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ABSTRACT

Automatic speech quality assessment is an important, transver-
sal task whose progress is hampered by the scarcity of human
annotations, poor generalization to unseen recording con-
ditions, and a lack of flexibility of existing approaches. In
this work, we tackle these problems with a semi-supervised
learning approach, combining available annotations with pro-
grammatically generated data, and using 3 different optimiza-
tion criteria together with 5 complementary auxiliary tasks.
Our results show that such a semi-supervised approach can
cut the error of existing methods by more than 36%, while
providing additional benefits in terms of reusable features
or auxiliary outputs. Improvement is further corroborated
with an out-of-sample test showing promising generalization
capabilities.

Index Terms— Speech quality, semi-supervised learning,
multi-objective, neural encoders, raw audio.

1. INTRODUCTION

Speech quality assessment is crucial for a myriad of research
topics and real-world applications. Its need ranges from al-
gorithm evaluation and development to basic analytics or in-
formed decision making. Speech quality assessment can be
performed by subjective listening tests or by objective quality
metrics [1]. Objective metrics that correlate well with human
judgment open the possibility to scale up automatic quality
assessment, with consistent results at a negligible fraction of
the effort, time, and cost of their subjective counterparts.
There have been considerable efforts in designing objec-
tive speech quality metrics. Traditional ones rely on standard
signal processing blocks, like the short-time Fourier trans-
form, or perceptually-motivated blocks, like the Gammatone
filter bank. Together with further processing blocks, they
conform an often intricate and complex rule-based system
[2-7]. Another, perhaps more recent alternative is to learn
speech quality directly from raw data, by combining machine
learning techniques with carefully chosen stimuli and their
corresponding human ratings [8—16]. A number of rule-based
systems have the advantage of being perceptually-motivated
and, to some extent, interpretable, but often present a nar-
row focus on specific types of signals or degradations, such
as telephony signals or voice-over-IP (VoIP) degradations.

Learning-based systems, on the other hand, are usually easy
to repurpose to other tasks and degradations, but require con-
siderable amounts of human annotated data. Both rule- and
learning-based systems might additionally suffer from lack
of generalization, and thus perform poorly on out-of-sample
but still on-focus data.

Semi-supervised learning is a possible strategy to deal
with lack of annotations and poor generalization [17]. By
leveraging both labeled and unlabeled data, it can bring sub-
stantial performance and generalization improvements, spe-
cially when annotations are scarce. Semi-supervised learn-
ing is behind many recent advancements in machine learn-
ing [18], and has been successfully applied to image quality
assessment [19,20]. However, surprisingly, we find no purely
semi-supervised approaches for audio or speech quality as-
sessment. To the best of our knowledge, the few works that
exploit unlabeled data for this task only make indirect use of
it: they either exploit the output of other existing (rule-based)
measures to complement the supervised loss [10], or resort to
pre-trained models or latent features [14—16], usually coming
from other/unrelated tasks.

In this paper, we propose to learn a model of speech
quality that combines multiple objectives, following a semi-
supervised approach. We call it SESQA, for semi-supervised
speech quality assessment. SESQA learns from existing
labeled data, together with limitless amounts of unlabeled
or programmatically generated data, and produces speech
quality scores, together with usable latent features and infor-
mative auxiliary outputs. Scores and outputs are concurrently
optimized in a multi-task setting by 8 different but comple-
mentary objective criteria, with the idea that relevant cues
are present in all of them. By flowing information through a
shared latent space bottleneck, the considered objectives learn
to cooperate, and promote better and more robust representa-
tions while discarding non-essential information [21,22]. Ad-
ditional design principles of SESQA include its lightweight
and fast operation, its fully-differentiable nature, and its abil-
ity to deal with short-time raw audio frames at 48 kHz (thus
yielding a time-varying, dynamic estimate).

We evaluate SESQA against 9 existing approaches, under
3 different metrics, and using 3 different data sets. We focus
on the reference-free setting [1], but note that the proposed
framework is easily extensible to learn from reference-based
speech quality scores (we provide a number of straightfor-



ward adaptations in Appendix A). On the considered metrics,
we show that SESQA cuts the error of existing methods by
more than 36%, and that such a leap is due to the proposed
semi-supervised approach using multiple criteria and auxil-
iary tasks. We also highlight the consistency of the speech
quality estimates and the utility of the learned latent space.
Finally, we show that SESQA also outperforms existing meth-
ods by more than 21% in an out-of-sample post-hoc listening
test, what suggests a good generalization to new recordings
and listeners.

2. THE SESQA MODEL

2.1. Optimization criteria and auxiliary tasks

A key driver of our work is to notice that additional evalu-
ation criteria should be considered beyond correlation with
mean opinion scores (MOS) [1] of speech quality. Impor-
tantly, we decide to also learn from such additional evalua-
tion criteria. Another fundamental aspect of our work is to
realize that there are further objectives, data sets, and tasks
that can complement those criteria and help learning a more
robust representation of speech quality and scores. The com-
bination of multiple learning/evaluation criteria (Sec. 2.1.1)
and auxiliary tasks (Sec. 2.1.2) is what gives birth to SESQA.

