1

nsE(Σ−1
x + EHΣ−1

nsE)−1Σ−1
x µx

}
+ C (26)

Applying the Woodburry identity on the term (Σ−1
x + EHΣ−1

nsE) followed by some algebraic manipulations reveals
that this is equivalent to the expression given in [20].

B Derivation of the closed form solution of p(x|z, y) in k-space

Here we derive and present the mean and covariance parameters of the posterior distribution p(x|y, z). First we write

p(x|y, z) =
p(x|z)p(y|x, z)

p(y|z)
=
p(x|z)p(y|x)

p(y|z)
, (27)

using the model assumption that given the image, k-space is independent of the latent variable, i.e. p(y|x, z) = p(y|x).
We then write the two distributions on the nominator: i) p(x|z) = N(x;µx,Σx) and ii) p(y|x) = N(y;Ex,Σns). Since
both of these are Normal, the posterior is also Normal due to conjugacy. However, instead of working in the image
space, we prefer to derive the solution in the k-space due to reasons which will be evident later. To this end we write
our variable of interest as

k = FSBϕPx, (28)

with individual terms explained as in the next section. But in essence k is the encoded k-space version of the image
variable without the undersampling operator. Notice that as there is no undersampling, we can always recover the
image from k as

x = PHϕHBHSHFHk, (29)

assuming the coil maps are normalized, i.e. SHS = I. Furthermore as the encoding operation is linear the resulting
variable k is also Normal distributed. First we write p(k|z) as

p(k|z) = N(k;µk,Σk) = N(k;FSBϕPµx,
[
FSBϕPΣ−1

x PHϕHBHSHFH
]−1

). (30)

16



Similarly the data likelihood term becomes

p(y|k) = N(y;Uk,Σns), (31)

i.e. y is the noisy observation of the undersampled version of the k-space variable k. We now write the product again
in terms of k as

p(k|z, y) = N(k;µk|z,y,Σk|z,y) = p(k|z)p(y|k). (32)

We can then write the product of these two Normal distributions, complete the square in the exponent and arrive at
the resulting mean and covariance matrix as

µk|z,y =
[
FSBϕPΣ−1

x PHϕHBHSHFH + UHΣnsU
]−1 [

FSBϕPΣ−1
x PHϕHBHBϕPµx + UHΣ−1

ns y
]

(33)

and

Σk|z,y =
[
FSBϕPΣ−1

x PHϕHBHSHFH + UHΣnsU
]
. (34)

As also stated in the main text, we implement sampling from this distribution as taking the mean for each latent zt

sample, i.e. kt = µk|zt,y. However, the matrix inversion in Eq. 33 is not analytically solvable as the involved matrices
are too big, hence we use conjugate gradients to solve the matrix inversion to obtain the solution µk|zt,y for a given
zt. To obtain the image x, we then simply take the inverse operations on k as given in Eq. 29 as

xt = PHϕHBHSHFHkt. (35)

To make the expression easier to read, we define the fully sampled encoding operation EF , FSBϕP by only
removing the undersampling operation from the usual encoding operation, i.e. E = UEF . Then we can rewrite
Eq. 35 compactly as

xt = EHF
[
EFΣ−1

x EHF + UHΣnsU
]−1 [

EFΣ−1
x EHF µx + UHΣnsy

]
(36)

C Description of the vanilla variational autoencoder (VAE) model

Here we describe the variational autoencoder model [13,14] for completeness.

The VAE is essentially an unsupervised learning based density estimation method. It learns a function called the
evidence lower bound (ELBO) that is a lower bound to the target probability density. Here we describe the vanilla
VAE and refer the reader to the next section for the description of the 2D latent space architecture.

