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Including a Real-Time Load-Redistribution Threat
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Abstract—It is possible to launch undetectable load-
redistribution (LR) attacks against power systems, even in
systems with protection schemes. Therefore, detecting LR attacks
in power systems and establishing a corrective action to provide
secured operating points are imperative. In this paper, we develop
a systematic real-time LR threat analysis (RTLRTA) tool, which
can flag LR attacks and identify all affected transmission assets.
Since attackers might use random deviations to create LR attacks,
we introduce an optimization model to generate random LR
attacks. Hence, we can determine accurate thresholds for our
detection index and test the tool’s functionality when there are
random LR attacks. Additionally, based on an estimation for the
actual loads in the post-attack stage, we design a set of physical
line flow security constraints (PLFSCs) and add it to the security-
constrained economic dispatch (SCED) model. We call the new
model cyber-physical SCED (CPSCED), which can appropriately
respond to the identified LR attacks and provide secured dispatch
points. We generate multiple scenarios of random LR attacks
and noise errors for different target lines in the 2383-bus Polish
test system to validate our proposed methods’ accuracy and
functionality in detecting LR attacks and responding to them.

Index Terms—cyber-attack, false data injection attack (FDIA),
load-redistribution (LR) attack detection, post-attack corrective
action, power system operation

NOMENCLATURE
Sets and Indices
G Set of all generation units.
g Index for generation unit.
G(7) Set of all generation units at bus i € N.
i Index for bus.
K Set of all transmission assets.
KT Set of all affected transmission assets by an LR

attack; KT ¢ K.
k Index for transmission asset.
N Set of all buses.
nk A randomly selected set of buses from all sensi-
tive buses with respect to a target asset k € K.
P Set of all buses with load deviations more than

Zi%tp ot o forecasted loads; 1) C N.
Variables
H{A0 Load deviation at bus i € N (MW).
P, Dispatch point of unit g € G (MW).
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Py Active power flow on transmission asset k € K
(MW) considering the loads from SE.

Active power flow on transmission asset k €
KT (MW) considering the actual loads.

D¢ Actual load’s estimation (MW) at bus ¢ € N.

PLF}

P, Active power injection (MW) to bus 7 € N
considering the loads from SE.
i, Active power injection (MW) to bus 7 € N
considering the actual loads.
Al Vector of Buses’ angle deviation.

Parameters, Vectors and Matrices
« ~ Load shift factor.
startpoint §fnimum load shift factor that causes transmis-

k,min
sion asset k € K to have overflow.

zlyfnm Minimum load shift factor that causes transmis-
sion asset k € K to have 5% overflow.

Cq Production cost of unit g € G.

H ny X np dependency matrix between power in-
jection measurements and state variables.

H, ith row of H (i € N).

L; The contaminated load (MW) at bus 7« € N
resulted from SE.

Lit The vector of contaminated loads (MW) resulted
from SE at iteration ¢t of the EMS.

pres Upper limit (MW) on capacity of unit g € G.

P Lower limit (MW) on capacity of unit g € G.

prar Continuous thermal rating (MW) of transmis-
sion asset k € K.

PTDF,fi Power transfer distribution factor for transmis-
sion asset k € K and bus ¢ € N (injection) with
regard to reference bus R (withdrawal).

Dit Vector of forecasted loads (MW) at iteration it
of the EMS.

D; Forecasted load (MW) at bus 7 € V.

d Number of sensitive buses that are randomly se-

lected to be zero in random LR attacks; d = |n).

I. INTRODUCTION

UE to the extensive usage of cyber layers to monitor,

control, and optimize the real-time operations of power
systems, many research studies have addressed the challenges
associated with these cyber layers and the risk of cyber-attacks.
The research studies concerning cyber-attacks are divided into
two parts: 1) implementing and modeling cyber-attacks, and 2)
designing protection, detection, and corrective schemes against
cyber-attacks.
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A. Implementing Cyber-Attacks