2.1.1. Learning/evaluation criteria

Mean opinion score — The principal and almost unique cri-
terion considered by existing approaches is the MOS error. In
learning-based approaches, a supervised regression problem
is usually set, such that

LM = ||sf — s,
where s} is the MOS ground truth, s; is the score predicted
by the model, and || || corresponds to some norm. Throughout
this work, we use the L1 norm (mean absolute error).
SESQA predicts scores s; from a latent representation z;
by using a linear unit and a sigmoid activation o: s; = 1 +
40 (w'z; + b), where coefficients 1 and 4 adapt the score to
MOS values between 1 and 5. The latent representation z; is
obtained by encoding a raw audio frame x; through a neural
network encoder (we detail SESQA’s architecture in Sec. 2.2).

Pairwise ranking — Besides MOS, another intuitive but of-
ten overlooked notion in quality assessment is pairwise rank-
ings [19,20]: if a speech signal x; is a programmatically de-
graded version of the same (originally ‘clean’, or ‘cleaner’)
utterance X;, then their scores should reflect such relation,
that is, s; > s;. This notion can be introduced in a train-
ing schema by considering learning-to-rank strategies [23].
In our case, we follow a margin loss formulation [20]:

LRANE — max (0,55 — s; + @),

where oo = 0.3 is a margin constant.

In SESQA, we programmatically generate pairs {X;,X; }
by considering a number of data sets with clean speech and a
pool of several degradation functions (we overview our data
and methodology in Sec. 3). Additionally, we gather random
pairs from annotated data, assigning indices ¢ and j depending
on the corresponding s*, such that the element of the pair with
alarger s* gets index ¢. For pairs coming from annotated data,
we use o' = min(a, s} — s7).
Score consistency — Consistency is another overlooked no-
tion in audio quality assessment [24]: if two signals x; and
x; are extracted from the same source and differ by just a few
audio samples, or if the difference between two signals x;, and
x; is perceptually irrelevant [25], then their scores should be
essentially the same, that is, s = s;. Complementarily, if two
signals x; and x; are perceptually distinguishable, then their
score difference should be above a certain margin £, that is,
|si — s;] > /. Notice that these two notions can be extended
to pairs of pairs, by considering the consistency between pairs
of score differences. In our current implementation, we only
extend the first notion: if we have two signals x;, and x;, that
are respectively perceptually the same as x;, and x;, (with x;
having more degradation than x;, signals k£ and [ extracted
from those), score differences should tend to be equal, that is,
Sip, = Sjx = Sip — Sgi-

Taking all three notions into account, we propose the con-
sistency loss

1
LEONS = Z (|sk? - Sl| + lsik S T (siz - sz)|) +
1
+ % (1 - min(lsi - Sj|76)) )
where 5 = 0.1 is another margin constant. We program-

matically generate quadruples {x;, ,X;,,X;,,X;, } by extract-
ing them from pairs x; and x; using a random small delay be-
low 100 ms (we reuse the pairs {x;, X, } from LRANK) Tn ad-
dition to those, we consider pairs {x;,x;} and {xx,x;} from
an existing just-noticeable difference (JND) data set [16].

2.1.2. Auxiliary tasks

Same/different condition — With the data that we program-
matically generate for LONS, we also have information on
pairs of signals that correspond to the same degradation con-
dition, that is, signals that have undergone the same degrada-
tion type and strength. We can include this information by
considering the classification loss

LS° = BCE (6°°, H®(2,,,2,))

where BCE stands for binary cross-entropy, 6°° € {0,1}
indicates if latent vectors z,, and z, correspond to the same
condition ({u, v}={k,}) or not ({u,v}={i,j}), and H is a
small neural network that takes the concatenation of the two
vectors and produces a single probability value (further de-
tails on H are available in Sec. 2.2).



Just-noticeable difference — If, as mentioned, we have ac-
cess to pairs of signals with human annotations regarding their
perceptual difference, we can reinforce this notion in our la-
tent space with another classification loss

LJND — BCE ((S'JND7 HJND(ZU, Z’U)) ,

where 0"NP € {0, 1} indicates if latent representations z,, and
Z,, correspond to a JND or not [16].

Degradation type — Another advantage of programmati-
cally generated data is that, if we start from signals that we
consider clean or without noticeable degradations, we know
which degradations have been applied. With that, we build a
multi-class classification loss

LPT = "BCE (67", H)"(2:)) .

where 627 € {0, 1} indicates whether the latent representa-
tion z; contains degradation n or not (degradations are sum-
marized in Sec. 3). We also include the case where there is no
degradation as one of the n possibilities, therefore constitut-
ing on its own a binary clean/degraded classifier.

