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Abstract—Uplink (UL) dominated sporadic transmission and
stringent latency requirement of massive machine type communi-
cation (mMTC) forces researchers to abandon complicated grant-
acknowledgment based legacy networks. UL grant-free non-
orthogonal multiple access (NOMA) provides an array of features
which can be harnessed to efficiently solve the problem of massive
random connectivity and latency. Because of the inherent sparsity
in user activity pattern in mMTC, the trend of existing literature
specifically revolves around compressive sensing based multi
user detection (CS-MUD) and Bayesian framework paradigm
which employs either random or Zadoff-Chu spreading sequences
for non-orthogonal multiple access. In this work, we propose
sinusoidal code as candidate spreading sequences. We show
that, sinusoidal codes allow some non-iterative algorithms to be
employed in context of active user detection, channel estimation
and data detection in a UL grant-free mMTC system. This relaxes
the requirement of several impractical assumptions considered in
the state-of-art algorithms with added advantages of performance
guarantees and lower computational cost. Extensive simulation
results validate the performance potential of sinusoidal codes in
realistic mMTC environments.

Index Terms—massive machine-type communication (mMTC),
grant-free, active user detection, channel estimation, non-
orthogonal multiple access (NOMA), subspace estimation

I. INTRODUCTION
A. Background and motivation

Under the IMT 2020 Vision Framework of International
Telecommunication Union (ITU) [1] the massive machine-
type communication (mMTC) is a major service category of
a 5G system. A typical mMTC network consists of a large
number of nodes, such as smart meters in a smart grid, IoT
(Internet of Things) network nodes, or sensor nodes in an
automated factory [2]. An mMTC exhibits several distinct
features that are uncommon in human-agent based networks.
These are: uplink (UL) dominated network, sporadic activity
of transmitting nodes, transmission of short sized packets,
strict latency requirements, and low data rates [2]. These
make a conventional grant-access based legacy communication
system unsuited for mMTC. Significant signaling overhead
associated with grant-acknowledgement scheduling procedures
results unacceptably high latency in legacy systems. It is
shown in [3] that in 4G LTE one can have as much as 30%
grant signaling overhead to transmit a small amount of data.
Recently the UL grant-free non-orthogonal multiple access
(NOMA) schemes [4], [S], [6], [3] have offered promising
solutions to the above mentioned problem. Grant-free NOMA
allows devices/users to randomly transmit data without any
complex handshaking process, while supporting massive con-
nectivity by allocating a limited resources in a non-orthogonal
manner to a massive number of machine type nodes.

As per some empirical findings reported in [7], the number
of simultaneously active users at a given point of time does not
exceed 10% of the number of nodes in an mMTC network,
even in its peak operation time. This inherent user sparsity
in mMTC has motivated a range of Compressive Sensing
(CS) based Multi User Detection (CS-MUD) techniques for
active user detection (AUD), channel estimation (CE) and
data detection (DD). In practice, the user activity pattern
remains unchanged over several consecutive frames, which is
known as frame-wise sparsity in literature. Greedy CS-MUD
algorithms like Group Orthogonal Matching Pursuit (GOMP)
[8l], weighted GOMP (WGOMP) [9], and structured iterative
support detection (SISD) [10] rely on frame-wise sparsity
for active user detection. For example, in [L1l], [12]] authors
developed low complexity CS-MUD techniques. But these
algorithms rely on assumptions which include prior knowledge
about number of active users and complete knowledge of
channel gain at base station respectively. However, it is not
clear how these additional assumptions can be justified in
practice.

Several other researchers have adopted various Bayesian
methods for user detection and channel estimation [13]], [[14],
[15] in mMTC. In [15] authors proposed expectation propa-
gation (EP) based joint user detection and channel estimation
where a computationally intractable Bernoulli-Gaussian distri-
bution was approximated by a tractable multivariate Gaussian
distribution to find an estimated posteriori distribution of
the sparse channel vector. In [13] authors proposed Sparse
Bayesian Learning (SBL) based user detection and channel
estimation. Although these Bayesian approaches offer good
performance, they need statistical priors like user activation
probability, precise statistics of noise and channel gain.

