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We study asymptotic state transformations in continuous variable quantum resource theories.
In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity
can be used to bound asymptotic transformation rates in these settings. This removes the need
for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional
systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) en-
tanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones
are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I),
we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous
and strongly superadditive. One of our main technical contributions, and a key tool to establish
these results, is a handy variational expression for the measured relative entropy of nonclassicality.
Our technique then yields computable upper bounds on asymptotic transformation rates, including
those achievable under linear optical elements. We also prove a number of results which guarantee
that the measured relative entropy of nonclassicality is bounded on any physically meaningful state
and easily computable for some classes of states of interest, e.g., Fock diagonal states. We conclude
by applying our findings to the problem of cat state manipulation and noisy Fock state purification.

I. INTRODUCTION

In recent years, the paradigm of quantum resource theories has established itself as the main framework to analyze
and assess the operational usefulness of quantum resources [1–3]. The general setting involves two sets of objects that
are considered easily accessible: free states and free operations. Once these have been identified, the resource content
of a state is determined by its transformation properties under free operations [3, Section V]. In the long-established
tradition of classical [4, 5] as well as quantum [6–8] information theory, in this work we consider ultimate limitations
on those transformation properties, and thus look at the asymptotic setting. Namely, we study free approximate
conversion of a large number of copies of the initial state ρ into as many copies of the target state σ as possible, under
the constraint that the approximation error vanishes asymptotically. The resulting transformation rate R(ρ→σ) can
be turned into a whole family of resource quantifiers: for a fixed resourceful state σ (respectively, ρ), the function
R( ·→σ) (respectively, R(ρ→· )−1) is a resource quantifier with a solid operational interpretation. In entanglement
theory, for example, considering free all those transformations that can be implemented with local operations assisted
by classical communication (LOCC) and choosing as fixed states Bell pairs, the above procedure leads to the distillable
entanglement and the entanglement cost, respectively [8, Section XV].

Since exact computations of asymptotic transformation rates are often challenging, it is important to establish
rigorous bounds on them. In finite-dimensional resource theories, it is possible do so as follows: if G is a resource
monotone, i.e., a function from quantum states to the set of nonnegative real numbers that does not increase under free
operations, the inequalityR(ρ→σ) ≤ G(ρ)

G(σ) holds ifG is (i) additive on multiple copies of a state, and (ii) asymptotically
continuous [9–13] (see also [3, Section VI.A.5]). Property (i) can be enforced by regularization [3, Section VI.A.4],
and (ii) turns out to hold for many monotones in finite-dimensional systems. For infinite-dimensional resource theories,
this approach is however not viable, because the conventional definition of asymptotic continuity, which involves
the dimension d of the underlying Hilbert space, becomes meaningless. And indeed, in infinite dimensions many
monotones — especially those based on entropic quantities — are discontinuous everywhere [14–16]. A weaker version
of asymptotic continuity can be restored by imposing an energy constraint [16–19], yet doing so still does not result
in any bound on the transformation rates, because the free operations employed are a priori not required to be
(uniformly) energy-constrained. Due to this seemingly merely technical complication, we are not aware of any general
technique to upper bound asymptotic transformation rates in infinite-dimensional quantum resource theories prior to
our work. We dub this state of affairs the “asymptotic continuity catastrophe”.
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This situation is particularly undesirable because infinite-dimensional systems, especially quantum harmonic oscil-
lators, are ubiquitous in physics, and — as suggested by quantum field theory — perhaps fundamental. The optical
modes that underlie the flourishing field of continuous variable (CV) quantum technologies [20–22] are a prime exam-
ple, but harmonic oscillators appear whenever the behavior of a physical system close to equilibrium is approximated
to second order.

Here, we devise a simple yet general way to circumvent the asymptotic continuity catastrophe, and establish
rigorous bounds on transformation rates that are equally valid for finite- and infinite-dimensional quantum resource
theories. Our approach relies on monotones G that satisfy, in addition to (i), also (ii’) lower semicontinuity, which
is much weaker than (ii) and does not depend upon the Hilbert space dimension, and (iii) strong superaddivity, i.e.,
G(ρAB) ≥ G(ρA)+G(ρB). We show how (i), (ii’), and (iii) combined imply the sought general bound R(ρ→σ) ≤ G(ρ)

G(σ)
on the transformation rate (Theorem 15).

We then study three main applications, to the infinite-dimensional resource theories of: (I) optical nonclassical-
ity [23–28]; (II) quantum entanglement [6–8]; and (III) continuous variable quantum thermodynamics [29, 30]. Each
of these applications rests upon a different strongly superadditive monotone, namely (I) the measured relative entropy
of nonclassicality, introduced and studied here, (II) the squashed entanglement [31–35], and (III) the free energy [29].
Albeit strong subadditivity was known to hold for the latter two monotones, it is only thanks to our Theorem 15 that
we are able to employ this mathematical property to deduce an upper bound on asymptotic transformation rates. To
the extent of our knowledge, ours are the first such bounds for any and thus in particular the above infinite-dimensional
resource theories.

From the technical standpoint, our main results are obtained in the context of nonclassicality (I). Here, one of our
key contributions is the proof of a handy variational expression for the measured relative entropy of nonclassicality.
This result relies on a careful application of Sion’s Theorem, based, in turn, on a crucial and carefully made choice
of topology on the space of trace class operators acting on an infinite-dimensional Hilbert space. This variational
expression has several implications, most notably: (a) it immediately implies strong superadditivity, allowing us
to deduce (b) the sought bound on asymptotic transformation rates; and finally (c) it points to a technique for
estimating, up to arbitrary precision, said upper bound. Another useful result established here is the finiteness of
our nonclassicality monotones for any state with either finite energy or finite Wehrl entropy. Other nonclassicality
monotones, such as the standard robustness of nonclassicality [27, 28], often diverge, giving little to no information
about the actual resource content of a state.

This manuscript is organized as follows. In Section II we introduce the basic notation and concepts of quantum
mechanics for infinite-dimensional systems that will be used in the remainder of the work. Then, Section III features
a concise review of the mathematical framework of quantum resource theories. In Section IV we introduce our main
results, in particular Theorems 15, 19, and 23, and briefly discuss their implications. The proofs start from Section V,
where we initiate the study of our monotones. In Section VI we establish our first main result, Theorem 15, together
with some of its consequences. Section VII is devoted instead to the more involved proof of Theorems 19 and 23.
In Section VIII we explore further properties of our nonclassicality monotones. In the subsequent Section IX we
apply them to study a wealth of examples, including noisy Fock states, Schrödinger cat states, and squeezed states;
we also test our bounds on rates for the case of distillation and dilution of Fock states and cat states in the theory
of nonclassicality. Appendix A is concerned with various restricted notions of asymptotic continuity for infinite-
dimensional systems and with their limitations in proving general bounds on asymptotic transformation rates, which
further motivates our analysis.

II. QUANTUM MECHANICS FOR INFINITE-DIMENSIONAL SYSTEMS

With every quantum system one associates a Hilbert space H; in this work we will be mainly concerned with
the case where dimH = ∞, i.e., with infinite-dimensional quantum systems. When dealing with (both finite- and
infinite-dimensional) open quantum systems, both physical states and observables are described in terms of linear
self-adjoint operators acting on H and fulfilling specific properties. As we will discuss in a moment, the structure of
operator spaces is more complex in the infinite-dimensional case than in the finite-dimensional one, where many of
them coincide. We start by setting the basic notation and definitions and introduce the objects that we will use in
the following.



3

A. Notation and definitions

For a generic linear self-adjoint operator X acting on a Hilbert space H one can define the operator norm as
follows:

‖X‖∞ ..= sup
|ψ〉∈H\{0}

| 〈ψ|X|ψ〉 |
〈ψ|ψ〉

.

Operators with finite operator norm, i.e., ‖B‖∞ < ∞ are said to be bounded. Moreover, an operator is said to be
trace class if its trace norm

‖T‖1 ..=
∞∑
n=0
〈φn|
√
T †T |φn〉

is finite, where {φn}n is any orthogonal basis of H. For trace class operators we can define the trace as:

Tr[T ] ..=
∞∑
n=0
〈φn|T |φn〉 ,

which is independent of the choice of the orthogonal basis {φn}n. The trace norm of a trace class operator T can
then be written as ‖T‖1 = Tr

[√
T †T

]
.

We are now ready to list below the most relevant operator spaces:

• Bsa(H): the Banach space of bounded self-adjoint operators on H;

• Tsa(H): the Banach space of self-adjoint trace class operators on H;

• Ksa(H): the Banach space of self-adjoint compact operators on H, defined as the closure with respect to the
operator norm of Tsa(H);

• D(H): the set of density operators (i.e., positive semidefinite trace class operators with trace 1) on H;

• T +
sa (H): the cone of positive semidefinite (and hence self-adjoint) trace class operators on H;

• K+
sa(H): the cone of positive semidefinite (and hence self-adjoint) compact operators on H;

One has that Tsa(H) ⊆ Ksa(H) ⊆ Bsa(H), with equality iff H is finite dimensional. Also, the duality re-
lation Tsa(H)∗ = Bsa(H) holds at the level of Banach spaces. We remind the reader that the dual of a Ba-
nach space X equipped with a norm ‖ · ‖X is the vector space of all linear functionals ϕ : X → R such that
‖ϕ‖X∗ ..= sup‖x‖X≤1 |ϕ(x)| <∞, equipped with the norm ‖ · ‖X∗ .

A quantum state on a quantum system A with Hilbert space HA is represented by a density operator ρA ∈ D(HA).
Quantum channels from A to B, where A,B are quantum systems, are completely positive trace preserving maps
Λ : Tsa(HA) → Tsa(HB). For a quantum channel Λ : Tsa(HA) → Tsa(HB), the adjoint Λ† is the linear map Λ† :
Bsa(HB)→ Bsa(HA) defined by Tr

[
TAΛ†(XB)

]
..= Tr [Λ(TA)XB ] for all TA ∈ Tsa(HA) and XB ∈ Bsa(HB). Among

the simplest examples of quantum channels are quantum measurements, represented by positive operator-
valued measures (POVM), i.e., finite collections M = {Ex}x∈X of positive semidefinite (bounded) operators Ex ≥ 0
that obey the normalization rule

∑
xEx = 1. Any quantum measurement can be written as a trace-preserving map

by making use of classical flags {|φx〉}x∈X : ρ 7→
∑
x Tr[ρEx]ρx ⊗ |φx〉〈φx|, where ρx is the output state in case the

outcome x is measured.
It is well known that the topological structure of infinite-dimensional spaces is much richer than in the finite-

dimensional case. There is a wealth of topologies that can be defined on infinite-dimensional Banach spaces, and in
particular on the operator spaces discussed above [36]. In light of this fact, and for later convenience, we provide here
a quick guide:

• the weak operator topology on Bsa(H) (and hence on Tsa(H) and D(H)) is the coarsest topology that makes
all functionals A 7→ 〈ψ|A|ψ〉 continuous, for all |ψ〉 ∈ H;

• the weak* topology on Tsa(H) is the coarsest topology that makes all functionals T 7→ Tr[TK] continuous,
for all K ∈ Ksa(H);
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• the weak topology on Tsa(H) is the coarsest topology that makes all functionals T 7→ Tr[TA] continuous, for
all A ∈ Bsa(H);

• the trace norm topology on Tsa(H) is the one induced by the trace norm ‖ · ‖1;

• the operator norm topology on Bsa(H) is the one induced by the operator norm ‖ · ‖∞.
The role of the weak* topology on Tsa(H) will play a special role for us (cf. Lemma 38).
Remark 1. The weak* topology is the topology induced by the Banach space Ksa(H) on its dual Ksa(H)∗ = Tsa(H).
Therefore, by the Banach–Alaoglu theorem the unit ball BTsa(H)

..= {T ∈ Tsa(H) : ‖T‖1 ≤ 1} of Tsa(H) is weak*
compact. This fact will be crucial for one of the main results of the work.

We conclude this section by stating some useful facts about operator topologies. We start by noting the following
remarkable lemma, originally discovered by Davies [37, Lemma 4.3] — see also the ‘gentle measurement lemma’ by
Winter [38, Lemma 9] for a refined version.

Lemma 2 [37, Lemma 4.3]. For a net1 (ωα)α ⊆ T +
sa (H) of positive semidefinite trace class operators, if ωα wot−−→α ω ∈

T +
sa (H) in the weak operator topology, and moreover Tr[ωα] −→α Tr[ω], then ωα

n−→α ω in norm.

Since two topologies are equal if and only if they have the same convergent nets, it is immediate to deduce the
following.
Corollary 3. The weak topology and the norm topology coincide on T +

sa (H). They also coincide with the weak operator
topology on D(H).
Remark 4. The norm topology does not coincide with the weak operator topology on T +

sa (H). For instance, the
sequence of Fock states (|n〉〈n|)n converges to 0 in the weak operator topology, but it is not convergent in the norm
topology (for instance because it is not of Cauchy type).

B. Continuous variable systems

Among all infinite-dimensional quantum systems, a central role is played by continuous variable (CV) systems,
and here, perhaps most notably, by finite collections of harmonic oscillators. The Hilbert space corresponding to an
m-mode CV system is composed of all square-integrable complex-valued functions on the Euclidean space Rm, denoted
with Hm = L2(Rm); one can then identify Hm ' H⊗m1 . Note that we will adopt the convention ~ = 1 hereafter.
Then, the canonical operators xj and pj ..= −i ∂

∂xj
(j = 1, . . . ,m) satisfy the canonical commutation relations

[xj , xk] = 0 = [pj , pk] and [xj , pk] = iδjk1, with 1 denoting the identity over Hm. It is customary to define the
annihilation and creation operators by

aj ..= xj + ipj√
2

, a†j
..= xj − ipj√

2
. (1)

In terms of aj , a†j , the canonical commutation relations take the form [aj , ak] ≡ 0, [aj , a†k] = δjk1.
On a single-mode system, Fock states are defined for k ∈ N by |k〉 ..= 1√

k! (a
†)k |0〉, where |0〉 is the vacuum

state. For α ∈ C, the associated coherent state takes the form [39–42]

|α〉 ..= e−
|α|2

2

∞∑
k=0

αk√
k!
|k〉 . (2)

Extending these definitions to multimode systems is quite straightforward. For k = (k1, . . . , km)ᵀ ∈ Nm, one sets
|k〉 ..=

⊗m
j=1 |kj〉; analogously, for α = (α1, . . . , αm)ᵀ ∈ Cm, a multimode coherent state is defined by |α〉 ..=

⊗m
j=1 |αj〉.

The displacement operators form a special family of unitary operators acting on Hm. For α ∈ Cm, they are
defined by

D(α) ..= exp
[∑m

j=1

(
αja
†
j − α

∗
jaj

)]
. (3)

1 A net (xα)α on some set X is any function of the form x : A→ X , where A is a directed set, i.e., a set A equipped with a preorder ≤
such that for all a, b ∈ A there exists c ∈ A with the property that a ≤ c and b ≤ c.
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They satisfy the identity

D(α)D(β) = e
1
2 (αᵀβ∗−α†β) D(α+ β) , (4)

called the Weyl form of the canonical commutation relations, for all α, β ∈ Cm, and they yield coherent states
upon acting on the vacuum, i.e.,

D(α) |0〉 = |α〉 ∀ α ∈ Cm . (5)

For an arbitrary trace class operator T ∈ Tsa(Hm), its characteristic function χT : Cm → C is given by

χT (α) ..= Tr[TD(α)] . (6)

For a m-mode quantum state ρ ∈ D(Hm), a quantity which is intimately related to its characteristic function is the
Husimi Q-function Q : Cm → C, defined by Qρ(α) ..= 1

πm 〈α|ρ|α〉 [43].

C. Entropies and relative entropies

The (von Neumann) entropy of some positive semidefinite trace class operator A ∈ T +
sa (H) can be defined as

S(A) ..= −Tr [A log2A] . (7)

Note that this is a well-defined although possibly infinite quantity. One way to make sense of the expression (7) is
via the infinite sum S(A) =

∑
i(−ai log2 ai), where A =

∑
i ai |ai〉〈ai| is the spectral decomposition of A where we

convene that 0 log2 0 = 0. Since ai −−−→
i→∞

0 because A is trace class, the terms of the above sum are eventually positive.
Hence, the sum itself can be assigned a well-defined value, possibly +∞. An alternative approach is to define is the
Wehrl entropy instead:

SW (ρ) ..= −
∫
d2mαQρ(α) log2 (πmQρ(α)) . (8)

It is well known that SW (ρ) ≥ S(ρ) for any quantum state ρ ∈ D(H).
The relative entropy between two positive A,B ∈ T +

sa (H) is usually written as [44, 45]

D(A‖B) ..= Tr [A(log2A− log2B)] . (9)

Again, the above expression is well defined and possibly infinite [46]. To see why, we represent it as the infinite sum
D(A‖B) ..=

∑
i,j |〈ai|bj〉|

2 (ai log2 ai − ai log2 bj + log2(e)(bj − ai)) + log2(e) Tr[A − B], where A =
∑
i ai |ai〉〈ai| and

B =
∑
j bj |bj〉〈bj | are the spectral decompositions of A and B, respectively, and we assume that only terms with ai > 0

and bj > 0 are included. As above, we follow the convention of setting 0 log2 0 = 0, and we set D(A‖B) = +∞ if there
exist two indices i and j with ai > 0, bj = 0, and 〈ai|bj〉 6= 0. As detailed in [46], the convexity of a 7→ a log2 a implies
that all terms of the above infinite sum are non-negative, making the expression well defined. In light of the above
discussion, it is not difficult to realize that a necessary condition for D(A‖B) to be finite is that suppA ⊆ suppB.
Thus, up to projecting everything onto a subspace we will often assume that B is faithful, i.e., that B > 0. The relative
entropy can be endowed with an operational interpretation in the context of asymmetric hypothesis testing [47–49].