Degradation strength — At the moment of applying a degra-
dation to a signal, we usually have to decide a degradation
strength. Therefore, we can add the corresponding regressors

L =% [leR® — HpS(z)

)

where (PS5 € [0, 1] indicates the strength of degradation n.

Other quality assessment measures — Finally, since we
generate pairs {X;,X;}, we can always compute existing
reference-based (or reference-free) quality measures over
those pairs and learn from them. We do that with a pool of
regression losses

LMR = Z ngl\r/gk - H’rl\r/{R(z’hzj)H )

m

where (MR € R is the value for measure m computed on
{xi,x;} (we normalize (MR to have zero mean and unit
variance based on training data). In this work, we con-
sider reference-based measures PESQ, CSIG, CBAK, COVL,
SSNR, LLR, WSSD, STOI, SISDR, Mel cepstral distortion,
and log-Mel-band distortion [1,2,26,27].

2.2. Architecture

SESQA is composed of an encoder and a series of heads H
(Fig. 1). The encoder takes raw audio frames x and maps them
to latent space vectors z. Heads H take these latent vectors z
and compute the outputs for the considered criteria and tasks
(Sec.2.1). As mentioned, a linear unit with sigmoid activation
is used to project z to s. When dealing with pairs {z;,z;}, H
takes their concatenation as input.
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Fig. 1. Block diagram of the SESQA model.

The encoder consists of 4 main stages. Firstly, we trans-
form the distribution of x by applying a u-law companding
(no quantization) with a learnable p, which we initialize to 8.
Next, we employ 4 pooling blocks, each consisting of convo-
lution, batch normalization (BN), rectified linear unit (ReLU)
activation, and BlurPool [28]. We use 32, 64, 128, and 256
filters with a kernel width of 4 and a downsampling factor of
4. Next, we employ 6 residual blocks formed by a BN pre-
activation and 3 blocks of ReLLU, convolution, and BN. We
use 512, 512, and 256 filters with kernel widths 1, 3, and 1,
respectively, and add the residual connection by parametric
linear averaging: h’ = a’h + (1 — a’) F'(h), where a’ = o(a)
is a vector of learnable parameters between 0 and 1 and F is
the residual network (we initialize all components of a to 3
so that training starts with mostly a bypass from h to h’). Af-
ter the residual blocks, we compute time-wise statistics, tak-
ing the per-channel mean and standard deviation. This step
aggregates all temporal information into a single vector of
2x256 dimensions. We perform BN on such vector and in-
put it to a multi-layer perceptron (MLP) formed by two linear
layers with BN, using a ReLU activation in the middle. We
employ 1024 and 200 units.

The multiple heads H consist of either linear layers or
two-layer MLPs with 400 units, all with BN at the end. We
prefer simple heads in order to encourage the encoder, and not
the heads, to learn high-level features that can be successfully
exploited even by networks with limited capacity [21, 22].
The decision of whether to use a linear layer or an MLP is
based on the idea that the more relevant the auxiliary task,
the less capacity should the head have. This way, we empiri-
cally choose a linear layer for the score s and the JND and DT



heads. Notice that setting linear layers for these three heads
will provide interesting properties to the latent space, mak-
ing it reflect ‘distances’ between latent representations, due
to s and L'NP, and promoting groups/clusters of degradation
types, due to LPT (a validation of these intuitions is provided
in Appendix E).

We train SESQA with the RangerQH optimizer [29], us-
ing default parameters and a learning rate of 1072, We de-
cay the learning rate by a factor of 1/5 at 70 and 90% of
training. To favor generalization and slightly improve per-
formance, we also employ stochastic weight averaging [30]
during the last training epoch. Since after a few iterations all
losses are within a similar scale, we do not perform any loss
weighting.

3. DATA AND METHODOLOGY

We use 3 MOS data sets, two internal and a publicly-available
one. The first internal data set consists of 1,109 recordings
and a total of 1.5h of audio, featuring mostly user-generated
content (UGC). The second internal dataset consists of
8,016 recordings and 15h of audio, featuring telephony and
VoIP degradations. The third data set is TCD-VoIP [31],
which consists of 384 recordings and 0.7 h of audio, featuring
a number of VoIP degradations. Another data set that we use
is the JND data set [16], which consists of 20,797 pairs of
recordings and 28 h of audio. More details can be found in
Appendix B. For the programmatic generation of data, we
use a pool of internal and public data sets, and we generate
70,000 quadruples conforming 78 h audio. We employ a total
of 37 possible degradations, including additive background
noise, hum noise, clipping, sound effects, packet losses, phase
distortions, and a number of audio codecs. More details can
be found in Appendix C.

We compare SESQA with ITU-P563 [5], two approaches
based on feature losses, one using JND [16] (FL-JND) and
another one using PASE [22] (FL-PASE), SRMR [4], Auto-
MOS [15], Quality-Net [9], WEnets [12], CNN-ELM [11],
and NISQA [10]. We re-implement some of them to fit our
training and evaluation pipelines and adapt them to work at
48 kHz, if needed/possible. We note that FL, AutoMOS, and
NISQA make use of partial additional data beyond MOS, thus
being weakly semi-supervised approaches (we discussed the
‘weak’ terminology in Sec. 1). More details on baseline ap-
proaches can be found in Appendix D.