In this paper our objective is to develop a low complexity
solution. In addition, the algorithm should need no informa-
tion/assumption about channel characteristics, user sparsity,
activation probability, etc. Yet we want good detection esti-
mation performance. In this goal we attempt to find ways to
engineer the spreading sequences with some special structure,
and we shall exploit this structure to design fast and accurate
detection-estimation algorithms.

B. Contributions
Our contributions can be summarized as follows:
e« We show that it is indeed possible make use of fast
and accurate methods from the classical signal process-

ing literature if we use sinusoidal spreading sequences.
The resulting signal model admits some Vandermonde



structure [16]. This allows us to apply fast, non-iterative
algorithms like root-MUSIC or ESPRIT [17]], [18]. These
subspace methods do not require prior noise/channel
statistics at the BS. Furthermore, we can combine the
subspace methods with some well understood informa-
tion criterion, i.e. Corrected Akaike information criteria
(AICc)[19], Bayesian Information Criteria (BIC) [20] or
weighted information criteria (WIC) [21] to estimate the
number of active users. Therefore, we don’t need to make
any assumptions on activation probability or sparsity
levels. In this way, the proposed technique escapes both of
the most pressing requirements of CS-MUD and Bayesian
approaches. For further performance improvement, espe-
cially in scenarios with higher number of active users
and high measurement noise variance, ESPRIT can be
optionally used to initialize a Variable Projection [22]]
algorithm to solve the underlying maximum likelihood
estimation problem. When initialized with ESPRIT es-
timates, the variable projection algorithm is known to
converge in only a few iterations [23]. However, to the
best of our knowledge, this optional application of the
variable projection algorithm is not necessary in practice.

o We present a new method for joint estimation of chan-
nels and data symbols. This method can exploit the
additional knowledge about the signal constellations to
jointly improve the channel estimation and data detection
performance. Furthermore, we give conditions for reliable
recovery of transmitted data symbol. In short, among
estimated active users (UE) we list UEs of which data
symbols cannot be recovered reliably due to poor signal
to noise ratio. This may aid MAC (Media Access Control)
to derive optimal power control strategies for connected
devices.

¢ We carry out extensive numerical evaluations in re-
alistic non-line of sight (NLOS) scenarios of mMTC
demonstrated by 3GPP (release 9) to compare various
performance metrics over several network parameters. It
is demonstrated that proposed method outperforms state-
of-art Bayesian algorithm [15] while maintaining less
computational expenditure.

The rest of the paper is organized as follows. Section
demonstrates the system model of an UL grant-free mMTC
system. In Section[[TI] we propose sinusoidal code as spreading
sequence and transform the system model. Section delin-
eates the methods used for model order selection and active
user identification followed by Section [V| where conditions of
reliable data recovery is derived along with channel estimation
technique. An detailed numerical investigation is carried out
at Section [VI| where performance comparison and complexity
analysis are discussed. We conclude and briefly discuss several
future research directions in Section [VIII

II. SYSTEM MODEL

Consider a cell of an mMTC system consisting of a base
station (BS) and N user equipments (UE). The system al-
locates M < N resources for creating a grant-free NOMA
network consisting of the above UEs. The number N can
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Fig. 1. Uplink scenario of an mMTC cell with single BS and IV synchronized
UEs

be rather large. Nevertheless, only a small fraction of these
N UEs initiate sporadic transmission at any given point of
time [[7]]. This fraction is commonly referred as the activation
probability p, in literature. In this system each UE is allocated
its own spreading sequence. The spreading sequence allocated
to user n is given by an M dimensional complex valued vector
B,

During a random access opportunity, a UE transmits over
J time-slots. At the j th time-slot, the n th user spreads its
complex scalar valued data symbol 3, ; over M orthogonal
resources using its spreading sequence ¢,,. It forms the vector
®,,0n,;. Subsequently, it transmits the m th component of
¢, Bn,; via the m th orthogonal resource at j th time-slot.
Note that 3, ; = 0 for all j if user n is inactive.