In the literature, one of the popular ways to generate cyber-
attacks against power systems is to create a false data injection
attack (FDIA). In FDIAs, attackers add malicious data to the
actual measurements in such a way that they can bypass
the existing residual-based bad data detectors and achieve
the desired state estimation (SE)’s output [1]. FDIAs could
be created based on different goals, such as overloading a
transmission asset [2]]-[4], changing the actual topology of a
system [5]], changing locational marginal prices (LMPs) [6]],
[7], increasing the operational cost/loss of a system [8], [9],
causing sequential outages [|10], and frequency instability [11]],
[12]. Likewise, there are different ways to implement FDIAs
based on the measurements that should be compromised. For
instance, the authors in [5] attempted to falsify the transmis-
sion lines status’ information and measurements to perform
topology-based FDIAs. In [3]], the authors falsified the phase
shift commands to launch a transmission asset overloading
based FDIA. The authors in [11]], [12] falsified the automatic
generation control (AGC) signals to attack the systems’ sta-
bility. The authors in [13]-[16] changed the load and power
flow measurements to perform load-redistribution (LR) based
FDIAs. This paper focuses on LR attacks, which falsify the
load measurements to maximize the physical overflow on a
target transmission asset.

In LR attacks, the attackers falsify the buses’ injection
measurement by changing the load measurement at each
bus; they avoid falsifying the generation at each bus and
injection measurements at zero injection buses (attempt not to
increase the detection risk). In [8]], [9]], the authors attempted
to maximize the operations’ costs by designing bi-level LR
attack models. In [2], [4], the authors modeled two different
bi-level LR attacks to maximize the power flows of critical
transmission assets while penalizing the number of resources
that attackers can access. In [13f], the authors proposed a bi-
level mixed-integer linear programming LR attack model to
overload multiple transmission assets. In [[14]], [[15[], the authors
designed LR attacks with incomplete systems’ information by
proposing a model to find the best local attacking region.

B. Countermeasures against Cyber-Attacks

Due to the catastrophic consequences that cyber-attacks
could have for power systems, the research community has
been pushed to seek a solution and develop countermeasures
against cyber-attacks. In power systems, the security actions
to stand against cyber-attacks are divided as follows:

1) Protection Schemes: Refer to all actions that are done
in pre-attack stages to make systems secure against cyber-
attacks. In other words, these actions are designed to prevent
attackers from being able to launch cyber-attacks against
power systems. The authors in [17]-[23]] proposed various
protection techniques, such as a blockchain-based framework
to decentralize the data managing systems, stochastic game
theory models to find the optimal way of protecting critical
elements, and greedy algorithms to find protection strategies,
which minimize the systems’ vulnerabilities.

2) Detection Schemes: Most of the protection techniques
are expensive or cause significant disruptions in the sys-
tems’ infrastructure. Moreover, the research studies in [21]],
[24] demonstrated the attackers’ ability to launch cyber-
attacks even in systems with one insecure measurement. These
facts have pushed the researchers to design and develop
static/dynamic based detection mechanisms to continue the
process of standing against cyber-attacks [3]], [25]-[35].

3) Corrective Actions: Even after the attacks are identified,
retrieving the affected measurements’ actual value may be
impossible for operators. It is then imperative for system
operators to take corrective actions to mitigate the attacks’
physical consequences and avoid any severe damage (e.g.,
cascading outages). In this regard, the studies in [36], [37]]
addressed some post-attack corrective actions to provide se-
cured operating points.

C. Our Contributions

This paper’s primary goals are 1) developing a systematic
tool for flagging LR attacks in real-time and identifying
the affected transmission assets (if exist) and 2) designing
a corrective action to respond to the identified attacks and
provide secured dispatch points.

For the detection part, we use the security index proposed
in [31], the number of proper deviations at sensitive buses
(NPDSB), to detect LR attacks, and based on that, develop
a real-time load-redistribution threat analysis (RTLRTA) tool.
However, we suggest a more accurate way to determine
the thresholds for different NPDSB indices associated with
different target transmission assets. Our proposed detection
mechanism is different from other proposed techniques in the
literature in various aspects, like:

o As opposed to [25]], [26], in which the authors devel-
oped dynamic-based detection mechanisms, our detection
mechanism is a static-based.

o As opposed to the assumption in [3]], our method success-
fully detects LR attacks assuming that attackers have no
limitation for altering state variables. As opposed to the
approach in [27], our mechanism does not rely on some
secured measurements.

o As opposed to the proposed techniques in [28]], [29]], our
detection mechanism is modeled based on a linear and
convex problem.

o As opposed to the proposed method in [30], in which the
method’s functionality was not evaluated in the presence
of normal noise errors, we investigate our detection mech-
anism’s functionality in the presence of both Gaussian
and non-Gaussian noise errors.

o As opposed to the methods in [32[]-[35]], which were de-
veloped based on machine and deep learning, our mecha-
nism perfectly works regardless of the available historical
data’s quantity and quality (learning-based methods might
be more straightforward and effective, but need a large
amount of underlying historical data).