The basic equation of VAE can be derived by writing

log p(x) = log
p(x, z)

p(z|x)
(37)

for images x ∈ RW and latent vectors z ∈ RV (generally V ≤W ) with a simple prior p(z). We can then introduce an
auxiliary distribution and rewrite as

log p(x) = log
p(x, z)

p(z|x)

q(z|x)

q(z|x)
= log

p(x, z)

q(z|x)

q(z|x)

p(z|x)
. (38)

Then taking an expectation of both sides with q(z|x) yields

log p(x) = Eq(z|x)[log p(x|z)]−KL[q(z|x)||p(z)] +KL[q(z|x)||p(z|x)], (39)

where KL denotes the Kullback-Leibler divergence. The VAE is trained to maximize the first two terms, called the
evidence lower bound (ELBO) with ELBO(x) = Eq(z|x)[log p(x|z)]−KL[q(z|x)||p(z)], which minimizes the rightmost
KL term. After the training, the rightmost KL term becomes small and the ELBO approximates the true distribution,
i.e. log p(x) ≈ ELBO(x).

The realization of VAE is done as follows: first an image x is passed through a neural network mapping called the
encoder with parameters θenc that predicts the distribution qθenc(z|x) for the latent variable z. This q(z|x) distribution
is parameterized using a Normal distribution, i.e. q(z|x) = N(µlat, I · σlat), where I is the identity matrix, hence the
encoder function outputs the two variables µlat ∈ RV σlat ∈ RV+. The decoder mapping is again a neural network
with parameters θdec, which outputs the distribution pθdec(x|z) = N(µout, I · σout). Then the VAE takes samples
zl ∼ q(z|x) = N(µlat, I ·σlat) and decodes these using the decoder mapping as p(x|zl). Then the VAE is trained using
training samples to maximize the ELBO by optimizing for the network weights θenc and θdec.
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D The 2D latent space VAE architecture

All convolutions are padded and have a kernel size (3, 3) and stride (1, 1) and use a ReLU unless noted otherwise.

The encoder begins with four convolutional layers with 32, 64, 64, 64 output channels, respectively. Then a
convolutional layer with kernel size (14, 14), stride (19, 19) and 60 output channels produces the mean of q(z|x) from
the fourth layer. Similarly another convolutional layer from the third layer produces the log standard deviation values
for q(z|x) with a kernel size of (14, 14), stride (19, 19), without ReLU and 60 output channels. The network is fully
convolutional, hence can work with different image sizes. Assuming an input image size of 252x308 for demonstration,
the latent space size becomes bx18x22x60, where b is the batch size. We use the usual reparameterization trick to
sample z’s [13]. At the beginning of the decoder, we apply a scheme of increasing channel dimensions and using
these to increase spatial dimensions. We do this in two steps, once for the first image dimension and once again for
the second image dimension to obtain a proper reshaping while using the implementation of Tensorflow’s reshaping
function. First convolutional layer of the decoder does not use ReLU and has 64·19=1216 output channels, resulting
in a tensor of size bx18x22x1216. The output of this layer is first transposed to bx18x1216x22 and reshaped to
bx252x64x22. This layer then gets transposed to bx252x22x64, then goes through a convolutional layer with again
1216 output channels and without ReLU and becomes bx252x22x1216. This then gets reshaped again to yield a
tensor size of bx252x308x64, which is the input image size. This tensor then goes through a ReLU. We then apply 6
convolutional layers with each 60 output channels. Finally another convolutional layer with 1 output channel yields
the mean prediction.

E The extended encoding matrix

As mentioned in the main text, we extend the usual encoding operation in the MR acquisition model to consider
additional effects of the image acquisition process. Typically, the encoding operation consists of the coil sensitivi-
ties [17], the Fourier transform and the undersampling operation. We include four additional factors in E. The goal
of these extensions is to integrate acquisition-specific knowledge to make the image corresponding to the observed
k-space data as similar as possible to the VAE’s training images.

Let Ẽ = UFS denote the usual MR encoding matrix, where S : CN → CNc is the sensitivity encoding matrix [17]
with c coils, F : CNc → CNc is the coil-wise Fourier transform and U : CNc → CMc is the undersampling operation.
ven as:

E = ẼBϕPs. (40)

where P is a padding operator, ϕ is an operator that incorporates phase information, B models the bias field in the
acquisition and s is a scaling factor. We now describe each of them in more detail.