The signal received by the BS consists of all transmissions.
Using the signal received during the random access opportu-
nity, the BS forms the complex-valued vectors {y ; }3—’:1. Each
y; is an M dimensional vector formed by arranging the data
received in M individual resources during the j th time-slot.
The vector y; can be written as

Yi= Y, GuBujhn+wj, j=1,2,...,J (1)

neN
where, N denotes the set of active users during the random
access opportunity. In (I) we assume flat Rayleigh fading
channels in uplink, and all M orthogonal channels fall within
coherent bandwidth [15]. Therefore, user n experiences the
same complex, scalar valued channel gain h,, in all resources.

In @, w; denotes the complex vector valued measurement
noise. We assume that the random vectors wq, wo, ..., W are
mutually independent, and identically distributed with a mean
zero, and covariance matrix 2], where ¢ is unknown.

For any active user n it is assumed that 3, ; = 1. This
is the first data symbol that acts as the pilot. Subsequently,
for all j > 1, we assume |3, ;| = 1 provided that user
n is active. This is true when the data symbols are drawn
from some PSK constellation. This assumption on (3, ; are



not necessary for the code detection step of our algorithm.
We use this assumption in developing a joint channel and data
estimation technique.

In the sequel we use a,, to denote the index of n th active
user. Therefore,

N:{al,ag,...,aw\/‘}. (2)

Note that |\| denotes the cardinality of the set . Combining
all received vectors over J time-slots, we get the data matrix

Y=[yiy2 - yJl
Using (I) and (2) we can write Y as
Y =&Y + W, 3)
where W = [ wy; wa -+ wy |,
O =i ¢, s Py, | “)
and T is a |[N| x J matrix such that
Tn,j = ha,Ban.j- ®)

III. SYSTEM MODEL WITH SINUSOIDAL SEQUENCES

In the sequel, we work with sinusoidal spreading sequences.
The m th component of the spreading sequence ¢,, employed
by user n is given by

¢,,(m) = yexp(i2rmn/N) m € {0,1,---M —1}. (6)

Since |8, ;| = 1 for all n and j, it follows that all UEs use
the same transmit power proportional to 2.

A. Signal model for sinusoidal spreading sequences

Note that the angular frequency of the sinusoidal spreading
sequence employed by user n is given by

wp, =2mn/N, n=0,1,--- ,N — 1. @)

With this, and (6), we can write the received signal at m th
resource of the j th frame as

yi(m) = exp(iwnm)a, ; + w;(m), ©)
neN

m € {0,1,---M — 1} and j € {0,1,---J — 1}, where
denotes the set of all active user indices, and we write

Tn,j = 'Yhnﬂn,j &)

for brevity.
Let us fix an integer ! of our choice. Then from (8)) it follows
for any m € {0,1,--- M — 1} and j € {0,1,---J — 1} that

Sm,j i =yj(m)yjm+1) - y;(m+1-1)]T

= Z 0.z, ; exp(iw,m) + wi(m: m+1—1). (10)
neN

In above w;(m : m+{— 1) denotes the ! dimensional vector
made up of the m th through to the m + [ — 1 th components
of w;, and in addition, we define

6, = [ 1 expliwn) - exp{ill— Dwa} 7. (11)

From (T0) it is readily verified that

Sj:=1[s0;81,; - SM—1j]= Z 9nxl’j +W;, (12)
neN
where
Xnj = Tnj[ 1 exp(iwn) - exp{i(M — Dw,} |7, (13)
w;(0)  w;(1) w; (M —1)
W;=| w;(1)  w;(2) wi(M—1+1)
wi(l—=1)  w;(l) w;(M —1)
(14)
Define the [ x [ anti-diagonal matrix K such that
0o --- 0 1
K — 1 0
0 . o
10 -0

For any column vector a the product Ka is same as a flipped
upside down. In particular, if conj(a) denotes the complex
conjugate of a, then it is readily verified that

K conj(8,,) = 0., exp{—iw, (I — 1)}.
Therefore, (12) yields that

K conj(S;) = Z 0,.X;,,j exp{—iw, (I —1)} +K conj(W;),
neN

where X, ; denotes the conjugate transpose of Xx,, ;. By

combining the last equality with it follows that

S; =[S, Kconj(S;)]=>_ 0ux5,+W;, (15
neN
where
Xn,j = [ X’ITL,j X;,jeiiwn(lil) ]*a (16)
W]’ = [ Wj K COHj(Wj) }
Now considering for j=0,1,...,J — 1, we get
S=[SoS - S;1]=> 0., +W, (17
neN
where
Y, =[Xno Xna X115 (18)
W=[W;, W; W]