For developing the corrective action, we add a set of phys-

ical line flow security constraints (PLFSCs) to the security-
constrained economic dispatch (SCED) model and introduce



the cyber-physical SCED (CPSCED). The CPSCED model
provides secured dispatch points concerning the identified
attacks and affected transmission assets from the RTLRTA
tool. As opposed to the proposed corrective actions in [36],
[37], which were developed based on complicated and time-
consuming tri-level optimization problems, our proposed re-
medial action is swift and straightforward. In brief, our main
contributions are:

1) Improving the accuracy of the threshold proposed in [31]]
and introducing a new approach to determine thresholds
for NPDSB indices.

2) Introducing and developing the fast RTLRTA tool, with
minimal disruptions in the existing EMSs, to detect any
possible LR attack and identify all affected transmission
assets.

3) Introducing and designing the straightforward CPSCED
model, yet, practically efficient for the real-time opera-
tions. The CPSCED does a real-time corrective action
that allows operators to remove or mitigate the identified
attacks’ physical consequences.

4) Because all security actions should be addressed in real-
time with minimal changes and disruptions in the exist-
ing EMSs infrastructure, we develop our detection and
corrective schemes highly effective, fast, and applicable
to real-world practice.

The rest of this paper is organized as follows. Section II
presents a brief background regarding the SCED model and
LR attacks. Section III introduces the new enhanced EMS,
including the RTLRTA tool and the CPSCED. Sections IV
and V illustrate the simulation results and concluding remarks,
respectively.

II. BACKGROUND
A. Security-Constrained Economic Dispatch (SCED)

In the real-time operations of power systems, energy is
cleared through an economic dispatch model. This section
shows a simple base-case SCED model, which considers all
the grid’s and units’ physical limitations in the pre-contingency
stage (this model does not include reserve requirements and
the post-contingency security constraints).
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The objective function in (T)) minimizes the production cost
of the power needed to meet the demand. The procurement
of enough energy to meet the demand is imposed in (2).
The DC approximation of each transmission asset’s active

power flow is formulated using the power transfer distribution
factors (PTDFs) in (3). The power injected to each bus and
transmission network’s limitations are modeled in @) and (3),
respectively. In (6), the generation units’ physical limitations
are modeled.

B. LR Attack

LR attack is a type of FDIAs, in which changing buses’
injection measurement is the attackers’ procedure to achieve
their goals. In this paper, due to the direct communication be-
tween the generation units’ control room and system operators,
the only way to change the buses’ injection measurement is
to change the buses’ load measurement. In brief, an LR attack
increases the loads at some buses and decreases other buses’
load subject to the attacker’s limitations. The load deviation at
each bus should be neither more nor less than a fixed fraction
of the forecasted load at that bus. Moreover, the total load in
the system has to remain unchanged.

This paper focuses on the LR attacks that are designed to
cause an overflow on a target transmission asset. We use the
special structure of LR attacks’ core problem, demonstrated
in (7)-(9). as the LR attack model throughout this study.
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In this model, ‘%’ indicates that the load deviations’ direc-
tions depend on the target asset’s initial flow direction (might
be positive or negative). The deviations’ directions for a target
asset with a positive initial flow direction are different from
the deviations’ directions associated with a target asset with a
negative initial flow direction. The primary decision variable is
H;A@, which indicates the net injection deviation at bus ¢ € N
(we used H{A# to emphasize that attackers can change bus
angles to get appropriate deviations in loads). The load shift
factor is shown by «, and D, denotes the forecasted load at
each bus 7 € N. The power transfer distribution factor of
the target asset [ € K, with respect to the injection at bus
1 € N and withdrawal from the reference bus R, is shown by
PTDE{E.