An alternative approach to the quest for defining a quantum relative entropy could be that of bringing the problem
back to the classical setting by means of quantum measurements. Namely, for a state ρ and a measurement M =
{Ex}x∈X , we define the associated outcome probability distribution on X as PM

ρ (x) ..= Tr [ρEx]. Remembering
that for two classical probability distributions p and q the Kullback–Leibler divergence is given by DKL(p‖q) ..=∑
x px(log2 px− log2 qx) [50], let us define the measured relative entropy between any two states ρ and σ as [47, 51]

DM(ρ‖σ) ..= sup
M

DKL

(
PM
ρ

∥∥PM
ρ

)
. (10)

It is known that DM(ρ‖σ) ≤ D(ρ‖σ) for all pairs of states ρ, σ [51]. Recently, extending a result by Petz [52], Berta
et al. have shown that for finite-dimensional systems equality holds if and only if [ρ, σ] = 0 [53].
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III. QUANTUM RESOURCE THEORIES

In this section we introduce a general notion of quantum resource theory, and some related concepts and results.
Note that our definition is slightly different from that in the recent review by Chitambar and Gour [3, Definition 1],
in that we require also parallel composition (i.e., tensor product) of free operations to be free.

Definition 5. A quantum resource theory (QRT) is a pair R = (S,F), where S is a family of quantum systems
that is closed under tensor products, in the sense that A,B ∈ S implies that AB ..= A ⊗ B ∈ S; and contains the
trivial system 1 with Hilbert space C, while F, called the set of free operations, is a mapping that assigns to every
pair of systems A,B ∈ S a set of channels from system A to B. Such a set will be denoted with F(A → B).2 We
will require that the following three consistency conditions are satisfied:

(i) for all A ∈ S, the identity is a free operation on A, in formula IA ∈ F(A→ A);

(ii) free operations are closed under sequential compositions, namely, if A,B,C ∈ S and Λ ∈ F(A → B), Γ ∈
F(B → C), then also Γ ◦ Λ ∈ F(A→ C);

(iii) free operations are closed under parallel compositions, namely, if for j = 1, 2 one chooses Aj , Bj ∈ S and
Λj ∈ F(Aj → Bj), then also Λ1 ⊗ Λ2 ∈ F(A1 ⊗A2 → B1 ⊗B2).

If every system in S is finite dimensional, we will say that R itself is finite dimensional.

A. Monotones

Given a QRT R as above, one defines the set of free states on the system A ∈ S as

FS(A) ..= F(1→ A) . (11)

Clearly, if partial traces are free, then TrA [FS(AB)] ⊆ FS(B). A central role in our paper is played by resource
quantifiers, i.e., monotones. We define them as follows.

Definition 6. Let R = (S,F) be a resource theory. A mapping G assigning to each A ∈ S a function GA : D(HA)→
[0,+∞] on the set of states on A that takes on values in the extended reals [0,+∞] is called a resource monotone
— or simply a monotone — if

(i) GB (Λ(ρ)) ≤ GA(ρ) holds for all states ρ on A ∈ S and for all free operations Λ ∈ F(A→ B), where B ∈ S is
arbitrary;

(ii) GA(σ) = 0 for all σ ∈ FS(A), with FS(A) defined by (11).

A monotone G is said to be:

(a) faithful, if GA(ρ) = 0 implies that ρ ∈ FS(A);

(b) convex, if all functions GA are convex, i.e., GA (
∑
i piρi) ≤

∑
i piGA(ρi) for all A ∈ S and all statistical

ensembles {pi, ρi} on A;

(c) asymptotically continuous [9, 11–13] on some subsets of systems S′ ⊆ S, if for all A ∈ S′ we have that
dimHA < ∞, and moreover there exist two continuous functions f, g : [0, 1] → R independent of dimHA such
that f(0) = g(0) = 0 and

|GA(ρ)−GA(σ)| ≤ f(ε) log(dimHA) + g(ε) (12)

for all ρ, σ ∈ D(HA) at trace distance ε ..= 1
2 ‖ρ− σ‖1.

(d) lower semicontinuous, if GA is lower semicontinuous as a function on D(HA) for all A ∈ S, i.e., if
limn→∞ ‖ρn − ρ‖1 = 0 for a sequence of states on A implies that lim infn→∞GA(ρn) ≥ GA(ρ);

2 Here, classical registers are thought of as special d-dimensional quantum systems X (d <∞) with the property that any free operation
Λ ∈ F(A → XB) satisfies that (∆X ⊗ IB) ◦ Λ = Λ, with ∆X(·) ..=

∑d

i=1 |i〉〈i| (·) |i〉〈i| being the dephasing map. In other words, if
a quantum system plays the role of a classical register, then no state apart from those that are diagonal in a fixed orthonormal basis
{|i〉}i=1,...,d is ever accessible with free operations.
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(e) strongly superadditive, if GAB(ρAB) ≥ GA(ρA) + GB(ρB) holds for all A,B ∈ S and for all states ρAB ∈
D(HAB);

(f) superadditive, if GAB(ρA ⊗ σB) ≥ GA(ρA) + GB(σB) for all A,B ∈ S and for all states ρA ∈ D(HA) and
σB ∈ D(HB);

(g) weakly superadditive, if GA1...An (ρ⊗n) ≥ nGA(ρ) for all A ∈ S, for all n and all states ρ ∈ D(HA), where
A1 . . . An denotes the joint system formed by n copies of A;

(h) additive, if GAB(ρA⊗σB) = GA(ρA)+GB(σB) for all A,B ∈ S and for all states ρA ∈ D(HA) and σB ∈ D(HB);

(j) weakly additive, if GA1...An (ρ⊗n) = nGA(ρ) for all A ∈ S and all states ρ ∈ D(HA), where A1 . . . An denotes
the joint system formed by n copies of A.

Remark 7. In Definition 6, (e)⇒ (f)⇒ (g) and (h)⇒ (j).

Remark 8. Any monotone is automatically invariant under free unitaries whose inverse is also free.

Remark 9. The notions of upper semicontinuous, strongly subadditive, or subadditive monotone are obtained by
reversing the inequalities and exchanging lim inf with lim sup in (d), (e), and (f) of Definition 6.

Note. In what follows, with a slight abuse of notation we will often drop the subscript of G specifying the system it
refers to, and think of a monotone G as a function defined directly on the collection of states on all possible systems
A ∈ S.

B. Transformation rates

We continue by recalling the definition of asymptotic transformation rate.

Definition 10. Let (S,F) be a QRT. For any two systems A,B ∈ S and any two states ρA ∈ D(HA) and σB ∈
D(HB), the corresponding (standard) asymptotic transformation rate is given by

R(ρA → σB) ..= sup
{
r : lim

n→∞
inf

Λn∈F(An→Bbrnc)

∥∥∥Λn
(
ρ⊗nA

)
− σ⊗brncB

∥∥∥
1

= 0
}
, (13)

where An denotes the system composed of n copies of A. Any number r > 0 in the set on the right-hand side of (13)
is called a (standard) achievable rate for the transformation ρA → σB.

The above definition captures the intuitive notion of maximum yield of copies of the target state σB that can be
obtained per copy of the initial state ρA by means of free operations and with asymptotically vanishing error. In
Definition 10, we have measured the error using the global trace distance. However, it is possible and sometimes
even reasonable to modify the error criterion. For instance, in a situation where the output copies are distributed to
noninteracting parties, what is relevant is the maximum local error rather than the global one. This train of thought
inspires the following definition.

Definition 11. Let (S,F) be a QRT. For any two systems A,B ∈ S and any two states ρA ∈ D(HA) and σB ∈
D(HB), the corresponding maximal asymptotic transformation rate is given by

R̃(ρA → σB) ..= sup
{
r : lim

n→∞
inf

Λn∈F(An→Bbrnc)
max

j=1,...,brnc

∥∥∥(Λn (ρ⊗nA ))
j
− σB

∥∥∥
1

= 0
}
, (14)

where for a state Ω ∈ D(HBk) defined on k copies of B we defined Ωj ..= TrBk\Bj [Ω] ∈ D(HBj ) as the reduced state
on the jth subsystem. Any number r > 0 in the set on the right-hand side of (13) is called a maximally achievable
rate for the transformation ρA → σB.

It is immediate to see that for any given pair of states the maximal rate always upper bounds the corresponding
standard rate (Lemma 31).
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C. Infinite-dimensional quantum resource theories

The prime example of a quantum resource theory is naturally that of entanglement [3, 6, 8, 54]. In spite of their
central importance, very little is known about many fundamental operational questions in the infinite-dimensional
case [16, 35, 55, 56], with a partial exception being the theory of Gaussian entanglement [57–61]. We can formally
define entanglement as a resource theory as follows.
Definition 12. The resource theory of bipartite entanglement is defined by setting:

• S to be the family of all (possibly infinite-dimensional) quantum systems A :B, where the colon indicates the
bipartition in separate parties;

• FS(A :B) = Sep(A :B) ..= conv {|φA〉〈φA| ⊗ |ψB〉〈ψB | : |φA〉 ∈ HA, |ψB〉 ∈ HB} for any bipartite system A :B ∈
S, where conv denotes the closed (in trace norm topology) convex hull of a set;

• F(A :B → A′ :B′) = LOCC(A :B → A′ :B′) is the set of all LOCC protocols from A :B to A′ :B′.
Another important example is the resource theory of quantum thermodynamics [29, 62, 63]. Just as that of

entanglement, it can be constructed for finite-dimensional systems as well. However, in accordance with the spirit of
this work, we will focus on the continuous variable case from now on.
Definition 13. The resource theory of quantum thermodynamics is defined by setting:

• S to be the family of all (possibly infinite-dimensional) quantum systems A equipped with a Hamiltonian HA

satisfying the Gibbs hypothesis, i.e., Tr
[
exp−βHA

]
< ∞ for any inverse temperature β > 0; we also assume

HAB = HA +HB for any systems A,B ∈ S;

• once an inverse temperature β has been fixed for all systems, FS(A) = {γA}, with

γA ..= exp−βHA
Tr [exp−βHA ]

being the thermal state, for any system A ∈ S with Hamiltonian HA;

• F(A → B) to encompass all quantum channels Λ : Tsa(HA) → Tsa(HB) such that Λ(γA) = γB for systems
A,B ∈ S with thermal states γA and γB respectively (Gibbs-preserving operations).

In the case where the family S contains only continuous variable quantum systems, other specific resource theories
emerge naturally, as a result of operational or technological constraints. For example, the resource theory of optical
nonclassicality [23–28] is based on the premise that statistical mixtures of coherent states are easy to synthesize,
hence free, and “classical”, as they most closely approximate classical electromagnetic waves. On the other hand,
operationally, nonclassical states, such as Fock states [64, 65], squeezed states [66–70], cat states [71–78], or NOON
states [79, 80], play an increasingly central role in applications. A formal definition of this resource theory is as follows.
Definition 14. The resource theory of (optical) nonclassicality is defined by setting:

• S to be the family of all continuous variable quantum systems;

• FS(A) = Cm ..= conv {|α〉〈α| : α ∈ Cm} for any m-mode system A ∈ S;

• F(A → B), with A,B ∈ S being m and m′-mode systems respectively, to encompass all quantum channels
Λ : Tsa(Hm)→ Tsa(Hm′) such that Λ(Cm) ⊆ Cm′ (classical operations).

The so-called classical operations comprise, but are possibly not limited to, channels that can be obtained through
passive linear optics, destructive measurements, and feed-forward of measurement outcomes [24, 25]. Note that the
set of classical states and that of classical channels are both convex.

IV. MAIN RESULTS

In the present section we state the main results of our work. The starting point is the general bound on asymptotic
transformation rates in Theorem 15. We then explore its consequences for the resource theories of entanglement and
quantum thermodynamics in Corollaries 16 and 17, respectively. To apply it to the resource theory of nonclassicality,
instead, we need to introduce and study two new monotones, the measured relative entropy of nonclassicality NM

r and
its regularized version (Definition 18). One of our main technical contributions is the proof of a powerful variational
expression for NM

r (Theorem 19), from which we deduce the lower semicontinuity and — most importantly — the
strong superadditivity of the measured relative entropy of nonclassicality NM

r (Theorem 23).
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A. General bound on asymptotic rates

Our first result is a general bound on (maximal) transformation rates that works for all quantum resource theories,
including infinite-dimensional ones. Formally, it is a generalization of a well-known bound holding for many monotones
in finite dimensions [3, Section VI.A.5]. In this simpler context, it is possible to prove that if a resource monotone G is
weakly additive and moreover asymptotically continuous (Definition 6, (j) and (c)) then the asymptotic transformation
rate R(ρ→σ) between any two states ρ, σ (Definition 10) satisfies that

R(ρ→σ) ≤ G(ρ)
G(σ) , (15)

provided that the right-hand side is well defined. This bound has been proved in [12, Theorem 4] (see also [3,
Section VI.A.5]) using techniques developed in [10] and [11] — see especially [11, Propositions 19, 20, and 22] for
a thorough discussion of many possible variations of the underlying hypotheses. In fact, the proof is so simple and
enlightening that it is worth summarising it here. For any achievable rate r, i.e., for any element of the set in (13),
calling A,B the systems to which ρ, σ pertain, we can construct the sequence of maps Λn ∈ F

(
An → Bbrnc

)
such

that εn ..= 1
2
∥∥Λn (ρ⊗n)− σ⊗brnc

∥∥
1 satisfies limn→∞ εn = 0. Leveraging properties (j) and (c) in Definition 6, one

then obtains that

nG(ρ) (j)= G
(
ρ⊗n

)
≥ G

(
Λn
(
ρ⊗n

)) (c)
≥ G

(
σ⊗brnc

)
− f(εn) log

(
dbrnc

)
− g(εn) (j)= brnc (G(σ)− f(εn) log d)− g(εn) , (16)

where we called d ..= dimHB . Dividing by n and taking the limit n → ∞ yields r ≤ G(ρ)/G(σ), and in turn (15)
once one takes the supremum over r.

Inequality (15), applied to different weakly additive and asymptotically continuous monotones, yields many of
the commonly employed bounds on rates as far as finite-dimensional resources are concerned.3 Unfortunately, for
infinite-dimensional systems the notion of asymptotic continuity becomes empty, and consequently the argument
in (16) breaks down at the step marked as (c). In fact, prior to our work there seemed to be a lack of technical
tools to address the approximation error allowed in the transformation (13) in the infinite-dimensional case. Due to
this “asymptotic continuity catastrophe”, in the existing literature prior to our work we could not locate any upper
bound on asymptotic transformation rates that holds for infinite-dimensional resource theories. The theorem below,
whose proof is remarkably simple (and yet very different from that in (16)) but whose applicability is surprisingly
wide, remedies this regrettable state of affairs at least in the case where the employed monotone G is strongly
superadditive. An alternative but ultimately less satisfactory approach to circumvent the asymptotic continuity
catastrophe is sketched out in Appendix A, to which we refer the reader interested in more details on this point.

Theorem 15. For a given QRT, not necessarily finite dimensional, let G be a monotone that is strongly superadditive,
weakly additive, and lower semicontinuous. Then, for all states ρA, σB, it holds that

R(ρA→σB) ≤ R̃(ρA→σB) ≤ G(ρA)
G(σB) , (17)

whenever the rightmost side is well defined.

With the above result at hand, we can now establish rigorous bounds on transformation rates in operationally
important examples of infinite-dimensional quantum resource theories.

B. First consequences: resource theories of entanglement and quantum thermodynamics

We start with the QRT of entanglement. To the extent of our knowledge, there is no available technique to
derive upper bounds on the transformation rate R(ρAB → σAB) in terms of known monotones. Even the energy-
constrained version of asymptotic continuity established by Shirokov [17–19] for many entanglement monotones does
not suffice to this purpose. This is because we need continuity estimates on the output system, and — while the input,
consisting of many copies of a known state, is naturally energy constrained — the output, being produced by a general
unconstrained free channel, is not. We could of course impose such an energy constraint artificially, by enforcing the

3 Notable exceptions are monotones based on the partial transpose in entanglement theory [81–83].
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parties to operate with LOCCs that are uniformly energy-constrained; however, the operational motivation behind
this assumption is somewhat dubious; this is especially so if energy is much cheaper than entanglement, which is often
the case in experimental practice. We refer the reader to Appendix A for a more in-depth discussion of these points.

To apply Theorem 15 to the case at hand, we need an entanglement monotone that obeys strong superadditivity.
The squashed entanglement, denoted Esq, is a natural candidate [31–34]. Shirokov [35] has shown how to extend its
definition to infinite-dimensional systems [35, Eq. (17)]. We report the definition of squashed entanglement later in
Section VI B. Applying Theorem 15 to it we deduce the following corollary.

Corollary 16. Let ρAB and σA′B′ be two bipartite states such that

min {S(ρA), S(ρB), S(ρAB)} <∞ , min {S(σA′), S(σB′), S(σA′B′)} <∞ . (18)

Then, in the QRT of entanglement it holds that

R(ρAB→σA′B′) ≤ R̃(ρAB→σA′B′) ≤
Esq(ρAB)
Esq(σA′B′)

. (19)

Another possible application of Theorem 15 is to the QRT of thermodynamics. The quantity G(ρA) ..= 1
βD(ρA‖γA),

which coincides with the free energy difference between ρA and γA when Tr [ρAHA] <∞, can be seen to be strongly
superadditive, additive and lower semicontinuous. We deduce the following.

Corollary 17. In the QRT of thermodynamics, for all states ρA, σB it holds that

R(ρA→σB) ≤ R̃(ρA→σB) ≤ D(ρA‖γA)
D(σB‖γB) . (20)

Let us stress that Corollary 17 extends the results of Brandão et al. [29], which are valid in finite-dimensional
systems, to all quantum systems where a QRT of thermodynamics can be constructed. This is clearly a crucial
improvement because of the ubiquity of harmonic oscillators in physical applications.

C. Further consequences: resource theory of nonclassicality

Over the past decades, there have been proposals to quantify the nonclassicality of quantum states of light, e.g.,
by their distance from the set of classical states [84–87], by the amount of noise needed in order to make them
classical [88, 89], by their potential for entanglement generation [90–92] or for metrological advantage [93], by the
negativity [94, 95], the variances [25] or other features [96–101] of their phase-space distributions, or by the minimum
number of superposed coherent states needed to reproduce the target state [102]. Unfortunately, none of these
monotones appears to yield bounds on asymptotic transformation rates, for they fail to satisfy asymptotic continuity.
In fact, to the extent of our knowledge, no rigorous bounds on those rates are known for the resource theory of
optical nonclassicality. Indeed, the transformations considered in Yadin et al. [25, Theorems 2 and 3] are probabilistic
but exact, and moreover single-shot rather than asymptotic. One could argue that especially their zero-error nature
somewhat limits their operational relevance in applications.