Given the signal received at the BS, and a suitable integer [
of our choice, we can readily form the data matrix S via the
first equalities in the equations (I0), (12), and (I7). The
matrix S has [ rows and 2J(M — [+ 1) columns. The rank of
it’s noise-free part, which is given as

g - W — Z an"/);a
neN
can not be more than |N/|. Therefore, if we take a large
enough [ so that [ is always larger than |\, then S — W will
be of rank |N|. This property can be exploited by subspace
algorithms [24] . These algorithms work by obtaining a low
rank approximation of S via its singular value decomposition.
The details are discussed below.




IV. FAST SUBSPACE BASED AUD

A. Estimation of Number of Active Users

Note that the column-space of of the noise-free data S — W
is spanned by the vectors 0,,n € N. Subspace algorithm
estimates this subspace via the eigen decomposition of S [24].
Subspace algorithms like MUSIC [[17]] or ESPRIT [18] require
the knowledge of number of signals to be specified as a priori.
This is also the case for most of the CS-MUD algorithms
where this information is decoded as prior sparsity level
[L1]. However, there exist sparsity-blind greedy algorithms
which assume the availability of perfect channel knowledge
or noise statistics at BS [12], [25]. In Bayesian approaches,
this information is supplied to the algorithms as user activation
probability p, which is derived from empirical studies [15].
In this work, however, we assume none of these information
are available to BS. Specifically, we employ an information-
criteria aided model order selection technique to find the
number of active users in a random access opportunity.

In the sequel N denotes the set of estimated active user
indices. Hence, |/\7 | denotes the number of estimated active
users. Given the data matrix S an information-criterion aided
technique estimates |\/| as

W] = argmin —log f(S. k) + Wy (19)
where W, is a bias correction term that depends on the
information criterion being used, and as shown in [26]], the
log-likelihood function in (I9) is given by

l
II /Py
i=k+1
1 )

= >, /P

i=k+1

log f(S,k) = (I — k)P In (20)

where P is the number of columns in S i.e:
P=2J(M—-1+1),

and {c}!_, denote the ! non-zero singular values of the
I x P matrix S. In particular, we assume without any loss
of generality that

Q>G> >q.

Several different information criteria can be used to deter-
mine how W, depends on & [26]], [21]], [27]], [28]. For example
one can use the classical information criterion by Alaike [29],
for which Wy, = k(21— k) [26]. However, it is wellknown that
AIC leads to overestimation of \/\7 |. From that perspective it is
better to use the Bayesian Information Criteria (BIC) proposed
in [20] for which

Wy = %k(2l — k) logP. 2D

Using the singular value decomposition of S one can readily
calculate the cost in via and for different values
of k. Therefore it is rather straightforward to estimate |J\7 |

B. Finding the Active User Indices

Among many suitable candidates of subspace algorithms
such as MUSIC, root-MUSIC, in this work, we employ
ESPRIT [18]]. ESPRIT has been recommended as a first choice
in frequency estimation problem in [24]. In particular, the data
model leads to ESPRIT with forward-backward averag-
ing which has been shown to have substantially improved
statistical performance figures [30]. This process yields the
set of angular frequencies of sinusoidal spreading sequences

{an}yj{ used by the active users. The main steps of the

ESPRIT algorithm is as follows:
1) Construct © = [u; uy ... uWI]’ where u;, denotes the

unit norm left singular vector of S associated with its k
th largest singular value ¢y.
2) Solve the equation

O(1:1-1,:) Q=06(2:1,:)

for Q in least squares sense.
3) Compute eigenvalues {yn}lljll‘ of Q.