In this problem, the objective function maximizes the over-
flow on a target transmission asset. Constraints in (8) limit
the attackers from changing the load at each bus more/less
than +/—a percent of the forecasted load at that bus (they
also impose no change at zero injection buses). Constraint (9))
ensures that the system’s net load remains unchanged.

III. MODELING AND METHODOLOGY

In the first part of this section, we go through the process
of developing the RTLRTA tool using the NPDSB security
index. In the second part, we introduce a way to estimate the
actual loads after LR attacks. Then, using the actual loads’
estimation, we design the PLFSCs and go through the process
of CPSCED modeling.



A. The RTLRTA Tool

1) NPDSB: In power systems, KVL and KCL govern the
power flows on transmission assets. According to this fact, the
only way for attackers who want to change the loads to achieve
the maximum overflow on a target transmission asset is to have
load deviations with proper directions and magnitudes at buses
with the largest PTDFs. Considering this fact, the authors in
[31] proposed the NPDSB index, which shows the number of
proper deviations at sensitive buses associated with a set of
loads and a target asset. Then, if the index’s value related to
a set of loads is greater than a threshold, which in [31] was
assumed to be half of the total number of sensitive buses, that
set of loads is flagged as a malicious set.

This paper propose a more accurate procedure to determine
thresholds for NPDSB indices since the proposed threshold
in [31] may not be accurate enough to detect all random
LR attacks and distinguish them from random noise errors.
In other words, there is no unique threshold for all NPDSB
indices; instead, there are different thresholds associated with
different NPDSB indices.

2) Thresholds for NPDSB Indices Considering Random LR
Attacks: In this subsection, we propose a procedure to find
more accurate thresholds for NPDSB indices. To do so, at
first, we re-design problem (7)-(9) and model problem (I0)-
(T1) to generate random LR attacks.

@ - ®.

LAO =0; Vd € n".

(10)
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We add constraint to force the deviations at d randomly
selected sensitive buses (concerning the target transmission
asset) to be zero.

The threshold values should be determined in a way that
they can detect even the weakest random LR attacks. There-
fore, we can consider the NPDSB index of the weakest, yet
effective, random LR attack against a target transmission asset
as the threshold for that asset’s NPDSB index. Due to the
inverse relationship between the NPDSB index and d, we
can find the thresholds by solving problem (I0)-(TI) with the
largest value of d. We provide more clarifications and detailed
information about the process of finding thresholds for the
NPDSBs of different transmission assets in section [Vl

3) Developing The RTLRTA Tool: Here, we leverage the
NPDSB index to develop the RTLRTA tool to detect LR
attacks and find all affected transmission assets in real-time.
The RTLRTA tool has the same inputs as SE and calculates the
NPDSB indices associated with all or only vulnerable assets.
Then, the RTLRTA tool compares the resulted NPDSB indices
with the pre-determined thresholds to find out whether the
current set of loads has been contaminated with malicious data
or not.

One of the RTLRTA tools advantages is that it could identify
all affected transmission assets. There might be correlations
between critical transmission assets in a power system, so a
set of malicious load deviations, designed initially to damage
a specific transmission asset, may affect other transmission as-
sets. For instance, assume a power system with five vulnerable
transmission lines A, B, C, D, and E. For this system, a random

LR attack scenario against line C might exist that can affect
lines B and E. Likewise, another attack scenario might exist
against this line, which can affect lines A and E. Based on this
fact, we develop the RTLRTA tool to check the NPDSB indices
for all vulnerable transmission assets and finds all affected
ones (if any exists). As a result, the RTLRTA tool’s outputs
are the affected transmission assets’ ID or index. Therefore,
the RTLRTA not only determines whether a system is under
an LR attack, but it also identifies the affected transmission
assets. The output from this tool is then fed into the CPSCED
to activate the corresponding PLFSCs.

Algorithm [I] demonstrates the process of calculating the
NPDSB index for each transmission asset (aZf%fonmt is the
smallest load shift factor that causes an overflow on the target
transmission asset k). Moreover, considering the NPDSB
indices and their associated thresholds, Algorithm |I| finds the
affected assets’ ID (to send them to the CPSCED for PLFSCs
activation).

Algorithm 1 Process of finding NPDSB indices and affected transmission
assets in RTLRTA

Input: Output from SE.