We therefore pursue a different approach. In analogy to what was previously done for entanglement [103, 104], we
use the relative entropies introduced in Section II C to construct nonclassicality measures.

Definition 18. Let ρ ∈ D(Hm) be an m-mode state. The relative entropy of nonclassicality and the measured
relative entropy of nonclassicality of ρ are defined respectively as:

Nr(ρ) ..= inf
σ∈Cm

D(ρ‖σ) , NM
r (ρ) ..= inf

σ∈Cm
DM(ρ‖σ) . (21)

Note that our definition of Nr differs from that of Marian et al. [86], in that σ is allowed to be an arbitrary classical
state, not necessarily Gaussian. It is not difficult to see that Nr and NM

r are faithful and convex nonclassicality
monotones (Lemma 28). Since Nr is also subadditive (again, Lemma 28), its regularization N∞r (ρ) ..= limn→∞

Nr(ρ⊗n)
n

is well defined by Fekete’s lemma [105] and also subadditive (Corollary 29). We will show that both Nr and N∞r
are always finite on bounded-energy states (Proposition 30), but that there exist infinite-energy states ρ such that
Nr(ρ) = N∞r (ρ) =∞ (Proposition 39). Explicit computations or tight estimates for the measured relative entropy of
nonclassicality for Fock-diagonal states, squeezed states, and cat states are reported in Sections IX A–IX B.

It might not be clear at this point why to introduce NM
r alongside with Nr, given that the former quantity involves

one more nested optimization than the latter. However, we now show that its computation can be notably simplified.
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Theorem 19. For all m-mode finite-entropy states ρ, it holds that

NM
r (ρ) = sup

L>0

{
Tr [ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
, (22)

where L ranges over all positive trace class operators on Hm (equivalently, on all positive normalized states).

The proof of Theorem 19 involves two main ingredients. This first one is a generalization of the variational program
for DM put forth by Berta et al. [53, Lemma 1] to the infinite-dimensional case, which may be of independent interest.

Lemma 20. Let ρ ∈ D(H) be a density operators on a (possibly infinite-dimensional) Hilbert space H, and let
σ ∈ T +

sa (H) be positive semidefinite and nonzero. Then

DM(ρ‖σ) = sup
h∈Bsa(H)

{
Tr [ρh]− log2 Tr

[
σ2h

]}
(23)

= sup
h∈Bsa(H)

{
Tr [ρh] + log2(e)

(
1− Tr

[
σ2h

])}
(24)

= sup
0<δ1<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr [σL]} (25)

= sup
0<δ1<L∈Bsa(H)

{Tr [ρ log2 L] + log2(e) (1− Tr [σL])} (26)

= sup
0<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr [σL]} (27)

= sup
0<L∈Bsa(H)

{Tr [ρ log2 L] + log2(e) (1− Tr [σL])} . (28)

The notation L > δ1 in the supremum in equations (25) and (26) means that L is required to have eigenvalues bounded
from below by a positive quantity, i.e., to satisfy L > δ1 for some δ > 0, depending on L.

Remark 21. For the case where the measurements in (10) are restricted to be projective (i.e., M = {Ex}x∈X with Ex
a projector for all x, and

∑
xEx = 1), the expression in (23) has been obtained already by Petz [45, Proposition 7.13]).

The above Lemma 20 is proved in Section VII A. By applying it to the program in (21) we are left with a nested
optimization of the form sup inf. Then, the second critical ingredient that is needed to arrive at a proof of Theorem 19
is an application of Sion’s minimax theorem [106] that allows us to exchange infimum and supremum in this resulting
expression. This is technically challenging, as meeting the compactness hypothesis in Sion’s theorem requires a
careful choice of topology on the domain of optimization. The crucial technical contribution here is Lemma 38,
which establishes the compactness of the set of subnormalized classical states with respect to the weak*-topology (see
Section II A). Along the way, we introduce and study an auxiliary quantity Γ (Definition 33 and Proposition 35).

An immediate consequence of Theorem 19 is the superadditivity of NM
r on finite-entropy states. This fact allows

us to successfully construct the regularization NM,∞
r .

Corollary 22. When computed on finite-entropy states, NM
r is lower semicontinuous and strongly superadditive,

meaning that

NM
r (ρAB) ≥ NM

r (ρA) +NM
r (ρB) ∀ ρAB : S(ρA), S(ρB) <∞ . (29)

Therefore, for any finite-entropy state ρ its regularization

NM,∞
r (ρ) ..= lim

n→∞

NM
r (ρ⊗n)
n

(30)

is a well defined nonclassicality monotone. It is lower semicontinuous, strongly superadditive, and weakly additive.
Furthermore,

NM
r (ρ) ≤ NM,∞

r (ρ) ≤ N∞r (ρ) ≤ Nr(ρ) (31)

holds whenever S(ρ) <∞. In particular, both N∞r and NM,∞
r are also faithful, at least on finite-entropy states.

The variational expression in Theorem 19 has many more consequences. For example, we use it to establish upper
and lower bounds on NM

r and its regularization NM,∞
r based on the Wehrl entropy (Proposition 40), which translate

to tight estimates of these quantifiers for Gaussian states (Corollary 41). The most important application is however
the following.
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Theorem 23. Let ρ, σ be two CV states with finite entropy, i.e., such that S(ρ), S(σ) <∞. Then the transformation
rates in the resource theory of nonclassicality obey the inequalities

R(ρ→σ) ≤ R̃(ρ→σ) ≤ NM,∞
r (ρ)

NM,∞
r (σ)

≤ Nr(ρ)
NM
r (σ) , (32)

provided that the ratios on the right-hand sides are well defined.

To the best of our knowledge, (32) is the first explicit bound on asymptotic transformation rates in the context
of CV nonclassicality. However, it would amount to a rather futile theoretical statement if not complemented with
a systematic way of upper bounding the ratio Nr(ρ)/NM

r (σ). Note that Nr can be estimated from above by simply
making suitable ansatzes in (21). The a priori less trivial task of lower bounding NM

r can be carried out thanks to
Theorem 19.

As an immediate application of Theorem 23, we consider the paradigmatic example of (Schrödinger) cat state
manipulation [78, 107–111]. For α ∈ C, cat states are defined by [71]

|ψ±α 〉 ..= 1√
2
(
1± e−2|α|2

) (|α〉 ± |−α〉) , (33)

where |±α〉 are coherent states (2). The transformations we look at are ψ+
α → ψ+√

2α (amplification) and ψ+√
2α →

ψ+
α ⊗ ψ−α (sign-randomized dilution). A protocol for amplification using linear optical elements and quadrature

measurements has been designed by Lund et al. [107]. We present an ameliorated version of it (Proposition 48),
together with a simple protocol for sign-randomized dilution (Proposition 49). The lower bounds on rates given by
these explicit protocols are shown in Figure 1. The upper bound derived via Theorem 23 is asymptotically tight for
the dilution task, but not in the case of amplification. This is due to the fact that our quantifiers all saturate to 1 for
cat states with |α| → ∞.
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FIG. 1. Upper and lower bounds on asymptotic transformation rates of Schrödinger cat states.

V. PRELIMINARY RESULTS

Throughout this section we lay the ground for the proof of our main results, studying general properties of monotone
regularization (Section V A) and investigating in more detail nonclassicality monotones (Section V B).

A. Generalities about monotone regularization

It turns out that any monotone G can be made weakly additive by a procedure known as “regularization”.
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Definition 24. Let (S,F) be a QRT equipped with a monotone G. Then the functions

G↓,∞(ρ) ..= lim inf
n→∞

1
n
G
(
ρ⊗n

)
, (34)

G↑,∞(ρ) ..= lim sup
n→∞

1
n
G
(
ρ⊗n

)
(35)

are called the lower and upper regularizations of G. On the domain of states ρ such that G↓,∞(ρ) = G↑,∞(ρ) =..

G∞(ρ) one can speak of a unique regularization G∞.

The following result is immediate from the definition.

Lemma 25. Let (S,F) be a QRT equipped with a monotone G. Then the lower and upper regularizations G↓,∞ and
G↑,∞ given by Definition 24 are also monotones. Moreover, G∞ is weakly additive on its domain, i.e., G↓,∞(ρ) =
G↑,∞(ρ) for a state ρ implies that G∞(ρ⊗n) ≡ nG(ρ) for all n ∈ N+.

Proof. Let us start by showing that, e.g., G↓,∞ is a monotone. Since parallel composition of free operations is free,
for all ρ ∈ D(HA) and for all Λ ∈ F (A→ B), with A,B ∈ S, we obtain that

G↓,∞ (Λ(ρ)) = lim inf
n→∞

1
n
G
(
Λ(ρ)⊗n

)
= lim inf

n→∞

1
n
G
(
Λ⊗n

(
ρ⊗n

))
≤ lim inf

n→∞

1
n
G
(
ρ⊗n

)
= G↓,∞(ρ) .

Moreover, if ρ is free, also ρ⊗n is so, and hence G↓,∞(ρ) = 0 as well. This proves the first claim.
Now, by definition G↓,∞(ρ) = G↑,∞(ρ) implies that the sequence

( 1
kG(ρ⊗k)

)
k∈N+

has a limit. If that is the case,
then clearly G∞(ρ⊗n) = limk→∞

1
k G

(
ρ⊗kn

)
= n limn→∞

1
kn G

(
ρ⊗kn

)
= nG∞(ρ) for all n ∈ N+.

A useful fact that is slightly less obvious is as follows.

Lemma 26. Let (S,F) be a QRT equipped with a monotone G that is weakly superadditive. Then:

(i) the regularization G∞ in Definition 24 exists for all states ρ, i.e., G↓,∞(ρ) = G↑,∞(ρ) =.. G∞(ρ) for all ρ ∈
D(HA) with A ∈ S; it is also weakly additive and satisfies G∞≥G;

(ii) If G is also (strongly) superadditive, then G∞ is (strongly) superadditive as well;

(iii) If G is lower semicontinuous, then so is G∞.

Remark 27. The above result is still valid if we replace superadditivity with subadditivity, lower semicontinuity with
upper semicontinuity, and reverse all inequalities.

Proof of Lemma 26. Due to weak superadditivity, for all states ρ the sequence (an)n∈N+
defined by an ..= G(ρ⊗n) is

superadditive, meaning that an+m ≥ an + am. Therefore, by Fekete’s lemma [105] limn→∞
an
n exists, and it satisfies

that limn→∞
an
n = supn∈N+

an
n . Therefore,

G∞(ρ) = lim
n→∞

1
n
G
(
ρ⊗n

)
= sup
n∈N+

1
n
G
(
ρ⊗n

)
is well defined for all ρ, and satisfies G∞(ρ) ≥ G(ρ). This proves (i).

Now we proceed to prove points (ii) and (iii). We already saw in Lemma 25 that G∞ is a weakly additive monotone,
so it suffices to show that it is (strongly) superadditive if G was such. This is immediate to establish (we prove it
only for strong superadditivity, as the superadditivity case is completely analogous):

G∞(ρAB) = lim
n→∞

1
n
G
(
ρ⊗nAB

)
≥ lim
n→∞

1
n

(
G
(
ρ⊗nA

)
+G

(
ρ⊗nB

))
= lim
n→∞

1
n
G
(
ρ⊗nA

)
+ lim
n→∞

1
n
G
(
ρ⊗nB

)
.

To see that G∞ is lower semicontinuous if so was G, just notice that G∞(ρ) = supn∈N+
1
n G (ρ⊗n) is the pointwise

supremum of lower semicontinuous functions and thus must itself be lower semicontinuous.
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B. Nonclassicality monotones

If the reader is worried by the proliferation of regularized measures in Definition 18, they should not be. In fact,
we will show that the regularizations are unique in all physically interesting cases. We are able to readily prove the
equality between N↓,∞r and N↑,∞r , while a proof for NM,↓,∞

r and NM,↑,∞
r will be given at the end of Section VII D.

The first step is to prove that the quantity we just defined are actually good resource monotones.

Lemma 28. The quantities Nr and NM
r are faithful and convex nonclassicality monotones. They obey the inequality

Nr ≥ NM
r . Moreover, Nr is subadditive.

Proof. The argument is completely standard. The inequality Nr ≥ NM
r is obvious, and follows from the same relation

between the relative entropy and its measured version. Since both D(·‖·) and DM(·‖·) obey the data processing
inequality, for every classical channel Λ : Tsa(Hm)→ Tsa(Hm′) we obtain that

Nr (Λ(ρ)) = inf
σ′∈Cm′

D
(
Λ(ρ)

∥∥σ′) ≤ inf
σ′∈Λ(Cm′ )

D
(
Λ(ρ)

∥∥σ′) = inf
σ∈Cm

D
(
Λ(ρ)

∥∥Λ(σ)
)
≤ inf
σ∈Cm

D (ρ‖σ) = Nr(ρ) ,

and analogously for NM
r . This proves monotonicity.

Convexity descends from the fact that both Nr and NM
r are defined as the infimum of a jointly convex function on

a convex domain. For example,

Nr

(∑
i
piρi

)
= inf
σ∈Cm

D
(∑

i
piρi

∥∥σ)
= inf
{σi}i⊆Cm

D
(∑

i
piρi

∥∥ ∑
i
piσi

)
≤ inf
{σi}i∈Cm

∑
i

piD (ρi‖σi)

=
∑
i

pi inf
σi∈Cm

D (ρi‖σi)

=
∑
i

piNr(ρi) .

The proof for NM
r is entirely analogous.

Faithfulness follows, e.g., from Pinsker’s inequality DKL(p‖q) ≥ 1
2 log2(e)‖p− q‖21 [112], which implies that

DM(ρ‖σ) = sup
M

DKL

(
PM
ρ

∥∥PM
σ

)
≥ 1

2 log2(e) sup
M

∥∥PM
ρ − PM

σ

∥∥2
1 = 1

2 log2(e) ‖ρ− σ‖21 ,

where in the last line we used the elementary fact that the trace distance is achieved by the (binary) measurement
{Π,1−Π}, with Π being the projector onto the positive subspace of ρ− σ.

To prove the subadditivity of Nr, just notice that for all (m+ n)-mode CV systems AB it holds that

Nr(ρA ⊗ σB) = inf
σAB∈Cm+n

D (ρA ⊗ σB‖σAB)

≤ inf
σA⊗σB∈Cm+n

D (ρA ⊗ σB‖σA ⊗ σB)

= inf
σA∈Cm, σB∈Cn

{D (ρA‖σA) +D (ρB‖σB)}

= Nr(ρA) +Nr(ρB) ,

where in the third line we used the identity [45, Eq. (5.22)].

Corollary 29. The functions NM,↓,∞
r , NM,↑,∞

r are nonclassicality monotones. The regularization N↓,∞r = N↑,∞r =..

N∞r is unique and is a weakly additive nonclassicality monotone; it satisfies that N∞r ≤ Nr.

Proof. Follows directly from Lemmata 28 and 26.

We now argue that the monotones Nr, NM
r behave like useful resource quantifiers on states of physical interest.

An essential basic feature is finiteness on bounded-energy states, where the energy is measured by the total photon
number Hamiltonian.
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Proposition 30. Let ρ be an m-mode state with finite mean photon number E ..= Tr
[
ρ
(∑m

j=1 a
†
jaj

)]
<∞. Then

NM
r (ρ) ≤ Nr(ρ) ≤ mg(E/m) , (36)

where g(x) ..= (x+ 1) log2(x+ 1)− x log2 x.

Proof. It is well known that the entropy of an m-mode state with finite mean photon number E is at most mg(E/m),
which indeed corresponds to the entropy of the thermal state with the same energy. Hence, ρ has finite entropy, so
that (31) holds. Thus, we only have to show that Nr(ρ) ≤ mg(E/m). For an arbitrary ν ≥ 0, let

τν ..= 1
1 + ν

∞∑
n=0

(
ν

1 + ν

)n
|n〉〈n| = 1

1 + ν

(
ν

1 + ν

)a†a
(37)

be the single-mode thermal state of mean photon number ν. It is well known that τν ∈ C1, and hence τ⊗mν ∈ Cm, for
all ν ∈ [0,∞). Therefore,

Nr(ρ) ≤ inf
ν≥0

D
(
ρ
∥∥ τ⊗mν )

= inf
ν≥0

{
−S(ρ) +m log2(1 + ν)− E log2

(
ν

1 + ν

)}
= −S(ρ) +mg (E/m) ,

where we used the variational representation

g(x) = inf
ν≥0

{
log2(1 + ν)− x log2

(
ν

1 + ν

)}
,

whose proof is elementary.

Further results on our nonclassicality monotones will be given in Section VIII.

VI. PROOF OF THEOREM 15 AND OF COROLLARIES 16 AND 17

A. Proof of Theorem 15

In this section we prove our first main result, Theorem 15. We start with a simple lemma, which justifies the name
of maximal asymptotic transformation rate given to the quantity in Definition 11 (cf. Definition 11).

Lemma 31. Let (S,F) be a QRT. For any two systems A,B ∈ S and any two states ρA ∈ D(HA) and σB ∈ D(HB),
it holds that

R(ρA → σB) ≤ R̃(ρA → σB) . (38)

Proof. For all n and all free operations Λn ∈ F
(
An → Bbrnc

)
, the data processing inequality for the trace norm [113]

implies that

max
j=1,...,brnc

∥∥∥(Λn (ρ⊗nA ))
j
− σB

∥∥∥
1
≤
∥∥∥Λn

(
ρ⊗nA

)
− σ⊗brncB

∥∥∥
1
.

Therefore, a sequence of protocols that achieves a rate r in (13) (i.e., that makes the global error vanish) achieves the
same rate in (14) (because the maximum local error will also vanish). The claim follows.

We are now ready to present the proof of Theorem 15.