E.0.1 Padding operator, P

The role of P is to minimize any field of view (FOV) differences between the image corresponding to the given k-space
data and the space of training images of the VAE. Although our fully convolutional architecture is agnostic to the
image size, the empirical prior is estimated for a specific resolution and FOV. Thus, the k-space size can be different
due to varying FOV during acquisition. P bridges this gap by padding or cropping the test image to make its size
similar to that of the VAE’s training images.

E.0.2 Phase matrix, ϕ

For computational as well as implementation related purposes, we assume that the phase of structural images is highly
independent of the magnitude image and smooth. Hence, the same phase image is used for all our posterior samples.
This allows us to separate the magnitude and the phase of the image and run the sampling only on the magnitude
of the image. However, note that this assumption is not a requirement for the proposed method (as the phase could
be sampled as well) but rather a methodological simplification motivated by empirical observations. Following this
assumption, we write the phase as a diagonal matrix ϕ acting on the image.

E.0.3 Bias field matrix, B

We use a diagonal matrix, B, to explicitly model the bias field in the acquisition [33]. The MR images unavoidably
have a bias field due to several factors [34]. However, it is easy to estimate it from the measured data. As the bias
varies between different acquisitions, this is a potential source of discrepancy between the test image and the VAE’s
training images. In order to minimize such a discrepancy, we train the VAE on bias free images. Thus, the samples
obtained from the VAE are also free of bias fields. However, as the measured data y has the bias field in it, we
estimate this field and apply it to the sampled images.
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E.0.4 Scaling factor, s

Finally, we introduce an intensity scale factor to make the data likelihood invariant to any scaling difference between
the samples and the k-space. During the random walk in the latent space, the corresponding images might get scaled
at each step, meaning the image may be multiplied globally by a scale factor. If this scale factor moves away from 1,
this causes the data likelihood to increase, since the scales of the k-space data and the image samples do not match.
However, from the perspective of sample quality, this does not pose a problem as long as the scaling factors are
known. The sampled images can be brought to the same scale by multiplying them with the inverse of the scaling
factor. Furthermore, allowing the scale factor to be different for each sample, allows more freedom to the random
walk in the latent space, as it is less constrained by the increase in data likelihood due to scale changes. Hence,
such scale invariance is desirable. To this end, we introduce a scalar s, that keeps the data likelihood at the lowest,
inducing an invariance to scaling. We calculate its value by solving s∗ = mins ||Esµx(zt) − y||22, where we separate
the s term from the extended encoding and use the mean of the decoder as the image. Then, we take the derivative
of the expression with respect to s and set it to zero to obtain the minimizing s value, which is given analytically as

s∗ = Re{µx(zt)HEHy}
µx(zt)HEHEµx(zt)

. We do this estimation separately for each zt sample at each step.

The complex conjugate of the extended encoding operation operation is given as EH = sHPHϕHBHẼH , where
we implement PH as cropping if P is a padding operation and vice versa, ϕH is multiplication with the complex
conjugate of the phase, BH = B since the bias field is real and sH = s, again since the scale factor is real.

F Measuring the quality of samples

As we do not have access to the ground truth posterior distribution of images given the k-space data, we resort to
using indirect measures and characterize two aspects of the samples. Firstly, the samples have to be in agreement with
the measured k-space data. Secondly, the samples have to have a high diversity to the extent allowed by the measured
data and the noise in k-space. Notice that there is a trade-off between these two aspects, that is, the measured data
constrains the sample diversity and a high sample diversity requires moving away from measured data, increasing the
error in k-space.

We use two metrics to quantify the first aspect in Section F.1. First is the error in k-space between the samples
and the given data for an image. Secondly, though this also considers the parts of the k-space that are not measured,
we look at the RMSE between the samples and the original image. We then introduce a pairwise RMSE metric to
quantify the sample diversity and present the results in Section F.5.