Output: NPDSB indices and affected assets” ID.

1: for it « EMS

iteration do

2: ALY « L' — D'
3: for k < K do
4: NPDSB}, « 0;
5 [H/Af]* < solve problem —@);
6: for i + N do )
7 if (sign[ALI'] = sign[H/AO)¥ & |ALI| > ap'eTiPo'™ D, )
then :
: NPDSBj, <— NPDSB;, + 1;
9: end if
10: end for
11: if NPDSBj, > NPDSBY, . .,.q then
12: PLFSC}, is activated;
13: end if
14: end for
15: end for

B. Cyber-Physical SCED (CPSCED)

The rationale behind using the CPSCED is that after
noticing an LR attack in the system, it may still be hard
to achieve the actual loads. Therefore, considering the fake
load measurements, a fast corrective action should be taken
to maintain the systems operation secure. Subsequently, we
modify the SCED model by adding the PLFSCs to create the
CPSCED model, which provides secured dispatch points and
avoids physical overflows or mitigates significant impacts.

Assume an attacker bypasses all protection-based schemes
and changes the buses load. As a result, the set of insecure
dispatch points from the SCED is P, which creates phys-
ical overflows in the system (considering the actual loads).
According to this strategy, we embed two sets of line flow
security constraints in the CPSCED. The first one, which
already exists in the base-case SCED, imposes the power flows
on transmission assets within their ranges (considering the
contaminated loads). The second one, the new PLFSC, forces
the physical flows on affected transmission assets to be within
their boundaries (considering the actual loads). However, be-
cause retrieving the actual loads is hard, we propose a method
to estimate the actual loads, then we modeled the PLFSC based
on this estimation.



To estimate the actual loads, we assume the worst-case
LR attack for the affected transmission asset with the largest
NPDSB index value and model the actual load at each bus as
follow:

L; +H,A0
D = 120
Lia

ifiey
ifi ¢
where negative (L, — H{A#) is used for transmission assets
with positive initial flow directions and positive (L; + H{A#0)
is used for transmission assets with negative initial flow direc-
tions. Additionally, since the attacker might introduce some
random deviations, the actual load at each bus 7 € N with
AL; more than azt%ﬁwmt x D; is modeled as L; + H{A0;
otherwise, it remains L;.

After estimating the actual loads, we can model the PLFSC,
as shown in (I4)-(I6). Then, by adding the PLFSC to the
SCED model, we can design the CPSCED as follow:

12)

- (), (13)

PLF, =Y SF&P, ; Vke K7, (14)
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where in (T4), the actual physical flow is formulated based
on the actual injection to each bus, which is modeled in
(T5). Constraint (I6) forces the physical flow of each affected
transmission asset to be within its thermal limits.

The proposed enhanced EMS algorithm is designed and
shown in Algorithm |2} and the block diagram of the enhanced
EMS is shown in Fig. [I]

Algorithm 2 The Enhanced EMS algorithm.

1: Get the SE’s results;

2: In the RTLRTA tool, find NPDSBST,ecshoid for vulnerable transmission assets,
considering v at most 10%;

: In the RTLRTA tool, flag possible LR attacks and identify all affected transmission
assets based on the NPDSBS7 4 reshold:

. In the CPSCED, activate PLFSCs corresponding to identified affected assets;

: Run the CPSCED based on the estimated actual loads (L;t + ch);

. Get the new dispatch points and find the actual physical flows;

. If there is overflow, add the corresponding PLFSCs to the CPSCED;

: Go to step 5;
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Fig. 1. Enhanced EMS including the RTLRTA tool and CPSCED.

At each iteration, the NPDSB indices for all vulnerable
assets are calculated. Then, if there are affected assets, the

CPSCED is solved with the corresponding activated PLFSCs.
Moreover, considering the CPSCED’s dispatch points and the
estimated actual loads, other transmission assets’ physical
flows are checked. If overloaded transmission assets still exist,
the corresponding PLFSCs are activated in CPSCED, and a
new set of dispatch points is provided. This process continues
until there is no physical overflow in the system.