Proof of Theorem 15. It suffices to show that R̃(ρA → σB) ≤ G(ρA)
G(σB) . For any sequence of free operations Λn ∈

F
(
An → Bbrnc

)
satisfying, for all j, lim infn→∞

∥∥∥(Λn (ρ⊗nA ))
j
− σB

∥∥∥
1

= 0 it holds that

G(ρA) 1= lim inf
n→∞

1
n
G
(
ρ⊗nA

)



16

2
≥ lim inf

n→∞

1
n
G
(
Λn
(
ρ⊗nA

))
3
≥ lim inf

n→∞

1
n

brnc∑
j=1

G
((

Λn
(
ρ⊗nA

))
j

)
≥ lim inf

n→∞

brnc
n

min
j
G
((

Λn
(
ρ⊗nA

))
j

)
4= lim inf

n→∞

brnc
n

G
((

Λn
(
ρ⊗nA

))
jn

)
= r lim inf

n→∞
G
((

Λn
(
ρ⊗nA

))
jn

)
5
≥ r G(σB) .

Here, 1 holds due to weak additivity, even without the lim inf and for every n; 2 comes from monotonicity; 3 from
strong superadditivity; in 4 we constructed a sequence of indices jn achieving the minimum; finally, 5 descends from
lower semicontinuity and the assumption on Λn. Then a supremum over r yields the claim.

Before moving on to the study of the applications, it is perhaps instructive to compare the above argument with the
one we saw in (16), where the same bound on rates was proved (under different assumptions) in the finite-dimensional
setting. The main difference lies in step 3, in which we exploit strong superadditivity to move the error analysis
to the single-copy level, where it is ultimately tackled by means of lower semicontinuity (step 5). In (16), instead,
asymptotic continuity was leveraged to carry out an error analysis directly at the many-copy level. This type of ideas
had been previously exploited in [114, Theorem 4 and Remark 10].

B. Proof of Corollary 16

We now apply Theorem 15 to the resource theory of entanglement. Let us start by fixing some terminology. The
squashed entanglement of a bipartite state ρAB of a finite-dimensional bipartite system AB is defined by [31–34]

Esq(ρAB) ..= 1
2 inf
ρABE

I(A : B|E)ρ , (39)

where the infimum is over all extensions ρABE of the state ρAB , i.e., over all tripartite states ρABE satisfying that
TrE [ρABE ] = ρAB , and

I(A : B|E)ρ ..= S(ρAE) + S(ρBE)− S(ρE)− S(ρABE) (40)

is the conditional mutual information. The problem with the above definition is that it cannot be extended directly to
the infinite-dimensional case, because the right-hand side of (40) may contain the undefined expression∞−∞ [35, 56].

Fortunately, Shirokov has found a way out of this impasse. The first step is to construct the conditional mutual
information via an alternative expression to (40), namely,

I(A : B|E)ρ = sup
ΠA
{I(A : BE)ΠAρΠA − I(A : E)ΠAρΠA} , (41)

where the supremum is over all finite-dimensional projectors ΠA on A. An equivalent expression is obtained by
exchanging A and B in (41). Clearly, (41) reduces to (40) when A is finite dimensional.

With (41) at hand, (39) can be extended without difficulty to the infinite-dimensional case [35, Eq. (17)]. In order
for this to work, we have to keep in mind that the system E could and in general will be infinite-dimensional.

An alternative strategy to generalize the squashed entanglement to infinite-dimensional systems could be that of
truncating the state directly by means of local finite-dimensional projectors. This results in a different function Êsq,
defined by [35, Eq. (37)]

Êsq(ρAB) ..= sup
ΠA,ΠB

Esq ((ΠA ⊗ΠB) ρAB (ΠA ⊗ΠB)) , (42)

where the infimum runs over all finite-dimensional projectors ΠA and ΠB . The nested optimizations hidden in (42)
make Êsq a slightly less desirable quantity than Esq. Nevertheless, we will find it useful in intermediate computations.

The main properties of the two functions Esq and Êsq that we will use are as follows:
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(a) both Esq and Êsq are strongly superadditive [35, Propositions 2B and 3B];

(b) both Esq and Êsq are additive, and hence also weakly additive [35, Propositions 2B and 3B];

(c) Êsq is lower semicontinuous everywhere [35, Proposition 3A];

(d) Esq(ρAB) ≡ Êsq(ρAB) on all states with min {S(ρA), S(ρB), S(ρAB)} <∞ [35, Proposition 3C].

Proof of Corollary 16. It suffices to write that

R(ρAB→σA′B′) ≤ R̃(ρAB→σA′B′)
1
≤ Êsq(ρAB)

Êsq(σA′B′)
2= Esq(ρAB)
Esq(σA′B′)

,

where 1 is just an application of Theorem 15, made possible by properties (a), (b), and (c) above, while 2 follows
from (18) and property (d).

C. Proof of Corollary 17

We now move on to the case of quantum thermodynamics at some (fixed) inverse temperature β > 0. The
monotone [29]

G(ρA) ..= 1
β
D(ρA‖γA) (43)

is easily seen to be:

(a) strongly superadditive, because

G(ρAB) = 1
β
D(ρAB‖γAB) = 1

β
D(ρAB‖γA ⊗ γB) ≥ 1

β
D(ρA‖γA) + 1

β
D(ρB‖γB) ,

where the first identity is a consequence of the fact that HAB = HA +HB , while the inequality follows from [45,
Corollary 5.21];

(b) additive and hence weakly additive, since

G(ρA ⊗ σB) = 1
β
D (ρA ⊗ σB‖γAB) = 1

β
D (ρA ⊗ σB‖γA ⊗ γB) = 1

β
D (ρA‖γA) + 1

β
D (σB‖γB) ;

finally,

(c) lower semicontinuous, as follows, e.g., from [45, Proposition 5.23].

Proof of Corollary 17. Thanks to properties (a), (b), and (c) above, the claim follows directly from Theorem 15.

VII. THE LONG MARCH TOWARDS THEOREMS 19 AND 23

Throughout this section, we introduce all the necessary technical tools to arrive at a proof of Theorems 19 and 23.
Along the way, we prove also Lemma 20 (Section VII A) and Corollary 22 (Section VII D)

A. Proof of the variational expression for the measured relative entropy (Lemma 20)

The main goal of this subsection is to prove Lemma 20, which extends to the infinite-dimensional case the variational
expressions for the measured relative entropy introduced in [53].

Let us start by highlighting the main differences and similarities between the six variational expressions reported
in Lemma 20, reported here for the reader’s convenience:

DM(ρ‖σ) = sup
h∈Bsa(H)

{
Tr [ρh]− log2 Tr

[
σ2h

]}
(23)



18

= sup
h∈Bsa(H)

{
Tr [ρh] + log2(e)

(
1− Tr

[
σ2h

])}
(24)

= sup
0<δ1<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr [σL]} (25)

= sup
0<δ1<L∈Bsa(H)

{Tr [ρ log2 L] + log2(e) (1− Tr [σL])} (26)

= sup
0<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr [σL]} (27)

= sup
0<L∈Bsa(H)

{Tr [ρ log2 L] + log2(e) (1− Tr [σL])} . (28)

• We see immediately that they can be grouped in pairs: (23) and (24); (25) and (26); finally, (27) and (28). The
two expressions in each pair involve an optimization over exactly the same set, and differ only by the objective
function, which contains a − log2 x in (23), (25), and (27), and its linearized version log2(e)(1−x) in (24), (26),
and (28).

• The programs in (25) and (26) contain an optimization over all bounded operators L that are also bounded
away from 0, i.e., such that L ≥ δ1 for some δ > 0, where 1 is the identity on H.

• In the programs (27) and (28) we instead removed this latter constraint, and optimized only on positive operators
L > 0. Of course, this is a priori not the same: in infinite dimensions, it can happen — e.g., for any strictly
positive density operator — that L > 0 but there is no uniform bound L ≥ δ1 > 0.

• Since in (27) and (28) the operator log2 L is possibly unbounded from below, it may happen that Tr[ρ log2 L] =
−∞. This is not a problem, because we always have that Tr[σL] > 0 and hence − log2 Tr[σL] < +∞; therefore,
the first addend is the only one that may diverge, and no uncertainties of the form −∞ +∞ can arise in the
objective function.

Proof of Lemma 20. Following the above observations, we divide the proof in several smaller steps.

1. Let us start by showing that (23) is equivalent to (24), (25) to (26), and (27) to (28). We only present the
argument for the equivalence between (23) and (24), as the others are entirely analogous. First, from the
inequality log2 x ≤ log2(e)(x− 1) we see that

Tr[ρh]− log2 Tr
[
σ2h

]
≥ Tr[ρh] + log2(e)

(
1− Tr

[
σ2h

])
for any h. At the same time, the expression (23) is manifestly invariant under transformations of the type
h 7→ h + λI for any λ ∈ R. So, we can always choose a λ in both expressions such that Tr

[
σ2h

]
= 1, thus

saturating the aforementioned inequality.

2. Now, observe that (23) is equivalent to (25), upon a change in parametrization h = log2 L. In fact, log2 L
is bounded if and only if L itself is bounded and moreover L ≥ δ1 > 0. This implies that the variational
expressions in (23), (24), (25), and (26) all coincide.

3. We now show that they also coincide with those in (27) and (28). Clearly, since the optimization in (27) is over
a larger set than that in (25), its value cannot decrease. Therefore, to prove equality we only have to prove that

sup
0<δ1<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr [σL]} ≥ sup
0<L∈Bsa(H)

{Tr [ρ log2 L]− log2 Tr[σL]} .

To this end, pick a bounded L > 0, and let us show how to construct a family of bounded Lδ ≥ δ1 > 0 such
that

lim
δ→0+

{Tr [ρ log2 Lδ]− log2 Tr[σLδ]} = Tr[ρ log2 L]− log2 Tr[σL] . (44)

Since the expression Tr[ρ log2 L]−log2 Tr[σL] is clearly scale-invariant in L, i.e., it takes the same value for L and
λL, for all λ > 0, we can assume without loss of generality that L ≤ 1/2. For 0 < δ ≤ 1/2, set Lδ ..= L+δ1 ≥ δ1.
Using the spectral theorem for bounded operators [115, Theorem 7.12], we can find a projection-valued measure
µ on [0, 1/2] such that L =

∫ 1/2
0 λdµ(λ) and therefore Lδ =

∫ 1/2
0 (λ+ δ)dµ(λ). Defining the real-valued measure

µρ on [0, 1/2] such that µρ(X) = Tr[ρµ(X)] for all measurable sets X ⊆ [0, 1/2], we have that

Tr [ρ (− log2 L)] =
∫ 1/2

0
(− log2 λ)dµρ(λ) , Tr [ρ (− log2 Lδ)] =

∫ 1/2

0
(− log2(λ+ δ)) dµρ(λ) .
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Since the functions λ 7→ − log2(λ + δ) are pointwise monotonically decreasing in δ, converge pointwise to
λ 7→ − log2 λ, and all the functions involved are nonnegative, we can apply Beppo Levi’s monotone convergence
theorem [116] (see also [117, Theorem 11.28]) and conclude that

lim
δ→0+

Tr [ρ (− log2 Lδ)] = lim
δ→0+

∫ 1/2

0
(− log2(λ+ δ)) dµρ(λ) =

∫ 1/2

0
(− log2 λ) dµρ(λ) = Tr [ρ (− log2 L)] .

On the other hand, clearly Tr[σLδ] = Tr[σL] + δ converges to Tr[σL] > 0 as δ → 0+. This proves (44), and thus
allows us to conclude that the optimizations in (23)–(28) all coincide.

4. We now show that the variational program in (26) actually yields the measured relative entropy DM(ρ‖σ). To
begin, we prove that in (26) we can restrict L to be of the form L = I + R, with rkR < ∞, without changing
the value of the supremum. To this end, pick L such that 1/m ≤ L ≤ m for some m > 0, and consider an
arbitrary ε > 0. Construct a finite-dimensional projector P such that ‖ρ− PρP‖1 , ‖σ − PσP‖1 ≤ ε. Then,

Tr [ρ log2 L] + log2(e) (1− Tr [σL])
1
≤ Tr [PρP log2 L] + log2(e) (1− Tr [PσPL]) + ε(log2m+m log2(e))
2
≤ Tr [ρ log2(PLP + 1− P )] + log2(e) (1− Tr [PσPL]) + ε(log2m+m log2(e))
3
≤ Tr [ρ log2(PLP + 1− P )] + log2(e) (1− Tr [σ(PLP + 1− P )]) + ε(log2m+ (m+ 1) log2(e)) .

Here, 1 follows because ‖ log2 L‖∞ ≤ log2m and ‖L‖∞ ≤ m (where ‖ · ‖∞ is the operator norm), in 2 we
applied the operator Jensen inequality [118] to the operator-concave function log2, and 3 is an application of
the estimate Tr[σ(1 − P )] = Tr[σ − PσP ] ≤ ‖σ − PσP‖1 ≤ ε. We see that up to introducing an arbitrarily
small error we can substitute L 7→ PLP + 1− P = 1+R, where rkR ≤ rkP <∞.
Now, let R be of finite rank, and denote with R =

∑N
n=1 λnPn its spectral decomposition. Then L = 1+ R =∑N

n=0(1 + λn)Pn, where P0 ..= 1−
∑N
n=1 Pn and λ0 = 0, and consequently

Tr[ρ log2 L] + log2(e) (1− Tr[σL])

= log2(e)(1− Tr[σ]) +
N∑
n=0

(log2(1 + λn) Tr[ρPn]− log2(e)λn Tr[σPn])

4
≤ log2(e)(1− Tr[σ]) +

N∑
n=1

(
Tr[ρPn] log2

Tr[ρPn]
Tr[σPn] − log2(e) (Tr[ρPn]− Tr[σPn])

)
5
≤ log2(e)(1− Tr[σ]) +

N∑
n=0

(
Tr[ρPn] log2

Tr[ρPn]
Tr[σPn] − log2(e) (Tr[ρPn]− Tr[σPn])

)

=
N∑
n=0

Tr[ρPn] log2
Tr[ρPn]
Tr[σPn]

6= DKL

(
PM
ρ

∥∥PM
σ

)
≤ DM(ρ‖σ).

Here, the inequality in 4 comes from the estimate a log2(1+x)− log2(e)bx ≤ a log2
a
b − log2(e)(a−b), (which can

be proven simply by maximisation in x), while 5 is a consequence of the fact that a log2
a
b − log2(e)(a− b) ≥ 0

for all a, b ≥ 0. In 6, we introduced the measurement M ..= {Px}x∈{0,...,N}.
The converse is proved with exactly the same argument put forth by Berta et al. in the proof of [53, Lemma 1].
Namely, let M = {Ex}x∈X be a quantum measurement. If there exists x ∈ X such that Tr[σEx] = 0 < Tr[ρEx],
then on the one hand clearly DM(ρ‖σ) ≥ DKL

(
PM
ρ

∥∥PM
σ

)
= +∞. On the other, we see that the kernels of ρ

and σ obey ker(σ) * ker(ρ), i.e., there exists a pure state |ψ〉 ∈ ker(σ) \ ker(ρ). Setting L = λψ + 1 − ψ and
letting λ→ +∞ proves that the variational program in (26) is unbounded from above, as it should be.
We now consider the case where Tr[σEx] = 0 only when also Tr[ρEx] = 0. Introduce the set

X̃ ..= {x ∈ X : Tr[ρEx] Tr[σEx] > 0} ,
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and write:

DKL

(
PM
ρ

∥∥PM
σ

)
=
∑
x∈X̃

Tr[ρEx] (log2 Tr[ρEx]− log2 Tr[σEx])

= Tr
[
ρ
∑

x∈X̃

√
Ex log2

(
Tr[ρEx]
Tr[σEx] · 1

)√
Ex

]
7
≤Tr

[
ρ log2

(∑
x∈X̃

Tr[ρEx]
Tr[σEx] Ex

)]
8= Tr [ρ log2 L] + log2(e) (1− Tr[σL]) ,

where 7 is again an application of the operator Jensen inequality [118] to the operator-concave function log2,
and in 8 we defined L ..=

∑
x

Tr[ρEx]
Tr[σEx] Ex, so that Tr[σL] = 1.

Remark 32. The programs (24), (26), and (28) are all well defined also for σ = 0. They yield DM(ρ‖0) = +∞, as
it should be.

B. The monotone Γ

In order to arrive at a proof of Theorem 19, we first formalize the definition of the quantity that appears on the
right-hand side of (22).
Definition 33. For an arbitrary m-mode state ρ, let us construct the quantity

Γ(ρ) ..= sup
h∈Bsa(Hm)

{
Tr[ρh]− log2 sup

α∈Cm
〈α|2h|α〉

}
(45)

= sup
h∈Bsa(Hm)

{
Tr[ρh] + log2(e)

(
1− sup

α∈Cm
〈α|2h|α〉

)}
(46)

Note that since 2h > 0, there must exist some α ∈ Cm such that 〈α|2h|α〉 > 0. Moreover, the two programs in (45)
and (46) are equivalent, as can be verified by following the same strategy as in step 1 of the proof of Lemma 20. This
ensures that Γ is indeed well defined. Let us now establish some of its basic properties.
Lemma 34. For an m-mode state ρ, we have that

Γ(ρ) = sup
0<δ1<L∈Bsa(Hm)

{
Tr [ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
(47)

= sup
0<δ1<L∈Bsa(Hm)

{
Tr [ρ log2 L] + log2(e)

(
1− sup

α∈Cm
〈α|L|α〉

)}
(48)

= sup
0<L∈Bsa(Hm)

{
Tr [ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
(49)

= sup
0<L∈Bsa(Hm)

{
Tr [ρ log2 L] + log2(e)

(
1− sup

α∈Cm
〈α|L|α〉

)}
. (50)

Proof. The argument proceeds exactly as in steps 1–3 of the proof of Lemma 20.