F.1 Distribution of voxelwise error in the measured parts of k-space and NMSE, pSNR
and RMSE in the image space

Here we show the k-space error histograms in Figure 5 for a test slice at R=5. We calculate these as follows: we
take 50 image samples {xs}50

s=1 from each method and apply the undersampled Fourier transform to transform each
of them to k-space and take the measured voxels. Then we calculate the voxelwise difference between these and the
measured data for all measured k-space voxels for all the samples together. The histogram then shows the distribution
of the error for all these k-space voxels from all 50 samples. As this difference is complex, we show two histograms
seperately for the real and imaginary parts and also for the magnitude values. We can also look at the image-wise
k-space absolute error as

absolute errors =
1

no of meas. voxels

∑
all meas. voxels

|ExFS − Exs|, (41)

for a sample image xs and the fully sampled image xFS . The |.| denotes the magnitude of the complex error value for
a pixel and the average is taken over all measured k-space voxels. When calculated for all 50 samples, the mean (std)
values for this slice are given as 0.0309 (0.0003), 0.0373 (0.0012) and 0.0381 (0.00047), for the l-MALA, cWGAN and
local sampling methods, respectively.

To show how this generalizes, we do a similar analysis using slices from 9 test subjects. We undersample the slices
with different patterns for each subject at R=5. Again, for each test subject we generate 50 samples for the three
methods each. We then calculate the absolute errors and report the mean and standard deviation values for these in
the main text. We also calculate the root mean squared error (RMSE) between the 50 samples and the fully sampled
image. Though achieving a low RMSE is not the main purpose of any of the methods, we present these results as they
still provide some insight into the performance of the methods. To calculate the RMSE we use the formula given in [4]
and use a mask to disregard the background. For in-house images we also perform a bias field correction for both
the sample and the fully sampled image before the calculation. Furthermore, again, though sampling is inherently
different than only reconstruction, for comparison purposes we present the absolute error and RMSE values of two
reconstruction methods, namely the DDP [4] and the variational network (VarNet) [21]. As the data consistency
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Figure 5: Histograms of the voxelwise error in the measured voxels in the k-space for three different methods for a
subject at R=5. As the error is complex, the real and imaginary parts as well as the magnitude of the error values
are shown seperately.

projection in the DDP method inputs the measured data into the reconstructed k-space, it has a zero absolute error.
For both metrics the reconstruction methods yield better performance than sampling methods, which is expected as
these are designed to yield the best performance rather than characterize the solution space comprehensively.

We took the definitions of the normalized mean squared error (NMSE) and peak signal-to-noise ratio (pSNR) from
the fastMRI repository [35].

F.2 Implementation of the variational network (Varnet) and cWGAN

For the variational network reconstruction [21] we used the implementation given in https://github.com/visva89/

VarNetRecon. We used a batch size of 2, 48 filters with kernel size 11 at each layer, 10 unfolding layers, filter response
as 3.5, 31 knots and cubic interpolation for modeling the activation functions, the L2 loss at the output and otherwise
the default parameters. During training we generated undersampled/fully sampled image pairs from the same training
set as for the VAE with different patterns at each iteration and fed these into the network. Furthermore the network
required an image size of powers of two, for which we padded the images to a size 256x320. We trained for 200000
iterations for R=3,4,5 and 114000 iterations for R=2 with a learning rate of 0.001. At test time we padded the test
images (originally 252x308) as well as their undersampling patterns and after reconstruction cropped back to the
original size for comparing the performance with different methods.

We trained the cWGAN method [10] as given in the code shared by the authors. We modified it minimally to work
with MR images and trained for 150000/600000/800000/800000 iterations for R=2,3,4,5, respectively, with the decay
ratio for the noisy linear cosine decay as 2000000 but otherwise with the default settings in the code provided by the
authors and the augmentation used for the VAE.

F.3 Samples and segmentations at different undersampling ratios and k-space noise
levels

Here we present two figures demonstrating how the changing undersampling ratio and k-space noise levels change the
samples. Similarly we present two figures which show how the segmentations change under the same conditions.

In Fig. 6, we show how the statistics from the samples change with changing undersampling ratios. Firstly, we
show histograms from three pixels indicated on the FS image for R=2, 3, 4 and 5, from which one can observe that
the pixel histograms become wider with increasing R, indicating higher uncertainty. This increase is also reflected in
the std maps, which show an increase in std values for increasing R. This result shows that the proposed model is
able to capture increasing ambiguity due to higher undersampling ratio.