IV. SIMULATION RESULTS

In this section, we applied the proposed methods to the
2383-bus test system [38]]. At first, we determined the thresh-
old values for two vulnerable lines 169 and 251 (they are
vulnerable lines since there is at least one scenario of LR
attack for each line with o at most 10% that can make the
line physically overloaded). Then, we evaluated the RTLRTA
tool’s and CPSCED’s accuracy and functionality for different
random LR attacks. At last, we compared the results from the
CPSCED with the results from the SCED.

A. NPDSB%“G}LQTeshold

Here, we determined a threshold for the NPDSB index of
transmission line 169. To do so, we considered the weakest
LR attack that could cause an overflow on this line. Since
the largest d is important to find the weakest attack with the
lowest NPDSB index, we started to force the deviations at
the first d sensitive buses out of all sensitive buses to zero.
The sensitive buses are sorted based on their PTDF absolute
values from smallest to largest. Throughout this experiment,
we increased d manually and solved problem (I0)-(II) until
we reached a d whose associated attack vector could not cause
an overflow on line 169. Table [[ shows the results of solving
problem (I0)-(TI) for three different ds.

As shown in Table [I, there is no random LR attack with
« at most 10% and d more than 692 (NPDSB < 357) that
could cause an overflow on line 169. It means that the system
operator can use 357 as NPDSB}S9 . .= We used 350 for
this line, which is even more conservative than 357.

TABLE I. The control room flows, physical flows, and NPDSB indices after
solving problem ll for line 169 with o = 10%, algy 2ot =
0.0425, and three ditferent ds.

Line d Control room Physical NPDSB Flow limit
flow (MW) flow (MW) (MW)
292 -926.62 -1166.68 667
169 492 -916.35 -1132.68 526 926.62
692 -765.76 -926.65 357

B. NPDSB%Shlreshold

Following the same procedure in subsection we
determined a threshold for the NPDSB index of line 251.

Table [ demonstrates the control room flows, physical flows
and NPDSB indices corresponding to three different ds for
line 251 with o and a5} 2" equal to 10% and 0.0686,
respectively. According to Table [[I} there is no severe random
LR attack for line 251 with o < 10% and d > 685 (NPDSB
< 374). Therefore, 370 is a valid and conservative enough
choice for NPDSB%3L_, .



TABLE II. The control room flows, physical flows, and NPDSB indices after

solving problem for line 251 with o« = 10%, a;?f:fioim =
0.0686, and three ditferent ds.
Line d Control room Physical NPDSB Flow limit
flow (MW) flow (MW) (MW)
285 -329.85 -434.58 641
251 485 -355.44 -428.65 504 387.34
685 -317.16 -387.347 374

C. Proposed Thresholds and RTLRTA Analysis

1) NPDSByj,resholqa Analysis: In this part, we demonstrated
the functionality and accuracy of the proposed thresholds. To
do so, we generated 2000 scenarios of random LR attacks (red
points) and 3000 sets of random noise errors (blue points),
including 2000 Gaussian and 1000 non-Gaussian noise errors.
Then, we investigated if the proposed thresholds could detect
the attack scenarios and differentiate them from random noise
errors. Based on the determined thresholds for lines 169 and
251, every point with an NPDSB index larger than 350 or 370,
respectively, was flagged.

To achieve each random attack vector, we solved prob-
lem (10)-(11) for different ds, and each time o (10%) was
multiplied to a random number between 0.52 and 1, where
0.052 is the least « that causes 5% overflow on the target line
(a?g@’mm). We used this « to ensure that constraint l| does
not force many of the physical flows to be less than the target
lines’ continuous rating.

We generated the Gaussian noise errors’ vectors from a
Gaussian distribution with g = 0 and ¢ = aL/3.1 in such
a way that the deviation at each bus was limited to o percent
of the forecasted load at that bus in either direction. There
was no change at zero injection buses, and the system’s net
load change was small. Moreover, we extracted the Cauchy
noise errors’ vectors from a Cauchy distribution with location
2o = 0 and scale v = oL /3.1. All Cauchy noise errors were
created and subjected to the same three constraints applied to
the Gaussian noise errors’ creation process.