4) Estimate the frequencies {of)n}y;q as
n=1,2,...,|N|.

wn = arg(Vn),

We use a,, to denote the n th estimated active user index.
In other words,

N ={an, o, a5}

To find a,,, we use the definition of w,, given in (7), to get

a, = round <an> .
2

C. Maximum Likelihood Estimate of Active User Indices

If the noise variance in is large then it one may
optionally improve the accuracy of the ESPRIT estimates
by applying the Gaussian maximum-likelihood method [23]],
which requires us to solve,

minimize [|[Y — ®Y|%, (22)

T, {@n i
see (3) and (@) to recall how ® depends on {djn}‘,ﬁll. Noting
that, (22) is quadratic in T € CVIXJ we can use linear least
square to minimize (22) with respect to T which yields

argmin [[Y — Y% = (2*0) 10y, (23)

and consequently it follows that
min [ Y — @[3 = [Y{I - 8(2°0) L0 }Y|3. 24)

From () note that ® depends on the spreading sequences,
which by (6) depends on the frequencies. Hence the reduced
cost function in the right hand side of (23) depends on the
frequencies. Hence the maximum likelihood estimate of the
frequencies can be obtained by solving

minimize |[Y*{I — ®(®*®)"1®*}Y]||%.

- N
{@n}iZh

(25)



The cost function in is non-convex in &,, n € N.
Nevertheless, turns out to be a variable projection prob-
lem, [22]] for which well known algorithms exist [22]]. These
algorithms are wellknown to converge very quickly when
initialized at a point near the global optimum. For our problem
we can use the ESPRIT estimates {&,,}, - to initialize the
variable projection algorithm. As will be reiterated in later
section, the algorithm converges within 2 ~ 3 iterations when
po < 0.25. Upon convergence, we update the frequency
estimates {wn}, . by the corresponding ML estimates and
find the set of active user indices N as mentioned in previous
section.

V. CHANNEL ESTIMATION AND DATA DETECTION

In this section, we delineate the methods of channel estima-
tion and data detection. In contrast with existing works where
only signal received in the pilot frame is used, we use the entire
received signal matrix Y € CM*7 for channel estimation. The
role of pilot symbol is to estimate the phase angle of estimated

complex channel gains {hz}yll‘ accurately as will be shown
in following section.

A. Channel Estimation

Using the detected active user indices we construct the M x
|NV| matrix ® such that

(@)1 = v exp(i2nrmay, /N). (26)
Using $ we can find an estimate of Y, see ||
T = ($*d)"1d*Y. 27)

Note that T € CHVIx7,
In the system considered herein uses a a L-PSK constella-
tion. Define the set

A={0,1,2,--- L —1}. (28)
Hence f,, ; must be of the form
Ba,.,; = exp(i2mqq,, ;/L) (29)

where each q,, ; € A. The data detection problem requires
us to estimate g, ; for all a, € Nand j =2,3,...,J. We
remind the readers that the pilot symbols equal to unity, i.e.

fa,1=1, & (30)

for all G, € N
Now recalling (3) and using (29) we can write

) 2m
T”J = hanﬁaruj = ‘han | exp (1 {Can + fqan ]}) (31)

where (,, is the phase angle of channel gain ie: h,, =
|ha, | exp(iC,,, ). Taking natural logarithm at both sides of (1))
we get

da,1 =0

In (Y, ;) =In(|hg,

2
) +i (c + L”qan,j) SNER)

so that

Re{ln (T, ;)} = In(|ha, [), (33)

LIm{In (Y, ;)} = L, + 27¢a,, ;- 34
Since each g,, ; € {0,1,2,...,L — 1}, it follows that
mod(LIm{In (Y, ;)} , 27) = mod(L¢,, , 2m).  (35)

Next we replace T by its estimate T in . The estimate T
will not be error-free. We propose to reduce the effect of the
estimation error by averaging. Using we estimate |hg, |
for each a,, € N as

J
~ 1 N
lha,| = 5 > Re{ln (T,;)} (36)
j=1
Similarly, using we estimate mod(L(s, , 2m) by
J
- 1
G =5 > mod(LIm{ln (Y, ;)}, 27). (37)

Jj=1

Since (4, is an estimate of mod(L(;,,2m) , we have L
possible candidates which can be an estimate of (;,. These
are the elements of the set

- 27k
j: {C&n +T :