We deduce the following elementary but important properties of the function Γ.
Proposition 35. The function Γ in Definition 33 is a convex, lower semicontinuous, strongly superadditive nonclas-
sicality monotone. It holds that Γ(ρ) ≤ NM

r (ρ) for all states ρ.
Proof. First of all, Γ is convex and lower semicontinuous because it is the pointwise supremum of convex-linear and
lower semicontinuous functions ρ 7→ Tr[ρh]−log2 supα∈Cm 〈α|2h|α〉 (cf. Definition 33). To see that it is a nonclassicality
monotone, consider ρ ∈ D(Hm) and a classical channel Λ : Tsa(Hm)→ Tsa(Hm′), and write

Γ (Λ(ρ)) = sup
0<L′∈Bsa(Hm′ )

{
Tr [Λ(ρ) log2 L

′]− log2 sup
α∈Cm′

〈α|L′|α〉

}
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1= sup
0<L′∈Bsa(Hm′ )

{
Tr
[
ρΛ† (log2 L

′)
]
− log2 sup

σ′∈Cm′
Tr[σ′L′]

}
2
≤ sup

0<L′∈Bsa(Hm′ )

{
Tr
[
ρ log2 Λ† (L′)

]
− log2 sup

σ′∈Cm′
Tr[σ′L′]

}
3
≤ sup

0<L′∈Bsa(Hm′ )

{
Tr
[
ρ log2 Λ† (L′)

]
− log2 sup

σ∈Cm
Tr[Λ(σ)L′]

}
(51)

= sup
0<L′∈Bsa(Hm′ )

{
Tr
[
ρ log2 Λ† (L′)

]
− log2 sup

σ∈Cm
Tr[σΛ†(L′)]

}
4
≤ sup

0<L∈Bsa(Hm)

{
Tr [ρ log2 L]− log2 sup

σ∈Cm
Tr[σL]

}
= Γ(ρ) .

The justification of the above derivation is as follows. 1: We used the definition of adjoint map, and observed that
since L′ is bounded and Cm′ = conv

{
|α〉〈α| : α ∈ Cm′

}
, it holds that supσ′∈Cm′ Tr[σ′L′] = supα∈Cm′ 〈α|L′|α〉. 2:

We applied the operator Jensen inequality [118] to the operator-concave function log2. 3: We restricted the inner
supremum over σ′ to classical states of the form σ′ = Λ(σ), with σ ∈ Cm. 4: We observed that if 0 < L′ ∈ Bsa(Hm′)
then also 0 < Λ†(L′) ∈ Bsa(Hm), which can be seen by noticing that Tr

[
ωΛ†(L′)

]
= Tr [Λ(ω)L′] > 0 for all states

ω ∈ D(Hm).
We now prove that Γ is strongly superadditive. To this end, we take an arbitrary (m + n)-mode state ρAB and

write

Γ (ρAB) = sup
0<LAB∈Bsa(Hm+n)

{
Tr [ρAB log2 LAB ]− log2 sup

αA∈Cm, αB∈Cn
(〈αA| ⊗ 〈αB |)LAB (|αA〉 ⊗ |αB〉)

}
5
≥ sup

0<LA∈Bsa(Hm),
0<LB∈Bsa(Hn)

{
Tr [ρAB log2(LA ⊗ LB)]− log2 sup

αA∈Cm, αB∈Cn
(〈αA| ⊗ 〈αB |) (LA ⊗ LB) (|αA〉 ⊗ |αB〉)

}

= sup
0<LA∈Bsa(Hm),
0<LB∈Bsa(Hn)

{
Tr [ρA log2 LA] + Tr [ρB log2 LB ]− log2

[(
sup

αA∈Cm
〈αA|LA|αA〉

)(
sup

αB∈Cn
〈αB |LB |αB〉

)]}

= sup
0<LA∈Bsa(Hm)

{
Tr [ρA log2 LA]− log2 sup

αA∈Cm
〈αA|LA|αA〉

}
+ sup

0<LB∈Bsa(Hn)

{
Tr [ρB log2 LB ]− log2 sup

αB∈Cn
〈αB |LB |αB〉

}
= Γ(ρA) + Γ(ρB) ,

where in 5 we restricted the supremum to product operators LAB = LA ⊗ LB . It remains to establish the inequality
Γ ≤ NM

r . This is done as follows:
NM
r (ρ) = inf

σ∈Cm
DM(ρ‖σ)

6= inf
σ∈Cm

sup
0<L∈Bsa(Hm)

{Tr [ρ log2 L]− log2 Tr [σL]}

7
≥ sup

0<L∈Bsa(Hm)
inf
σ∈Cm

{Tr[ρ log2 L]− log2 Tr[σL]}

= sup
0<L∈Bsa(Hm)

{
Tr[ρ log2 L]− log2 sup

σ∈Cm
Tr[σL]

}
8= sup

0<L∈Bsa(Hm)

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
.

Here, in 6 we employed the variational representation (27) for the measured relative entropy, in 7 we remembered
that

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y)
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holds for an arbitrary function f : X × Y → R on any product set X × Y , and finally in 8 we noted that since
Cm = conv {|α〉〈α| : α ∈ Cm} and the function σ 7→ Tr[σL] is linear and trace-norm continuous (because L is bounded),
it achieves the maximum on the extreme points of Cm, i.e., on coherent states.

Corollary 36. The regularization Γ∞(ρ) ..= limn→∞
1
n Γ(ρ⊗n) exists and is unique for all states ρ. It is a lower

semicontinuous, weakly additive, and strongly superadditive nonclassicality monotone, and it satisfies that Γ∞ ≥ Γ.

Proof. Follows by combining Lemma 26 and Proposition 35.

C. Two more technical lemmata

In order to prove Theorem 19, and from there deduce Theorem 23, we need two more technical lemmata. The first
one tells us that provided a state ρ has finite entropy, which will most definitely be the case in all situations of physical
interest, we can take the operator L in the variational program for NM

r to be not only bounded but also trace class.

Lemma 37. On an m-mode system, let

C̃m ..= conv (Cm ∪ {0}) (52)

denote the set of subnormalized classical states. Then, the measured relative entropy of nonclassicality admits the
variational expressions

NM
r (ρ) = inf

σ∈Cm
sup

0<L∈Bsa(Hm)
{Tr[ρ log2 L] + log2(e) (1− Tr[σL])} (53)

= inf
σ∈C̃m

sup
0<L∈Bsa(Hm)

{Tr[ρ log2 L] + log2(e) (1− Tr[σL])} (54)

for all m-mode states ρ. Moreover, in both (53) and (54):

(i) if S(ρ) <∞, we can assume that L ∈ Tsa(Hm) is of trace class, and that −Tr ρ log2 L <∞;

(ii) if rk ρ <∞, we can assume that suppL = supp ρ and hence rkL <∞, with the convention that −Tr ρ log2 L is
computed on the common support of ρ and L.

Proof. As we have already seen, the expression (53) is obtained by plugging (28) into the definition (21) of measured
relative entropy of nonclassicality. To see that also (54) holds, just notice that

NM
r (ρ) = inf

σ∈Cm
DM(ρ‖σ)

= inf
σ∈Cm, λ∈[0,1]

{
DM(ρ‖σ)− log2 λ

}
= inf
σ∈Cm, λ∈[0,1]

DM(ρ‖λσ)

= inf
σ∈C̃m

DM(ρ‖σ)

= inf
σ∈C̃m

sup
0<L∈Bsa(Hm)

{Tr[ρ log2 L] + log2(e) (1− Tr[σL])} ,

where the last step is once again (28). We now prove claims (i) and (ii) for (53).
We start by observing that restricting the set of operators L over which we optimize can only decrease the final

value of the program. Thus, it suffices to establish the opposite inequality. We start from claim (i). Let ρ be
a finite-entropy m-mode state with spectral decomposition ρ =

∑∞
k=0 pk |ek〉〈ek|. We can assume without loss of

generality that span{ek}k∈N = Hm, i.e., that {ek}k∈N forms a basis of the entire Hilbert space. Pick a bounded but
not necessarily trace class operator L that can enter the expression (53). Without loss of generality, we can assume
that

−∞ < Tr[ρ log2 L] =
∞∑
k=0

pk 〈ek| log2 L|ek〉 < +∞ . (55)

In fact, if this is not the case the objective function evaluates to −∞.
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For a certain n ∈ N, construct the completely positive unital map Πn : Bsa(Hm) → Bsa(Hm) given by Π(X) ..=
PnXPn + QnXQn, where Pn ..=

∑n−1
k=0 |ek〉〈ek| is the projector onto the the linear span span{|ek〉}k=0,...,n−1 of the

first n eigenvectors of ρ, and Qn ..= 1 − Pn =
∑∞
k=n |ek〉〈ek|. Set ρ = ρn + δn, with ρn ..= PnρPn and δn ..= QnρQn,

and define the trace class operator Ln ..= PnLPn + δn. Then, we have that

Tr[ρ log2 L] = Tr[ρn log2 L] + Tr[δn log2 L]
1= Tr[Π(ρn) log2 L] + Tr[δn log2 L]
2= Tr[ρn Π (log2 L)] + Tr[δn log2 L]
3
≤ Tr[ρn log2 Π(L)] + Tr[δn log2 L] (56)
4= Tr[ρn log2(PnLPn + δn)] + Tr[δn log2 L]
= Tr[ρ log2 Ln]− Tr[δn log2 δn] + Tr[δn log2 L] .

Here, in 1 we observed that ρn = Π(ρn), in 2 we used the easily verified fact that Π = Π†, in 3 we applied the
operator Jensen inequality [118], and finally in 4 we changed the component of the argument of the first logarithm on
the subspace suppQn, which is irrelevant because the trace is against ρn, whose support is orthogonal to that of Qn.
Now, since S(ρ) = −Tr[ρ log2 ρ] =

∑∞
k=0 pk log2

1
pk
<∞, we see that

lim
n→∞

(−Tr[δn log2 δn]) = lim
n→∞

∞∑
k=n

pk log2
1
pk

= 0 . (57)

Moreover, (55) implies that

lim
n→∞

Tr[δn log2 L] = lim
n→∞

∞∑
k=n

pk 〈ek| log2 L|ek〉 = 0 . (58)

Putting (56)–(58) together, we see that

lim inf
n→∞

Tr[ρ log2 Ln] ≥ Tr[ρ log2 L] . (59)

On the other hand, since span{|ek〉}k∈N = Hm, we have that limn→∞Tr[σPn] = 1 and therefore, by the gentle
measurement lemma [37, 38] (see also [119, Lemma 9.4.2]),

lim
n→∞

‖σ − PnσPn‖1 = 0 . (60)

This immediately implies that

lim inf
n→∞

(1− Tr[σLn]) = lim inf
n→∞

(1− Tr[PnσPnL]− Tr[σδn])
5
≥ lim inf

n→∞
(1− Tr[σL]− ‖σ − PnσPn‖1 ‖L‖∞ − Tr[δn]) (61)

6= 1− Tr[σL] .

Here, 5 comes from the fact that L is bounded and also that σ ≤ 1, while 6 descends from (60) and from the
elementary observation that since Tr[ρ] =

∑∞
k=0 pk = 1 it follows that limn→∞ Tr[δn] = limn→∞

∑∞
k=n pk = 0.

Finally, combining (59) and (61) we deduce that

lim inf
n→∞

(Tr[ρ log2 Ln] + log2(e) (1− Tr[σLn])) ≥ lim inf
n→∞

Tr[ρ log2 Ln] + log2(e) lim inf
n→∞

(1− Tr[σLn])

≥ Tr[ρ log2 L] + log2(e) (1− Tr[σL]) .

Remembering that Ln is a trace class operator, this in turn implies that

sup
0<L∈Bsa(Hm)

{Tr[ρ log2 L] + log2(e) (1− Tr[σL])} ≤ sup
0<L∈Tsa(Hm)

{Tr[ρ log2 L] + log2(e) (1− Tr[σL])} ,

thus showing that in fact equality holds. The proof of claim (i) is now complete.
As for claim (ii), it suffices to repeat the above reasoning and observe that if rk ρ <∞ then δn = 0 for sufficiently

large n, thus entailing that rkLn <∞.
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Our second preliminary lemma presents a technical result whose topological content will be indispensable for a
careful application of Sion’s minimax theorem to the variational program (53).

Lemma 38. The cone

C+
m

..= {λσ : λ ≥ 0, σ ∈ Cm} ⊂ T +
sa (Hm) (62)

generated by the set of classical states is closed with respect to the weak* topology on Tsa(Hm). Therefore, the set
C̃m = conv (Cm ∪ {0}) of subnormalized classical states, defined in (52), is weak*-compact.

Proof. Remember by Remark 1 that we can think of Tsa(Hm) as the dual space to Ksa(Hm), the set of compact
operators on Hm. We now show that C+

m is in fact the dual of a set S ⊆ Ksa(Hm) of compact operators, i.e.,

C+
m = S∗ ..= {T ∈ Tsa(Hm) : Tr[TK] ≥ 0 ∀ K ∈ S} .

Dual sets turn out to be automatically weak*-closed. This can be seen, e.g., in the case of S∗, by noting that it can
be written as the intersection

S∗ =
⋂
K∈S
{T ∈ Tsa(Hm) : Tr[TK] ≥ 0} =

⋂
K∈S

ϕ−1
K ([0,∞)) ,

where ϕK : Tsa(Hm) → R is defined by ϕK(T ) ..= Tr[TK]. Since the maps ϕK are weak*-continuous by definition,
each set ϕ−1

K ([0,∞)) is weak*-closed, and therefore so is their intersection S∗.
From now on, for the sake of readability we write everything for single-mode systems only. Set

S ..=
{

n∑
µ,ν=1

ψ∗µψν e
1
2 |αµ−αν |

2
λa
†aD(αµ − αν)λa

†a : n ∈ N+, ψ ∈ Cn, α ∈ Cn, λ ∈ [0, 1)
}
,

where D is the displacement operator (3). Note that every operator in S is a finite linear combination of operators
of the form λa

†aD(αµ − αν)λa†a, which are clearly compact (in fact, even trace class) as long as λ ∈ [0, 1). It is also
elementary to see that |β〉〈β| ∈ S∗ for every β ∈ C, because

〈β|

(
n∑

µ,ν=1
ψ∗µψν e

1
2 |αµ−αν |

2
λa
†aD(αµ − αν)λa

†a

)
|β〉 =

n∑
µ,ν=1

ψ∗µψν e
1
2 |αµ−αν |

2
〈β|λa

†aD(αµ − αν)λa
†a|β〉

1=
n∑

µ,ν=1
ψ∗µψν e

1
2 |αµ−αν |

2
e−(1−λ2)|β|2 〈λβ|D(αµ − αν)|λβ〉

2= e−(1−λ2)|β|2
n∑

µ,ν=1
ψ∗µψν e

λ((αµ−αν)β∗−(αµ−αν)∗β)

= e−(1−λ2)|β|2
n∑

µ,ν=1
ψ∗µ e

λ(αµβ∗−α∗µβ) ψν e
λ(α∗νβ−ανβ

∗)

= e−(1−λ2)|β|2
∣∣∣∑n

µ=1
ψ∗µ e

λ(αµβ∗−α∗µβ)
∣∣∣2

≥ 0 ,

where in 1 we used (5) and in 2 the Weyl form (4) of the canonical commutation relations multiple times. Since
S∗ is convex and weak*-closed, and hence in particular closed with respect to the trace norm topology, we see that
C1 = conv{|β〉〈β| : β ∈ C} ⊆ S∗. Noting that S∗ is a cone, i.e., it is closed under multiplication by nonnegative
scalars, we conclude that in fact C+

1 ⊆ S∗.
Let us now prove the opposite inclusion, again in the single-mode case. Pick T ∈ Tsa(H1) such that Tr[TK] ≥ 0

for all K ∈ S ; then

0 ≤ lim inf
λ→1−

n∑
µ,ν=1

ψ∗µψν e
1
2 |αµ−αν |

2
Tr
[
T λa

†aD(αµ − αν)λa
†a
]

≤
n∑

µ,ν=1
ψ∗µψν e

1
2 |αµ−αν |

2
lim
λ→1−

Tr
[
T λa

†aD(αµ − αν)λa
†a
]
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3=
n∑

µ,ν=1
ψ∗µψν e

1
2 |αµ−αν |

2
Tr [T D(αµ − αν)]

=
n∑

µ,ν=1
ψ∗µψν e

1
2 |αµ−αν |

2
χT (αµ − αν)

for all α ∈ Cn and ψ ∈ Cn, where the function χT : C → C defined by χT (α) = Tr[TD(α)] is the charac-
teristic function (6) of T . To prove 3, since D(αµ − αν) is bounded (actually, unitary) it suffices to show that
limλ→1−

∥∥∥λa†aTλa†a − T∥∥∥
1

= 0 for all trace class T . To see this, we decompose T = T+ − T− into its positive and
negative parts T± ≥ 0, which are also trace class operators. Note that

lim
λ→1−

Tr
[
λ2a†aT±

]
= lim
λ→1−

∞∑
n=0

λ2n 〈n|T±|n〉 =
∞∑
n=0
〈n|T±|n〉 = Tr[T±]

thanks to Abel’s theorem, and therefore, by the gentle measurement lemma [37, 38] (see also [119, Lemma 9.4.2]),

lim
λ→1−

∥∥∥T± − λa†aT±λa†a∥∥∥
1

= 0 ,

in turn implying that

lim
λ→1−

∥∥∥λa†aTλa†a − T∥∥∥
1
≤ lim
λ→1−

∥∥∥λa†aT+λ
a†a − T+

∥∥∥
1

+ lim
λ→1−

∥∥∥λa†aT−λa†a − T−∥∥∥
1

= 0 .

We have just established that, for all α ∈ Cn, the matrix
(
e

1
2 |αµ−αν |

2
χT (αµ − αν)

)
µ,ν=1,...,n

is positive semidefinite.
This is known [99] to imply that T = λσ for some λ ≥ 0 and some classical state σ, i.e., T ∈ C+

m.
This latter claim can be also verified as follows. Applying the classical Bochner theorem, we see that the function

C 3 α 7→ ϕT (α) ..= χT (α) e 1
2 |α|

2 is the Fourier transform of a positive measure. Since ϕT is well-known to be the
Fourier transform of the P -function [120, Lemma 1], we conclude that the P -function of T is non-negative, i.e., T is
a non-negative multiple of a classical state.

We conclude that C+
1 = S∗, and hence that C+

1 is weak*-closed. The exact same argument in fact shows that
C+
m is weak*-closed for any finite number of modes m. Since the unit ball Bm ..= {T ∈ Tsa(Hm) : ‖T‖1 ≤ 1} of

Tsa(Hm) = Ksa(Hm)∗ is weak*-compact by the Banach–Alaoglu theorem [121, Thm. 2.6.18],

C̃m = conv (Cm ∪ {0}) = C+
m ∩Bm

is the intersection of a weak*-closed and a weak*-compact set, and hence it is itself weak*-compact.