Next we present results in Fig. 7 to show the methods sensitivity to the noise in the k-space. The quality of the
MAP image degrades due to the high noise. This is reflected less in the mean maps, however the standard deviation
values increase. This is how the model should behave since the added noise increases the values in Σns, which then
allows samples to move farther away from the measured data and show higher diversity. This is also reflected in the
histograms of three pixel’s intensities, which are indicated in the top std map, as the distributions become wider with
increasing noise.
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subject
RMSE (%)
l-MALA cWGAN Local VarNet DDP

#1 8.5 (8.3, 0.11) 11.3 (10.7, 0.35) 11.7 (11.4, 0.13) 8.7 8.2
#2 9.8 (9.7, 0.06) 13.4 (12.8, 0.40) 12.9 (12.6, 0.11) 9.7 9.2
#3 10.9 (10.9, 0.01) 15.6 (14.3, 0.76) 14.5 (14.1, 0.15) 10.7 9.7
#4 7.8 (7.8, 0.03) 11.0 (10.4, 0.29) 10.8 (10.6, 0.10) 8.2 7.4
#5 7.0 (6.9, 0.03) 11.3 (10.6, 0.46) 10.4 (10.1, 0.12) 8.4 6.5
#6 6.8 (6.8, 0.04) 9.9 (9.2, 0.35) 10.2 (10.0, 0.14) 6.4 5.8
#7 8.0 (8.0, 0.02) 12.5 (11.3, 0.55) 11.0 (10.7, 0.12) 8.3 7.7
#8 9.1 (9.0, 0.07) 12.8 (12.0, 0.41) 12.1 (11.9, 0.10) 9.8 9.0
#9 6.7 (6.6, 0.02) 10.2 (9.5, 0.42) 9.7 (9.5, 0.11) 7.3 6.1
mean (std) 8.30 (1.35) 12.0 (1.75) 11.47 (1.42) 8.61 (1.24) 7.74 (1.32)

Table 5: RMSE values in percentage for 9 HCP test subjects at R=5. Values shown in format: mean (min, std) for
the sampling methods and the single value for the VarNet and DDP reconstruction methods. The last line shows the
mean (std) of the 9 subjects.

In Figures 8 and 9 we show the segmentation results for the same settings. In the final row of each figure, we show
the pixels where the binarized standard deviation map, i.e. 1 if there is variation in that pixel among samples, 0 if
there is no variation in that pixel among samples. We do this for visualisation purposes and as the segmentation
maps are binary, their standard deviation values are not informative in any case. These also confirm the observations
from Figures 7 and 6, that the samples behave as expected from the theory.

F.4 An in-house measured image at different undersampling ratios

Here we present an image at different undersampling ratios in Figure 10.

F.5 Comparison of sample diversity using pairwise RMSE at different noise rates and
undersampling ratios

In this section we introduce the pairwise RMSE metric, which we use to measure the sample diversity at different
noise levels and undersampling ratios for different methods [19] (We use RMSE instead of the structural similarity
index measure as in the reference as the first reflects structural changes better). For this metric we take 1000 pairs of
random samples from a method at a noise level or undersampling ratio for a subject and calculate the RMSE between
these pairs. This yields 1000 RMSE values, of which we then take the mean to obtain the pairwise RMSE value for
this subject and for the method at this noise level or undersampling ratio.

The aim here, again, to verify the behavior of samples with changing setting, i.e. the ”sanity check” experiment.
The main idea is that if the k-space noise level is higher, this means that images that are possible solutions to the
inverse problem can be farther away from the measured k-space data, which allows these images to be more different
than each other, i.e. more diverse. Similarly, if the undersampling ratio is higher, there is less measured data that
determine the solutions to the inverse problem, which again allows solution images to be more different from each
other leading to higher diversity. As this is a basic relationship between the measurement setting and diversity of
solutions, any sampling algorithm should also adhere to this relationship and hence we use this as a ”sanity check”.