We put all approaches under the same setting, choosing
their best optimizers and hyper-parameters on the validation
set. We train with weakly-labeled frames of 1 s for 5 epochs,
performing data augmentation and reusing MOS data inside
an epoch (we define an epoch as a full pass over the program-
matically generated data). We use random scaling, phase in-
version, and temporal sampling as data augmentation. For
evaluation, we employ LMOS and LCONS | and compute the ra-
tio of incorrectly classified rankings RRANK [19,20] (we re-

Approach [ MOS RRANK [ CONS — pTOTAL
Human 0.679 n/a n/a n/a
Random score 1.219  0.500 0.614 1.724
ITU-P563 0.982  0.498 0.050 1.042
FL-JND 0.899  0.365 0.093 0.908
SRMR 0.854  0.351 0.071 0.849
FL-PASE 0.735 0.324 0.105 0.796
AutoMOS 0.537 0.311 0.212 0.792
Quality-Net 0.657 0.349 0.087 0.765
WEnet 0.660 0.258 0.125 0.713
NISQA 0.556 0.243 0.123 0.644
CNN-ELM 0.511  0.220 0.145 0.621
SESQA (ours) 0.474  0.090 0.067 0.394

Table 1. Comparison with existing approaches. Average er-
rors across the three considered data sets (results for individ-
ual data sets are available in Appendix E).

port RRANK instead of LRANK for interpretability). In addition,

we compute a summary error FTOTAL — (0 5 MOS | RRANK .
LCONS (we introduce the 0.5 weight to compensate for the dif-
ferent range). We perform 5-fold cross-validation and report
average errors.

4. RESULTS

We start by comparing SESQA with existing approaches (Ta-
ble 1). Overall, we observe that all approaches clearly out-
perform the random baseline, and that around half of them
achieve an error comparable to the variability between hu-
man scores (LMOS estimated by taking the standard devia-
tion across listeners and averaging across utterances). We
also observe that many of the existing approaches report de-
cent consistencies, with LEONS around 0.1, six times lower
than the random baseline. However, noticeably, existing ap-
proaches yield considerable errors for relative pairwise rank-
ings (RRANK) SESQA outperforms all existing approaches in
all considered evaluation metrics by a large margin, including
the standard LMOS. The only exception to the previous state-
ment is with the LEONS metric of the ITU-P563 approach,
which nonetheless has a high ZMOS and an almost random
RRANK With the summary metric ETOTAL, SESQA cuts the
error of the best existing approach by 36%.

We now study the effect that the considered criteria/tasks
have on the performance of SESQA (Table 2). First of all,
we observe that errors never decrease by removing a single
criterion. This indicates that none of them is harmful in terms
of performance. Next, we observe that there are some rel-
evant criteria that, if removed, have a considerable impact
(for example LMOS and LRANK) However, the absence of one
of such relevant criteria does not yet produce the average er-
ror of existing approaches (ET°TAL, Table 1). Regarding less
relevant tasks, we should note that we still find them useful



Approach [ MOS RRANK [ CONS [ TOTAL
SESQA 0.474  0.090  0.067 0.394
Without LMOS 0.839 0.079  0.044 0.543
Without LRANK 0492 0201 0.061 0.508
Without LEONS 0441 0.096 0.130 0.447
Without L3P 0.482  0.091  0.067 0.399
Without L'NP 0.475  0.089  0.067 0.394
Without LPT 0.476  0.089  0.067 0.394
Without LPS 0.479  0.090 0.067 0.396
Without LMR 0488 0.093  0.066 0.403
Only LMOS 0480 0265 0.137  0.643

Table 2. Loss ablation study. Average errors across the three
considered data sets (results for individual data sets are avail-
able in Appendix E).

for the outputs that they produce (for example, knowing if a
pair of signals present a JND difference) or for the properties
they confer to the organization of the latent space z (exam-
ples of latent space distances and degradation type clustering
are shown in Appendix E). Finally, it is also interesting to
highlight that considering the LM®S criterion alone (last row,
Table 2) yields a performance that is on par with the best-
performing existing approaches (NISQA and CNN-ELM, Ta-
ble 1). Overall, this demonstrates that considering multiple
optimization criteria and tasks is key for achieving outstand-
ing performance, and empirically justifies a semi-supervised
approach to audio quality assessment like SESQA.