D. Proof of Theorems 19 and 23

We are finally ready to present our main result about the measured relative entropy of nonclassicality.

Proof of Theorem 19. Let us use Lemma 37(i) to write an improved form of (54) as

NM
r (ρ) = inf

σ∈C̃m
sup

0<L∈Tsa(Hm),
−Tr ρ log2 L<∞

Fρ(σ, L) ,

Fρ(σ, L) ..= Tr[ρ log2 L] + log2(e) (1− Tr[σL]) .

Now:

(i) C̃m is weak*-compact by Lemma 38, and manifestly convex;

(ii) {L ∈ Tsa(Hm) : L > 0, −Tr ρ log2 L <∞} is convex thanks to the operator concavity of the logarithm;

(iii) Fρ(·, L) is a convex (actually, convex-linear) function on C̃m for every fixed L > 0; by definition of weak* topology
it is also weak*-continuous (because L is also compact);
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(iv) Fρ(σ, ·) is a concave function on {L ∈ Tsa(Hm) : L > 0, −Tr ρ log2 L <∞} for all σ ∈ C̃m, because log2 is
operator concave; it is also upper semicontinuous with respect to the trace norm topology, because Tr[ρ log2 L] =
−S(ρ) − D(ρ‖L), and L 7→ D(ρ‖L) is lower semicontinuous with respect to the weak topology [45, Corol-
lary 5.12(i)] and hence (Corollary 3) with respect to the trace norm topology, too.

Since all assumptions of Sion’s minimax theorem [106] are satisfied, we can exchange infimum and supremum, and
write

NM
r (ρ) 1= sup

0<L∈Tsa(Hm),
−Tr ρ log2 L<∞

inf
σ∈C̃m

Fρ(σ, L)

2
≤ sup

0<L∈Tsa(Hm)
inf
σ∈C̃m

Fρ(σ, L)

= sup
0<L∈Tsa(Hm)

inf
σ∈C̃m

{Tr[ρ log2 L] + log2(e) (1− Tr[σL])}

= sup
0<L∈Tsa(Hm)

{
Tr[ρ log2 L] + log2(e)

(
1− sup

σ∈C̃m
Tr[σL]

)}
3= sup

0<L∈Tsa(Hm)

{
Tr[ρ log2 L] + log2(e)

(
1−max

{
sup
α∈Cm

〈α|L|α〉 , 0
})}

4= sup
0<L∈Tsa(Hm)

{
Tr[ρ log2 L] + log2(e)

(
1− sup

α∈Cm
〈α|L|α〉

)}
5= sup

0<L∈Tsa(Hm)

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
6
≤ sup

0<L∈Bsa(Hm)

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
7= Γ(ρ) .

Here, 1 is Sion’s theorem [106], in 2 we simply extended the supremum, 3 comes from the fact that the extreme points
of C̃m are either coherent states or 0, as it follows from (52), 4 holds because L > 0, 5 is proved by scale invariance
of the expression on the sixth line exactly as in step 1 of the proof of Lemma 20, in 6 we extended the supremum to
all 0 < L ∈ Bsa(Hm), and finally 7 holds thanks to Lemma 34. Since Proposition 35 establishes that Γ ≤ NM

r on all
states, we have actually proved that

NM
r (ρ) = sup

0<L∈Tsa(Hm)

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
= Γ(ρ) . (63)

The fact that L can be taken to be a state follows by scale invariance.

Proof of Corollary 22. Thanks to Theorem 19, the function NM
r inherits all properties of Γ, as established in Propo-

sition 35 and Corollary 36, on the whole set of finite-entropy states. Given such a state ρ, the same Corollary 36 also
shows that NM,∞

r (ρ) ≥ NM
r (ρ). On the other hand, regularizing the inequality NM

r (ρ) ≤ Nr(ρ) (Lemma 28) we see
that NM,∞

r (ρ) ≤ N∞r (ρ). Remembering that N∞r (ρ) ≤ Nr(ρ) by Corollary 29 concludes the proof of (31). Faithfulness
of NM,∞

r and hence of N∞r on finite-entropy states follows from the fact that NM
r itself is faithful (Lemma 28).

We conclude this section with the proof of Theorem 23.

Proof of Theorem 23. To establish (32), we apply Theorem 15 to the lower semicontinuous, weakly additive, and
strongly superadditive nonclassicality monotone Γ∞ (Corollary 36):

R(ρ→ σ) ≤ R̃(ρ→ σ) ≤ Γ∞(ρ)
Γ∞(σ) = NM,∞

r (ρ)
NM,∞
r (σ)

,

where the last equality is just (63), which is applicable because S(ρ), S(σ) < ∞. Finally, the last estimate in (32) is
a simple application of (31).
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VIII. FURTHER PROPERTIES OF OUR NONCLASSICALITY MONOTONES

We now present some additional results which can be useful in actual applications of Theorem 15. In particular,
we present two different and independent bounds on Nr and NM

r , and a technique for approximating them in the case
of infinite rank states, where analytical methods or even numerical simulations might not be enough.

A. Bounds on nonclassicality monotones

We start however with a little — hopefully instructive — detour. In light of Proposition 30, one may wonder
whether Nr and NM

r can take the value +∞ at all. We now set out to show that this may indeed be the case. Clearly,
Proposition 30 implies that any state with this property must have infinite mean photon number.
Proposition 39. There exists a single-mode (infinite-energy) state ρ ∈ D(H1) such that NM

r (ρ) = Nr(ρ) = +∞,
i.e., D(ρ‖σ) = DM(ρ‖σ) = +∞ for all classical states σ ∈ Cm — including those of infinite energy!
Proof. Let

ρ ..= 6
π2

∑
n

1
(n+ 1)2 |2

n〉〈2n| (64)

be a modified “Basel-type state”, where the |2n〉 are Fock states. It is easy to see that ρ has finite entropy. Then,
because of Theorem 19 and Lemma 28, we see that

Nr(ρ) ≥ NM
r (ρ)=Γ(ρ) = sup

h∈Bsa(Hm)

{
Tr[ρh]− log2 sup

α∈C
〈α|2h|α〉

}
.

Now, set hN ..= 1
3
∑N
n=0 n |2n〉〈2n|. Observe that

Tr[ρ hN ] = 2
π2

N∑
n=0

n

(n+ 1)2 −−−−→N→∞
+∞ ,

while

sup
α∈C
〈α|2hN |α〉 = sup

α∈C
〈α|
(∑N

n=0
2n/3 |2n〉〈2n|

)
|α〉

= sup
α∈C

∑N

n=0
2n/3 |α|

2n+1
e−|α|

2

(2n)!

≤
∑N

n=0
2n/3 sup

α∈C

|α|2n+1
e−|α|

2

(2n)!

=
∑N

n=0
2n/3 sup

t≥0

t2
n

e−t

(2n)!

=
∑N

n=0
2n/3 2n2n

e2n(2n)!
−−−−→
N→∞

const <∞ ,

where the evaluation of the limit is made possible by the fact that

2n/3 2n2n

e2n(2n)! ∼
2n/3√
2π 2n/2

= 1√
2π 2n/6

by Stirling’s formula, in the sense that the ratio between the left-hand and the right-hand sides tends to 1 as n→∞.
We conclude that

Nr(ρ) ≥ NM
r (ρ) ≥ Γ(ρ) ≥ lim

N→∞

{
Tr[ρ hN ]− log2 sup

α∈C
〈α|2hN |α〉

}
= +∞ ,

as claimed. Clearly, this construction is easily generalized to the multi-mode case, where it leads to the same
conclusion.
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B. Estimates based on the Wehrl entropy

We now go back to the problem of estimating our nonclassicality monotones NM
r and NM,∞

r , already tackled in
Proposition 30. The next result gives another independent upper bound for NM

r and NM,∞
r in terms of the Wehrl

entropy (8).

Proposition 40. For any finite-entropy m-mode state ρ, it holds that

− log2 ‖Qρ‖∞ − S(ρ)−m log2 π ≤ NM
r (ρ) ≤ NM,∞

r (ρ) ≤ SW (ρ)− S(ρ) , (65)

where ‖Qρ‖∞ ..= supα∈Cm |Qρ(α)| is the sup norm of Qρ. If instead S(ρ) = +∞, then NM
r (ρ) = NM,∞

r (ρ) = +∞ as
well.

Proof. Let us start by proving that NM
r (ρ) ≤ SW (ρ)−S(ρ) whenever S(ρ) <∞. We are in the situation of Theorem 19,

so that we can write

NM
r (ρ) 1= sup

ω∈D(Hm)

{
Tr[ρ log2 ω]− log2 sup

α∈Cm
〈α|ω|α〉

}
= sup
ω∈D(Hm)

{
−S(ρ)−D(ρ‖ω)− log2 sup

α∈Cm
〈α|ω|α〉

}
= sup
ω∈D(Hm)

{−S(ρ)−D(ρ‖ω)− log2 (πm‖Qω‖∞)}

2
≤ sup
ω∈D(Hm)

{−S(ρ)−DKL(Qρ‖Qω)− log2 (πm‖Qω‖∞)}

= sup
ω∈D(Hm)

{
−S(ρ) + SW (ρ) +

∫
d2mαQρ(α) log2Qω(α)− log2 ‖Qω‖∞

}
3
≤ SW (ρ)− S(ρ) .

(66)

Here, 1 is just Theorem 19, in 2 we applied the data processing inequality [122–125] (see also [45, Proposition 5.23(iv)])
to the quantum-to-classical channel ρ 7→ Qρ, which physically corresponds to a heterodyne detection [126, 5.4.2] (for
an independent proof, see Lemma A59), and finally in 3 we noted that Qω(α) ≤ ‖Qω‖∞ and remembered that Qρ is
a probability density function.

Since NM
r (ω) ≤ SW (ω)− S(ω) whenever ω has finite entropy, setting ω = ρ⊗n yields

NM,∞
r (ρ) = lim

n→∞

1
n
NM
r (ρ⊗n) ≤ lim

n→∞

1
n

(
SW (ρ⊗n)− S(ρ⊗n)

)
= SW (ρ)− S(ρ) ,

where in the last step we used the additivity of both the von Neumann entropy and the Wehrl entropy.
To prove the lower bound on NM

r , we use Proposition 35 together with the expression (49) for Γ. Start by denoting
with Π the orthogonal projector onto the kernel of ρ. Then for all ε > 0 we have that ρ + εΠ > 0 and moreover
Tr [ρ log2(ρ+ εΠ)] = Tr [ρ log2 ρ], and hence

NM
r (ρ) ≥ sup

0<L∈Bsa(Hm)

{
Tr [ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
≥ lim sup

ε→0+

{
Tr [ρ log2(ρ+ εΠ)]− log2 sup

α∈Cm
〈α|(ρ+ εΠ)|α〉

}
≥ lim sup

ε→0+

{
Tr [ρ log2 ρ]− log2

(
sup
α∈Cm

〈α|ρ|α〉+ ε

)}
= Tr [ρ log2 ρ]− log2 sup

α∈Cm
〈α|ρ|α〉

= −S(ρ)−m log2 π − log2 ‖Qρ‖∞

Since it relies only on Proposition 35, this lower bound holds even if S(ρ) = +∞, in which case it implies that
NM
r (ρ) = NM,∞

r (ρ) = +∞. This completes the proof.

We can immediately draw some interesting consequences concerning Gaussian states. Following the conventions
of the excellent monograph by Serafini [126], for an m-mode state ρ we set sj ..= Tr[ρRj ], with j = 1, . . . , 2m and
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R ..= (x1, p1 . . . , xm, pm)ᵀ, and define the quantum covariance matrix by Vjk ..= Tr [ρ {Rj , Rk}] − 2sjsk. Gaussian
states are those whose characteristic function (6) is a multivariate Gaussian, and are uniquely characterized by the
vector s and the quantum covariance matrix V .
Corollary 41. Let ρ be an arbitrary m-mode Gaussian state with quantum covariance matrix V . Then

1
2 log2 det(V + 1)− S(ρ)−m ≤ NM

r (ρ) ≤ NM,∞
r (ρ) ≤ 1

2 log2 det(V + 1)− S(ρ) +m log2(e) .

Proof. One just needs to remember that the Husimi function Qρ of a Gaussian state ρ with quantum covariance
matrix V is a Gaussian with (classical) covariance matrix (V + 1)/2 (to see this, just set σ = V and σm = 1 in [126,
Eq. (5.139)]). This implies immediately that ‖Qρ‖∞ = π−m

(
det
(
V+1

2
))−1/2, and that the Wehrl entropy of ρ satisfies

SW (ρ) = −
∫
d2mαQρ(α) log2 (πmQρ(α)) = 1

2 log2 det(V + 1) +m log2(e) . (67)

This concludes the proof.

C. Symmetries

A notion that we will often exploit is that of symmetry. Its implications for the variational program in Theorem 19
are as follows.
Proposition 42. Let Λ : Tsa(Hm)→ Tsa(Hm) be a classical operation on an m-mode system, and let ρ ∈ D(Hm) be
an invariant state, in formula Λ(ρ) = ρ. Then we have that

NM
r (ρ) = inf

σ∈Λ(Cm)
DM(ρ‖σ) . (68)

If S(ρ) <∞, then it also holds that

NM
r (ρ) = sup

0<L∈Λ†(Bsa(Hm))

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
. (69)

Proof. We start with (68), which follows from general and well-known arguments. We have that

NM
r (ρ) = inf

σ∈Cm
DM(ρ‖σ)

1
≥ inf
σ∈Cm

DM (Λ(ρ)‖Λ(σ)) = inf
σ∈Cm

DM (ρ‖Λ(σ)) = inf
σ∈Λ(Cm)

DM(ρ‖σ) ,

where 1 holds because of the monotonicity under channels of DM . Clearly, since restricting the infimum can only
increase the value of the program, it also holds that NM

r (ρ) ≤ infσ∈Λ(Cm)D
M(ρ‖σ). This proves (68)

To prove (69), we go back to (51). Assuming that Γ((Λ(ρ)) = Γ(ρ) = NM
r (ρ), as implied by Theorem 19, the

derivation in (51) also shows that we can in fact restrict L to belong to Λ†(Bsa(Hm)).

The above result is particularly useful when the state ρ under examination is invariant under a group action.
Corollary 43. Let U : G → Bsa(Hm) be a unitary representation of a compact group G on the Hilbert space Hm.
Assume that U(g) maps coherent states to coherent states for all g ∈ G. Let ρ ∈ D(Hm) be a finite-entropy state such
that is invariant under G, i.e., such that U(g)ρU(g)† ≡ ρ for all g ∈ G. Then

NM
r (ρ) = inf

σ∈CGm
DM(ρ‖σ) (70)

= sup
0<L∈BGsa(Hm)

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
, (71)

where a superscript G denotes that we restrict to G-invariant operators.
Proof. It suffices to apply Proposition 42 to the totally symmetrizing map

ΛG : T 7−→ ΛG (T ) ..=
∫
G

U(g)TU†(g) dµ(g) , (72)

where µ denotes the left Haar measure on G, and the integral on the right-hand side is to be underdstood in the
Bochner sense. Note that ΛG is a classical channel, because each U(g) maps coherent states to coherent states, and
the set of classical channels is convex.



30

IX. APPLICATIONS

To get a feeling of how tight the estimates in Theorem 23 for asymptotic transformation rates in the QRT of
nonclassicality really are, we need to design distillation protocols that can provide lower bounds on those rates. To
do so, we have to first compute or bound the resource content of the states we work with. Before going on, we fix
some notation. Consider a two-mode CV quantum system with annihilation operators a, b, and pick λ ∈ [0, 1]. The
beam splitter with transmissivity λ is represented by the unitary

Uλ ..= earccos
√
λ (a†b−ab†) . (73)

Its action on operators and vectors is given by

Uλ

(
a
b

)
U†λ =

( √
λ −

√
1− λ√

1− λ
√
λ

)(
a
b

)
, (74)

UλD
((
α
β

))
U†λ = D

(( √
λ

√
1− λ

−
√

1− λ
√
λ

)(
α
β

))
. (75)

Therefore, thanks to (5) we see that

Uλ |α〉 |β〉 = |
√
λα+

√
1− λβ〉 |−

√
1− λα+

√
λβ〉 . (76)

A. Fock diagonal states

We now compute or estimate our nonclassicality monotones for some multimode Fock-diagonal states. Denoting
with {|n〉}n∈Nm the Fock basis, as usual, define the totally dephasing map ∆ by

∆(ρ) ..=
∑
n∈Nm

|n〉〈n| ρ |n〉〈n| . (77)

This is a classical channel because it is of the form (72), for G = (S1)×m ' [0, 2π)m and U(ϕ) = e
i
∑

j
ϕja
†
j
aj . In other

words,

∆(ρ) = 1
2π

∫ 2π

0
dmϕe

i
∑

j
ϕja
†
j
ajρe

−i
∑

j
ϕja
†
j
aj .

Clearly, the unitary ei
∑

j
ϕja
†
j
aj , which is nothing but a phase space rotation, sends coherent states to coherent states.

Applying Corollary 43 to any finite-entropy Fock-diagonal state ρ ∈ CFD
1 then yields

NM
r (ρ) = NM,∞

r (ρ) = N∞r (ρ) = Nr(ρ) = inf
σ∈CFD

m

D(ρ‖σ) = sup
0<L∈∆(Bsa(H1))

{
Tr[ρ log2 L]− log2 sup

α∈Cm
〈α|L|α〉

}
, (78)

where the equalities NM
r (ρ) = NM,∞

r (ρ) = N∞r (ρ) = Nr(ρ) comes from the fact that the optimal state σ, being
Fock-diagonal, commutes with ρ, and DM(ρ‖σ) = D(ρ‖σ) whenever [ρ, σ] = 0; thus, NM

r (ρ) = Nr(ρ), which in turn
makes the whole hierarchy (31) collapse.

We now look at single-mode Fock-diagonal states with finite rank, since these will commonly be encountered in
experimental applications.