As illustrated in Fig. [2] and Fig. [3] the proposed thresholds
worked perfectly and accurately. They successfully differen-
tiated all random attack scenarios from noise errors for both
lines. According to the results, some attack scenarios for both
lines had insufficient energy to cause an overflow on the
target line (red points above the lines related to continuous
thermal ratings). It is because some of the d randomly selected
buses with zero deviations were among the most sensitive
buses, which reduced the attack’s energy. Although these
scenarios were not successful in causing an overflow on the
target line, our proposed method flagged them as a malicious
movement since their NPDSB indices were larger than the pre-
determined thresholds. We generated these scenarios (attack
with no damage) to show our methods capability, while this
may not be the case in reality.

2) The RTLRTA Tool Analysis: In this part, we evaluated
the functionality of the RTLRTA tool. To do so, we ran Algo-
rithm [T] when there was an LR attack scenario against target
line 169. Hence, we generated a random LR attack against
line 169 by solving problem (I0)-(IT). We tested whether
the RTLRTA tool can find all affected transmission assets or
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Fig. 2. Physical effects of different scenarios of load deviations on line
169 versus the associated NPDSBs. Sub-figure (a) shows the comparison of
physical effects of 1000 random LR attacks, when d is 150 in problem —
(11), with 1000 sets of random Gaussian noise errors (1 = 0; o = aL/3.1),
sub-figure (b) shows the same comparison as the comparison in sub-figure
(a), but considering d equals to 400, and sub-figure (c) shows the comparison
between 1000 sets of random LR attacks in sub-figure (a) with 1000 sets of
Cauchy noise errors (zo = 0; v = aL/3.1).
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Fig. 3. Physical effects of different scenarios of load deviations on line
251 versus the associated NPDSBs. Sub-figure (a) shows the comparison of
physical effects of 1000 random LR attacks, when d is 150 in problem -
(11), with 1000 sets of random Gaussian noise errors (1 = 0; o = aL/3.1),
sub-figure (b) shows the same comparison as the comparison in sub-figure
(a), but considering d equals to 400, and sub-figure (c) shows the comparison
between 1000 sets of random LR attacks in sub-figure (a) with 1000 sets of
Cauchy noise errors (zg = 0; v = aL/3.1).

not. We calculated the NPDSB indices associated with the
generated attack vector for other vulnerable transmission assets
and compared each NPDSB index with its associated threshold



TABLE III. The NPDSBs and physical overflows of all vulnerable transmission lines, considering one attack scenarios against lines 169.

P (MW) 926.62
Attack
Line No. 169 R
TNSB 1168 Scenario
NPDSBT,reshold 350

NPDSB:S° | 614 21.6
d— 150 NPDSB15; | 805 Physical 15.9
NPDSBLS) | 678 | Overflow (%) | 3.64
NPDSB;S% | 332 13.18

TABLE IV. Active and binding PLFSCs in the CPSCED, objective values of the SCED and CPSCED, and the physical flows when different scenarios of LR
attacks (d = 150 and d = 400) contaminated the loads by targeting both transmission lines 169 and 251.

Activated Binding Target Line Physical Target Line Physical
. SCED CPSCED
Line No. Case No. PLFSC PLFSC Flow after Flow after
. ) Cost (M$) Cost (M$)
(index) (index) SCED (MW) CPSCED (MW)

169 1,d =150 52 — 169 — 264 52 1.79 1.83 —1011.7 —699.1

2, d = 400 52 — 169 — 251 — 264 52 — 264 1.78 1.82 —1039.4 —749.5

951 1,d =150 52 — 169 — 251 — 264 52 — 264 1.77 1.81 —409.1 —261

2, d = 400 52 — 169 — 264 52 — 264 1.78 1.82 —383.9 —42.3

to see if the transmission line was affected. Likewise, we added
the malicious deviations related to this attack vector to the
loads and provided the overflows’ percentages on vulnerable
transmission lines, which confirms the decision made by the
RTLRTA tool. As shown in Table we calculated the
NPDSB indices for all four vulnerable transmission lines,
which resulted in 614, 805, 678, and 332 for lines 52,
169, 251, and 264, respectively. Based on the thresholds, all
NPDSB indices indicated a malicious movement and notified
the system operator that the current loads were maliciously
contaminated. Moreover, the overflows’ percentages illustrate
that this random attack, which was created to target line 169,
caused overflows on other vulnerable lines. As mentioned
before, in this case, we took line 169 as the primary target
to estimate the actual loads since the overflow on this line
(21.6%) is more significant than overflows on other vulnerable
lines, which are 15.9%, 3.64%, and 13.18% for lines 52, 251,
and 264, respectively.