To further assess the generalization capabilities of the
considered approaches, we also perform a post-hoc informal
test with out-of-sample data. For that, we choose 20 new
recordings from UGC, featuring clean or production-quality
speech, and speech with degradations such as real background
noise, codec artifacts, or microphone distortion. We then ask
anew set of listeners to rate the quality of the recordings with
a score between 1 and 5, and compare their ratings with the
ones produced by models pre-trained on our internal UGC
data set (Table 3). We see that the ranking of existing ap-
proaches changes, showing that some are better than others
at generalizing to out-of-sample data. Nonetheless, SESQA
still outperforms them in all metrics and by a large margin.
Noticeably, it cuts the LMOS of the best existing approach
by 21%, which is much more than the relative IMOS (if-
ference observed for in-sample data, which was 7% (from
Table 1). This indicates that SESQA generalizes better to
out-of-sample but related data.

S. DISCUSSION

Given the difficulties of collecting listener scores and the po-
tential lack of generalization of existing approaches, we be-
lieve that semi-supervised learning represents the current best
way forward in automatic audio or speech quality assessment.

Approach IMOS (Std)  pp 0s

Human 0.62 (n/a) 0.87 0.86
Random score 1.18 (0.87) 0.15 0.16
FL-JND 1.19(0.80) 0.01 0.30
ITU-P563 0.92 (0.50) 0.05 0.04
SRMR 0.83(0.78) 0.25 0.31
NISQA 0.74 (0.68) 0.61 0.60
FL-PASE 0.64 (0.55) 0.63 0.67
Quality-Net 0.64 (0.50) 0.82 0.78
WEnet 0.55(0.44) 074 0.72
AutoMOS 0.48 (0.45) 0.82 0.82
CNN-ELM 047 (0.37) 0.84 0.81
SESQA (ours) 0.37(0.34) 0.87 0.89

Table 3. Errors and correlations for the post-hoc listening
test. To complement IMOS we here additionally consider
Pearson’s (pp) and Spearman’s (ps) correlation.

In particular, we are encouraged by the capacity of semi-
supervised models for leveraging virtually infinite amounts of
data, and for combining those with multiple optimization cri-
teria and complementary auxiliary tasks. Since a single score
may be insufficient in a number of final applications, we are
also enthusiastic for the reuse of auxiliary outputs and learnt
latents in such applications or further downstream tasks.
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APPENDIX

A. COMPUTING SCORES WITH A REFERENCE SIGNAL

If we want to compute scores s in a reference-based setting instead of a reference-free one, we just need to pass the two
signals x; and x; through the encoder and obtain the corresponding latents z; and z;. Then, for instance, we can compute
sij = 1+ 40(w'z; — w'z; + b), using a linear unit for both latents. Other options are to compute a single score from a

latent vector difference, s;; = 1 + 40(w'(z; — z;) + b), or to concatenate latents and use a layer that is double the size,
sij = 1+4o(wlz}; z}]T +0b). Additional perspectives include replacing vector differences or linear layers by more complicated

nonlinear, parametric, and/or learnable functions.

B. DATA

As mentioned, in our semi-supervised approach we employ 3 types of data: MOS data, JND data, and programmatically
generated data. The additional out-of-sample data set used in the post-hoc listening test is summarized in the main paper, and
its degradation characteristics resemble the ones in our internal UGC data set (see below).

B.1. MOS data

We train and evaluate on 3 different MOS data sets of different size and characteristics:

1. Internal UGC data set — This data set consists of 1,109 recordings of UGC, adding up to a total of 1.5h of audio. All
recordings are converted to mono WAV PCM at 48 kHz and normalized to have the same loudness. Utterances range
from single words to few sentences, uttered by both male and female speakers in a variety of conditions, using different
languages (mostly English, but also Chinese, Russian, Spanish, etc.). Common degradations in the recordings include
background noise (street, cafeteria, wind, background TV/radio, other people’s speech, etc.), reverb, bandwidth reduction
(low-pass down to 3 kHz), and coding artifacts (MP3, OGG, AAC, etc.). Quality ratings were collected with the help of
a pool of 10 expert listeners with at least a few years of experience in audio processing/engineering. Recordings have
between 4 and 10 ratings, which were obtained by following standard procedures like the ones described by IEEE and
ITU (see [1] and references therein).

2. Internal telephony/VoIP data set — This data set consists of 8,016 recordings with typical telephony and VoIP degra-
dations, adding up to a total of 15h of audio. Besides a small percentage, all audios are originally recorded at 48 kHz
before further processing and normalized to have the same loudness. Recordings contains two sentences separated by
silence and have a duration between 5 and 15 s, following a protocol similar to ITU-P800. Male and female utterances
are balanced and different languages are present (English, French, Italian, Czech, etc.). Common degradations include
packet losses (between 20 and 60 ms), bandwidth reduction (low-pass down to 3 kHz), additive synthetic noise (different
SNRs), and coding artifacts (G772, OPUS, AC3, etc.). Quality ratings are provided by a pool of regular listeners, with
each recording having between 10 and 15 ratings. Ratings were obtained by following the standard procedure described
by ITU (see [1] and references therein).