Proposition 44. Let ρ be a single-mode Fock-diagonal state with finite rank. Let M ..= max{n : 〈n|ρ|n〉 6= 0}. Then
in (78) we can also take L to have the same support as that of ρ (and to be positive there only). In formula,

NM
r (ρ) = sup

L∈B̃FD
sa (H1)

Tr[ρ log2 L]− log2 sup
α∈[0,√M]

〈α|L|α〉

 , (79)

where B̃FD
sa (H1) ..= {L ∈ Bsa(H1) : L = ∆(L), suppL = supp ρ, PρLPρ > 0}, and Pρ : H1 → supp ρ is the projector

onto the finite-dimensional space supp ρ.
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Proof. We have that

NM
r (ρ) = sup

0<L∈∆(Bsa(H1))

{
Tr[ρ log2 L]− log2 sup

α∈C
〈α|L|α〉

}
1= sup

0<L∈∆(Bsa(H1))

{
Tr [ρ log2 (PρLPρ)]− log2 sup

α∈C
〈α|L|α〉

}
2
≤ sup

0<L∈∆(Bsa(H1))

{
Tr [ρ log2 (PρLPρ)]− log2 sup

α∈C
〈α|PρLPρ|α〉

}
= sup
L∈B̃FD

sa (H1)

{
Tr[ρ log2 L]− log2 sup

α∈C
〈α|L|α〉

}

3= sup
L∈B̃FD

sa (H1)

Tr[ρ log2 L]− log2 sup
α∈[0,√M]

〈α|L|α〉

 .

Here: 1 follows because [ρ, L] = 0 and hence Tr[ρ log2 L] = Tr[ρPρ(log2 L)Pρ] = Tr[ρ log2(PρLPρ)] (with a slight abuse
of notation, we thought of Pρ as having the entire H1 as codomain); 2 holds thanks to the fact that L ≥ PρLPρ as both
L and Pρ are Fock-diagonal and hence commute; finally, in 3 we noticed that for |α|2 > M and for L =

∑M
n=0 `n |n〉〈n|

the function

〈α|L|α〉 = e−|α|
2
M∑
n=0

|α|2n`n
n!

becomes monotonically decreasing in |α|, essentially because it is a sum of monotonically decreasing functions.

Remark 45. From Corollary A58 we know that

NM
r (ρn) −−−→

n→∞
NM
r (ρ) , (80)

where ρn is the spectral truncation of the Fock-diagonal state ρ. Therefore, in principle we can use Proposition 44
to approximate numerically NM

r (ρ) for any Fock-diagonal state ρ with arbitrary precision. Explicit estimates of the
error associated with each truncation can be deduced from Corollary A58.

The simplest example of Fock diagonal states is naturally given by Fock states themselves.4

Lemma 46. For a Fock state |n〉 we have that

NM
r (|n〉〈n|) = NM,∞

r (|n〉〈n|) = N∞r (|n〉〈n|) = Nr(|n〉〈n|) = log2

(
n!en
nn

)
= 1

2 log2(2πn) +O(n−1) . (81)

Proof. The optimization in (79) involves a single parameter and is thus elementary. To deduce the asymptotic
expansion on the righmost side, it suffices to apply Stirling’s formula.

Another example of Fock diagonal state is a noisy Fock state, e.g., a Fock state mixed with a certain amount of
thermal noise. These states, herafter called noisy Fock states, are defined by

ρn,ν(p) ..= p |n〉〈n|+ (1− p)τν , (82)

where the thermal state τν is given in (37). In principle, we can approximate the exact value of NM
r (ρn,ν(p)) with

arbitrary precision for any n and ν, as pointed out in Remark 45. Let us first consider the simpler case ν = 0, which
is a good approximation in certain regimes, e.g., optical frequencies at room temperature. The state then becomes
ρn,0(p) = p |n〉〈n|+ (1− p) |0〉〈0|, and thanks to Proposition 44 we can assume L to be in the form L = ` |n〉〈n|+ |0〉〈0|
(we already exploited the scale invariance). Now we have to perform just two nested optimizations over one real
parameter each, that is,

NM
r (ρn,0(p)) = sup

`>0

{
p log2 `− log2 max

α∈[0,√n]
e−α

2
(

1 + `α2n

n!

)}
. (83)

4 LL acknowledges useful discussions with Andreas Winter and Krishna Kumar Sabapathy on the problem of calculating Nr(|n〉〈n|).
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FIG. 2. Nonclassicality for noisy Fock states: varying ν at fixed n.

For n ≤ 4 the above program can even be solved analytically, since the inner maximization reduces to solving a
n-th order algebraic equation. For example, for n = 1 one simply finds β = √p, ` = 1/(1 − p) and NM

r (ρ1,0(p)) =
p+(1−p) log2(1−p). The case of a nonzero temperature can be tackled by considering truncations of ρ and performing
numerical optimizations until some tolerance threshold is achieved. The results for different values of ν and n are
reported in Figures 2 and 3.

B. Schrödinger cat states

For α ∈ C, the associated Schrödinger cat states (or simply cat state) is defined by [71]

|ψ±α 〉 ..= 1√
2
(
1± e−2|α|2

) (|α〉 ± |−α〉) . (84)

It is a nonclassical state for all α 6= 0. Since a phase space rotation acts as eiϕa†a |ψ±α 〉 = |ψ±eiϕα〉, and all of our
nonclassicality monotones are left invariant by such transformations, in what follows we can without loss of generality
assume that α ∈ R. Now, for a cat state with real α, we can consider the group G = Z2 and its representation
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FIG. 3. Nonclassicality for noisy Fock states: varying n at fixed ν.
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FIG. 4. Bounds for the nonclassicality of a cat state, for different values of |α|

U : G → Bsa(H1) given by the reflection with respect to the real and/or imaginary axis. Applying Corollary 43 to
this setting (with m = 1) shows immediately that (70)–(71) hold with CG1 and BGsa(H1) being the sets of classical
states and bounded operators that are invariant under reflections with respect to the real and/or imaginary axis. A
lower bound for NM

r (ψ±α ) can be easily computed by setting a maximum rank for L in the second line of (71) and then
optimizing numerically. When rkL ≤ 3, in order to preserve the symmetry, L must be supported on the subspace
V = span(|α〉 , |−α〉 , |0〉). Analogously, an upper bound for Nr(ψ±α ) can be found with a classical σ belonging to V .
In Figure 4 we report these two bounds for the even cat state ψ+

α , and an analogous lower bound for NM
r (|ψ−α 〉〈ψ−α |).

C. Squeezed states

A single-mode squeezed vacuum state is defined by [127, Eq. (3.7.5)]

|ζr,φ〉 = 1√
cosh(r)

∞∑
n=0

√(
2n
n

)(
−1

2 e
iφ tanh(r)

)n
|2n〉 . (85)

Since changing φ amounts to a simple rotation in phase space, and this cannot modify the value of any of our
nonclassicality monotones, we will assume φ = 0 from now on. A squeezed state ζr ..= ζr,0 has always finite energy
E(ψr) = sinh2(r), and hence we can use Proposition 30 to get the upper bound

Nr(ζr) ≤ g(sinh2(r)) = 2 log2 cosh r − 2 sinh2(r) log2 tanh(r) .

A second upper bound on Nr can be found by considering a (classical) squeezed thermal state

σs = S(s)τN(s)S
†(s) =

√
2

π(e4s − 1)

∫ +∞

−∞
dt e
− 2t2
e4s−1 |it〉〈it| , s ≥ 0 ,

where S(s) is the usual squeezing unitary with real parameter s, and plugging it in the infimum that defines Nr
(cf. (21)), i.e.,

Nr(ζr) ≤ inf
s≥0

D(ζr‖σs) = inf
s≥0

(
log2(1 +N(s)) + 2 sinh2(r − s) log2

(
1 + 1

N(s)

))
,

where N(s) ..= e2s−1
2 . The rightmost side of the above expression can be easily optimized numerically. A lower bound

on NM
r can be found from Corollary 41. All these estimates are plotted in Figure 5.
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FIG. 5. Bounds for the nonclassicality of a squeezed state, for different values of r.

D. Fock state dilution

Now we are ready to report an example in which the bound in Theorem 23 is (asymptotically) tight.

Proposition 47. Let 0 < p ≤ 1 and n ≥ 2 be fixed. Consider the transformation ρn,0(p) → |n−1〉〈n−1|, where the
noisy Fock state is defined in (82). It holds that

p ≤ R (ρn,0(p)→ |n−1〉〈n−1|) ≤
p log2

(
n!en
nn

)
log2

(
(n−1)!en−1

(n−1)n−1

) −−−→
n→∞

p , (86)

with the upper bound being given by Theorem 23.

Proof. We start with the lower bound. Consider the following protocol, implemented with only linear optics, destruc-
tive measurements, and feed forward.

(1) We send ρn,0(p) into a beam splitter with transmissivity λ whose second mode’s initial state is the vacuum.

(2) We perform photon counting on the ancillary mode.

(3) If we measure 0 photons, the output state of the remaining mode is ρn,0(p′), with p′ ..= pλn

pλn+1−p . We restart with
step (1).

(4) If we measure 1 photon, the output state of the remaining mode is |n− 1〉, and we have succeeded.

(5) If we measure 2 or more photons, the protocol is aborted.

Using the well-known formula [128]

Uλ |n, 0〉 = λ
n
2

n∑
`=0

(−1)`
√(

n

`

)(
1− λ
λ

) `
2

|n− `, `〉 , (87)

a lengthy but straightforward calculation shows that the global probability of success of this protocol is

Ps(n, p;λ) = pn(1− λ)λ2n−1

(1− λn)(pλn + 1− p) . (88)
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Since we can take λ arbitrarily close to 1, we see that
R (ρn,0(p)→ |n−1〉〈n−1|) ≥ lim

λ→1−
Ps(n, p;λ) = p ,

which proves the lower bound.
As for the upper bound, using (78) together with convexity and (81), we see that

NM,∞
r (ρn,0(p)) = NM,∞

r (ρn,0(p)) ≤ pNM
r (|n〉〈n|) = p log2

(
n!en
nn

)
.

Leveraging once again (81), this entails that

R (ρn,0(p)→ |n−1〉〈n−1|) ≤
p log2

(
n!en
nn

)
log2

(
(n−1)!en−1

(n−1)n−1

) −−−→
n→∞

p .

This completes the proof.

E. Cat state manipulation

Let us now discuss some protocols to transform cat states, enlarging or reducing their amplitude α. Hereafter we
take without loss of generality α to be real. The first transformation we consider is amplification: ψ+

α → ψ+√
2α. Lund

et al. [107] have provided a protocol that achieves exact conversion of two copies of the initial state with probability

PLund

(
ψ+
α ⊗ ψ+

α → ψ+√
2α

)
=
e−α

2 cosh(2α2) sinh2 (α2/2
)

cosh2(α2)
. (89)

Hence,

R
(
ψ+
α → ψ+√

2α

)
≥ 1

2PLund

(
ψ+
α ⊗ ψ+

α → ψ+√
2α

)
=
e−α

2 cosh(2α2) sinh2 (α2/2
)

2 cosh2(α2)
. (90)

Mimicking the protocol of Lund et al. but employing slightly better (yet less realistic) measurements, we are able to
obtain a better bound.
Proposition 48. In the QRT of nonclassicality it is possible to achieve exact conversion ψ+

α ⊗ ψ+
α → ψ+√

2α with
probability

Pour

(
ψ+
α ⊗ ψ+

α → ψ+√
2α

)
= 1

2 tanh2(α2) . (91)

Therefore,

R
(
ψ+
α → ψ+√

2α

)
≥ 1

4 tanh2(α2) . (92)

Proof. Consider the following protocol. Apply a beam splitter with trasmissivity 1/2 to the initial state |ψ+
α 〉 |ψ+

α 〉.
Using (76), we obtain that

U1/2 |ψ+
α 〉 |ψ+

α 〉 = 1
2 (1 + e−2α2)

(
|0〉 |
√

2α〉+ |0〉 |−
√

2α〉+ |
√

2α〉 |0〉+ |−
√

2α〉 |0〉
)

=
√

cosh(2α2)
2 cosh(α2)

(
|0〉 |ψ+√

2α〉+ |ψ+√
2α〉 |0〉

)
.

Carrying out on the second mode the measurement {|χ〉〈χ| ,1− |χ〉〈χ|}, with

|χ〉 ..= 1√
2 sinh(α2)

(√
cosh(2α2) |0〉 − |ψ+√

2α〉
)
,

yields

〈χ|U1/2|ψ+
αψ

+
α 〉2 12 = 1√

2
tanh(α2) |ψ+√

2α〉 ,

where the subscripts identify different modes. Computing the norm of the above vector yields (91) and this in
turn (92).



37

We now move on to cat state dilution. We consider the slightly simpler task of balanced dilution ψ+√
2α → ψ+

α ⊗ψ−α .

Proposition 49. In the QRT of nonclassicality it holds that

R
(
ψ+√

2α → ψ+
α ⊗ ψ−α

)
≥ sinh2(α2)

2 cosh(2α2) . (93)

Proof. Consider the following protocol. Apply a beam splitter with trasmissivity 1/2 to the initial state |ψ+√
2α〉 |0〉.

Using one again (76), we obtain that

U1/2 |ψ+√
2α〉 |0〉 = 1√

2 (1 + e−4α2)

((
1 + e−2α2

)
|ψ+
α 〉 |ψ+

α 〉+
(

1− e−2α2
)
|ψ−α 〉 |ψ−α 〉

)
.

Therefore, measuring the second mode in the orthonormal basis whose first two elements are |ψ+
α 〉 and |ψ−α 〉, we obtain

that

〈ψ+
α |U1/2|ψ+√

2α, 0〉2 12
= cosh(α2)√

cosh(2α2)
|ψ±α 〉 ,

〈ψ−α |U1/2|ψ+√
2α, 0〉2 12

= sinh(α2)√
cosh(2α2)

|ψ∓α 〉 .

Computing the norms of the vectors on the right-hand side yields the estimates

Pour

(
ψ+√

2α → ψ+
α

)
= cosh2(α2)

cosh(2α2) ,

Pour

(
ψ+√

2α → ψ−α

)
= sinh2(α2)

cosh(2α2) .

Applying the above protocol to n copies of ψ+√
2α yields, in the limit of large n, at least n sinh2(α2)

2 cosh(2α2) copies of ψ+
α ⊗ψ−α .

Hence,

R
(
ψ+√

2α → ψ+
α ⊗ ψ−α

)
≥ sinh2(α2)

2 cosh(2α2) ,

which completes the proof.

Finally, we upper bound the maximal asymptotic transformation rates of both amplification and dilution of cat
states by means of the formula 32, and the numerical results reported in Figure 1.
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Appendix A: Restricted asymptotic continuity in infinite dimensions

Among the many properties that a monotone may have, one of the most desirable is, in many scenarios, some
form of continuity, since it allows to relate the resource content of a state to that of a “good” approximation of it.
The most widely used notion of continuity, when it comes to resource monotones in finite-dimensional QRT, is that
of asymptotic continuity [13] (Definition 6(c)). Its popularity is due to its role in proving bounds on asymptotic
rates. Of course, the notion of asymptotic continuity becomes empty in infinite dimensions, ultimately leading to
the “asymptotic continuity catastrophe” discussed in the Introduction. In this Appendix, we show how asymptotic
continuity can be defined in a certain sense for infinite-dimensional systems as well, why this extension presents some
substantial limitations, and in which sense Theorem 15 overcomes such limitations.

1. Abstract approach

The traditional approach to the problem of bounding asymptotic transformation rates in infinite-dimensional QRTs
makes use of the notion of restricted asymptotic continuity [16–19, 35]. Let us give a formal definition, taken from [35,
Corollary 7].

Definition A50. Let (S,F) be a QRT equipped with a monotone G. For some B ∈ S, fix a family of states
T = {TBn}n∈N+

, with TBn ⊆ D(HBn) = D
(
H⊗nB

)
. We say that G is weakly asymptotically continuous on T

if for all sequence of states (ρn)n∈N+ and (σn)n∈N+ with ρn, σn ∈ TBn and limn→∞ ‖ρn − σn‖1 = 0 it holds that

lim
n→∞

|G(ρn)−G(σn)|
n

= 0 . (A1)

Formally, from the above definition the following can be deduced.

Proposition A51. Let (S,F) be a QRT equipped with a weakly additive monotone G. Consider A,B ∈ S, and
assume that there exists a family of states T = {TBn}n∈N+

on which G is weakly asymptotically continuous. Pick
ρA ∈ D(HA) and σB ∈ D(HB) with σ⊗nB ∈ TBn for all sufficiently large n, and consider the modified asymptotic
transformation rate

RT(ρA → σB) ..= sup

r : lim
n→∞

inf
Λn∈F(An→Bbrnc)

Λn(ρ⊗n
A

)∈TBn

∥∥∥Λn
(
ρ⊗nA

)
− σ⊗brncB

∥∥∥
1

= 0

 . (A2)

Then it satisfies:

RT(ρA → σB) ≤ G(ρA)
G(σB) , (A3)

whenever the right-hand side is well defined.5

Proof. For any sequence of free operations Λn ∈ F
(
An → Bbrnc

)
,Λn(ρ⊗nA ) ∈ TBn satisfying

lim inf
n→∞

∥∥∥Λn
(
ρ⊗nA

)
− σ⊗brncB

∥∥∥
1
= 0 ,

it holds that

G(ρA) 1= lim inf
n→∞

1
n
G
(
ρ⊗nA

)
2
≥ lim inf

n→∞

1
n
G
(
Λn
(
ρ⊗nA

))
≥ lim inf

n→∞

(
1
n
G
(
σ
⊗brnc
B

)
− 1
n

∣∣∣G (Λn (ρ⊗nA ))
−G

(
σ
⊗brnc
B

)∣∣∣)

5 This just means that it does not contain the fractions ∞∞ or 0
0 . We instead convene that 0

∞ = 0 and ∞0 =∞.
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3= lim inf
n→∞

brnc
n

G (σB)

= r G (σB) .

Here, 1 follows from weak additivity, 2 from monotonicity, and 3 from weak asymptotic continuity and again weak
additivity.

The main problem with Proposition A51 is that the rate in (A2) only takes into account a restricted set of possible
free transformations. We will see what this means in a physically relevant setting below.