Algorithm (1] is fast enough to add to the existing EMSs; it
was coded in JAVA and took about 50 milliseconds to run for
each line on an Intel(R) Xeon(R) CPU with 48 GB of RAM.
Likewise, since this problems nature makes each run of the
RTLRTA tool for each asset independent from the others, we
can parallelize the RTLRTA tool’s running processes.

D. CPSCED Analysis

In this section, we evaluated the CPSCED’s ability to
provide secured dispatch points in the presence of LR attacks.
To do so, we created different random LR attacks against
transmission lines 169 and 251, and for each case, in the
RTLRTA, we found the list of assets whose associated PLFSCs
have to be activated in the CPSCED. Finally, we compared the
operation costs of the SCED and CPSCED in the presence
of LR attacks. The proposed CPSCED has one more set of
constraints than the SCED, which means that its result could
be equal or worse from the economic point of view. In other
words, if any of the added PLFSCs binds, the CPSCED results
in a higher operating cost than the operation cost of the SCED.

Table shows two different attack scenarios (d = 150
and d = 400) for each target transmission line (169 and 251).
As shown, there were binding PLFSCs for all four scenarios,
which justifies that the CPSCED resulted in higher operating

costs than the SCED. This is the cost of making the system
secure against identified LR attacks. For instance, for case
1 against line 169, the PLFSC associated with line 52 was
the binding constraint out of the three activated PLFSCs, and
resulted in higher operating cost in the CPSCED ($ 1.83M)
than the SCED ($ 1.79M). As another example, consider the
second case for line 251, where the generated random attack
was not successful in causing an overflow on this line. Still, it
was successful on other lines (52, 169, and 264). The physical
flow on line 251 confirms the RTLRTA tool’s decision, which
did not activate this line’s PLFSC in the CPSCED. This attack
scenario caused overflows on the other three vulnerable lines
(52, 169, and 264), and the RTLRTA successfully activated
those PLFSCs in the CPSCED. Moreover, only two of these
activated PLFSCs (52 and 264) were binding in the CPSCED,
which resulted in a higher operating cost in the CPSCED ($
1.82M) than the SECD ($ 1.78M).

Considering the SCED’s dispatch points in Table all
the target lines actual physical flows were more than their
thermal ratings (except for the second scenario against line
251, in which we had other overloaded lines). On the other
hand, considering the CPSCED dispatch points, there is no
overflow in the system (neither on the target line nor on other
vulnerable lines).

V. CONCLUSION REMARKS

In the first part of this paper, we leveraged the NPDSB index
to develop a real-time detection tool, which could be used
in real-world practice with minimal disruptions and changes
in the existing EMSs infrastructure. We made the RTLRTA
tool in such a way that it could detect possible random LR
attacks. To do so, first, we modeled the optimization problem
(TO)-(TT) to generate random LR attacks. Next, we determined
the NPDSB index’s threshold for each vulnerable asset so
that it can flag even the weakest random LR attack against
that asset. Finally, we created 2000 scenarios of random LR
attacks and 3000 Gaussian and non-Gaussian sets of noise
errors to evaluate the determined thresholds and RTLRTA
tool’s accuracy and functionality. The determined thresholds
worked perfectly, so the RTLRTA tool successfully detected
all attack scenarios, differentiated them from all noise errors,
and found all affected transmission assets.



Second, we proposed an approach to estimate the actual
loads, in the post-attack stage, based on which we designed
the PLFSCs. Then, we added the set of PLFSCs to the SCED
problem to create the CPSCED model as a corrective action
to respond to the identified LR attacks. The CPSCED gets
the affected transmission assets’ ID from the RTLRTA tool
and activates the associated PLFSCs to provide secured dis-
patch points. We investigated the CPSCED’s functionality and
compared its results with the SCED’s results for different LR
attack scenarios. The CPSCED successfully provided secured
dispatch points, with no violation, for all attack scenarios,
while the dispatch points from the SCED caused flow vio-
lations. Therefore, the higher operating cost of the CPSCED
comparing to the SCED is the cost of making the system
secure against undetectable LR attacks, which the SCED is
incapable of doing that.
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