3. TCD-VoIP data set — This is a public dataset available online at ht tp: / /www.mee.tcd.ie/~sigmedia/Resources/
TCD-VoIP. It consists of 384 recordings with common VoIP degradations, adding up to a total of 0.7h. A good de-
scription of the data set is provided in the original reference [31]. Despite also being VoIP degradations, a number of
them differ from our internal telephony/VolIP data set (both in type and strength).

B.2. JND data

We also use JND data for training. We resort to the data set compiled by Manocha et al. [16], which is available at https:
//github.com/pranaymanocha/PerceptualAudio. The data set consists of 20,797 pairs of “perturbed” recordings


http://www.mee.tcd.ie/~sigmedia/Resources/TCD-VoIP
http://www.mee.tcd.ie/~sigmedia/Resources/TCD-VoIP
https://github.com/pranaymanocha/PerceptualAudio
https://github.com/pranaymanocha/PerceptualAudio

(28 h of audio), each pair coming from the same utterance, with annotations of whether such perturbations are pairwise notice-
able or not. Annotations were crowd-sourced from Amazon Mechanical Turk following a specific procedure [16]. Perturbations
correspond to additive linear background noise, reverb, and coding/compression.

B.3. Programmatically generated data

We compute quadruples {x;, , X;,, X;, ,X;, } of programmatically generated data. To do so, we start from a list of 10 data sets of
audio at 48 kHz that we consider clean and without processing. This includes private/proprietary data sets, and public data sets
such as VCTK [32], RAVDESS [33], or TSP Speech (http://www-mmsp.ece.mcgill.ca/Documents/Data/). For
the experiments reported in this paper, we use 50,000 quadruples for training, 10,000 for validation, and 10,000 for testing. To
form every quadruple, we proceed as follows:

* Uniformly sample a data set and uniformly sample a file from it.

* Uniformly sample a 1.1s frame, avoiding silent or majorly silent frames. Normalize it to have a maximum absolute
amplitude of 1.

* With probabilities 0.84, 0.12, and 0.04 sample zero, one, or two degradations from the pool of available degradations
(see below). If zero degradations, the signal directly becomes x;. Otherwise, we uniformly choose a strength for each
degradation and apply them sequentially to generate x;.

* With probabilities 0.75, 0.2, 0.04, and 0.01 sample one, two, three, or four degradations from the pool of available
degradations (see below). Uniformly select strengths and apply them to x; sequentially to generate x;.

* Uniformly sample a time delay between 0 and 100 ms. Extract 1s frames x;, and x;, from x; using such delay, and do
the same for x;, and x;, from x;.

* Store {X;, ,X;,, Xj,,Xj, }, together with the information of degradation type and strength.

In total, we use 78 h of audio: 1 x 4 x (50000 + 10000 + 10000) /3600 = 77.77 h.

C. DEGRADATIONS AND STRENGTHS

We consider 37 possible degradations with their corresponding strengths. Strengths have been set such that, at their minimum,
they were perceptually noticeable by the authors. Note that, in some cases, the strengths chosen below are only one aspect of the
whole degradation and that, for other relevant aspects, we randomly sample between empirically chosen values. For instance,
for the case of the reverb effect, we select the SNR as the main strength, but we also randomly choose a type of reverb, a width,
a delay, etc.

1. Additive noise — With probability 0.29, sample a noise frame from the available pool of noise data sets. Add it to x
with an SNR between 35 and —15 dB. Noise data sets include private/proprietary data sets and public data sets such as
ESC [34] or FSDNoisy18k [35]. This degradation can be applied to the whole frame or, with probability 0.25, to just part
of it (minimum 300 ms).

2. Colored noise — With probability 0.07, generate a colored noise frame with uniform exponent between 0 and 0.7. Add it
to x with an SNR between 45 and —15 dB. This degradation can be applied to the whole frame or, with probability 0.25,
to just part of it (minimum 300 ms).

3. Hum noise — With probability 0.035, add tones around 50 or 60 Hz (sine, sawtooth, square) with an SNR between 35
and —15dB. This degradation can be applied to the whole frame or, with probability 0.25, to just part of it (minimum
300 ms).

4. Tonal noise — With probability 0.011, same as before but with frequencies between 20 and 12,000 Hz.
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10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Resampling — With probability 0.011, resample the signal to a frequency between 2 and 32 kHz and convert it back to
48 kHz.

p-law quantization — With probability 0.011, apply p-law quantization between 2 and 10 bits.

. Clipping — With probability 0.011, clip between 0.5 and 99% of the signal.

Audio reverse — With probability 0.05, temporally reverse the signal.
Insert silence — With probability 0.011, insert between 1 and 10 silent sections of lengths between 20 and 120 ms.
Insert noise — With probability 0.011, same as above but with white noise.

Insert attenuation — With probability 0.011, same as above but attenuating the section by multiplying by a maximum
linear gain of 0.8.

Perturb amplitude — With probability 0.011, same as above but inserting multiplicative Gaussian noise.
Sample duplicate — With probability 0.011, same as above but replicating previous samples.