To identify the correct candidate from the above set we make
use of and (31), which yield

Tn,l = han = |h0«n

keA}.

exp(i€y,, ). (38)

Equation reveals that Tml is, in fact, an estimate of
hs,, . But this estimate being based on only one element of
Y, is more noisy than our proposed estimate based on the
averaged statistics in (36) in (37). Nevertheless, we can use
Tn’l to identify the correct candidate from 7. In particular
we estimate (5, by

Tn,l
|Tn,1|

4. = argmin
G gmin

el¢ — . (39)

B. Data Detection
Our data detection method is based on (3I), which yields
Tn, 7

REY;

Motivated by l| and using the estimates ’i‘nyj and C}ln
(obtained in (39)) we propose to estimate gz, ; as

e Can — exp(i27rqan,j /L). (40)

Tnj .2 .
Ja,,.; = argmin | ——— exp(—i(s,) —exp(i2mq/L)|. (41)
oy = ATy |2 p(—ia, ) —exp(i2mq/L)| . (

C. Condition for Reliable Data Detection

An UE located near the cell boundary experiences high
path-loss, and have low signal to noise ratio (SIR). It is
wellknown that the detection-estimation algorithms have diffi-
culties in detecting such users experiencing deep fading. Nev-
ertheless, in our simulation study we have observed that the
proposed user detection method is often capable of detecting
such low-SNR UEs, but the data detection method outlined
in the previous sub-section may not produce accurate results.
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Fig. 2. (a) Received symbols of reliable UE (b) Received symbols of a non-
reliable UE

It is of significant interest for the system designer to be able
to detect such users. Because this allows the BS to send an
ARQ like signal to this users, and those users can use a
higher transmit power in their next random access attempt.
Such ARQ like mechanisms can greatly improve the overall
network performance. In this section we briefly discuss how
such low SNR users could be identified within the framework
proposed herein.

We use Figure [2] to examine why data detection becomes
difficult for a low SNR user. In Figure [2a] we show the typical
scatter plot of T, ; for a fixed n as ] varies from 1 to J. In
this example L = 4. Recall from (31)) that |Y,, ;| = |h,,, | for
all j, while the phase of T, ; can have only 4 different values.
In particular, a scatter plot of T, ; should look like the 4-PSK
constellation rotated by (,,, . The plot in Figure [2a]is consistent
with this expectation with exception that we see the points
4 distinct clusters instead of exactly 4 points. This is not a
surprise as the deviation from the cluster centers are caused by
the estimation errors in Tn j contributed by the measurement
noise in the observed data. In this case the spread of the points
caused by the measurement noise is small compared to the
average value of |T, ;| which determine the radius of the
circle on which the cluster center lie.

The situation becomes worse for another user with a scatter

plot shown Figure 2b] This user is experiencing much higher
path-loss, and thus has a significantly smaller averaged |Tn il
This significantly shrinks the circle on which the cluster
centers lie. Consequently, the inter-cluster separation is of the
same order as the perturbation of the constellation points due
to noise. At this stage the data detector may not be able to
provide perfect data detection results.

The above example reveals that we can have perfect data
detection only if the averaged |T,_;| is large compared to the
perturbation due to noise. From we note that |hg | is the
average value of |’Af”7 ;| One simple way to estimate the spread
caused by the noise would be calculate the corresponding
standard deviation

|ha,

J 2
Na,, = Z (Re{ln G- ) . (42)
Now the distance between the neighboring cluster centers
for the estimated active user index is 2|hga, |sin(w/L). This
distance must be more than twice the estimation error spread
for reliable data detection. Assuming normal distributed esti-
mation error, we take the spread to be 57, with 99.9% con-
fidence. Hence to ensure 99.9% confidence in data detection
we need

2|ha, |sin(m/L) > 2 x 5na, &=
\ha, | /ma,,/ > X =5/ sin(n/L).

To increase the confidence level we need to increase A. Note
that A increases if either of L or the noise power increases. In
practice, one can implement a protocol where the BS proceeds
with data detection if @I) holds. Otherwise, BS can notify the
user to transmit the data once more with higher transmit power.