To this end we added noise on the k-space of an HCP image at R=5 similar to the experiment in the main text.
We also experimented with varying the undersampling ratio similar the experiment in the main text at the base noise
level. We show these in the main text. One can see that for both l-MALA and cWGAN the pairwise RMSE, i.e.
sample diversity is increasing with increasing noise levels in the k-space, as expected. The same trend is not observed
for the local sampling method, meaning that the method does not fulfil the expectation. A similar conclusion can be
made for the results of changing the undersampling ratio as seen in the main text.

G Error metrics for the in-house measured images

In Tables 6, 7, 8 and 9 we present the used metrics for 6 subjects from the in-house measured dataset at R=2 to
5, respectively. The absolute error is shown as the average of all coils. The DDP absolute error is not zero as the
final inverse-forward encoding operations change the k-space in case of multiple coils. Multiple factors contribute to
higher error values compared to the HCP images, such as the domain shift between the HCP training images and
in-house test images, errors in coil sensitivity estimations from ESPIRiT, or higher errors in the used phase from
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Figure 6: Results for changing undersampling ratios. First row shows the fully sampled image (FS) and histograms
of pixels values in all samples for the pixels indicated on the FS image as I, II and III, respectively. Note the different
bin positions for the histograms. Rows two and three show results for R=2 and R=4, respectively. Each row shows
the MAP estimation, the zero filled image (ZF), the pixelwise mean and standard deviation maps and the absolute
error map between the mean and the FS image (clipped to (0,0.3)).

the MAP estimate. Another observation is that the RMSE values for the l-MALA samples are higher than for the
DDP reconstructions. This is mostly because the DDP has a data projection inputting the measured data to the
reconstructed k-space, whereas sampling allows for some distance to the measured data to account for the noise.

H Convergence of the chain

Here we take a random HCP image and show the mean intensity in the brain in this image (i.e. after masking)
throughout the MCMC iterations. The plot in Figure 11 shows that the chain converges to a range of values close
to its initialization. A long burn-in period seems to be avoided by initializing with the MAP estimate. Theoretically,
with infinitely many steps the MCMC chain has to discover all solutions. It is, however, possible that for finite chains
the initialization introduces some bias. Though it is difficult to show here that this is not the case, the intensities
seem to vary throughout the chain, providing empirical evidence that the chain can explore freely.

I Comparing the samples xt ∼ p(x|zt) vs xt ∼ p(x|y, zt)
Here we compare the sample quality for the proposed l-MALA with the samples as direct outputs of the decoder. As
seen in Figure 12, the proposed sampling approach improves the sample quality drastically.

22



Figure 7: Results for changing the noise in k-space at R=5. First row shows the results with the basis HCP k-space
noise. Second row shows the results with noise added on the k-space with 8 times the original noise standard deviation.
Third row shows histograms of values of the pixels indicated on the std map (with added noise 1, 4 and 8 times of
the basis noise). Note that the fully sampled (FS) image also changes due to the added noise.

J More comparisons on the HCP data

Here we provide more figures for comparing with the alternative methods for different images and undersampling
ratios in Figures 13-19.
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Figure 8: Segmentation results for changing the noise in k-space at R=5. Leftmost column show the fully-sampled
image and its segmentation. First row shows a random sample at increasing added k-space noise levels. Second row
shows the segmentation of the corresponding sample in the above row. Last row shows the pixels where there is
variation in the segmentations for all samples.

subject
absolute k-space error (x103) RMSE (%) NMSE (x103) pSNR
l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet

#1 61.16 (61.09, 0.05) 29.24 55.34 9.47 (9.40, 0.04) 6.20 6.01 8.98 (8.84, 0.08) 3.85 3.61 34.81 (34.87, 0.04) 38.48 38.76
#2 60.14 (60.06, 0.06) 28.21 52.60 9.83 (9.63, 0.13) 6.78 7.16 9.66 (9.28, 0.25) 4.60 5.12 35.48 (35.65, 0.11) 38.70 38.24
#3 68.13 (68.07, 0.03) 33.85 56.45 9.06 (8.99, 0.03) 6.84 6.10 8.21 (8.08, 0.05) 4.67 3.71 35.00 (35.07, 0.03) 37.45 38.44
#4 67.46 (67.40, 0.03) 31.08 54.79 11.49 (11.44, 0.03) 8.21 7.61 13.19 (13.08, 0.07) 6.66 5.78 35.97 (36.01, 0.02) 38.94 39.56
#5 72.14 (72.09, 0.03) 30.37 56.70 10.96 (10.90, 0.06) 7.29 7.07 12.01 (11.88, 0.14) 5.30 4.98 34.89 (34.94, 0.05) 38.45 38.71
#6 56.06 (56.01, 0.02) 29.20 51.98 9.76 (9.70, 0.03) 6.89 6.25 9.52 (9.41, 0.06) 4.75 3.90 35.33 (35.38, 0.03) 38.35 39.21
mean (std) 64.18 (5.49) 30.32 (1.82) 54.64 (1.79) 10.09 (0.85) 7.04 (0.61) 6.70 (0.61) 10.26 (1.76) 4.97 (0.87) 4.52 (0.82) 35.25 (0.41) 38.39 (0.46) 38.82 (0.45)

Table 6: Different metrics for the 6 in-house measured subjects at R=2.

subject
absolute k-space error (x10ˆ3) RMSE (%) NMSE (x103) pSNR
l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet

#1 72.66 (72.52, 0.14) 30.78 65.95 11.04 (10.82, 0.12) 8.35 8.14 12.20 (11.72, 0.26) 6.97 6.61 33.48 (33.65, 0.09) 35.91 36.13
#2 72.20 (72.09, 0.09) 30.58 62.63 13.50 (13.40, 0.15) 10.25 11.28 18.23 (17.95, 0.41) 10.53 12.72 32.72 (32.79, 0.09) 35.10 34.28
#3 80.91 (80.72, 0.12) 35.46 65.59 10.92 (10.69, 0.15) 8.88 8.55 11.92 (11.42, 0.32) 7.88 7.30 33.38 (33.57, 0.12) 35.18 35.51
#4 84.91 (84.76, 0.07) 35.76 68.25 14.42 (14.14, 0.14) 11.54 11.73 20.81 (20.01, 0.41) 13.29 13.77 33.99 (34.16, 0.09) 35.94 35.78
#5 84.96 (84.74, 0.12) 32.15 66.58 13.47 (13.38, 0.07) 9.73 10.26 18.15 (17.90, 0.20) 9.45 10.52 33.09 (33.15, 0.05) 35.93 35.46
#6 64.34 (64.26, 0.05) 30.52 60.06 11.49 (11.37, 0.06) 8.87 8.53 13.21 (12.93, 0.13) 7.85 7.27 33.91 (34.00, 0.04) 36.17 36.50
mean (std) 76.66 (7.56) 32.54 (2.24) 64.84 (2.71) 12.48 (1.38) 9.60 (1.07) 9.75 (1.42) 15.75 (3.46) 9.33 (2.12) 9.70 (2.82) 33.43 (0.45) 35.70 (0.41) 35.61 (0.69)

Table 7: Different metrics for the 6 in-house measured subjects at R=3.
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Figure 9: Segmentation results for changing the undersampling ratios. Leftmost column show the fully-sampled
image and its segmentation. First row shows a random sample at varying undersampling ratios. Second row shows
the segmentation of the corresponding sample in the above row. Last row shows the pixels where there is variation
in the segmentations for all samples.

subject
absolute k-space error (x10ˆ3) RMSE (%) NMSE (x103) pSNR
l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet

#1 80.38 (80.21, 0.13) 31.06 72.78 11.72 (11.54, 0.13) 9.02 11.38 13.73 (13.31, 0.30) 8.13 12.95 32.96 (33.10, 0.09) 35.24 33.22
#2 82.53 (82.43, 0.07) 33.03 71.21 14.02 (13.79, 0.18) 11.35 14.80 19.66 (19.02, 0.50) 12.92 21.91 32.39 (32.53, 0.11) 34.22 31.93
#3 87.19 (87.06, 0.13) 36.20 69.90 12.52 (12.36, 0.08) 10.92 13.42 15.68 (15.28, 0.20) 11.93 18.02 32.19 (32.30, 0.06) 33.37 31.58
#4 98.13 (97.94, 0.10) 37.39 77.40 15.26 (15.04, 0.11) 13.02 14.54 23.28 (22.63, 0.33) 16.96 21.13 33.50 (33.62, 0.06) 34.88 33.92
#5 94.31 (94.13, 0.16) 32.86 73.28 16.58 (16.40, 0.12) 14.53 17.00 27.50 (26.91, 0.41) 21.21 28.91 31.29 (31.38, 0.06) 32.42 31.07
#6 69.98 (69.87, 0.04) 30.94 65.90 12.72 (12.58, 0.08) 10.42 12.19 16.18 (15.81, 0.19) 10.87 14.86 33.03 (33.13, 0.05) 34.76 33.40
mean (std) 85.42 (9.27) 33.58 (2.43) 71.74 (3.50) 13.80 (1.69) 11.54 (1.79) 13.89 (1.84) 19.34 (4.79) 13.67 (4.28) 19.63 (5.22) 32.56 (0.72) 34.15 (0.97) 32.52 (1.04)

Table 8: Different metrics for the 6 in-house measured subjects at R=4.

subject
absolute k-space error (x10ˆ3) RMSE (%) NMSE (x103) pSNR
l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet l-MALA DDP VarNet

#1 85.07 (84.97, 0.07) 31.60 78.71 14.91 (14.72, 0.18) 14.33 16.46 22.24 (21.67, 0.54) 20.63 27.15 30.87 (30.98, 0.10) 31.19 30.00
#2 89.32 (89.20, 0.10) 34.01 77.06 16.42 (16.16, 0.15) 13.99 16.05 26.97 (26.11, 0.49) 19.67 25.79 31.02 (31.16, 0.08) 32.39 31.22
#3 97.16 (97.05, 0.05) 36.41 76.11 13.59 (13.41, 0.08) 12.11 13.60 18.47 (17.99, 0.22) 14.69 18.50 31.48 (31.60, 0.05) 32.48 31.47
#4 109.11 (109.04, 0.03) 40.62 86.56 19.08 (18.85, 0.16) 17.36 18.60 36.40 (35.52, 0.60) 30.32 34.70 31.56 (31.66, 0.07) 32.35 31.76
#5 105.48 (105.18, 0.22) 33.63 80.25 16.38 (16.03, 0.25) 13.19 15.26 26.84 (25.69, 0.83) 17.47 23.31 31.40 (31.59, 0.13) 33.26 32.01
#6 76.34 (76.18, 0.09) 30.92 71.17 13.36 (13.28, 0.06) 11.67 12.33 17.86 (17.63, 0.17) 13.65 15.21 32.60 (32.66, 0.04) 33.77 33.30
mean (std) 93.75 (11.43) 34.53 (3.25) 78.31 (4.64) 15.62 (1.96) 13.78 (1.86) 15.38 (2.02) 24.80 (6.32) 19.40 (5.47) 24.11 (6.26) 31.49 (0.56) 32.57 (0.81) 31.63 (0.98)

Table 9: Different metrics for the 6 in-house measured subjects at R=5.
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Figure 10: Sampling results for the in-house measured images for changing undersampling ratios at R=2,3,4 and 5
from top down, respectively.

Figure 11: Change of mean signal intensity in the brain throughout MCMC iterations for a random HCP image
showing convergence of the chain.
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Figure 12: Comparison between the proposed sampling versus the simpler alternative of taking the decoder output
at R=3. The upper block shows an in-house measured image, the lower block shows an HCP image. The leftmost
column presents the full-sampled images. In each block the upper row represents the decoder output (x ∼ p(x|zt))
and the lower row represents the sample from x ∼ p(x|y, zt).
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Figure 13: Comparisons at R=4. Figure description same as in main text.
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Figure 14: Comparisons at R=3. Figure description same as in main text.
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Figure 15: Comparisons at R=2. Figure description same as in main text.
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Figure 16: Comparisons at R=5. Figure description same as in main text.
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Figure 17: Comparisons at R=4. Figure description same as in main text.
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Figure 18: Comparisons at R=3. Figure description same as in main text.
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Figure 19: Comparisons at R=2. Figure description same as in main text.
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