Delay — With probability 0.035, add a delayed version of the signal (single- and multi-tap) using a maximum of 500 ms
delay.

Extreme equalization — With probability 0.006, apply an equalization filter with a random Q and a gain above 20 dB or
below —20dB.

Band-pass — With probability 0.006, apply a band-pass filter with a random Q at a random frequency between 100 and
4,000 Hz.

. Band-reject — With probability 0.006, same as above but rejecting the band.
. High-pass — With probability 0.011, apply a high-pass filter at a random cutoff frequency between 150 and 4,000 Hz.

. Low-pass — With probability 0.011, apply a low-pass filter at a random cutoff frequency between 250 and 8,000 Hz.

Chorus — With probability 0.011, add a chorus effect with a linear gain between 0.15 and 1.
Overdrive — With probability 0.011, add an overdrive effect with a gain between 12 and 50 dB.
Phaser — With probability 0.011, add a phaser effect with a linear gain between 0.1 and 1.
Reverb — With probability 0.035, add reverberation with an SNR between —5 and 10 dB.
Tremolo — With probability 0.011, add a tremolo effect with a depth between 30 and 100%.

Griffin-Lim reconstruction — With probability 0.023, perform a Griffin-Lim reconstruction of an STFT of the signal.
The STFT is computed using random window lengths and 50% overlap.

Phase randomization — With probability 0.011, same as above but with random phase information.
Phase shuffle — With probability 0.011, same as above but shuffling window phases in time.

Spectrogram convolution — With probability 0.011, convolve the STFT of the signal with a 2D kernel. The STFT is
computed using random window lengths and 50% overlap.

Spectrogram holes — With probability 0.011, apply dropout to the spectral magnitude with probability between 0.15 and
0.98.

Spectrogram noise — With probability 0.011, same as above but replacing Os by random values.
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31.

32.

33.

34.

35.

36.

37.

Transcoding MP3 — With probability 0.023, encode to MP3 and back, using 1 ibmp31ame and between 2 and 96 kbps
(all codecs come from f fmpeq).

Transcoding AC3 — With probability 0.035, encode to AC3 and back using between 2 and 96 kbps.

Transcoding EAC3 — With probability 0.023, encode to EAC3 and back using between 16 and 96 kbps.

Transcoding MP2 — With probability 0.023, encode to MP2 and back using between 32 and 96 kbps.

Transcoding WMA — With probability 0.023, encode to WMA and back using between 32 and 128 kbps.

Transcoding OGG — With probability 0.023, encode to OGG and back, using Libvorbis and between 32 and 64 kbps.

Transcoding OPUS — With probability 0.046, encode to OPUS and back, using 1 ibopus and between 2 and 64 kbps.

D. CONSIDERED APPROACHES

We compare SESQA to 9 existing approaches:

1.

ITU-P563 [5] — This is a reference-free standard designed for narrowband telephony. We chose it because it was the
best match for a reference-free standard that we had access to. We directly use the produced scores.

FL-IND — Inspired by Manocha et al. [16], we implement their proposed encoder architecture and train it on the JND
task. Next, for each data set, we train a small MLP with a sigmoid output that takes latent features from all encoder layers
as input and predicts quality scores.

FL-PASE — We also take a PASE encoder [22] and train it with the tasks of JND, DT, and speaker identification. Next,
for each data set, we train a small MLP with a sigmoid output that takes latent features from the last layer as input and
predicts quality scores.

. SRMR [4] — We use the measure from https://github.com/jfsantos/SRMRpy and employ a small MLP with

a sigmoid output to adapt it to the corresponding data set.

AutoMOS [15] — We re-implement the approach, but substitute the synthesized speech embeddings and its auxiliary
loss by LMR,

Quality-Net [9] — We re-implement the proposed approach.

WEnets [12] — We adapted the proposed approach to regress MOS.

CNN-ELM [11] — We re-implement the proposed approach.

NISQA [10] — We adapted the proposed approach to work with MOS, and substituted the auxiliary POLQA loss by

IMR,

E. ADDITIONAL RESULTS

In Tables 4 and 5 we report all error values for the three considered data sets, together with the LTOTAL average across data
sets. Table 4 compares SESQA with existing approaches and Table 5 shows the effect of training without one of the considered
losses, in addition to using only ZMOS, Recall that, as in the main paper, ETOTAL = 0.5LMOS | RRANK [ CONS,

Fig. 2 shows the empirical distribution of distances between latent space vectors z. We see that smaller distances correspond
to similar utterances with the same degradation type and strength (average distance of 7.6 and standard deviation of 3.4),
and that larger distances correspond to different utterances with different degradations (average distance of 16.9 and standard
deviation of 3.9). The overlap between the two is small, with mean plus one standard deviation not crossing each other. Similar

utterances that have different degradations are spread between the previous two distributions (average distance of 13.7 and
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Approach Internal UGC Internal VoIP TCD-VoIP Average