(43)

D. Summary of fast subspace based AUD, CE and DD

In this section, we summarize the steps of the proposed
algorithms. The input of the algorithm is the received signal
matrix Y € CM*7 as in (3). With these, we form the data
matrix S as in (7). Then the proposed method carries out
following steps in sequel:

1) Computes singular value decomposition (SVD) of S

2) Estimates |A| via (T9). For that it must calculate the
log-likelihood as in (20) and the bias correction term in
(21) for each competing model order k.

3) Estimates angular frequencies {wn}‘ _, using a sub-
space algorithm. In the sequel we have used forward-
backward ESPRIT outlined in Section One may
optionally use the ESPRIT estimates to initialize a
variable projection algorithm (23)), and find Gaussian
ML estimates, which are more accurate.

4) Using the frequency estimates obtained in previous
stage, it determines the set of estimated active user
indices N and find AAf, see .

5) For each n = 1,2,...,]\7

« Finds |hg, | in , (s, in , and 7, in .

o If 1, /|ha,| > X then carries out data detection for
Jj=2,3,...,J as per @I). Otherwise requests the
user to retransmit with higher transmit power.



VI. NUMERICAL SIMULATION STUDIES
A. Simulation Setup

We consider an mMTC scenario with N = 128 UEs. These
are randomly deployed within the cell of radius 200 m. An
UE is at least 1m away from the BS. The variance 7, (in dB)
of h,, is modeled using NLOS model in 3GPP (release 9):

T = —128.1 — 36.7log,,(d), (44)

where d,, is the distance between n th UE and BS in km.
For receiver noise, the power spectral density is set at —170
dBm/Hz, and the transmission bandwidth is set at 1 MHz. A
random access opportunity consists of J =9 frames, the first
(J = 1) of which is used to transmit pilot symbol. The pilot
symbol 3,1 = 1 for all active UE. The PSK constellations
use L = 4. This setup is identical to that used in [15].

The expectation-propagation (EP) approach proposed in
[L5] is used as the benchmark for performance comparison.
This choice is well justified. In [15] EP has been shown
outperform all major existing methods by a comprehensive
margin.

As performance metrics, we consider Missed Detection Rate
(MDR), Net Symbol Error Rate (NSER) and Root Mean
Squared Error (RMSE) of CE. MDR refers to the rate of UEs
failing to get recognized by candidate algorithms during AUD.
On the other hand, NSER is the symbol error rate experienced
by active UEs. These performance metrics are evaluated as a
function of sequence length M, user activation probability p,
and transmit power. Each point in the plots shown in the sequel
are based on 10000 independent Monte-Carlo simulations.
Performance of EP algorithm is evaluated using both random
and sinusoidal spreading codes which are denoted as EP
with RC and EP with SC, respectively. The performance of
ESPRIT algorithm alone is denoted as ESPRIT whereas the
performance of ESPRIT initialized variable projection based
estimation is denoted as ESP-VPN. Unless specified otherwise,
M = 64, p, = 0.1, and all UEs transmit with 20 dBm.
For ESPRIT we need to choose the integer [ in (I0). In our
simulations we vary [ depending on M as follows

M || 32|48 |64 | 80|96 | 112
l 20 1 40 | 50 | 60 | 78 | 90

These values are chosen to optimize the estimation perfor-
mance.

B. Simulation Results

Figure 3] plots the MDR, NSER and RMSE performance
of different algorithms where M is varied from 32 to 112. In
this study we fix transmit power to 20 dBm and p, = 0.1. As
can be seen in Figure 3] the proposed algorithm achieves sig-
nificant performance improvement in all performance metrics
over the EP algorithm. ESP-VPN offers slight performance
improvement for M < 64. Unlike EP, channel estimation
accuracy of the proposed method does not vary much with
M in Figure 3b] Note that the performance of EP often
deteriorates with sinusoidal sequences.

Figure [ plots the MDR, NSER and RMSE of different
methods as functions of the transmit power, while we fix
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Fig. 3. (a) MDR (b) NSER (c) RMSE of different methods as functions of
M.