2. A physically interesting case: energy-constrained asymptotic continuity

The above definition may seem rather abstract. However, there is a physically very natural scenario where it can
be applied. Let us assume that a certain system B ∈ S is equipped with a Hamiltonian (i.e., a self-adjoint operator)
HB . Let us assume that the Hamiltonians add up without interaction terms upon taking multiple copies of B, in
formula HBn = HB ⊗ 1⊗(n−1)

B + 1B ⊗HB ⊗ 1⊗(n−2)
B + . . .+ 1⊗(n−1)

B ⊗HB . Now, for a real number E, set

TE
Bn

..= {ρ ∈ D(HBn) : Tr [ρHBn ] ≤ nE} . (A4)

Basically, we are considering states whose energy increases at most linearly in the number of systems n. When the
set (A4) is chosen in Definition A50, the corresponding notion of weakly asymptotic continuity becomes a physically
relevant and indeed fruitful one.

Definition A52. Let (S,F) be a QRT endowed with a monotone G. Let B ∈ S be equipped with a Hamiltonian HB.
If for all E the monotone G is weakly asymptotically continuous on the set TE defined by (A4), then we say that it
is asymptotically continuous in the presence of an energy constraint, or EC asymptotically continuous
for short.

In practice, the above definition just means that whenever (ρn)n∈N+ and (σn)n∈N+ are sequences of states
with ρn, σn ∈ D(HAn), Tr[ρnHAn ],Tr[σnHAn ] ≤ nE (for a fixed but arbitrary real number E), and moreover
limn→∞ ‖ρn − σn‖1 = 0, then

lim
n→∞

|G(ρn)−G(σn)|
n

= 0 . (A5)

This definition turns out to encompass a sufficiently wide set of monotones. For example, Shirokov has proved
that many important entanglement monotones are EC asymptotically continuous, with respect to several physically
relevant Hamiltonians [17–19, 35]. To deduce a useful result from Proposition A51 we need to fix some terminology.

Definition A53 [130, p. 9]. Let A,B be two quantum system equipped with Hamiltonians HA, HB. A quantum
channel Λ : Tsa(HA) → Tsa(HB) from A to B is called (κ, δ)-energy-limited if Λ†(HB) ≤ κHA + δ, with Λ† :
Bsa(HB)→ Bsa(HA) being the adjoint of Λ. The set of such channels will be denoted with ELκ,δ(A→ B), where the
choice of the Hamiltonians is not made explicit and assumed to be clear from the context.

In such a setting, directly from Proposition A51 we deduce the following.

Proposition A54. Let (S,F) be a QRT. Let HA, HB be two Hamiltonians on A,B ∈ S, and let G be a weakly
additive monotone that is EC asymptotically continuous. Then for all ρA ∈ D(HA) and σB ∈ D(HB) with finite
energy (i.e., such that Tr[ρAHA],Tr[σBHB ] <∞) the uniformly energy-constrained (UEC) asymptotic transformation
rate defined by

RUEC(ρA → σB) ..= sup
0<κ,δ<∞

sup
{
r : lim

n→∞
inf

Λn∈F(An→Bbrnc)∩ELκ,δ(An→Bbrnc)

∥∥∥Λn
(
ρ⊗nA

)
− σ⊗brncB

∥∥∥
1

= 0
}

(A6)

satisfies that

RUEC(ρA → σB) ≤ G(ρA)
G(σB) , (A7)

whenever the right-hand side is well defined.
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Proof. Let E ..= max {Tr[ρAHA], Tr[σBHB ]} < ∞. Fix arbitrary 0 < κ, δ < ∞, and let the rate r be achievable
in (A6) by means of a sequence of protocols Λn ∈ F

(
An → Bbrnc

)
∩ ELκ,δ

(
An → Bbrnc

)
. Then for sufficiently large

n it holds that

Tr
[
σ⊗nB HBn

]
= nTr[σBHB ] ≤ nE ≤ nE′,

Tr
[
Λn
(
ρ⊗nA

)
HBn

]
= Tr

[
ρ⊗nA Λ†n (HBn)

]
≤ Tr

[
ρ⊗nA (κHAn + δ)

]
= nκTr[ρAHA] + δ ≤ nκE + δ ≤ nE′,

where we set E′ ..= max{κ, 1}(E + 1). Since G is asymptotically continuous on the set TE′ , and we have just shown
that σ⊗nB , Λn

(
ρ⊗nA

)
∈ TE′ , then we can apply Proposition A51 and conclude the proof.

The reason why Proposition A54 is ultimately not satisfactory, and why we on the contrary deem Theorem 15
more compelling, is twofold. First, Proposition A54 only allows us to bound the standard asymptotic transformation
rate (Definition 10), while we have seen that in certain settings the relevant quantity is the maximal asymptotic
transformation rate (Definition 11). Secondly, the above result only takes into account sequences of protocols (Λn)n
that are uniformly energy-constrained, meaning that the output energy is at most Eout ≤ κEin + δ, with κ and
δ fixed for the whole sequence. If each Λn is (κn, δn)-energy-limited for each n, but lim supn→∞ κn = +∞ or
lim supn→∞ δn

n = +∞, the above method does not seem to tell us much about the corresponding rate, even when
the initial and final states have a fixed (and finite) energy. Therefore, for instance, a sequence of free operations on
CV systems where each Λn involves either (a) a squeezing whose intensity increases with n and tends to ∞ in the
limit n→∞; or (b) a displacement unitary whose parameter αn is superlinear in n, are excluded from the bound in
Proposition A54.

As we have seen, our Theorem 15 eliminates the need for both of these requirements, and instead provides ultimate
bounds on maximal (instead of standard) asymptotic transformation rates, in a setting where the free protocols
employed are otherwise totally unconstrained.

Appendix B: Approximation by spectral truncation

Here we study the problem of approximating NM
r by truncating the input state. The forthcoming Corollary A58

has been used to check the numerical validity of the plots in Section IX A We state first a useful lemma, whose proof
follows closely that of [131, Lemma 7], with some adaptations made to fit our infinite-dimensional case. In what
follows, for a trace class operator X ∈ Tsa(H) with decomposition X = X+ −X− into positive and negative parts,
we denote with |X| ..= X+ +X− its absolute value.

Lemma A55. Let ρ, σ ∈ D(Hm) be two m-mode states, and set ε ..= 1
2 ‖ρ− σ‖1. Assume that the operator |ρ − σ|

has finite mean photon number E ..= Tr
[
|ρ− σ|

(∑n
j=1 a

†
jaj

)]
<∞. Then, for F = NM

r , N
∞
r , Nr it holds that

|F (ρ)− F (σ)| ≤ mεg

(
E

mε

)
+ g(ε) , (A1)

where g(x) = (1 + x) log2(1 + x)− x log2 x.

Remark A56. Recently, Shirokov [17] has put forward a more general technique that allows to obtain general
continuity results for relative entropy distance measures in infinite dimensions, thus removing the need to make any
assumption concerning the operator |ρ−σ|. While theoretically superior, his bounds are less tight and ultimately not
suited for our practical purposes.

Proof of Lemma A55. We start with the case where F = Nr. Here we actually prove that

|Nr(ρ⊗ τ)−Nr(σ ⊗ τ)| ≤ mεg

(
E

mε

)
+ g(ε) , (A2)

for all n-mode auxiliary states τ . Call h2(p) ..= −p log2 p− (1− p) log2(1− p) the binary entropy function. Using the
convexity of Nr (Lemma 28) together with [45, Proposition 5.24], it is not difficult to observe, as done by Winter [131,
Lemma 7], that

pNr(ρ1) + (1− p)Nr(ρ2)− h2(p) ≤ Nr(pρ1 + (1− p)ρ2) ≤ pNr(ρ1) + (1− p)Nr(ρ2) . (A3)

We now construct two states δ, δ′ ∈ D(Hm) such that

ρ− σ = ε (δ − δ′) , |ρ− σ| = ε (δ + δ′) .
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In particular, the mean photon number of δ satisfies that

Tr
[
δ
(∑n

j=1
a†jaj

)]
≤ 1
ε

Tr
[
|ρ− σ|

(∑n

j=1
a†jaj

)]
≤ E

ε
.

Now, set

ω ..= 1
1 + ε

ρ+ ε

1 + ε
δ′ = 1

1 + ε
σ + ε

1 + ε
δ .

Then, on the one hand

Nr(ω ⊗ τ)
1
≤ 1

1 + ε
Nr(σ ⊗ τ) + ε

1 + ε
Nr(δ ⊗ τ)

2
≤ 1

1 + ε
Nr(σ ⊗ τ) + ε

1 + ε

(
mg

(
E

mε

)
+Nr(τ)

)
.

Here, the estimate in 1 comes from convexity (A3), while that in 2 is an application of the subadditivity of Nr
(Lemma 28) together with Proposition 30. On the other hand, we can write

Nr(ω ⊗ τ) = Nr

(
1

1 + ε
ρ⊗ τ + ε

1 + ε
δ′ ⊗ τ

)
3
≥ 1

1 + ε
Nr(ρ⊗ τ) + ε

1 + ε
Nr(δ′ ⊗ τ)− h2

(
ε

1 + ε

)
4
≥ 1

1 + ε
Nr(ρ⊗ τ) + ε

1 + ε
Nr(τ)− h2

(
ε

1 + ε

)
,

where the inequality in 3 is the lower bound in (A3), and that in 4 holds because of the monotonicity of Nr under
the classical operation of tracing away subsystems. Putting all together we see that

Nr(ρ⊗ τ)−Nr(σ ⊗ τ) ≤ mεg

(
E

mε

)
+ (1 + ε)h2

(
ε

1 + ε

)
= mεg

(
E

mε

)
+ g(ε) .

Together with the corresponding inequality with ρ and σ exchanged, this yields (A2), and in particular proves (A1)
for F = Nr.

Now, again borrowing a telescopic argument from [131], for all n ∈ N+ we have that

∣∣Nr(ρ⊗n)−Nr(σ⊗n)
∣∣ =

∣∣∣∣∑n−1

k=0

(
Nr

(
ρ⊗(n−k) ⊗ σ⊗k

)
−Nr

(
ρ⊗(n−k−1) ⊗ σ⊗(k+1)

))∣∣∣∣
≤
∑n−1

k=0

∣∣∣Nr (ρ⊗(n−k) ⊗ σ⊗k
)
−Nr

(
ρ⊗(n−k−1) ⊗ σ⊗(k+1)

)∣∣∣
=
∑n−1

k=0
|Nr (ρ⊗ τk)−Nr (σ ⊗ τk)|

≤ k
(
mεg

(
E

mε

)
+ g(ε)

)
,

where in the last line we applied (A2). Diving by k and taking the limit for k →∞ we see that

|N∞r (ρ)−N∞r (σ)| ≤ mεg

(
E

mε

)
+ g(ε) ,

which proves (A1) also when F = N∞r .
The case of F = NM

r can be tackled with exactly the same techniques, because NM
r obeys an inequality analogous

to (A3). In turn, this is a consequence of the fact that the classical Kullback–Leibler divergence satisfies the estimates
in [45, Proposition 5.24].

Remark A57. We have not been able to establish (A1) also for the remaining case of F = NM,∞
r , essentially because

we lack a statement similar to (A2) for NM
r . In turn, this is due to the fact that this latter quantity is not subadditive

— in fact, it is strongly superadditive!
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The application of Lemma A55 that is of interest to us is as follows.

Corollary A58. Let ρ, σ ∈ D(Hm) be two m-mode states, and set ε ..= 1
2 ‖ρ− σ‖1. Assume that Tr

[
ρ
(∑m

j=1 a
†
jaj

)]
≤

E and also Tr
[
σ
(∑m

j=1 a
†
jaj

)]
≤ E. Then, for F = NM

r , N
∞
r , Nr it holds that

|F (ρ)− F (σ)| ≤ mεg

(
2E
mε

)
+ g(ε) , (A4)

where again g(x) = (1 + x) log2(1 + x)− x log2 x. In particular, denoting with ρ =
∑
k pk |ek〉〈ek| the spectral decom-

position of ρ, the sequence of spectral truncations ρn ..=
(∑

k≤n pk

)−1∑
k≤n pk |ek〉〈ek| satisfies that

F (ρ) = lim
n→∞

F (ρn) . (A5)

Proof. Thanks to Lemma A55, in order to prove (A4) it suffices to show that Tr
[
|ρ− σ|

(∑m
j=1 a

†
jaj

)]
≤ 2E. Indeed,

if ρ =
∑
k pk |ek〉〈ek| and σ =

∑
k qk |ek〉〈ek| then

|ρ− σ| =
∑
k

|pk − qk| |ek〉〈ek| ≤
∑
k

(pk + qk) |ek〉〈ek| = ρ+ σ ,

so that

Tr
[
|ρ− σ|

(∑m

j=1
a†jaj

)]
≤ Tr

[
(ρ+ σ)

(∑m

j=1
a†jaj

)]
≤ 2E .

To deduce (A5), note that [ρ, ρn] = 0, with εn ..= 1
2 ‖ρ− ρn‖1 −−−→n→∞

0. Also, for sufficiently large n the mean photon
number of ρn is at most twice that of ρ (call it E), so that

|F (ρ)− F (ρn)| ≤ mεn g

(
4E
mεn

)
+ g(εn) −−−→

n→∞
0 ,

where we used the well-known fact that limε→0+ ε g(δ/ε) = 0 for all δ > 0.

Appendix C: A technical lemma

The following result was invoked in the proof of Proposition 40 (more precisely, in step 3 of (66)) as an alternative
to [45, Proposition 5.23(iv)]. For the sake of completeness, we include a proof.

Lemma A59. Let us consider two m-mode states ρ, σ, with SW (ρ) <∞. Then, it holds that

DM(ρ‖σ) ≥ DKL(Qρ‖Qω) .

Proof. At fist sight, the result might seem a trivial application of the definitions of measured relative entropy as given
in (10) and of heterodyne detection as given in [126, 5.4.2]. The only obstacle is that, according to our definition,
a POVM must be a finite collection of operators; this is also crucial for proving Lemma 20, and hence cannot be
simply removed. The idea of the proof is precisely to show that an heterodyne detection, which corresponds to the
decomposition of the identity 1 =

∫
Cm

d2mα
πm |α〉〈α|, can be approximated, inside the Kullback–Leibler divergence, by

a sequence of finite POVMs. Note that the hypothesis SW (ρ) <∞ is needed to ensure that DKL(ρ‖σ) is a well-defined
Lebesgue integral for any σ ∈ D(H) (possibly diverging to +∞).

Let us fix ε, η, r1, r2, ` > 0 and consider the family of subsets of Cm, A = {An}n=0,...,N+1, with N a finite positive
integer, constructed as follows:

• A0 ..= {α ∈ Cm : Qρ(α) < η or Qσ(α) < η} .

• For n = 1, . . . , N , An is a subset of Cm such that:

– it is contained in a ball of radius `;
– An ∩An′ = ∅ if n 6= n′;
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– Bm(r1) ⊂
⋃N
n=0An and

⋃N
n=1An ⊂ Bm(r2), where Bm(r) is the m-dimensional ball with radius r and

centered at the origin of Cm.

• AN+1 ..= Cm \
⋃N
n=0An.

Notice that we do not specify the dependence of A upon ε, η, r1, r2 and ` for ease of notation. It is clear from the
definition that the set M = {En}n=1,...,N , with

En =
∫
An

d2mα

πm
|α〉〈α|

is a proper, finite POVM.
For a fixed state ρ we can compute the classical probability distribution

PM
ρ (n) = Tr[ρEn] =

∫
An

d2mα

πm
〈α|ρ|α〉 =

∫
An

d2mα

πm
Qρ(α) .

Since Qρ ∈ L1(Cm), we can always take r1 big enough so that PM
ρ (N + 1) < ε. Similarly we can always choose η

such that PM
ρ (0) < ε. Now, given another fixed state σ, we have:

DM (ρ‖σ) ≥ DKL

(
PM
ρ ‖PM

σ

)
=
N+1∑
n=0

∫
An

d2mαQρ(α)
[
log2

(∫
An

d2mβ Qρ(β)
)
− log2

(∫
An

d2mβ Qσ(β)
)]

1
≥
N+1∑
n=0

∫
An

d2mαQρ(α) log2

(∫
An

d2mβ Qρ(β)
)
−

N∑
n=1

∫
An

d2mαQρ(α) log2

(∫
An

d2mβ Qσ(β)
)

2=
N∑
n=1

∫
An

d2mαQρ(α)
[
log2

(∫
An

d2mβ Qρ(β)
)
− log2

(∫
An

d2mβ Qσ(β)
)]

+ O(ε)

≥
N∑
n=1

∫
An

d2mαQρ(α)
[

log2

(
����Vol(An) inf

β∈An
Qρ(β)

)
− log2

(
����Vol(An) sup

β∈An
Qσ(β)

)]
+ O(ε)

3=
N∑
n=1

∫
An

d2mαQρ(α) [log2 (Qρ(α) + O(`))− log2 (Qσ(α) + O(`))] + O(ε)

4=
N∑
n=1

∫
An

d2mαQρ(α) (log2Qρ(α)− log2Qσ(α)) + O(ε) + O(`)

=
∫⋃N

n=1
An

d2mαQρ(α) (log2Qρ(α)− log2Qσ(α)) + O(ε) + O(`) .

Here, in 1 we have discarded two positive terms, in 2 we have used the fact that PM
ρ (0),PM

ρ (N + 1) < ε and
limx→0 x log2 x = 0, in 3 we have used the fact that Qρ and Qσ are uniformly continuous on any compact set and
finally in 4 we have used the fact that also the logarithm is uniformly continuous on

⋃N
n=1An. Now, by taking

the proper limits, i.e., ε, η, ` → 0 and r1, r2 → ∞, we obtain precisely the generalized Riemann integral over Cm
of the function Qρ(α) (log2Qρ(α)− log2Qσ(α)). Since SW (ρ) < ∞, the function is absolutely integrable, and the
generalized Riemann integral is well defined and coincides with the Lebesgue one.
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[94] A. Kenfack and K. Życzkowski, J. Opt. B 6, 396 (2004).
[95] K. C. Tan, S. Choi, and H. Jeong, Phys. Rev. Lett. 124, 110404 (2020).
[96] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000).
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