IMOS  RRANK 1 CONS IMOS  RRANK 1 CONS [MOS  RRANK 1 CONS [ TOTAL

Human 0.510 n/a n/a 0.755 n/a n/a 0.772 n/a n/a n/a

Random score 1.481  0.500 0.747 1.033  0.499 0.516 1.144  0.501 0.580 1.724
ITU-P653 1.304  0.501 0.050 0.752  0.501 0.050 0.890  0.501 0.050 1.042
FL-IND 0981 0.363 0.106 0.768 0411 0.078 0948 0.321 0.095 0.908
SRMR 0.995 0.283 0.110 0.743  0.487 0.049 0.825 0.282 0.053 0.849
FL-PASE 0.798  0.291 0.126 0.720  0.348 0.074 0.686 0.333 0.114 0.796
AutoMOS 0.532  0.293 0.236 0.536 0.292 0.250 0.542  0.349 0.151 0.792
Quality-Net 0.695 0.271 0.077 0.657 0.319 0.075 0.620 0418 0.110 0.765
WEnet 0.702  0.211 0.142 0.690 0.274 0.085 0.587 0290 0.147 0.713
NISQA 0.543  0.209 0.138 0.530 0.184 0.106 0.594 0.335 0.125 0.644
CNN-ELM 0.528 0.184 0.161 0.511  0.176 0.130 0.493  0.301 0.144 0.621
SESQA (ours) 0.485 0.096 0.089 0.513  0.086 0.057 0.424  0.089 0.056 0.394

Table 4. Comparison with existing approaches. Error for the considered data sets and metrics.

Approach Internal UGC Internal VoIP TCD-VoIP Average
[MOS  RRANK [ CONS [MOS  pRANK 1 CONS [MOS  RRANK [ CONS ETOTAL
SESQA 0.485 0.096  0.089 0.513 0.086  0.057 0.424  0.089  0.056 0.394
Without ZMOS 1.106  0.078  0.044 0.700  0.074  0.044 0.711  0.085  0.044 0.543
Without LRANK 0496 0.124  0.081 0.544  0.277  0.050 0.437 0.202  0.051 0.508
Without LEONS 0449 0.098 0.154 0464 0.086 0.117 0411 0.104  0.120 0.447
Without LSP 0.491 0.099 0.087 0.517 0.083  0.057 0.437  0.090 0.057 0.399
Without L'NP 0.484 0.096  0.089 0.516  0.086  0.057 0.421 0.086  0.055 0.394
Without LPT 0.482 0.097 0.088 0.523 0.082  0.056 0.422  0.089  0.057 0.394
Without LPS 0484 0.096 0.088 0.524  0.084  0.056 0.429  0.089  0.057 0.396
Without LZMR 0.500 0.104  0.086 0.532  0.083 0.056 0433 0.092 0.056 0.403
Only LMOS 0478 0.208 0.163 0.529 0.268 0.116 0434 0320 0.132 0.643

Table 5. Loss ablation study. Error for the considered data sets and metrics.

Similar utterance, same degradation/strength
Similar utterance, different degradations
Different utterances, different degradations

Estimated density

T
0 5 10 15 20 25 30

Euclidean distance between latent pairs

Fig. 2. Euclidean distance densities between latent space vectors. Similar/different utterances correspond to the ones defined
by LEONS in the main paper.

standard deviation of 5.5). That makes sense in a latent space that is organized by degradation and strengths, with a wide range
between small and large strengths. We assume this overall behavior is a consequence of all losses, but in particular of s and

L™P and their linear heads.
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Fig. 3 shows three low dimensional t-SNE projections of latent space vectors z. In the figure, we can see how different
degradation types group or cluster together. For instance, with a perplexity of 200, we see that latent vectors of frames that
contain additive noise group together in the center. Interestingly, we can also see that similar degradations are placed close to
each other. That is the case, for instance, of additive and colored noise, MP3 and OPUS codecs, or Griffin-Lim and STFT phase
distortions, respectively. We assume this clustering behavior is a direct consequence of LPT and its linear head.

Perplexity = 30 Perplexity = 80
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Fig. 3. Latent space organization into classes. Projection of z by t-SNE with three different perplexities (30, 80, and 200) for a
subset of degradation types. Intensity of the color corresponds to degradation strength.

Fig. 4 depicts how scores s, computed from test signals with no degradation, tend to get lower while increasing degradation
strength. In a number of cases, the effect is both clearly visible and consistent (for instance additive noise or the EAC3
codec). In other cases, the effect saturates for high strengths (for instance u-law quantization or clipping). There are also a few
degradations where strength does not correspond to a single variable, and thus the effect is not clearly apparent (for instance,
in the reverb degradation, we only control SNR, but there are other variables that also have an important effect in perception).
Overall, we observe a consistent behavior across degradations and strengths. We assume IMOS [RANK 554 DS are the main
driving forces to achieve this behavior.
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signal score.
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