M = 64, p, = 0.1. As before, the proposed algorithm outper-
forms EP in all performance criteria. For transmit power below
6 dBm ESP-VPN provides some performance improvement
over ESPRIT in terms of MDR and NSER. EP with random
sequence continues to perform better.

Figure [5] plots the performance metrics as functions of
user activation probability p,, while the transmit power is
20 dBm and M = 64. As expected, all methods suffer
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Fig. 4. (a) MDR (b) NSER (c) RMSE as functions of transmit power.

from performance degradation as p, increases causing higher
interference among UE. For the proposed method, an increased
number of active UEs increases probability of having active
UEs with closely spaced angular frequencies. This limits the
performance of ESPRIT. In this case, ESP-VPN can offer
slight performance improvements for p, > 0.2, see Figures [5a|
and

Figure [6] shows the influence of M, p,, and transmit power

107 ‘
—e—ESPRIT
—=—ESP-VPN
EP with SC
102 —A—EP with RC P
o
=) 3
s 10
24
107
10—5 L L L
0.05 0.1 0.15 0.2 0.25 0.3
User activation probability
(@
10° \
—e—ESPRIT
—=—ESP-VPN
EP with SC
101 —&—EP with RC A
o
&% 102
z 2
1078
10 -4 L L L
0.05 0.1 0.15 0.2 0.25 0.3
User activation probability
(b)
10°
—e—ESPRIT
—a—ESP-VPN
101 E EP with SC 4
—A— EP with RC »

RMSE

10—5 I I I
0.05 0.1 0.15 0.2

User activation probability

©
Fig. 5. (a) MDR (b) NSER (c) RMSE as functions of pq.

0.25 0.3

on the percentage of UEs whose data cannot be detected
reliably as per (@3). From Figure [6(b), where M = 64, there
are only 6% of such ‘unreliable UEs’ even at 0 dBm transmit
power. In addition, ESP-VPN offers some small improvements
if p, is high.

In Figure [7] we plot the average CPU time required by
different methods for active user identification, estimation of
channel gains, and data decoding for M = 64 and 20 dBm
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transmit power. Here EP is run for 3 iterations (as per [15],
the additional iterations do not improve EP’s performance).
As suggested in [[15], Woodbury Identity and Cholesky de-
composition is used for certain matrix inversion within the EP
algorithm for reducing computational cost. All of the algo-
rithms are implemented in MATLAB on an Intel Core 17 2600,
eight-core computer clocked at 3.40 GHz with 16.0 GB RAM.
Figure [7] demonstrates the lower computational requirement
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Fig. 7. Average CPU time taken by different methods as functions of (a) pq
(b) N.

of proposed methods. Proposed methods (both ESPRIT and
ESP-VPN) offer faster estimation under varying user activation
probability p,, although at p, > 0.25, ESP-VPN shows higher
complexity than EP with random sequences. This is because at
high p,, ESP-VPN in (23)) requires higher number of iterations
(3 ~ 4). Note that, p, > 0.25 is not quite practical as per [7],
where it has been concluded that p, < 0.1 even at peak load.
In fig. [7(b), we fix p, = 0.1, and plot computation time as
function of the total number N of UEs. The computation time
of EP grows quickly with NV at a rate significantly faster than
the proposed methods.

VII. CONCLUSIONS

In this work, we have proposed to employ sinusoidal spread-
ing sequences for UL grant-free mMTC system. This propo-
sition effectively turns active user detection (AUD) problem
into a frequency estimation problem which allows us to use
non-iterative, low complexity, and accurate signal processing
algorithms. In contrast with existing greedy and Bayesian algo-
rithms in relevant literature, proposed method does not require
any prior empirical assumption on channel/noise statistics and
number of active users. Extensive numerical simulations show
that, in most cases, proposed method outperforms state-of-
art EP algorithm, which considered one of the best among



the existing algorithms [15] in terms of several fundamental
performance metrics, that too in expense of a lower computa-
tional cost. Based on the estimated knowledge of UE activity,
we have proposed a new method of channel estimation. This
method coherently processes all data frames to minimize the
adverse effects of measurement noise on estimation-detection
performance. This analysis also allows us to develop a thresh-
old aided decision rule to identify the low SNR users, whose
data symbols cannot be detected reliably.
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